Site Loader

Содержание

Выбор типа обмотки трансформатора

Подробности
Категория: Теория
  • трансформатор
  • выбор
  • обмотки

Общие требования, предъявляемые к трансформатору, можно подразделить на эксплуатационные и производственные.
Основными эксплуатационными требованиями являются электрическая и механическая прочность и нагревостойкость как обмоток, так и других частей и трансформатора в целом.
Общие эксплуатационные требования, предъявляемые к трансформаторам и их обмоткам, регламентированы соответствующими государственными стандартами. Практически электрическая прочность изоляции обмоток достигается рациональной ее конструкцией, правильным выбором изоляционных промежутков и изоляционных материалов. Требования механической прочности обмотки удовлетворяется путем рационального выбора типа и конструкции обмотки и расположения ее витков и катушек с таким расчетом, чтобы возникающие в обмотке механические силы были по возможности меньшими, а механическая устойчивость возможно большей.


Общие производственные требования сводят к построению трансформатора с наименьшей затратой материалов и труда и наиболее простого по конструкции, т. е. наиболее дешевого.
Задачей проектировщика является разумное сочетание интересов эксплуатации и производства. Эта задача решается в значительной мере уже при выборе того или иного типа обмотки. Поэтому на выбор типа обмотки, наиболее отвечающей требованиям эксплуатации и в то же время наиболее простой и дешевой в производстве, следует обращать особое внимание.
Основными критериями при выборе типа обмотки служат следующие величины:
Iф = Iс – ток нагрузки одного стержня, мощность обмоток одного стержня S′ и номинальное напряжение Uл, а также поперечное сечение витка обмотки П.
Ориентировочное сечение, мм2, витка каждой обмотки может быть определено по формуле:
П = ,
где Iс – ток соответствующей обмотки одного стержня, ток фазный;
Dср – средняя плотность тока в обмотках ВН и НН.
В зависимости от выбора значения Dср будут изменяться объем и масса обмотки, а следовательно, и электрические потери в них Рэ. Обычно при расчете трансформатора потери короткого замыкания Рк бывают заданы, и выбор средней плотности тока должен быть связан с заданной величиной Рк.
Для определения средней плотности тока в обмотках, обеспечивающей получение заданных потерь короткого замыкания, можно воспользоваться формулами:
для медных обмоток
Dср = 0,745Ка , ;
для алюминиевых
Dср = 0,464 Кд , ;
где    S – полная мощность трансформатора, кВА; Рк – потери короткого замыкания, Вт; Ub – напряжение одного витка; d12 – средний диаметр канала между обмотками, см; Кд – коэффициент, учитывающий наличие добавочных потерь в обмотках, потери в отводах, в стенах бака и т. д., принимается по табл. 5.1.

Таблица 5.1
Значение

Кд для трехфазных трансформаторов

Мощность трансформа-тора, кВА

До100

160–630

1000–6300

10000–
16000

25000–
63000

80000–
100000

Кд

0,96

0,96–0,92

0,91–0,90

0,90–0,87

0,86–0,78

0,77–0,75

Примечание. Для сухих трансформаторов мощностью 10–160 кВА принимать
Кд =0,99–0,96 и мощностью 250–1600 кВА  Кд =0,92–0,96.

Расчетные значения Dср следует сверить с данными табл. 2, где приведены ориентировочные значения практически применяемых плотностей токов. Сверка рассчитанного Dср имеет целью избежать грубых ошибок в расчете Dср.
Таблица 2

Средняя плотность тока в обмотках D, А/мм², для современных
трансформаторов с потерями короткого замыкания 

а) масляные трансформаторы

Мощность транс-форматора, кВА

25–40

63–630

1000–6300

10000–16000

25000–80000

Медь

1,8–2,2

2,2–3,5

2,2–3,5

2,0–3,5

2,0–3,5

Алюминий

1,1–1,8

1,2–2,5

1,5–2,6

1,5–2,7

б) сухие трансформаторы

Мощность транс-форматора, кВА

10–160; 0,5 кВ

160–1600; 10 кВ

Обмотка

Внутренняя НН

Наружная
ВН

Внутренняя
НН

Наружная
ВН

Медь

2,0–1,4

2,2–2,8

2,0–1,2

2,0–2,8

Алюминий

1,3–0,9

1,3–1,8

1,4–0,8

1,4–2,0

Примечания: 1. Для трансформатора с потерями короткого замыкания вышеуказанных государственных стандартов возможен выбор плотности тока в масляных трансформаторах до 4,5 А/мм² в медных и до 2,7 А/мм²  – алюминиевых обмотках; в сухих трансформаторах – соответственно до 3 и 2 МА/м². 2. Плотность тока в обмотках из транспонированного провода выбирается так же, как и для медного или алюминиевого провода. 3. Плотность тока в обмотках из алюминиевой ленты выбирается как для алюминиевого провода.

