Site Loader

Содержание

1. Взаимоиндукция — основа работы трансформаторов | 9. Трансформаторы | Часть2

1. Взаимоиндукция — основа работы трансформаторов

Взаимоиндукция — основа работы трансформаторов

Давайте предположим, что мы намотали катушку изолированного провода вокруг замкнутого ферромагнитного материала и возбудили ее от источника переменного напряжения:

 

Изолированная обмотка на замкнутом ферромагнетике обладает индуктивным реактивным сопротивлением, ограничивающим переменный ток

 

Мы ожидаем, что катушка индуктивности с железным сердечником будет противостоять приложенному напряжению своим индуктивным реактансом, ограничивающим ток через катушку согласно уравнениям, XL = 2πfL и I=U/X (или I=U/Z). Чтобы лучше понять этот пример, мы должны более детально рассмотреть взаимодействие напряжения, тока и магнитного потока в устройстве.

Второй закон Кирхгофа нам говорит, что Алгебраическая сумма всех напряжений любой замкнутой цепи должна равняться нулю. В нашем примере, мы применим этот фундаментальный закон электричества для описания соответствующих напряжений источника питания и катушки индуктивности. Здесь (как и в любой цепи, состоящей из одного источника питания и одной нагрузки) напряжение на нагрузке должно равняться напряжению, подаваемому от источника питания, при условии нулевого падения напряжения на сопротивлении соединительных проводов. Другими словами, нагрузка (катушка индуктивности) должна произвести напряжение, противостоящее напряжению источника и равное ему по величине. Алгебраическая сумма этих двух напряжений цепи должна равняться нулю. Откуда же берется это противостоящее напряжение? Если бы нагрузкой был обычный резистор (рисунок (б) выше), то падение напряжения на нем происходило бы от потери электрической энергии (за счет «трения» электронов, проходящих через сопротивление). В идеальной катушке индуктивности (в которой отсутствует сопротивление провода), противостоящее напряжение возникает за счет другого механизма — реакции на изменение магнитного потока в железном сердечнике. Когда переменный ток изменяется, магнитный поток также изменяется. Изменение потока вызывает возникновение встречной ЭДС.

Майкл Фарадей открыл математическую связь между магнитным потоком (Ф) и наведенным напряжением в следующем уравнении:

 

 

Мгновенное напряжение (падение напряжения в любой момент времени) на катушке равно количеству витков провода этой катушки вокруг сердечника (N), умноженному на мгновенную скорость изменения магнитного потока (dΦ/dt). Графически это выглядит как последовательность синусоидальных волн (предполагается, что используется синусоидальный источник напряжения), в которой волна потока на 90

o отстает от волны напряжения:

 

Магнитный поток отстает от приложенного напряжение на 90 °, поскольку поток пропорционален скорости изменения dΦ/dt.

 

Магнитный поток в ферромагнитном материале аналогичен току в проводнике: он должен быть мотивирован некоторой силой. В электрических цепях такой силой является напряжение (электродвижущая сила или ЭДС). В магнитных «схемах» этой силой является магнитодвижущая сила, или МДС. Магнитодвижущая сила (МДС) и магнитный поток (Φ) связаны друг с другом таким свойством магнитных материалов, как магнитное сопротивление (обозначается буквой «R»):

 

 

В нашем примере, МДС, необходимая для создания переменного магнитного потока (Φ), должна создаваться переменным током, проходящим через катушку. Магнитодвижущая сила, созданная электромагнитной катушкой, равна величине проходящего через данную катушку тока (в амперах), умноженному на число витков этой катушки вокруг сердечника (единица СИ для МДС — ампер-виток). Поскольку математическая зависимость между магнитным потоком и МДС, так же, как и математическая зависимость между МДС и током, прямо пропорциональна (в обоих уравнениях скорость изменения отсутствует), ток через катушку будет в одной фазе с волной потока:

 

 

Волна переменного тока, проходящего через катушку индуктивности, отстает от волны приложенного напряжения на 90o по той простой причине, что это необходимо для создания переменного магнитного потока, скорость изменения которого вызывает напряжение, противоположное по фазе приложенному. Благодаря своей функции создания магнитодвижущей (намагничивающей) силы для сердечника, этот ток иногда называют током намагничивания.

Стоит отметить, что ток, проходящий через катушку индуктивности с железным сердечником, не является абсолютно синусоидальным благодаря нелинейной кривой намагничивания В(Н) железа. Фактически, если используется недорогая катушка индуктивности с небольшим количеством железа, плотность магнитного потока может достигнуть таких высоких уровней (приближающихся к насыщению), при которых волна тока намагничивания будет выглядеть примерно так:

 

 

 

Когда плотность потока приближается к насыщению, форма волны тока намагничивания становится искаженной.

 

Когда ферромагнитный материал приближается к магнитному насыщению (насыщению магнитного потока), для обеспечения равного увеличения магнитного потока (Ф) требуются непропорционально большие уровни магнитодвижущей силы (МДС). Поскольку МДС пропорциональна проходящему через катушку току (МДС = NI, где «N» — число витков провода в катушке, а «I» — ток через неё), большое увеличение МДС, необходимое для нужного увеличения потока, приводит к большому увеличению тока катушки. Таким образом, ток катушки резко возрастает на пиках (для поддержания неискаженной формы волны потока), что объясняет колоколообразные полупериоды его волны в вышеприведенном графике.

Ситуация еще более осложняется потерями энергии внутри железного сердечника. Эффекты гистерезиса и вихревых токов усугубляют дальнейшее искажение и усложнение волны тока, делая ее еще менее синусоидальной и изменяя ее фазу (она отстает от приложенного напряжения немного меньше, чем на 90

o). Этот ток катушки, возникающий из суммы всех магнитных эффектов в сердечнике (намагниченность, гистерезисные потери, потери на вихревые токи и т.д.), называется током намагничивания. Искажение тока намагничивания железного сердечника катушки может быть минимизировано, если он спроектирован и работает при очень низких плотностях потока. Иначе говоря, для этого требуется сердечник с большой площадью поперечного сечения, что делает катушку громоздкой и дорогостоящей. Ради простоты мы предположим, что в нашем примере сердечник далек от насыщения и не имеет потерь, что приводит к синусоидальному току намагничивания.

В разделе Катушки индуктивности мы с вами уже видели, что если волна тока на 90o не совпадает по фазе с волной напряжения, то это создает условие, при котором катушка индуктивности попеременно поглощает энергию и возвращает ее обратно в цепь. Если катушка индуктивности идеальна (в ней отсутствует сопротивление провода, отсутствуют потери в магнитном сердечнике и т.д.), она будет рассеивать нулевую мощность. 

А теперь давайте рассмотрим то же самое индуктивное устройство, только с двумя катушками, намотанными вокруг одного железного сердечника. Первая катушка здесь будет называться первичной обмоткой, а вторая — вторичной:

 

 

Если вторичная обмотка испытывает такое же изменение магнитного потока, как и первичная (а так и должно быть, при условии идеальной локализации магнитного потока через общий сердечник) и имеет такое же количество витков вокруг сердечника, то в ней будет индуцироваться напряжение, равное приложенному по величине и по фазе. На следующем графике волна индуцированного (наведенного) напряжения имеет немного меньшую амплитуду, чем волна напряжения источника. Это сделано для того, чтобы отличить одно напряжение от другого:

 

 

Этот эффект называется взаимоиндукцией: возникновение напряжения в одной катушке в ответ на изменение тока в другой катушке.  Взаимоиндукция измеряется в Генри и обозначается заглавной буквой «M»:

 

 

Во вторичной обмотке тока не будет, поскольку она разомкнута. Однако, если мы подключим к ней нагрузочный резистор, через обмотку пойдет переменный ток, и он будет синфазен с индуцированным напряжением (поскольку напряжение на резисторе и ток через него всегда синфазны друг с другом).

 

 

Можно предположить, что ток вторичный обмотки вызовет дополнительный магнитный поток в сердечнике. На самом деле это не так. Если в сердечнике возникнет больше магнитного потока, то это приведет к увеличению напряжения, индуцированного напряжением первичной обмотки (помните, что u = dФ/dt). Такого не может быть, поскольку индуцированное первичной обмоткой напряжение должно иметь одну и ту же величину, и фазу, чтобы находиться в балансе с приложенным напряжением в соответствии со вторым законом Кирхгофа. Следовательно, ток вторичной обмотки не может влиять на магнитный поток в сердечнике. Однако, этот ток изменит суммарную МДС в магнитопроводе.

При движении электронов по проводу всегда возникает магнитодвижущая сила. Обычно, в соответствии с «магнитным Законом Ома» (МДС = ФR), магнитодвижущая сила сопровождается магнитным потоком. В нашем случае, однако, дополнительный поток не допустим, а это значит, что единственным условием существования МДС вторичной обмотки является произведенная первичной обмоткой противодействующая МДС, которая имеет такую же величину, но противоположную фазу. И это происходит на самом деле: переменный ток, возникающий в первичной обмотке (на 180

o несовпадающий по фазе с током вторичной обмотки) создает противодействующую МДС и предотвращает дополнительный поток в сердечнике. Знаки полярности и стрелки направления тока добавлены к иллюстрации для уточнения фазовых соотношений:

 

 

Если вы считаете этот процесс немного запутанным, не беспокойтесь. Динамика трансформатора — сложный вопрос. Важно понимать следующее: когда переменное напряжение подается на первичную обмотку, в сердечнике возникает магнитный поток, индуцирующий переменное напряжение во вторичной обмотке (синфазное с напряжением источника). Любой ток, проходящий через вторичную обмотку (при подключении нагрузки), индуцирует соответствующий ток в первичной обмотке, забирая его из источника.

Обратите внимание на то, что первичная обмотка ведет себя как нагрузка по отношению к источнику переменного напряжения, а вторичная обмотка ведет себя как источник относительно резистора. Вместо того, чтобы энергия поочередно поглощалась и возвращалась в цепь первичной обмотки, эта энергия теперь переходит во вторичную обмотку, с которой она подается на диссипативную (энергоемкую) нагрузку. Конечно, существует и дополнительный ток первичной обмотки (отстающий от приложенного напряжения на 90o), которого достаточно для намагничивания сердечника и создания напряжения, необходимого для баланса с источником (ток намагничивания).

Такой тип устройств называется трансформаторами, поскольку они преобразует электрическую энергию в магнитную энергию, а затем снова в электрическую. Так как работа трансформатора зависит от электромагнитной индукции между двумя неподвижными катушками, а также от магнитного потока переменной величины и «полярности», все трансформаторы обязательно являются устройствами переменного тока. Условное обозначение трансформатора представляет собой две катушки индуктивности, разделенные общим магнитным сердечником:

 

 

На этом условном обозначении легко различимы две катушки индуктивности. Пара вертикальных линий представляют собой общий для обеих катушек железный сердечник. Несмотря на то, что многие трансформаторы имеют сердечники из ферромагнитных материалов, существуют и такие, которые  сердечников не имеют вовсе, составляющие их катушки магнитно связаны друг с другом по воздуху.

На следующей фотографии показан силовой трансформатор такого типа, который используется в газоразрядных источниках освещения. Здесь хорошо видны две катушки индуктивности, намотанные вокруг железного сердечника.

 

Как видите, провода обоих катушек имеют медно-красное лаковое покрытие. Верхняя катушка по размеру больше нижней, она содержит большее количество витков провода вокруг сердечника. Катушки индуктивности в трансформаторах очень часто упоминаются как обмотки. В рассмотренном нами примере силовая катушка (подключенная к источнику напряжения) называется первичной обмоткой, а несиловая — вторичной обмоткой. 

На фотографии ниже показан поперечный разрез трансформатора. Здесь вы можете увидеть железный сердечник в разрезе и две обмотки. Первичная и вторичная обмотки в этом трансформаторе так же отличаются по размеру и имеют разное количество витков. Диаметр проводов у первичной и вторичной обмоток тоже разный. Причину различия диаметра проводов в обмотках мы рассмотрим несколько позже. Кроме того, железный сердечник данного трансформатора сделан из множества тонких пластин (ламинаций), а не из сплошного куска железа. Причина этого также будет объяснена позже.

 

 

Работу простого трансформатора легко продемонстрировать при помощи программы SPICE. Для этого мы представим первичную и вторичную обмотки симулируемого трансформатора в виде пары «взаимосвязанных» катушек индуктивности (рисунок ниже). Коэффициент связи магнитного поля, приведенный в конце строки «k» SPICE описания цепи, в нашем примере устанавливается очень близким к идеальному (1.000). Этот коэффициент описывает, насколько тесно две катушки индуктивности «связаны» магнитно. Чем лучше магнитная связь между двумя катушками, тем эффективнее будет передача энергии между ними.

 

 

transformer
v1 1 0 ac 10 sin
rbogus1 1 2 1e-12 
rbogus2 5 0 9e12  
l1 2 0 100      
l2 3 5 100     
** This line tells SPICE that the two inductors  
** l1 and l2 are magnetically “linked” together
k l1 l2 0.999          
vi1 3 4 ac 0      
rload 4 5 1k    
.ac lin 1 60 60 
.print ac v(2,0) i(v1)  
.print ac v(3,5) i(vi1) 
.end    

 

Примечание: резисторы Rbogus необходимы для правильной работы программы SPICE. Первый из них разрывает непрерывную цепь между источником напряжения и L1 (непрерывная цепь в этом случае недопустима программой SPICE). Второй обеспечивает необходимое заземление вторичной цепи (на узел под номером 0), поскольку SPICE не может функционировать с незаземленными цепями.

 

freq          v(2)        i(v1)       
6.000E+01     1.000E+01   9.975E-03   Primary winding
 
freq          v(3,5)      i(vi1)      
6.000E+01     9.962E+00   9.962E-03   Secondary winding

 

Обратите внимание, что при одинаковой индуктивности обеих обмоток (по 100 Генри каждая), переменные напряжения и токи на них почти равны. Разница между токами первичной и вторичной обмоток — это ток намагничивания, о котором говорилось ранее: запаздывающий на 90о ток, необходимый для намагничивания сердечника. Этот ток обычно очень мал по сравнению с вызванным нагрузкой первичным током, поэтому, первичный и вторичный токи практически равны. То, что вы видите здесь, вполне типично для эффективности трансформаторов. Эффективность менее 95% считается плохой для современных конструкций силовых трансформаторов, в которых передача энергии происходит без движущихся частей или других компонентов, подверженных износу.

Если мы уменьшим сопротивление нагрузки, чтобы получить больший ток во вторичной обмотке (при том же напряжении), то мы увидим ответное увеличение тока в первичной обмотке. Несмотря на то, что источник переменного напряжения напрямую не подключен к сопротивлению нагрузки (скорее, он электромагнитно «связан»), величина тока, потребляемого от источника, будет почти такой же, как и величина тока, которая потреблялась бы напрямую связанной с источником нагрузкой. Рассмотрите внимательно два следующих SPICE моделирования, которые покажут вам процессы, происходящие при разных значениях нагрузочных резисторов:

 

transformer   
v1 1 0 ac 10 sin
rbogus1 1 2 1e-12       
rbogus2 5 0 9e12
l1 2 0 100      
l2 3 5 100      
k l1 l2 0.999   
vi1 3 4 ac 0    
** Note load resistance value of 200 ohms
rload 4 5 200        
.ac lin 1 60 60 
.print ac v(2,0) i(v1)  
.print ac v(3,5) i(vi1) 
.end    
freq          v(2)        i(v1)       
6.000E+01     1.000E+01   4.679E-02
 
freq          v(3,5)      i(vi1)      
6.000E+01     9.348E+00   4.674E-02

 

Обратите внимание на почти равные значения первичного и вторичного токов. Если в нашем первом моделировании оба тока были приблизительно 10 мА, то теперь их величина составляет около 47 мА. Во втором моделировании оба тока ближе к обоюдному равенству, поскольку ток намагничивания остается таким же, как и раньше, а ток нагрузки увеличивается. Обратите также внимание на уменьшение вторичного напряжения при увеличении нагрузки (увеличении силы тока). Давайте попробуем другое моделирование с еще более низким значением сопротивления нагрузки (15 Ом):

 

transformer   
v1 1 0 ac 10 sin
rbogus1 1 2 1e-12       
rbogus2 5 0 9e12
l1 2 0 100      
l2 3 5 100      
k l1 l2 0.999   
vi1 3 4 ac 0    
rload 4 5 15    
.ac lin 1 60 60 
.print ac v(2,0) i(v1)  
.print ac v(3,5) i(vi1) 
.end    
freq          v(2)        i(v1)       
6.000E+01     1.000E+01   1.301E-01
 
freq          v(3,5)      i(vi1)      
6.000E+01     1.950E+00   1.300E-01

 

Ток нагрузки теперь составляет 0,13 А или 130 мА, что существенно выше, чем в предыдущем моделировании. Первичный ток здесь очень близок по величине ко вторичному, но обратите внимание, как значительно вторичное напряжение упало по отношению к первичному (1,95 вольт на вторичной обмотке против 10 вольт на первичной обмотке). Причина этого заключается в несовершенстве конструкции нашего трансформатора: поскольку первичная и вторичная обмотки не полностью связаны друг с другом (коэффициент k составляет 0,999 вместо 1,000), в трансформаторе присутствует индуктивность рассеяния (паразитная индуктивность). Иными словами, некоторая часть магнитного поля не связана со вторичной обмоткой, а следовательно, не может связывать с ней передаваемую энергию:

 

Индуктивность рассеяния обусловлена магнитным потоком, который не охватывает обе обмотки.

 

Следовательно, этот поток рассеяния просто сохраняет и возвращает энергию в исходную цепь через самоиндукцию, эффективно действуя как последовательный импеданс как в первичных, так и во вторичных цепях. Напряжение падает через данный последовательный импеданс, что приводит к уменьшению напряжению нагрузки: напряжение на нагрузке «проседает» по мере увеличения тока нагрузки.

 

Эквивалентная схема показывает индуктивность рассеяния в качестве последовательных катушек индуктивности, независимых от «идеального трансформатора».

 

Если мы изменим конструкцию трансформатора, и сделаем лучшую магнитную связь между первичной и вторичной обмотками, то напряжения на первичной и вторичной обмотках будут намного ближе к равенству:

 

transformer  
v1 1 0 ac 10 sin
rbogus1 1 2 1e-12       
rbogus2 5 0 9e12
l1 2 0 100 
l2 3 5 100
** Coupling factor = 0.99999 instead of 0.999
k l1 l2 0.99999   
vi1 3 4 ac 0    
rload 4 5 15    
.ac lin 1 60 60 
.print ac v(2,0) i(v1)  
.print ac v(3,5) i(vi1) 
.end    
freq          v(2)        i(v1)       
6.000E+01     1.000E+01   6.658E-01

freq          v(3,5)      i(vi1)      
6.000E+01     9.987E+00   6.658E-01

 

Из этого моделирования видно, что вторичное напряжение снова становится равным первичному, а вторичный ток равен первичному. К сожалению, построить такой трансформатор в реальности очень трудно. Компромиссом здесь может быть только уменьшение индуктивности как первичной, так и вторичной обмоток. Смысл такого действия заключается в том, что меньшая индуктивность обмоток приводит к меньшей индуктивности рассеяния (которая вызывает проблемы при любой степени неэффективности магнитной связи). В результате, напряжение нагрузки у нас становится ближе к идеальному (при той же нагрузке и с таким же коэффициентом связи):

 

transformer
v1 1 0 ac 10 sin
rbogus1 1 2 1e-12       
rbogus2 5 0 9e12
** inductance = 1 henry instead of 100 henrys   
l1 2 0 1
l2 3 5 1
k l1 l2 0.999   
vi1 3 4 ac 0    
rload 4 5 15    
.ac lin 1 60 60 
.print ac v(2,0) i(v1)  
.print ac v(3,5) i(vi1) 
.end    
freq          v(2)        i(v1)       
6.000E+01     1.000E+01   6.664E-01

freq          v(3,5)      i(vi1)      
6.000E+01     9.977E+00   6.652E-01

 

Таким образом, уменьшив индуктивность первичной и вторичной обмоток, мы смогли привести напряжение на нагрузке (имеющей большую величину, а следовательно, и большой ток) почти к идеальному значению (9,997 вольт). В этот момент у вас может возникнуть вопрос: «Если уменьшение индуктивности — это все, что необходимо для достижения почти идеальной производительности трансформатора с большой нагрузкой, то зачем нужно беспокоиться об эффективной магнитной связи? Если невозможно построить трансформатор с совершенной магнитной связью, но легко сделать обмотки с низкой индуктивностью, то почему бы просто не делать все трансформаторы с низкой индуктивностью обмоток? (ведь они имеют высокую эффективность даже при плохой магнитной связи)».

Ответ на данный вопрос можно найти в следующем SPICE моделировании, в котором используются те же низкие индуктивности обмоток трансформатора, но на этот раз с более «легкой» нагрузкой (меньший ток) — 1 кОм вместо 15 Ом:

 

transformer 
v1 1 0 ac 10 sin
rbogus1 1 2 1e-12       
rbogus2 5 0 9e12
l1 2 0 1
l2 3 5 1
k l1 l2 0.999   
vi1 3 4 ac 0    
rload 4 5 1k    
.ac lin 1 60 60 
.print ac v(2,0) i(v1)  
.print ac v(3,5) i(vi1) 
.end    
freq          v(2)        i(v1)       
6.000E+01     1.000E+01   2.835E-02

freq          v(3,5)      i(vi1)      
6.000E+01     9.990E+00   9.990E-03

 

При низких значениях индуктивности обмоток трансформатора, первичные и вторичные напряжения близки к взаимному равенству, чего нельзя сказать о первичных и вторичных токах. В нашем конкретном случае первичный ток имеет величину 28,35 мА, в то время как величина вторичного тока составляет только 9,990 мА (вторичный ток почти в три раза меньше первичного). С чем это может быть связано? При малом значении индуктивности первичной обмотки, индуктивное сопротивление так же имеет малую величину, а, следовательно, гораздо больший ток намагничивания. Значительное количество тока, проходящего через первичную обмотку, работает только на намагничивание сердечника, а не на передачу полезной энергии вторичной обмотке и нагрузке.