После определения средней плотности тока Dср и сечения витка Π для каждой из обмоток можно произвести выбор типа конструкции обмотки. Конструкция и тип обмотки применяется по табл. 3.
При расчете обмоток существенное значение имеет правильный выбор размеров провода. В обмотках из круглого провода выбирают провод, ближайший по площади поперечного сечения к сечению Π, определенному по выбранной плотности тока Dср, или в некоторых случаях подбираются два-три провода с соответствующим общим суммарных сечением.


При расчете винтовых, непрерывных катушечных и в большинстве случаев двухслойных и многослойных цилиндрических обмоток из их провода прямоугольного сечения желательно применять провода большего сечения, что упрощает намотки у них на станке и позволяет получить наиболее компактное ее размещение на сердечнике. Однако применение крупных размеров провода ограничивается условиями охлаждения обмотки и величиной допустимых добавочных потерь от вихревых токов, вызываемых потоком рассеяния.

Перегрев поверхности обмотки над температурой окружающего ее масла определяется по плотности теплового потока на поверхности обмотки, т. е. по потерям в обмотке отнесенных к единице поверхности q, Вт/м2. Величина q в целях недопущения чрезмерного нагрева
обмоток в масляных трансформаторах ограничивается пределами
q £ (1200–1400) Вт/м2 и во всяком случае не более 1600 Вт/м2.
В трансформаторах с искусственной циркуляцией масла допускается q £  (2000–2200) Вт/м2. Превышение указанных значений приводит к существенному увеличению веса охладительной системы трансформатора.

В сухих трансформаторах для внутренних обмоток НН допускают
q £ 280 Вт/м2.
Расчет обмоток проводится в следующей последовательности:

  • определяется число витков в фазе соответствующей обмотки, . После округления числа витков до целого числа уточняется напряжение одного витка  и значение магнитной индукции в стержне, Bc;
  • определяется ориентировочное сечение, мм2, витка соответствующей обмотки по выражению: 

;

  • по ориентировочному сечению обмотки сортаменту обмоточных проводов принимаются соответствующие провода. Проводов может быть один или несколько. Примеры витков для различных обмоток приведены ниже.

В масляных трансформаторах применяется провод марки ПБ (с бумажной изоляцией).
В сухих трансформаторах применяется обычно более качественная изоляция марок ПСД и ПСДК.

  • По основным параметрам трансформатора  – номинальной мощности;  – номинальным напряжениям обмоток НН и ВН;   – номинальному фазному току обмоток выбирается тип обмоток.
  • По выбираемому типу соответствующих обмоток производится расчет обмоток по методикам, приведенным ниже.

После расчета основных размеров обмотки НН –  и ,  и  следует рассчитать реактивную составляющую напряжения короткого замыкания Uкр  и сравнить его со значением.
Расчет  Uкр, %, проводится по формуле:

где , здесь  и  – действительные расчетные значения радиальных размеров обмоток НН и ВН;
,
где d12 = d + 201 + 2a1 + a12, здесь  – действительный радиальный размер обмотки НН.
Для трансформаторов мощностью более 10000 кВА размер а, см, определяется выражением:
.
Расчетное напряжение  должно быть равно  определенному в разд. 4 по заданному значению  и . Отличие допускается всего на ± 5 %.

 

Если  расчетное выходит из допустимых пределов, следует изменить высоту обмоток  и пересчитать  и .
Иногда допускается увеличить канал  (в случае если  расчетное менее заданного), так как  принимается в расчете как минимально–допустимое поэтому увеличивать его можно.
Пересчитывая несколько раз обмотки НН и ВН достигают оптимальных значений размеров   ,  и  и
Только после этого приступают к расчету всех необходимых для дальнейших расчетов размеров обмотки:  и ,  и ; поверхностей  охлаждения обмоток НН и ВН.
Затем приступают к расчету потерь короткого замыкания, полного напряжения короткого замыкания и механических сил в обмотках.