Идеальный трансформатор (с одинаковыми первичной и вторичной обмотками) имел бы одинаковые напряжения и токи в обоих обмотках при любой нагрузке. В идеальном мире, трансформаторы передавали бы электроэнергию от первичной обмотки ко вторичной так гладко, как если бы нагрузка была подключена непосредственно к первичному источнику питания, без трансформатора вообще. Однако, такая идеальность может быть достигнута только при идеальном сочетании магнитного потока между первичной и вторичной обмотками. Поскольку в реальном мире этого достичь невозможно, трансформаторы проектируются для работы в определенных ожидаемых диапазонах напряжений и нагрузок (чтобы максимально приблизить их к идеалу). На данный момент вам важно усвоить, что основной принцип работы трансформатора заключается в передаче энергии от первичной ко вторичной цепи при помощи индуктивной связи.

Можно ли намотать две вторички трансформатора разными проводами?

Если вы не понижаете сечение провода, То можно .

Не критично. Если тока хватит при 1мм, то хватит и при 1.3 )) Общей мощности-то хватает?

Во-первых, не кабель, а провод. А во вторых, по барабану сечение, лишь бы обмотка поместилась и наименьшее сечение провода соответствовала допустимым потерям при нагрузке на его активном сопротивлении..

а нагрузка какая?

Можно, если сила тока при максимальной нагрузке не превысит ток для наименьшего сечения.

В чем мудрость фразы «ничего нет более временного, чем постоянное»? Смысл заключается в том, что нельзя откладывать жизнь на потом. Жить нужно реальностью сегодняшнего дня, находя в этом радость удовлетворения. Любую работу делать нужно на совесть, чтобы впоследствии не было стыдно, не пришлось ее переделывать и тратить на это вновь силы и время.

Сила тока зависит от величины сопротивления нагрузки, так что мотай… С количеством витков не промахнись, это главное.

Мотают тремя и даже четырьмя проводами разного диаметра

Максимальная сила тока будет определяться самым тонким проводом, мотать разными по диаметру (не путайте сечение и диаметр провода, диаметр в мм, сечение в квадратных мм) можно, но при этом нужно просто учитывать выше написанное про максимальный ток.

Какой ток будет потреблять твой УНЧ? При мощности транса 60 вт и напряжении одной обмотки 17в транс может выдать макс ток 3,5 А. Таких обмотки две, значит, ток делим пополам, 1,75А на каждую обмотку. С учетом запаса пусть будет 1,5А. 1,5Ах2х17=51 ватт. Это мощность, которая будет забираться от трансформатора. В принципе, нормально, греться сильно не должен. Для тока 1, 5 А диаметр провода 1 мм — это даже много, можно взять 0,8 или даже меньше. Если ты намотаешь или домотаешь диаметром 1,3 мм, это ни на что не повлияет, лишь бы вся обмотка вошла на катушку.

Судя по «совдеповский» и «кабель» вам не приходилось раньше заниматься подобными вещами. Что надо учесть: 1. Суммарное сечение провода первой обмотки должно быть равно (или очень близко) к суммарному сечению провода второй. Это даст равномерное распределение мощности. 2. Суммарное сечение провода определяет максимальный ток, который обмотка может дать. Надо знать мощность усилителя, его КПД — это даст диаметр провода. 3. Мотать обмотку двумя проводами, один из которых тоньше другого — нельзя. Будет разбаланс и одна из обмоток накроется медным тазом. 4. Не забывайте об изоляции. Прокладки между сетевой и каждой из обмоток.

Это не критично, но я бы так делать не стал.

Можно, главное чтобы хватало сечения провода по току для усилителя, а запас не мешает….

какой и сколько покупать, как правильно выбрать

Провод для проведения намотки трансформатора – это не то, что дилетанту в электротехнике, но и любому восьмикласснику будет понятно, один из важнейших элементов такого преобразующего энергию электротехнического оборудования.

Фундаментальность, не просто нормальной а в принципе возможной работы трансформатора напрямую зависит от типа, качества провода его конструкции и физических свойств, верного процесса его намотки и соблюдения всех регламентов. Электрический проводник обладает большим спектром характеристик, рассказ о которых будет подробно построен далее.

Основные особенности

Так как заряженные частицы при упорядоченном движении в проводнике сталкиваются с определенными силами внутреннего сопротивления материала на пути к осуществлению процессов электромагнитной индукции и трансформации напряжения электрического тока из одного класса в другой в зависимости от текущего функционала трансформатора, его обмотки, а именно провод образующих их форму, должны обладать хорошей проводимостью, иметь надежную изоляцию как между своими витками, так и с другой обмоткой и магнитопроводом устройства, наматываться строго по технологическим нормам и правилам предписанным для конкретного изделия, в ряде случаев иметь определенную форму, длину, сечение и другие подобные свойства.

Провод для намотки трансформатора

Особенностей проводника в обмотках преобразователя напряжения громадное количество, но именно их исправность обеспечивает длительную нормальную работу устройств трансформации, независимо от их величины и применения. Исправность проводника в трансформаторе одинаково важна как для небольших бытовых сетевых устройств, так и для силовых электроагрегатов, питающих целые районы.

В заводских условиях, при выпуске с производства, в момент планово-предупредительных ремонтах,  методиках приемо-сдаточных испытаний, осмотрах его обмоток преобразователь проходит не один десяток тестов на возможные скрытые дефекты или неполадки, и только после этого рабочий персонал выдает официальные заключения, по обследуемому оборудованию.

Бытового типа

Что касается менее серьезных по своей роли трансформирующих устройств бытового типа из современной электроники или другого оборудования, – очень часто радиолюбители, «самоделкины» берутся вести ремонт или даже личную перемотку обмоток устройства крайне легкомысленно подходя к вопросу. Без многочисленных знаний физических процессов проводников, понимания их типа, диаметра, сечения, длины, количества витков в конкретной катушке агрегата, используя подручную элементную базу в таких ремонтах все это заканчивается плачевно, как для техники в составе которой размещен трансформатор, так порой и для самих домашних ремонтников. В серьезных высоковольтных преобразователях такому деянию на практике нет места по понятным причинам.

Провод для намотки трансформатора

Трансформаторы сложные электротехнические устройства от начала и до конца. Это приборы очень важные по функционалу и выходным характеристикам, плюс сюда добавляется и повышенная опасность для человека. А проводник на его катушке – это сердцевина оборудования. Он участвует, отвечает за главный процесс трансформации энергии на протяжении всей работы преобразователя.

Чтобы быть готовым к возможным потенциальным неисправностям в обмоточном секторе энерго агрегата, его проводники проходят тщательный подбор, расчёт и тесты, исходя из энерго систем, в ансамбле которых планируется устанавливаться весь передающий узел. Эти мероприятия проводят еще на заводе производителе. Те же знания, действия и анализ обмоточной проводки используют на этапах текущей эксплуатации.

Все проводники, применяемые в обмотках любых трансформаторов, имеют свою классификацию по спектру свойств и качеств, исходя из реальных нужд. О ней и дальше – рассказывает следующая глава статьи.

Провод для намотки трансформатора

Классификация

Как раз само видовое различие части электротехнического устройства в свою очередь делится внутри себя на элементы, грубо сказать относящиеся к электрическим (полезной работе) параметрам оборудования, и второй подвид, отвечающий за безопасность и степень его безаварийной длительной работе.

По материалу проводника

Для проводников в обмотках трансформаторах напряжения в рамках электрических параметров эффективности, исходя из физики процессов внутренних сопротивлений проводником базово используют цветные металлы рудного типа. Их удельные сопротивления, токовая проводимость, магнитные характеристики, доступность и ценовая политика наиболее близко подходят к преобразователям и в целом для электрической проводки, если не учитывать последний из них.

Проводник трансформатора

Медные

В связи с своими отличными, значительно большими свойствами электропроводимости, по сравнению с другими электротехническими материалами, получило широкое распространение в использовании в качестве обмоточных проводников различной геометрии.

Медные провода обладают повышенной гибкостью и износостойкостью.

Тем не менее, в последнее время, есть ряд факторов подтверждающих замену медных проводников на более дешевые в связи с экономической составляющей.

Медные проводники трансформатора

Алюминиевые

Когда электрические свойства меди не были так широко исследованы научными методами, обмотки трансформаторов, линии электропередач выполнялись преимущественно из алюминия. Этот цветной металл по номинальному значению удельного сопротивления стоит на втором месте после меди, и вполне может заменить ее на обмотке трансформатора.

Однако, где необходимы большие мощности электротехнических устройств, без роста геометрических размеров обмоточных проводов все-таки используется медь. Алюминий к тому же имеет меньшую гибкость и стойкость.

Алюминиевые проводники трансформатора

Из сплавов сопротивления

В качестве таких материалов в большинстве случаев используется нихром. Его добыча, остатки в недрах Земли крайне малы. Поэтому, и исходя из высокой стоимости исполнения нихромовых проводников в обмотках преобразователе напряжения, подобные сплавы хоть и имеют ряд преимуществ, но используют в редких случаях. При проектировании специальных энергоустановок или устройств в основном.

Из сплавов сопротивления проводники трансформатора

По геометрии сечения

Сечение проводника — это второй параметр или характеристика, по которой в обязательном порядке производится выбор провода для намотки катушек трансформатора. Здесь зависимость выбора связана с увеличением электропроводимости у плоской (прямоугольной) геометрии проводника и ее уменьшение в случае, если проводник имеет круглую форму и площадь поперечного сечения.

Когда нагрузка в потребляющей сети имеет или необходима на высоком уровне, требуется аппараты преобразования большей мощности – выбирают проводники прямоугольной формы

В базовых номиналах потребления для намотки используются круглые проводники. Если требуется собрать катушки охлаждения – применяется полая внутри, круглая по своему сечению проволока.

Сечение проводника трансформатора

По материалу изоляции

Третий параметр, отвечающий за длительность и безопасность электротехнического устройства в виде трансформатора напряжения, зовется изоляцией проводников. В свете развития технологического прогресса, открытия все новых и новых синтетических материалов, обладающих повышенными диэлектрическими свойствами, качество изоляционного материала в том, числе и в проводнике обмоток трансформатора стало намного выше.

Искусственно созданные диэлектрики позволяют экономить на своих габаритах, но при этом сохранять электрическую непроводимость в полной мере. К тому в расчете выбора проводников на изоляцию делают ставку не только по диэлектрическим свойствам, но и учитывать ее механическую износостойкость. Поэтому порой естественные и давно применяемые материалы в этом процессе являются основными в изоляции.

Сечение проводника трансформатора

Бумага

Такая изоляция используется в совокупности проведения пропитки ее трансформаторным маслом, что увеличивает ее электроизоляционные свойства, уменьшает габариты и толщины диэлектрика обмоток, а значит позволяет направить размерную величину преобразователя на увеличение полезной выходной мощности.

В качестве бумажной изоляции дополнительно может использоваться электрокартон с той же масляной пропиткой.

В целом, исполнение изоляции из бумаги пропитанной маслом экономически выгодно, хотя и имеет на нескольких этапах сложность своего исполнения. Накладывается на провод методом обмотки проводника.

Изоляция из бумаги для трансформатора

Волокнистая или пленочная

Изготовление проводится синтетическими (полимерными) или натуральными лентами путем намотки тремя разнообразными типами нитей волокон изоляционных материалов. Так называемая прядка для своей реализации изоляции обмотки трансформатора требует определенной заводской технологии процесса, специальных расчетов. Плоскопараллельные нити волокон натурального диэлектрика или пленочных синтетиков прядками накладывают на заводе производителе на катушки обмоток с проводниками основными методами:

  1. Встык – где края витков изоляции плотно соприкасаются друг с другом;
  2. С зазором – витки диэлектрика накладывают прядкой на проводники со специальным зазором между ними, который не более 1-2 мм;
  3. Перекрытием – еще один метод намотки изоляции волокнистой изоляцией, при котором новый ее виток частично покрывает своей поверхностью предыдущий.

Каждый из методов определяется в зависимости от типа, мощности и назначения самого трансформатора напряжения. По сравнению с бумажной изоляцией имеет более лучшую электро изоляционные свойства и механическую прочность.

Обмоточный провод

Эмаль

Проводники в эмалевой изоляции относятся к классу провода в синтетической изоляции. Ее выполнение происходит методом литья эмали на провод. За счет чего такая изоляция имеет повышенную термостойкость, минимальную толщину, прекрасные диэлектрические свойства, износостойкость и механическую прочность. Эмалевая изоляция способна противостоять многим химическим процессам и агрессивным средам. Материалы эмали – винифлекс, металвин и другие.

В различных конструктивных исполнениях электротехнических устройств возможно использование комбинированной изоляции проводников их обмоток, где будут применяться различные материалы диэлектрики. Порой только таким применением достигается экономический оптимум и необходимые электрические характеристики.

Проводники в эмалевой изоляции для трансформатора

Маркировка

Различное конструктивное исполнение геометрии проводника, использование разнообразных типов изоляции провода для обмоток трансформаторов, остальные электротехнические свойства в «ПУЭ» привели к созданию регламентированных аббревиатур их маркировки.

Первый буквенный символ в такой аббревиатуре обозначает сам материал проводника: «А» – дает понимание, что провод обмотки алюминиевый. Другой символ обозначает нихром, а его отсутствие принято считать, что проводник медного исполнения.

Второй поясняет о том, что это непосредственно сам провод для обмотки, а последующие дают обозначение к какому типу и материалу диэлектрика относится его изоляция.

В маркировке используются и цифровые символы, после буквенных. Ими принято обозначать сечение проводника, а также максимально допустимое напряжение изоляции, на который рассчитан провод. В других случаях цифры могут относится к количеству слоев изоляции. Примеры обмоточных проводов трансформаторов:

  • ПЭМ-1 – медный провод с эмалированной изоляцией в один слой;
  • ПКР-1 – медный провод с капроновой изоляцией в одну прядку.

Запомнить все маркировки проводников для обмоток практически невозможно. Главное знать принцип составления этих маркировок и обладать умением пользоваться справочной литературой для его верного подбора.

Трансформатор

Обмоточный провод для высоких частот

Основной нюанс в выборе обмоточной проволоки, как раз играет частота протекающего через нее тока. В случае базовых значений переменного тока с частотой в 50Гц или постоянного тока протекание упорядоченных частиц по обмоточным проводникам проходит в нормальном, равномерном режиме.

Как только частота протекания тока увеличивается, начинается смещение течения заряженных частиц. Электроны при этом начинают свое движение по внешнему слою проводника. К тому же в случае повышенной частоты тока увеличивается сопротивление протекания тока и нагрев обмотки.

Учитывая все физические факторы для изготовления обмоток для оборудования с высокой частотой протекания электрического тока применяют ряд мер, способствующих выравниванию всех факторов, обеспечивающих работу такого оборудования. Намотку проволоки обмотки производят по методу «жгута» из множества многопроволочных изолированных проводов.

При этом, чем выше частота тока в оборудовании, тем меньше должен быть диаметр провода обмотки.

Обмоточный провод для высоких частот

Как правильно подобрать

Не погружаясь в детали изготовления таких обмоток для преобразователей высокой частоты, любому покажется метод изготовления достаточно простым. Однако, на практике у радиолюбителей, или даже бывалых электронщиков, чтобы правильно и качественно изготовить такой литцендрат возникает как минимум две трудности – зачистка концов проводника и реализация его создания в виде жгута из множества изолированных многопроволочных проводов.

Легкомысленное отношение к такому проекту по созданию обмоток «высокочастотников» приведет к ошибкам и напрасным материальным расходам. Требуется использовать предварительные инструменты выбора.

По справочникам и каталогам

Используя необходимую техническую литературу по электротехнике, где подробно приведены описания выбора проводников обмоток высокочастотного оборудования, а так же опубликованы уже готовые табличные справочные материалы стоит сравнить их данные с текущим проектом по всем техническим параметрам и выбрать нужный для себя. Это позволит избежать лишней ошибки и финансовых расчетов.

Обмоточный провод для высоких частот

Методики расчета

Толщина изоляции, количество жил в жгуте, сопротивление жилы и диэлектрика не позволяют свободно покупать такой литцендрат готовый или в виде наборных инструментов на Российском рынке в настоящее время.

Здесь стоит или использовать мониторинг заграничного электротехнического рынка совершать далеко недешевые покупки (из-за расчетов в валюте) таких вариантов для намотки обмоток преобразователей высокой частоты, или вооружившись измерительной аппаратурой, справочно-технической литературой, измерив нужные параметры выполнять расчет нужной марки с помощью автоматизированных сервисов, в которых подставив требуемые значения на выходе получается нужный результат, либо изучив формулы ручного расчета, выполнить это по старинке.

Основа методики сводится к подбору многопроволочных проводников по удельному сопротивлению, длине, и их сечению максимально приближенному к справочному номиналу.

Методики расчета обмотки трансформатора

Ручные измерения

Вручную такие параметры позволит получить качественный мультиметр, детали проекта оборудования, которые требуется создать, техническая литература, которая направит на верный подбор экспериментальных марок проводника.

С помощью аппаратуры возможно измерить удельное сопротивление физически выбранной проволоки для обмотки. Имея это значение рассчитать его сечение сравнив со справочным значением и определив необходимую толщину жгута.

Процесс очень трудоемкий, но с дополнительной поддержкой в справочниках, любой другой всевозможной информацией по подбору таких проводов, вполне возможный к реализации.

Рекомендации по выбору материалов

При создании преобразовательных устройств в электротехники, радиолюбителями, опытными и не очень, в силу опыта фактического проведения таких работ, сложились определенные полезные советы для будущих проектантов и создателей, которые регламентируются в трех сегментах.

Каркас

В зависимости от конкретики конечного трансформаторного устройства, для верной, удобной и качественной намотки их обмоток существует ряд каркасных механизмов и приспособлений самостоятельного изготовления из подручных инструментов, использования заводских станков для правильной намотки проводника и других.

каркас трансформатора

Сердечник

Здесь тоже исходят изначально из назначения, мощности трансформатора, который есть желание или отремонтировать или создать заново. Цели и назначение преобразовательного устройства позволят точнее выбрать и форму его сердечника и материалы, из которого он будет состоять. Исходя из предназначения оборудования станет ясно, что будет проще – перепаковать имеющиеся под рукой старые шихтованные сердечники, модернизировать и улучшить их электрические и магнитные свойства или купив в радио магазинах специальные материалы создать его с нуля самому, заказать создание на производстве.

Провод

Выбор этой составной части подробно описан выше, исходя также из назначения устройства, его электрических характеристик, мощности и сферы использования, включая полезные параметры и необходимую длительность, безопасность использования.

Провод трансформатора

Подкладки изоляционные

В качестве прокладок диэлектрика самым распространенным диэлектриком является бумага или электротехнический картон. Иногда возможно использование полимерных сред.

Определение направления витков обмотки катушек

В зависимости от параметрических данных самого устройства, формы его магнитопровода, типе и геометрии провода встречается или выбирается определенное направление обмотки из витков на катушке.

При использовании обмотки в одну сторону встречается левое и правое направление обмотки катушки или же с применяя необходимый шаблон с помощью намоточного станка выполняется левосторонняя или правосторонняя цилиндрическая намотка проводника.

Встречается многослойный тип намотки катушек преобразователей, если этим обусловлено дальнейшее использование устройства и техническая необходимость. При этом цилиндрическая обмотка в несколько слоев на станке может накладываться в виде

  • встречной направленности – где новый слой проходит встречным направлением по старому слою проводников;
  • в одном направлении – несколько слоев прямоугольного проводника накладываются друг на друга в одном направлении.

Определение направления витков обмотки катушек

Каждый слой при этом проходит прокладку изоляционного слоя из бумаги и полимеров. Осевые каналы создаются в момент проведения намотки на станке. В сердечник закладываются специальные рейки, которые по окончании процесса создания обмоток демонтируются, оставляя необходимые каналы.

Иногда требуется создание зазоров в намоточных проводниках. Их расчеты проводят с помощью специальных базовых форм, используя параметры проводников, конструктивного исполнения будущей обмотки и других параметров, которые берутся из технической литературы.

Разницу между фактически полученными значениями при расчете сравнивают с табличными значениями.

При допустимых отклонениях работу продолжают, если требуются корректировки – вносят.

Намотку резонансных катушек преобразовательных устройств электрической энергии проводят, дополнительно руководствуясь их значениями номинальной индуктивности, необходимой собственной емкости и стойкости, и длительности работы.

Определение направления витков обмотки катушек

Как правильно мотать

Получив большинство технических данных, определив точное назначение и сферу использования будущего устройства, элементов обмоток катушки трансформатора, получив заводские шаблоны для выбранного вида обмотки приступают к практической реализации намоточных процессов.

Здесь большую роль будет играть опытность исполнения таких работ, наличие инструментов для такой работы, а также терпение.

Требуется использовать обязательный алгоритм действий в таком формате работ и приготовится к нескольким неудачам заблаговременно, если опыта проведения намотки витков катушки трансформатора ранее не было. В настоящее время как электронных, так и бумажных обучающих источников по всем правилам намотки обмотки трансформатора достаточно много для того, чтобы новичок через некоторое время в этих работах смог стать профессионалом.

пошаговый процесс изготовления и намотки

Каркас представляет собой необходимое устройство внутри трансформатора, к изготовлению которого применяются особые требования. Это устройство служит для крепления обмоток, при том в зависимости от вида тс изменяются особенности, применяемые материалы, разметка и тому подобное. Каркас для трансформатора иногда делают своими руками, на самом деле это затруднительная процедура.

Почему нужно использовать текстолит

По стандарту обмотки силового трансформатора выполняются на специальных каркасах. Для изготовления каркасов на заводах, то есть на серийном производстве, применяют прессованные варианты из пресс порошков. Состав этих пресс порошков определяет основные химически и физические свойства, которыми будет обладать деталь в дальнейшем. Но если производство мелкосерийное или же трансформатор, в частности его каркас, изготовляется в домашних условиях, то используют слоистые пластинки, а также гетинакс, картон.

Ранее наиболее часто применяющимся вариантом служил гетинакс, который обладал средними характеристиками, но минимальной стоимостью. Потом стали использовать картон. Несмотря на его отличительные свойства и простоту использовании он не сумел прижиться, так как требовалась обязательная пропитка гигроскопичному материалу.

Текстолит

Особенности

Текстолит является оптимальным в плане соотношения качества, удобства и цены. Он отлично поддается любой обработке, например, механической или термической. Обрезка листов до 1,5 миллиметров проводится и в холодном состоянии, что удобно, если речь идет не о крупном серийном производстве. Используются для минимальных по толщине пластов гильотинные ножницы. А если листы немного толще, то используется циркулярная пила.

Текстолит, толщина пласта которого превышает 3 миллиметра, распиливается уже в горячем состоянии. Но можно не нагревать до температуры плавления, оптимальным будет нагрев от 80 градусов (в крайнем случае 120 градусов).