  • Назад
  • Вперёд
  • Вы здесь:  
  • Главная
  • Оборудование
  • Трансформаторы
  • Теория
  • Еще по теме:
    • Выбор изоляции между обмотками трансформатора
    • Схемы и группы соединения трансформаторов
    • Расчет основных электрических величин и главной изоляции обмоток трансформатора
    • Трехобмоточные трансформаторы
    • Обозначение выводов и группы соединений двухобмоточных трансформаторов

    Трансформаторы

    Возможно ли узнать мощность и ток трансформатора по его внешнему виду

    Трансформатор — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

    Если на трансформаторе имеется маркировка, то вопрос определения его параметров исчерпывается сам собой, достаточно лишь вбить эти данные в поисковик и мгновенно получить ссылку на документацию для нашего трансформатора. Однако, маркировки может и не быть, тогда нам потребуется самостоятельно эти параметры вычислить.

    Для определения номинальных тока и мощности неизвестного трансформатора по его внешнему виду, необходимо в первую очередь понимать, какие физические параметры устройства являются в данном контексте определяющими. А такими параметрами прежде всего выступают: эффективная площадь сечения магнитопровода (сердечника) и площадь сечения проводов первичной и вторичной обмоток.

    Речь будем вести об однофазных трансформаторах, магнитопроводы которых изготовлены из трансформаторной стали, и спроектированы специально для работы от сети 220 вольт 50 Гц. Итак, допустим что с материалом сердечника трансформатора нам все ясно. Движемся дальше.

    Сердечники бывают трех основных форм: броневой, стержневой, тороидальный. У броневого сердечника эффективной площадью сечения магнитопровода является площадь сечения центрального керна. У стержневого — площадь сечения стержня, ведь именно на нем и расположены обмотки. У тороидального — площадь сечения тела тороида (именно его обвивает каждый из витков).

    Для определения эффективной площади сечения, измерьте размеры a и b в сантиметрах, затем перемножьте их — так вы получите значение площади Sс в квадратных сантиметрах.

    Суть в том, что от эффективной площади сечения сердечника зависит величина амплитуды магнитного потока, создаваемого обмотками. Магнитный поток Ф включает в себя одним из сомножителей магнитную индукцию В, а вот магнитная индукция как раз и связана с ЭДС в витках. Именно поэтому площадь рабочего сечения сердечника так важна для нахождения мощности.

    Далее необходимо найти площадь окна сердечника — того места, где располагаются провода обмоток. В зависимости от площади окна, от того насколько плотно оно заполнено проводниками обмоток, от плотности тока в обмотках — также будет зависеть мощность трансформатора.

    Если бы, к примеру, окно было полностью заполнено только проводами обмоток (это невероятный гипотетический пример), то приняв произвольной среднюю плотность тока, умножив ее потом на площадь окна, мы получили бы общий ток в окне магнитопровода, и если бы затем разделили его на 2, а после — умножили на напряжение первичной обмотки — можно было бы сказать, что это и есть мощность трансформатора. Но такой пример невероятен, поэтому нам необходимо оперировать реальными значениями.

    Итак, давайте найдем площадь сечения окна.

    Наиболее простой способ определить теперь приблизительную мощность трансформатора по магнитопроводу — перемножить площадь эффективного сечения сердечника и площадь его окна (все в кв.см), а затем подставить их в приведенную выше формулу, после чего выразить габаритную мощность Pтр.

    В этой формуле: j — плотность тока в А/кв.мм, f — частота тока в обмотках, n – КПД, Вm – амплитуда магнитной индукции в сердечнике, Кс — коэффициент заполнения сердечника сталью, Км — коэффициент заполнения окна магнитопровода медью.