Удобный этот материал и для тех, кто занимается изготовлением каркасов в домашних условиях. Можно брать только часть, а после этого провести опиловку над профилем. Швы покрываются специальным слоем, а каркас лаком для обеспечения защиты от влажности, повышения жесткости и улучшения защиты обмоток. Также тонкий слой лака служит для обеспечения гигроскопичности, обязательно требуется выбирать качественный состав.

Текстолит листовой

Дополнительные требования

Для гильзы каркаса используются гетинакс идентичной толщины. В некоторых ситуациях есть смысл брать большую по толщине катушку, чтоб получить ровную форму обмоток. Ребра гильзы делаются слегка круглой формы. Это поможет избежать излома или уменьшить его угол, что непременно проявляется при намотке на первых слоях инструмента. Но следует избегать и проявления излишней округленности. Это понизит прочность поверхности.

Размеры материала берутся в строгом соответствии с тем, каких размеров сам трансформатор и дроссель. Для минимальных по размерам устройств чаще прибегают к установке каркасов из материала толщиной от 0,2 до 0,5 миллиметров. Для больших катушек берутся варианты с толщиной от 2 миллиметров.

Отдельно стоит отметить важность использования качественного клея. Текстолитовые каркасы обязательно просто автоматически складываются и закрепляются друг с другом, но бывают ситуации, когда они соединяются между собой при помощи клея. Столярный клей или универсальный, который можно купить в любом строительном магазине, подходит только для проклейки каркаса трансформатора из картона, но для текстолита использовать его не разрешается.

Текстолит

Разметка

Разметка — первый этап, который проводится при наличии материалов и инструментов. Важно тщательное исследование, позволяющее определить технические характеристики.

Допустимо делать ее вручную при помощи специальных таблиц (но обратите внимание, что в таком случае придется рассчитывать все самостоятельно, используя формулы).

Можно выбрать и разметку при помощи программ — есть в бесплатном доступе такие в интернет. Но в таком случае начинающий радиолюбитель не сможет понять алгоритм расчета и научиться выполнять рамку самостоятельно, без использования компьютеризированного оборудования.

Как сделать вручную

Проверка прочности и особенностей закрепления проводится опытным путем. Берется катушка, точней ее образец, который будет не жалко выкинуть, на него накладываются 10 витков, которые будут использоваться для основного трансформатора.

Выбирается стержень с диаметром в четыре раза большим для проводов с толщиной от 0,96 миллиметров, в пять раз больше, если берутся провода до 1,56 миллиметров и в шесть раз толще, если толщина провода превышает 2,44 миллиметра. Это необходимо обязательно учитывать, подобранные инструкции есть в специальной технической литературе.

Отдельно следует рассчитывать то, что кроме определенного изгиба, который непременно образуется на первых нескольких слоях сильней, а после начнет закругляться, есть и сильное натяжение, и растяжение. Во время разметки каркаса учитывают, что кратность увеличивается в несколько раз. Например, для провода, который имеет толщину 1 миллиметров, радиус закругления будет около 5 миллиметров. Радиусы для любых по диаметру проводов также размещается в соответствующих таблицах.

Выбор класса

Проведение разметки по образцам позволяет избежать появления неплотных и неровных поверхностей в обмотке. Тонкий гетинакс используется, если требуется увеличить жесткость каркаса. Например, если мощность устройства составляет до 10 Вт, то размеры деталей маленьких будут составлять 0,5, средних — 0,7 до 1,5, а больших — от 1. Мощность до 100 Вт подразумевает использование 0,7 — 1, 2,0 — 4, 1 — 2 миллиметровых деталей соответственно. Для приборов с мощностными показателями от 100 до 500 Вт берутся до 1 до 2 мм для класса а, от 3 до 6 для б, от 1,5 до 3 для класса в.

Разметка на текстолите

Для последнего типа, с наибольшими показателями мощности, целесообразно увеличить радиус закругления путем приближения к оптимальным показателям значения округления. Лучше брать специальные вкладыши из материала, который используется для витых магнитных проводов. Применяют их в том случае, если по толщине магнитопровод больше в два раза, чем рабочий стержень устройства.

Дополнительно устанавливают на детали большую часть выступающей части на 3 миллиметра. Это нужно для того, чтоб щеки каркаса крепились прочно у оборудования. Гильза по размеру делается чуть больше рабочего стержня на 0,5 мм, зазоры не должны превышать этого показателя. Обязательно учитывают, получается ли каркас с помощью аппаратного воздействия или же он поставляется в комплекте устройства.

Каркас для трансформатора

Расчет при помощи программ

В интернете есть несколько десятков программ, при этом большинство из них в бесплатном доступе, которые проводят расчет трансформатора, его каркаса. В частности, популярностью пользуется программа CARCASS, от версии 1.0, 2.0 и далее. Она работает в онлайн-режиме, но при желании можно скачать файл и установить себе на компьютере. В программу вносятся данные о:

  • типе сердечника;
  • толщине материала и стяжке;
  • размерах сердечника А, В, С, Н.

После ввода всей информации нажимается кнопка «Ввод» или «Расчет». Появится расчет и на черте катушки, который можно распечатать и нанести на имеющийся в наличии текстолит. Есть вариант, рассчитываемый на каркас с замком.

программа Каркасс

Вырезание

Вырезание происходит после нанесения на материал чертежа катушки. Делается это при помощи обычного строительного карандаша или даже маркера.

Инструменты, которые понадобятся для вырезания, различные в зависимости от толщины текстолита. Для листов до 1,5 миллиметров, чья резка проводится в холодном состоянии, используют гильотинные ножницы. А если листы толще, то используется циркулярная пила. Текстолит с толщиной от 3 миллиметра пилят при температуре от 80 градусов по Цельсию пилой.

Сборка

Сборка текстолитовых плит обычно не требует использования дополнительных материалов. Собираются в замок руками.

Но другие поверхности, например, стандартный картон, просто так не закрепляются. Соединить конструкцию столярным клеем, нитроклеем с высокими показателями водоустойчивости и теплоустойчивости.

Окончательная подготовка

Важно обращать внимание на согласование отдельных частей каркаса. При сборке не по типу замок изменить ничего не будет возможно. Придется выкинуть устройства, так как повторное нанесение клея не гарантирует отличный результат. После сборки каркас обрабатывают бакелитовым или клеящим лаком. Можно пропитать специальным лаком с церезином или головаксом.

Намотка провода и установка клемм

Наматывают на катушку провода, затем устанавливают клеммы уже после полной пропитки лаком и окончательной сушки. Выводы и отводы делают поводом немного с большим сечением. Подойдет провод с изоляцией многожильный, лучше применять цветные маркировки.

Катушка зажимается между щеками, шпилька монтируется в конусах. Намоточное оборудование устанавливается как минимум на один метр. Станок вращается так, что провод ложился сверху, левой рукой придерживать по направлению. Клеммы монтируются после изоляции.

намотка провода на катушку трансформатора

Изготовление каркаса катушек с использованием деревянной модели

Деревянная модель предназначена для удобства склейки. Проводится расчет, при помощи инструментов вырезаются детали.

Деревянная бобышка с отверстием экономит время при изготовлении и намотке. Выступающие края просто срезаются ножницами и загибаются внутрь.

Деревянный каркас в выходных трансформаторах

Как можно отремонтировать щечки

Производство каркасов своими руками сопряжено с намоткой. При намотке отгибают отводы гильзы и раздвинув щечки проводят действия. Вклейка материала поможет, если образовались зазоры. Приклеить щечки на края можно только при достаточном качестве клея. Если возникают проблемы в задевании деталей, то округлить углы при помощи напильника.

Урок-9. КАТУШКИ ИНДУКТИВНОСТИ — ТРАНСФОРМАТОРЫ

КАТУШКИ ИНДУКТИВНОСТИ — ТРАНСФОРМАТОРЫ

В этом уроке будут рассмотрены такие радиокомпоненты как катушки индуктивности и трансформаторы. То, что без них не обходится практически ни одно современное радиотехническое устройство, вы в этом убедитесь позже. Я постарался совместить рассказ о катушках индуктивности и трансформаторах переменного тока в одном уроке, именно потому что эти компоненты имеют много общего, соответственно и рассматривать их проще по аналогии друг с другом. Практическая работа будет весьма интересная и очень полезная, а именно, изготовление простейшего лабораторного блока питания (БП) с применением регулируемого параметрического стабилизатора. Из предыдущих уроков, вы наверное заметили что использовать батарейки не совсем удобно, да и не всегда есть под рукой батарейка с подходящим напряжением. Вот поэтому мы и займемся изготовлением универсального блока питания с регулируемым напряжением от 0,5 до 12В. На первых порах нам этого будет вполне достаточно.
Катушки индуктивности колебательных контуров

Катушки индуктивности обладают свойством оказывать реактивное сопротивление переменному току при незначительном сопротивлении постоянному току. Совместно с конденсаторами они используются для создания фильтров, осуществляющих частотную селекцию (способность выделять — отфильтровывать) электрических сигналов, а так же для создания элементов задержки сигналов и запоминающих элементов, осуществления связи между цепями через магнитный поток и т. д. В отличие от резисторов и конденсаторов они не являются стандартизованными изделиями, а изготавливаются для конкретных целей и имеют такие параметры, которые необходимы для осуществления тех или иных преобразований электрических сигналов, токов и напряжений. Функционирование катушек индуктивности основано на взаимодействии тока и магнитного потока. Известно, что при изменении магнитного потока в проводнике, находящемся в магнитном поле, возникает ЭДС, определяемая скоростью изменения магнитного потока. В колебательных контурах приемников радиолюбители обычно используют как готовые, так и самодельные катушки самых различных конструкций. Для намотки катушек кроме проводов марок ПЭВ, ПЭЛ, используют обмоточные провода таких марок: ПВО — провод в хлопчатобумажной одинарной оплетке; ШЛО — провод в шелковой одинарной оплетке; ПШД — то же в двойной оплетке; ПЭЛШО — провод в эмалевой лако — стойкой изоляции и шелковой одинарной оплетке. Многие катушки промышленных приборов намотаны так называемым литцендратом — проводом в эмалевой изоляции, которые скручены жгутом и все вместе имеют одинарную или двойную шелковую оплетку. Такой провод, если надо, можно самому свить с помощью дрели. Практически для контурных катушек самодельных приемников пригоден провод любой марки, лишь бы надежна была его изоляция, но не слишком толстый, иначе катушка получается громоздкой. Катушки, предназначенные для приема радиовещательных станций средневолнового и длинноволнового диапазонов, наматывают обычно проводом диаметром от 0,1 до 0,3 мм, коротковолновые — проводом 0,8-1 мм, ультракоротковолновые — проводом до 3 мм. Существует правило, которое надо запомнить: чем короче длина радиоволн, на которые рассчитывается катушка, тем более толстым проводом она должна быть намотана. Если имеется провод, диаметр которого неизвестен, его можно приближенно определить так: намотайте провод виток к витку на карандаш, а затем разделите длину намотки на число витков. Точность определения диаметра провода таким способом будет тем выше, чем больше намотано витков. Если нет провода того диаметра, который рекомендуется, но есть другой, близкого к нему диаметра, обычно его можно использовать. Так, например, вместо провода диаметром 0,18 мм можно использовать провод диаметром 0,15 или 0,2 мм. В зависимости от размеров каркасов и диапазона принимаемых радиоволн катушки содержат от нескольких витков до нескольких сотен витков. Чем длиннее радиоволны и чем меньше диаметр катушки, тем больше витков она должна содержать. Для детекторных (устройство и принцип работы детекторного приемника будет рассмотрен позже) приемников иногда рекомендуют однослойные катушки, намотанные на больших каркасах сравнительно толстым проводом. И это не случайно, в таких катушках меньше потерь высокочастотной энергии. А чем меньше этих потерь, тем лучше работает приемник. Катушки транзисторных и ламповых приемников чаще всего наматывают на каркасах сравнительно небольших размеров и более тонким, чем катушки детекторных приемников, проводом. При этом провод в длинноволновых катушках укладывают в несколько слоев. Это — многослойные катушки. Они компактнее однослойных. Потери высокочастотной энергии в таких катушках несколько больше, чем в катушках больших размеров, но они компенсируются введением в катушки высокочастотных сердечников, усилительными свойствами транзисторов, радиоламп. Многослойные катушки контуров многих промышленных приемников наматывают особым способом, носящим наименование «универсаль». При такой намотке, имеющей должное взаимное пересечение витков, уменьшается внутренняя (межвитковая) емкость катушки, что увеличивает перекрытие контуром диапазона частот. Радиолюбители подобные катушки наматывают на бумажных или картонных шпульках «внавал», умышленно не укладывая провод ровными рядами. При такой намотке внутренняя емкость катушки также относительно невелика. Для примера расскажу, как изготовить контурную катушку подобной конструкции, которую можно использовать для наиболее простого транзисторного или лампового радиоприемника — (рис. 1). Каркасом служит картонная трубка 18 — 20 мм. в диаметре, склеинная из плотной бумаги. Сама же катушка состоит из двух секций: L2 — основной и L1 — подстроечной. Бортики секции L2 — картонные кружки, надетые на каркас и приклеенные к нему. Наружный диаметр кружков 32 — 35 мм, внутренний — по диаметру каркаса, расстояние между ними 4 — 5 мм. Секция L1 намотана на шпульке, которая с небольшим трением может перемещаться по каркасу.

Рис. 1 Контурная катушка с подстроечной секцией.

Шпулька для нее делается так. Нужно обернуть каркас полоской плотной бумаги шириной 6 — 8 мм. Поверх полоски на каркас насаживаются картонные кружки, расположив их на растоянии 2 — 3 мм друг от друга. Не сдвигая кружков, их приклеивают к бумажному кольцу. Когда клей высохнет, осторожно обрезают выступающие наружу края бумажного кольца — получится шпулька. Для секций катушки подойдет провод диаметром 0,2 — 0,3 мм. с любой изоляцией. Секция L1 должна содержать 40 — 50 витков, намотанных внавал, а секция L2 — 250 — 260 витков, намотанных таким же способом, но с отводами от 50 — го и 150 — го витков. Отводы нужны для грубой настройки контура, в котором катушки будут работать. Выводы и отводы выпускайте наружу через проколы в картонных бортиках. Конец секции L1 соедини с началом секции L2. Индуктивность такой катушки зависит от взаимного расположения ее секций. Если витки обеих секций направлены в одну сторону и секция L1 вплотную придвинута к секции L2, индуктивность катушки наибольшая. В этом случае контур будет настроен на наименьшую частоту (наибольшую длину волны). По мере отдаления секции L1 от L2 общая индуктивность катушки станет уменьшаться, а приемник будет перестраиваться на большую частоту (более короткую волну). Секцию L1 можно снять с каркаса, перевернуть и надеть на каркас другой стороной. Теперь витки Секций катушки будут направлены в разные стороны, и если сближать их, то индуктивность катушки будет плавно уменьшаться, а контур настраиваться на станции, работающие на волнах меньшей длины. Таким образом, эта конструкция представляет собой простейший вариометр — катушку с переменной индуктивностью. Грубая настройка контура осуществляется переключением отводов секции а точная — изменением расстояния и расположения витков секции L1 относительно витков секции L2. Настроив контур на радиостанцию, можно шпульку секции L1 приклеить к каркасу — получится приемник с фиксированной настройкой на одну радиостанцию. Катушки подобных конструкций хороши тем, что они просты. Однако предпочтительнее катушки с высокочастотными сердечниками. Сердечник, повышающий добротность катушки и тем самым снижающий потери в ней, позволяет значительно уменьшить число витков и размеры катушки. А если сердечник подстроечный, т. е. может перемещаться внутри катушки, то он, кроме того, позволяет в некоторых пределах изменять индуктивность катушки и, таким образом, настраивать контур на нужную частоту. Самые распространенные магнитные высокочастотные сердечники — ферритовые и карбонильные. Их выполняют в виде стержней, колец, чашек. Одна из возможных конструкций самодельной секционированной катушки с подстроечным сердечником диаметром 9 мм показана на (рис. 2). Увеличение индуктивности катушки достигается ввертыванием сердечника в ее каркас, а уменьшение — вывертыванием его. Каркас для такой катушки склеивается из полоски плотной бумаги шириной 40 мм на круглой болванке, стеклянной трубке или пробирке диаметром 9,5 — 10 мм. На расстоянии 6 — 7 мм от верхнего края готового и хорошо высушенного каркаса острым ножом прорезается в нем с двух противоположных сторон прямоугольные отверстия. В местах вырезов каркас обматывается в один слой толстой ниткой; ее витки будут выполнять роль нарезки для ввертывания сердечника. Щечки катушки вырезаются из тонкого гетинакса, текстолита или плотного картона толщиной 0,3 — 0,5 мм., насаживаются на каркас и приклеиваются к нему. Катушка наматывается внавал проводом ПЭВ — 1 0,12 — 0,18 мм. Если катушка средневолновая, то она должна содержать всего 135 витков (три секции по 45 витков), а длинноволновая — 450 витков (три секции по 150 витков).

Рис. 2 Самодельная катушка с подстроечным сердечником. Рис.3 Средневолновая (а) и длиноволновая (б) катушки с ферритовым стержнем.

Сначала между двумя верхними щечками наматывается первая секция, переводится провод на участок между средними щечками и наматывается вторая секция, потом между нижними щечками наматывается третья секция. Выводы катушки пропускаются через проколы в щечках. Крепить такую катушку на панели приемника можно с помощью фанерного кольца, приклеенного к панели, или вклейкой нижнего конца каркаса в отверстие в панели. Катушку колебательного контура можно намотать на бумажной гильзе и насадить ее на отрезок ферритового стержня марки 400НН или 600НН диаметром 8 и длиной 25 — 30 мм (рис. 3). Для приема радиостанций средневолнового диапазона она должна содержать 70 — 80 витков провода ПЭВ — 1 0,12 — 0,2 мм, намотанных в один ряд, а для радиостанции длинноволнового диапазона — 225 — 250 витков такого же провода, но намотанных четырьмя — пятью секциями по 45 — 50 витков в каждой секции. Наибольшая индуктивность такой катушки будет тогда, когда она находится на середине ферритового стержня. По мере перемещения к одному из концов стержня индуктивность катушки уменьшается. Таким образом, перемещая катушку по стержню, можно подстраивать контур на необходимую частоту наиболее длинноволнового участка диапазона.

Рис. 4 Каркасы с ферритовыми кольцами и подстроечными стержневыми сердечниками.

Во многих промышленных приемниках используются катушки, намотанные на унифицированных (стандартных) пластмассовых секционированных каркасах с ферритовыми кольцами и стержневыми подстроечными сердечниками (рис. 4, а). Катушка, намотанная на таком каркасе, оказывается между двумя ферритовыми кольцами, увеличивающими ее индуктивность. Стержневой сердечник, скрепленный с резьбовым цилиндриком, можно ввертывать отверткой (отвертка должна быть из немагнитного материала) на разную глубину внутрь каркаса и тем самым подстраивать индуктивность катушки. Аналогичный самодельный каркас, который может быть использован для катушек различного назначения, показан на (рис. 4, б). Для изготовления его нужны два кольца из феррита марки 600НН с внешним диаметром 8 — 9 и внутренним 3 — 3,5 мм и стержневой подстроечный сердечник той же марки диаметром 2,7 и длиной 15 мм. Основой каркаса служит бумажная гильза длиной 12 мм и диаметром, равным внутреннему диаметру колец. Кольца приклеиваються клеем БФ — 2 к гильзе на расстоянии 6 мм. Выступающий снизу конец гильзы будет вставлятся в отверстие монтажной платы (или шасси) и приклеиваться к ней. Подстроечный сердечник удерживается внутри каркаса бумажной или матерчатой прокладкой. Число витков и провод для катушки, намотанной на такой каркас, зависит от ее назначения.

Трансформаторы — трансформация переменного тока

Переменный ток выгодно отличается от постоянного тока тем, что он хорошо поддается трансформированию, т.е. преобразованию тока относительно высокого напряжения в ток более низкого напряжения, или наоборот. Трансформаторы позволяют передавать переменный ток по проводам на большие расстояния с малыми потерями энергии. Для этого переменное напряжение, вырабатываемое на электростанциях генераторами, с помощью трансформаторов повышают до напряжения в несколько сотен тысяч вольт и «посылают» по линиям электропередачи (ЛЭП) в различных направлениях. С повышением напряжения уменьшается сила тока в ЛЭП при одной и той же передаваемой мощности, что и приводит к снижению потерь и позволяет применять провода меньшего сечения. В городах и селах на расстоянии сотен и тысяч километров от электростанций это напряжение понижают трансформаторами до более низкого, которым и питают лампочки освещения, электродвигатели и другие электрические приборы. Трансформаторы широко применяют и в радиотехнике. Схематическое устройство простейшего трансформатора показано на (рис. 5). Он состоит из двух катушек из изолированного провода, называемых обмотками, насаженных на магнитопровод, собранный из пластин специальной, так называемой трансформаторной стали. Обмотки трансформатора изображают на схемах так же, как катушки индуктивности, а магнитопровод — линией между ними. Действие трансформатора основано на явлении электромагнитной индукции. Переменный ток, текущий по одной из обмоток трансформатора, создает вокруг нее и в магнитопроводе переменное магнитное поле. Это поле пересекает витки другой обмотки трансформатора, индуцируя в ней переменное напряжение той же частоты. Если к этой обмотке подключить какую — либо нагрузку, например лампу накаливания, то в получившейся замкнутой цепи потечет переменный ток — лампа станет гореть. Обмотку, к которой подводится переменное напряжение, предназначаемое для трансформирования, называют первичной, а обмотку, в которой индуцируется переменное напряжение — вторичной.

Рис. 5 Трансформатор с магнитопроводом из стали: а — усторйство в упрощенном виде; б — схематическое изображение.