    Но мы поступим проще: примем сразу частоту равной 50 Гц, плотность тока j= 3А/кв.мм, КПД = 0,90, максимальную индукцию в сердечнике — ни много ни мало 1,2 Тл, Км = 0,95, Кс=0,35. Тогда формула значительно упростится и примет следующий вид:

    Если же есть потребность узнать оптимальный ток обмоток трансформатора, то задавшись плотностью тока j, скажем теми же 3 А на кв. мм, можно умножить площадь сечения провода обмотки в квадратных миллиметрах на эту плотность тока. Так вы получите оптимальный ток. Или через диаметр провода d обмотки:

    Узнав по сечению проводников обмоток оптимальный ток каждой из обмоток, разделите полученную по габаритам мощность трансформатора на каждый из этих токов — так вы узнаете соответствующие найденным параметрам напряжения обмоток.

    Одно из этих напряжений окажется близким к 220 вольтам — это с высокой степенью вероятности и будет первичная обмотка. Далее вольтметр вам в помощь. Трансформатор может быть повышающим либо понижающим, поэтому будьте предельно внимательны и аккуратны если решите включить его в сеть.

    Кроме того, перед вами может оказаться выходной трансформатор от акустического усилителя. Данные трансформаторы рассчитываются немного иначе чем сетевые, но это уже совсем другая и более глубокая история.

    Ранее ЭлектроВести писали, что АББ получила заказ на более 20 млн. долл. США от компании MHI Vestas Offshore Wind на поставку надежных энергоэффективных и компактных трансформаторов WindSTAR, разработанных для установки на ветровых турбинах.

    По материалам: electrik.info.

    Как расситать диаметр провода первичной и вторичной обмотки трансформатора

    РасчетБлок питания, Расчет трансформатора, Ремонт трансформаторов1 комментарий к записи Как рассчитать диаметр провода для любой обмотки

    Содержание:

    Чем толще, тем лучше, но с условием, что он поместится в окно магнитопровода. Если окно небольшое, то желательно посчитать ток каждой наматываемой обмотки, чтобы рассчитать  оптимальный диаметр провода обмотки трансформатора из имеющихся в наличии.

    Рассчитать ток катушки можно по формуле:

    I = P / U

    I – ток обмотки,

    P – мощность потребляемая от данной обмотки,

    U – действующее напряжение данной обмотки.

    Например, у меня потребляемая мощность 31 Ватт и вся она будет отдаваться катушками «III» и «IV».

    31 / (12,8+12,8) = 1,2 Ампер

    Диаметр  провода обмотки трансформатора, первичной или вторичной  можно вычислить по формуле:

    D = 1,13 √(I / j)

    D – диаметр провода в мм,

    I – ток обмотки в Амперах,

    j – плотность тока в Ампер/мм².

    Конструкция трансформатора Плотность тока (а/мм2) при мощности трансформатора (Вт)
    5-10 10-50 50-150 150-300 300-1000
    Однокаркасная 3,0-4,0 2,5-3,0 2,0-2,5 1,7-2,0 1,4-1,7
    Двухкаркасная 3,5-4,0 2,7-3,5 2,4-2,7 2,0-2,5 1,7-2,3
    Кольцевая 4,5-5,0 4,0-4,5 3,5-4,5 3,0-3,5 2,5-3,0

    Пример:

    Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.

    А плотность тока я выбрал – 2,5 А/ мм².

    1,13√ (1,2 / 2,5) = 0,78 мм

    У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.

    На картинке два варианта конструкции каркаса: А – обычная, В– секционная.
    1. Количество витков в одном слое.
    2. Количество слоёв.

    Ширина моего не секционированного каркаса 40мм.

    Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.

    124 * 1,08 * 1,1 : 40 ≈ 3,68 слоя

    1,1 – коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.

    Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.

    Определяем толщину обмотки:

    1,08 * 4 ≈ 4,5 мм

    У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.

    Ток катушки «II» вряд ли будет больше чем – 100мА.

    1,13√ (0,1 / 2,5) = 0,23 мм

    Диметр провода катушки «II» – 0,23мм.

    Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.

    Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.

    Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.

    Длина проводов будет равна:

    L = p * ω * 1,2

    L – длина провода,

    p – периметр каркаса в середине намотки,

    ω – количество витков,

    1,2* – коэффициент.

    Укладывать обмотку при намотке в несколько проводов сложно и утомительно, поэтому лучше перестраховаться и использовать этот коэффициент, компенсирующий ошибки расчёта и неаккуратной укладки.

    Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.

    Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.

    Закрепить конец провода можно обычными нитками.

    Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.

    Если катушка разделена на секции для первичных и вторичных обмоток трансформатора, то тогда и вовсе можно обойтись без изоляционных прокладок.

    Видео: Расчет сечения провода в силовом трансформаторе. Excel

    Пример использования Excel в качестве универсального калькулятора для расчета диаметра провода в импульсном трансформаторе. Произведен расчет зависимости максимального тока от сечения проводника.

    Расчёт и перемотка трансформатора

    Расчет обмотки низкого напряжения (НН)

    Заглавная страница
    Избранные статьи
    Случайная статья
    Познавательные статьи
    Новые добавления
    Обратная связь

    КАТЕГОРИИ:

    Археология
    Биология
    Генетика
    География
    Информатика
    История
    Логика
    Маркетинг
    Математика
    Менеджмент
    Механика
    Педагогика
    Религия
    Социология
    Технологии
    Физика
    Философия
    Финансы
    Химия
    Экология

    ТОП 10 на сайте

    Приготовление дезинфицирующих растворов различной концентрации

    Техника нижней прямой подачи мяча.

    Франко-прусская война (причины и последствия)

    Организация работы процедурного кабинета

    Смысловое и механическое запоминание, их место и роль в усвоении знаний

    Коммуникативные барьеры и пути их преодоления

    Обработка изделий медицинского назначения многократного применения

    Образцы текста публицистического стиля

    Четыре типа изменения баланса

    Задачи с ответами для Всероссийской олимпиады по праву



    Мы поможем в написании ваших работ!

    ЗНАЕТЕ ЛИ ВЫ?

    Влияние общества на человека

    Приготовление дезинфицирующих растворов различной концентрации

    Практические работы по географии для 6 класса

    Организация работы процедурного кабинета

    Изменения в неживой природе осенью

    Уборка процедурного кабинета

    Сольфеджио. Все правила по сольфеджио

    Балочные системы. Определение реакций опор и моментов защемления

    ⇐ ПредыдущаяСтр 4 из 12Следующая ⇒

    Расчет обмоток трансформатора, как правило, начинается с обмотки НН, располагаемой у большинства трансформаторов между стержнем и обмоткой ВН.

     

    Число витков на одну фазу НН:

    , (5.1)

    где Uф2 — фазное напряжение обмотки НН, рассчитанное по формуле 3.6 или 3.7,В;

    Uв – электродвижущая сила одного витка, В (по формуле 4.11).

     

    Полученное значение W2 округляется до ближайшего целого числа и может быть как четным, так и нечетным. Для трехфазного трансформатора найденное по (5.1) значение W2 является также числом витков на один стержень.

    После округления числа витков следует найти напряжение одного витка по формуле, В:

    Uв = Uф2/W2 (5.2)

    и действительную индукцию в стержне, Тл,

     

    (5. 3)

     

    где Uв – напряжение одного витка, В.

    Для определения средней плотности тока в обмотках А/м2, обеспечивающей получение заданных потерь короткого замыкания, можно воспользоваться формулами, выведенными в [1]:

    для медных обмоток:

    jср = 0,746·Кд; (5.4)

    для алюминиевых обмоток:

     

    jср = 0,463·Кд; (5.5)

    Формулы (5.4) и (5.5) связывают исходную среднюю плотность тока в обмотках ВН и НН с заданными величинами: полной мощностью трансформатора S, кВ·А, потерями короткого замыкания Рк, Вт, и величинами, определяемыми до расчета обмоток: ЭДС одного витка Uв, В, и средним диаметром канала между обмотками d12, м.


    Коэффициент Кдучитывает наличие добавочных потерь в обмотках, потери в отводах, стенках бака и т.д. Значения Кд могут быть взяты из таблицы 5.1.

     

    Таблица 5. 1 Значение Кд для трехфазных трансформаторов

    Мощность трансформатора, кВ·А До 100 160 — 630
    Кд 0,97 0,96 –0,93

    Примечание: Для сухих трансформаторов мощностью 40 – 160 кВ·А принимать Кд = 0,99÷0,96 и мощностью 250 – 1600 кВ·А Кд = 0,92÷0,86

     

    Значение плотности тока, полученное из (5.4) и (5.5), следует сверить с данными таблицы 5.2, где приведены ориентировочные значения практически применяемых плотностей токов. Сверка рассчитанного значения jср с таблицей имеет целью избежать грубых ошибок при расчете jср. Точного совпадения jср с цифрами таблицы не требуется. По этой же таблице можно выбрать среднюю плотность тока в обмотках в том случае, когда потери короткого замыкания не заданы.

    Найденные по (5.4) или (5.5) значение плотности тока являются ориентировочным средним значением для обмотки ВН и НН. Плотности тока в каждой из обмоток масляного трансформатора с медными или алюминиевыми обмоток могут отличаться от среднего значения, желательно, однако, что бы не более чем на 10% . Следует помнить, что отклонение действительной средней плотности тока от найденной в сторону возрастания увеличивает Рк и в сторону уменьшения – снижает.

    В сухих трансформаторах вследствие существенного различия условий охлаждения для внутренних и наружных обмоток плотность тока во внутренней обмотке НН обычно снижают на 20-30% по сравнению с плотностью в наружной обмотки ВН. Поэтому в таких трансформаторах отклонение действительной плотности тока в обмотках от найденного среднего значения может достигать ±(15-20)%.

     

    Таблица 5.2 Средняя плотность тока в обмотках j, МА/м2, для современных трансформаторов с потерями короткого замыкания по ГОСТ

    Мощность трансформатора, кВ·А 25 — 40 63 — 630
    масляные трансформаторы
    Медь 1,8 – 2,2 2,2 — 3,5
    Алюминий 1. 1 – 1,8 1.2 – 2.5
    сухие трансформаторы
    Мощность трансформатора, кВ·А 40-160 160-1600
    Обмотка Внутренняя НН Наружная ВН Внутренняя НН Наружная ВН
    Медь 1,4-2,0 2,2-2,8 1,2-2,0 2,0-2,8
    Алюминий 0,9-1,3 1,3-1,8 0,8-1,4 1,4-2,0

    Примечание: Для трансформаторов с потерями короткого замыкания выше указанных ГОСТ возможен выбор плотности тока в масляных трансформаторах до 4,5 МА/м2 в медных и до 2,7 МА/м2 в алюминиевых обмотках; в сухих трансформаторах – соответственно до 3 и 2 МА/м2.

     

    Ориентировочное сечение витка обмотки, мм2, может быть определено по формуле:

    П2/ = (I2ср)·106 (5. 6)

    где I2 –линейный ток обмотки НН стержня, А;

    jср – средняя плотность тока в обмотке, А/м2.

     

    После определения средней плотности тока jср и сечения витка П/ для каждой из обмоток нужно произвести выбор типа конструкции обмоток, пользуясь указаниями, таблицы А1 представленной в приложении. При выборе конструкции обмоток ВН следует учитывать также и возможность получения наиболее удобной схемы регулирования напряжения этой обмотки.

    При расчете обмоток существенное значение имеет правильный выбор размеров провода. Номинальные размеры и сечения круглого провода можно взять из таблицы 5.3, а прямоугольного из таблицы А2 приложения. Если сечение провода получилось небольшим, то при выборе размера провода нужно воспользоваться таблицей А3. В обмотках из провода круглого сечения обычно выбирается провод, ближайший по площади поперечного сечения к рассчитанному сечению П/, или в редких случаях подбираются два провода с соответствующим общим суммарным сечением. Например, если ориентировочное сечение витка обмотки получилось большим и нет возможности подобрать к нему провод из таблицы, то это сечение необходимо разделить на 2, 3 или 4 (число параллельных проводов nв2).

     

    Таблица 5.3. Номинальные размеры сечения и изоляции круглого медного и алюминиевого обмоточного провода марок ПБ и АПБ с толщиной изоляции на две стороны 2δ =0,30 мм.

    Диаметр, мм Сечение, мм2 Увеличение массы, % Диаметр, мм Сечение, мм2 Увеличение массы, % Диаметр, мм Сечение, мм2 Увеличение массы, %
    Марка ПБ – медь 2,00 3,14 3,0 4,00 12,55 1,5
    2,12 3,53 3,0 4,10 13,2 1,5
    1,18 1,094 6,0 2,24 3,94 3,0 4,25 14,2 1,5
    1,25 1,23 5,5 2,36 4,375 2,5 4,50 15,9 1,5
    Марка ПБ – медь Марка АПБ — алюминий 2,50 4,91 2