Напряжение, которое получается на концах вторичной обмотки, зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке приблизительно равно напряжению, подведенному к первичной обмотке. Если вторичная обмотка трансформатора содержит меньшее число витков, чем первичная, то и напряжение ее меньше, чем напряжение, подводимое к первичной обмотке. И наоборот, если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подводимого к первичной обмотке. В первом случае трансформатор будет понижать, во втором повышать переменное напряжение. Напряжение, индуцируемое во вторичной обмотке, можно довольно точно подсчитать по отношению чисел витков обмоток трансформатора: во сколько раз она имеет большее (или меньшее) число витков по сравнению с числом витков первичной обмотки, во столько же раз напряжение на ней будет больше (или меньше) по сравнению с напряжением, подводимым к первичной обмотке. Так, например, если одна обмотка трансформатора имеет 1000 витков, а вторая 2000 витков, то, включив первую обмотку в сеть переменного тока с напряжением 220 В, мы получим во второй обмотке напряжение 440 В — это повышающий трансформатор. Если же напряжение 220 В подвести к обмотке, имеющей 2000 витков, то в обмотке, содержащей 1000 витков, мы получим напряжение 220 В — это понижающий трансформатор. Обмотка, имеющая 2000 витков, в первом случае будет вторичной, а во втором случае — первичной. Но, пользуясь трансформатором, вы не должны забывать о том, что мощность тока (P = UI), которую можно получить в цепи вторичной обмотки, никогда не превышает мощности тока первичной обмотки. Это значит, что получить от вторичной обмотки одну и ту же мощность можно, повышая напряжение и уменьшая ток, либо потребляя от нее пониженное напряжение при увеличенном токе. Следовательно, повышая напряжение мы проигрываем в значении тока, а выигрывая в значении тока, обязательно проигрываем в напряжении. Для питания радиоаппаратуры от сети переменного тока часто используют трансформаторы с несколькими вторичными обмотками с различным числом витков (рис. 6).

Рис. 6 Примеры промышленных трансформаторов.

С помощью таких трансформаторов, называемых сетевыми, или трансформаторами питания, получают несколько напряжений, питающих разные цепи. Наибольшая мощность тока, которая может быть трансформирована, зависит от размера магнитопровода трансформатора и диаметра провода, из которого выполнены обмотки. Чём больше объем магнитопровода, тем большая мощность может быть трансформирована. Практически же в трансформаторе всегда бесполезно теряется часть мощности. Поэтому мощность в цепи вторичной обмотки (или сумма мощностей, получаемых от всех вторичных обмоток) всегда несколько меньше мощности, потребляемой первичной обмоткой. Нужно запомнить: трансформаторы постоянный ток не трансформируют. Если, однако, в первичной обмотке трансформатора течет пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение, частота которого равна частоте пульсаций тока в первичной обмотке. Это свойство трансформатора используется для индуктивной связи между разными цепями, разделения пульсирующего тока на его составляющие и ряда других целей, о которых разговор будет впереди. Все трансформаторы со стальными магнитопроводами и магнитопроводами из железоникелевых сплавов (пермаллоя) называют низкочастотными трансформаторами, так как они пригодны только для преобразования переменного напряжения низкочастотного диапазона. На схемах низкочастотные трансформаторы обозначают буквой Т, а их обмотки — римскими цифрами. Принцип действия высокочастотных трансформаторов, предназначаемых дня трансформации колебаний высокой частоты, также основан на электромагнитной индукции. Они могут быть как с сердечниками, так и без сердечников. Их обмотки (катушки) располагают на одном или разных каркасах, но обязательно близко одну к другой (рис. 7). При появлении тока высокой частоты в одной из катушек вокруг нее возникает переменное магнитное поле, которое индуцирует во второй катушке напряжение такой же частоты. Как и в низкочастотных трансформаторах, напряжение во вторичной катушке зависит от соотношения чисел витков в катушках.

Рис. 7 Высокочастотные трансформаторы без сердечников (слева — катушки трансформатора с общим каркасом; справа — катушки трансформатора на отдельных каркасах; в центре — обозначение на схемах). Рис. 8 Высокочастотные трансформаторы с магнитодиэлектрическими сердечниками (слева со — стержневым, справа с кольцевым (тороидальным) сердечником).

Для усиления связи между катушками в высокочастотных трансформаторах используют сердечники в виде стержней или колец (рис. 8), представляющие собой спрессованную массу из неметаллических материалов. Их называют магнитодиэлектрическими или высокочастотными сердечниками. Наиболее распространены ферритовые сердечники. Ферритовый сердечник не только усиливает связь между катушками, но и повышает их индуктивность, поэтому они могут иметь меньше витков по сравнению с катушками трансформатора без сердечника. Магнитодиэлектрический сердечник высокочастотного трансформатора не зависимо от его конструкции и формы обозначают на схемах так же, как магнитопровод низкочастотного трансформатора, — прямой линией между катушками, а обмотки, как и катушки индуктивности, — латинскими буквами (L).

Практическая работа
Как я говорил в предисловии к уроку, займемся конструированием универсального радиолюбительского блока питания.

В первую очередь определимся со схемой. Естественно за ней далеко ходить не нужно, она находится в разделе Источники питания этого сайта, которая так и называется «Простой регулируемый блок питания». Там же и его подробное описание с возможной заменой применяемых радиоэлементов. Затруднений при его изготовлении у вас не должно возникнуть, т. к. все то, из чего состоит схема представленного БП нам по предыдущим урокам хорошо знакомо и изучено, я надеюсь. Принципы работы отдельных его узлов мы тоже рассматривали. Единственное что здесь может вызвать затруднение в понимании, это усилительный каскад, собранный на транзисторах VT2 и VT3. Пока принимайте это как должное, подобные схемы и примеры в дальнейшем мы будем рассматривать и тогда к вам придет миг озарения. Здесь главное при монтаже не допустить ошибок. По поводу монтажа: — вообще всю эту конструкцию можно смонтировать не на печатной плате как предлагается, (хотя это идеальный вариант) а на кусочке плотного картона (пресшпанте), при условии, что вы будете эксплуатировать его в домашних условиях, т. е. в условиях с нормальной влажностью. Делается это просто. Размещаются все радиоэлементы на картонке определенного размера (который зависит от габаритов применяемых радиодеталей и будущего корпуса), кроме трансформатора и выходного транзистора VT3, т. к. трансформатор крепится отдельно к шасси корпуса, а транзистор на радиаторе (дюралевая пластина). Радиатор транзистора VT3 должен быть изолирован от корпуса, если он металлический. Далее в местах выводов радиоэлементов с помощью тонкого шила прокалываются отверстия в которые вставляются выводы радиоэлементов. После того как вставили деталь в отверстие выводы нужно разогнуть в стороны, чтобы деталь не выпадала из отверстий при дальнейших манипуляциях с т. н. платой. После этого остается с помощью проводников с обратной стороны нашей картонки (со стороны загнутых выводов) распаять все радиодетали в соответствии со схемой. Отдельно остановлюсь на трансформаторе и микроамперметре: в этом блоке питания можно применить любой трансформатор мощностью от 20 до 60 Вт., с переменным напряжением на вторичной обмотке от 12 до 14 В. Например; очень хорошо для данной конструкции подходит ТВК 110 — трансформатор кадровой развертки от старых, ламповых черно — белых телевизоров. Для ориентира см. (рис. 9, 10).

Рис. 9 Вид сверху. Рис. 10 Вид сбоку.

Микроамперметр; который применяется здесь в качестве вольтметра, можно выдрать из любого старого бобинного магнитофона или ему подобных, который там применяется в качестве индикатора уровня сигнала, с любым током отклонения, потому как с помощью добавочного резистора R6 (подбирается экспериментально, в зависимости от используемого микроамперметра) мы сможем отрегулировать границы показания максимального предела измеряемого напряжения. И еще, у вас конечно возникнут затруднения с проверкой и контролем выходного напряжения, потому как мы еще не изучали основные приемы работы с такими измерительными приборами как вольтметр, амперметр и омметр. Можно пойти и более простым путем, отказавшись от микроамперметра и просто зделать контрольные надписи напротив метки регулятора напряжения.Приступайте и помните что на первичной обмотке трансформатора будет находиться переменное напряжение в 220 В, КОТОРОЕ ОПАСНО ДЛЯ ЖИЗНИ!

 

Переходим к следующему уроку !

Как изготовить трансформатор на П — образном сердечнике



Данная статья является продолжением статей:

«Как рассчитать трансформатор 220/36 вольт»;
«Как изготовить каркас для Ш – образного сердечника»;
 «Как намотать трансформатор на Ш-образном сердечнике».

   Маломощные, однофазные силовые трансформаторы (до 100 ватт), обычно изготавливают трех видов: – Ш – образные, П – образные и намотанные на тороиде.
Тороидальные трансформаторы изготавливают очень редко, хотя они и являются самыми эффективными.
  У тороидальных трансформаторов наименьшие поля рассеивания, наименьшие потери в сердечнике, высокий КПД и т.д.  Однако изготовление их очень хлопотно – все работы по намотке провода проводятся вручную.
    Наиболее распространенные виды трансформаторов изготавливаются на Ш –образном и П – образном сердечниках.
    Как изготовить силовой трансформатор на Ш – образном сердечнике смотрите в статье «Как намотать трансформатор на Ш-образном сердечнике?».
 Силовой трансформатор на П — образном сердечнике немного отличается от Ш — образного трансформатора:

  • магнитопровод имеет П-образные стальные пластины и пластину перекрытия или сердечник напоминающий по форме букву О, намотанный из стальной ленты и разрезанный пополам;
  • имеет, как правило, два симметрично расположенных каркаса с обмотками первичной и вторичной;
  • конструкции каркаса с расположенными на нем обмотками одинаковы .

   Силовые трансформаторы на старых ламповых телевизорах все были изготовлены такой конструкции и на мой взгляд, их проще изготовить, чем Ш — образный трансформатор.

   Особенностью работы любого трансформатора является процесс преобразования электрической энергии переменного тока в переменное магнитное поле и наоборот. Поочередный обмен электрической и магнитной энергией происходит между катушками первичной и вторичной обмоток и сердечником магнитопровода.    Пространство между витками обмоток и обмотками, обладает очень малой магнитной проницаемостью и большим магнитным сопротивлением, а потому почти весь магнитный поток сосредоточен в магнитопроводе. Стальной магнитопровод обладает в тысячи раз меньшим магнитным сопротивлением, чем воздух и окружающая среда.
  Чтобы передать электрическую энергию из первичной обмотки трансформатора во вторичную обмотку с наименьшими потерями, необходимо соблюдать следующие условия:

  • расстояние между витками в обмотке и между обмотками должно быть минимально;
  • средняя длина магнитно-силовой линии в магнитопроводе должна быть наименьшей;
  • возможно большая поверхность магнитопровода должна быть охвачена витками обмоток;
  • витки первичной и вторичной обмоток рекомендуется перемежать между собой.

   Не рекомендуется разносить первичную и вторичную обмотки на каркасе, а тем более по разные стороны сердечника. Чем больше разнесены обмотки друг от друга на сердечнике магнитопровода, тем больше потери магнитной энергии на магнитном сопротивлении магнитопровода.
   Все эти условия удачно сочетаются и в трансформаторе с П – образным сердечником.
Расчет П – образного трансформатора ничем не отличается от расчета Ш – образного.

    Приведенный расчет трансформатора в статье «Как рассчитать трансформатор 220/36 вольт», полностью подходит и для нашего случая.

   Попробуем изготовить этот трансформатор на магнитопроводе с П – образным сердечником.

  Общее количество витков обмоток, диаметр провода, поперечное сечение магнитопровода — идентичны.

Параметры трансформатора из статьи:

  •  мощность 75 ватт;
  •  площадь сечения магнитопровода 10 см.кв.;
  •  число витков первичной обмотки 1056 витков;
  •  число витков вторичной обмотки 180 витков;
  •  диаметр провода первичной обмотки 0,5 мм.;
  •  диаметр провода вторичной обмотки 1,1 мм.;
  •  выходное напряжение 36 вольт.

   Рассмотрим схему включения трансформатора и его обмоток.

   Особенность изготовления трансформатора  на П — образном сердечнике  состоит в том, что витки первичной и вторичной обмотки, разделены пополам и наматываются на двух каркасах. На каждом каркасе мотается половина первичной и половина вторичной обмотки. Оба каркаса мотаются совершенно одинаково с отводами на щечках.

  На одном каркасе наматывается ½ первичной обмотки – 528 витков, проводом диаметром 0,5 мм. с обозначением концов а и б.
    Затем наносим слой межобмоточной изоляции и ½ вторичной обмотки – 90 витков, проводом диаметром 1,1 мм. с обозначением концов А и Б.

    На втором каркасе наматываются вторые половины первичной (528 витков, концы а1 и б1) и вторичной (90 витков, концы А1 и Б1) обмоток.
    После сборки трансформатора соединяем концы первичной и вторичной обмоток.
Обратите особое внимание при соединении двух половинок первичной обмотки, они должны быть включены синфазно.

    Собираем простую схему для проверки правильного включения обмоток.
От другого трансформатора на 220 вольт возьмем любое напряжение U равное или меньше 110 вольт и подключим его к одной половинке первичной обмотки (концы а и б). На другом каркасе, на другой половинке первичной обмотки (концы а1 и б1) должно быть такое же напряжение U, как на первом каркасе между а и б.
     Теперь конец обмотки б соединим с концом а1 и измерим напряжение между точками а и б1. Напряжение должно быть равно 2 U.
Если этого не произошло, то разъединим точки б и а1 и соединим, точки б и б1. Измерим напряжение между точками а и а1. Оно должно быть равно 2 U.

К этим точкам обмоток и будет подключаться входное переменное напряжение 220 вольт.

  Разумеется, все переключения проводятся при выключенном питании из сети 220 вольт.

Допустим, последний случай соединения был успешным и напряжение между точками а и а1 удвоилось, т.е. равно 2 U.
    Далее, через предохранитель на 1 ампер, подсоединяем полностью первичную обмотку к сети 220 вольт. Трансформатор должен заработать.

  Вторичное напряжение на концах А — Б и А1 — Б1 должно быть по 18 вольт.
 Две половинки вторичных обмоток так же фазируются.
Общее напряжение, при соединении двух половинок вторичных обмоток.  должно быть 36 вольт.
Подключим нагрузку в виде лампочки на соответствующее, в нашем случае 36 вольт, напряжение. Если все соединения произведены правильно — лампочка загорится.

   Таковы особенности изготовления трансформатора на П — образном сердечнике. 

Трансформатор — Электромагнитные колебания и волны — ЭЛЕКТРОДИНАМИКА — ВСЕ УРОКИ ФИЗИКИ 11 КЛАСС АКАДЕМИЧЕСКИЙ УРОВЕНЬ — конспекты уроков — План урока — Конспект урока — Планы уроков — разработки уроков по физике

2-й семестр

ЭЛЕКТРОДИНАМИКА

4. Электромагнитные колебания и волны

УРОК 8/50

Тема. Трансформатор

 

Цель урока: выяснить назначение и принцип действия трансформатора.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Контроль знаний

3 мин.

1. Условия возникновения резонанса в электрической цепи.

2. Использование резонанса.

Демонстрации

3 мин.

Устройство и работа трансформатора.

Изучение нового материала

27 мин.

1. Почему напряжение необходимо изменять.

2. Принцип действия трансформатора.

3. Холостой ход трансформатора.

4. Работа трансформатора под нагрузкой.

Закрепление изученного материала

12 мин.

1. Качественные вопросы.

2. Учимся решать задачи.

 

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

1. Почему напряжение необходимо изменять

Активное сопротивление провода определяется материалом, из которого он изготовлен, и его размерами: Для уменьшения сопротивления проводов надо или уменьшать удельное сопротивление материала, или увеличивать площадь поперечного сечения провода.

Увеличение площади поперечного сечения приводит к значительному увеличению массы проводов. Можно уменьшать удельное сопротивление, но это полностью не решает проблемы, поскольку передача значительной мощности P = UI при относительно незначительной напряжения требует достаточно высокой силы тока.

Если ту же мощность передавать значительного напряжения (соответственно, из-за малой силы тока), то потери энергии значительно уменьшаются. Поэтому прежде чем передавать энергию на большие расстояния, необходимо повышать напряжение. И наоборот: после того как энергия дошла до потребителя, напряжение необходимо снижать.

Такие изменения напряжения обеспечивают с помощью трансформаторов.

Ø Трансформатор — устройство, применяемое для повышения или понижения напряжения переменного тока.

Далее рассмотрим строение трансформатора.

2. Принцип действия трансформатора

Переменный ток в первичной обмотке создает переменное магнитное поле. Благодаря стальном сердечнике вторичную обмотку, намотанную на тот же сердечник, пронизывает практически такое же переменное магнитное поле, что и первичную.

Поскольку все витки пронизаны тем самым переменным магнитным потоком, вследствие явления электромагнитной индукции в каждом витке генерируется одна и та же напряжение. Поэтому отношение напряжений U1 и U2 на первичной и вторичной обмотках равно отношению числа витков в них:

Изменение напряжения трансформатором характеризует коэффициент трансформации.

Ø Коэффициент трансформации — величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора:

Повышающий трансформатор — трансформатор, увеличивает напряжение (U2 > U1). У повышающего трансформатора число витков N2 во вторичной обмотке должно быть больше число витков N1 в первичной обмотке, т.е. k 1.

Понижающий трансформатор — трансформатор, уменьшающий напряжение (U2 U1). У понижающего трансформатора число витков во вторичной обмотке должно быть меньше числа витков в первичной обмотке, то есть k > 1.

3. Холостой ход трансформатора

Работа ненагруженного трансформатора называется холостым ходом.

Первичная обмотка трансформатора подключена к источнику переменного тока напряжением щ. При этом в обмотке возникает ЭДС самоиндукции e1. Падение напряжения на первичной обмотке равен: i1r1 = u1 + e1, где r1 — сопротивление обмотки, который мы будем считать очень маленьким. Поэтому в любой момент времени: u1 ≈ -e1, следовательно, для действующих значений можно записать:

Для второй обмотки: u2 + е2 = 0 , u2 = -e2,

Таким образом, в режиме холостого хода выполняется равенство:

4. Работа трансформатора под нагрузкой

Если к вторичной обмотке трансформатора присоединить нагрузку, то в ней возникнет электрический ток, что приводит к уменьшению магнитного потока в сердечнике и, как следствие, уменьшение ЭДС самоиндукции в первичной обмотке. В результате сила тока в первичной обмотке увеличится, и магнитный поток возрастет до первоначального значения. Чем больше сила тока во вторичной обмотке и мощность, которую она отдает потребителю, тем больше сила тока в первичной обмотке и мощность, потребляемая от источника. Поскольку потери энергии в трансформаторе малы, то U1I1 ≈ U2I2, отсюда U1/U2 = I2/I1.

Это означает, что в повышательном трансформаторе U1 U2 и I1 > I2, а в понижательном трансформаторе U1 > U2 и I2 > I1.

В трансформаторе, как и в любом техническом устройстве, существуют потери энергии.

Отношение мощности, которую трансформатор отдает потребителю электрической энергии, к мощности, которую трансформатор потребляет из электрической сети, называют КПД трансформатора:

 

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. Какой принцип положен в основу работа трансформатора?

2. Можно трансформировать постоянный ток?

3. Почему электрическую энергию на большие расстояния передают под высоким напряжением?

4. Почему прежде чем подавать потребителям электрическую напряжение, ее снижают?

Второй уровень

1. Почему ненавантажений трансформатор потребляет очень мало энергии?

2. В какой из обмоток понижающего трансформатора (первичной или вторичной) диаметр провода должен быть больше? Ответ объясните.

 

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1). Качественные вопросы

1. Ток во вторичной обмотке трансформатора зависит от сопротивления подключенных приборов. Меняется ли в связи с этим ток в первичной обмотке и если да, то как это происходит?

2. Обмотки трансформатора сделаны из проводов разной толщины. Какая из обмоток содержит больше витков? Почему?

3. Что произойдет с катушкой трансформатора, если ее распрямить, не отключая от сети?

2). Учимся решать задачи

1. В первичной обмотке 200 витков, а во вторичной — 25 витков. Повышающая или понижающая напряжение у этого трансформатора? Во сколько раз?

2. Трансформатор повышает напряжение от 10 до 200 В. Сколько витков во вторичной обмотке трансформатора, если первичная обмотка содержит 600 витков?

3. Первичная обмотка трансформатора, содержащая 1500 витков провода, подключена к цепи переменного тока напряжением 220 В. Определите число витков во вторичной обмотке, если она должна питать круг напряжением 6,3 В и силой тока 1,5 А.

Сопротивление вторичной обмотки 0,2 Ом. Сопротивлением первичной обмотки пренебречь.

 

ЧТО МЫ УЗНАЛИ НА УРОКЕ

• Трансформатор — устройство, применяемое для повышения или понижения напряжения переменного тока.

• Коэффициент трансформации — величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора:

• Отношение мощности, которую трансформатор отдает потребителю электрической энергии, к мощности, которую трансформатор потребляет из электрической сети, называют КПД трансформатора.

 

Домашнее задание

1. Подр-1: § 32; подр-2: § 14 (п. 3).

2. Сб.:

Рів1 № 9.8; 9.10; 9.22; 9.23.

Рів2 № 9.28; 9.29; 9.52; 9.53.

Рів3 № 9.62, 9.63; 9.64; 9.67.

3. Д: подготовиться к самостоятельной работе № 7.

 

ЗАДАНИЯ ИЗ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 7 «ПЕРЕМЕННЫЙ ТОК. ТРАНСФОРМАТОР»

Задание 1 (1,5 балла)

Трансформатор повышает напряжение от 120 В до 36 кВ.

А Трансформатор может повышать постоянное напряжение.

Бы Если выходное напряжение меньше входного, трансформатор называют повышающим.

В ЭДС во вторичной обмотке возникает вследствие явления электромагнитной индукции.

Г Количество витков во вторичной обмотке меньше, чем в первичной.

Задание 2 (2,5 балла)

На рисунке показан график i(t) для переменного тока.

 

 

А Период тока равна 3 мкс.

Бы Максимальное значение силы тока 10 А.

В Действующее значение силы тока менее 6 А.

Г Сила тока в цепи изменяется по закону и = 15sinωt.

Задание 3 (3 балла)

Задача 3 имеет целью установить соответствие (логическая пара). К каждой строке, обозначенного буквой, подберите утверждение, обозначенное цифрой.

А Трансформатор.

Бы Коэффициент трансформации.

В Режим холостого хода.

Г Режим под нагрузкой.

1 Величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора.

2 Устройство, применяемое для повышения или понижения напряжения переменного тока.

3 Устройство, преобразующее механическую энергию в электрическую.

4 Работа по замкнутой вторичной обмотки.

5 Работа по разомкнутой вторичной обмотки.

Задание 4 (5 баллов)

Первичная обмотка трансформатора содержит 100 витков, а вторичная — 1000. Напряжение в первичном круге 120 В. Напряжение во вторичной цепи, если потери энергии отсутствуют?

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *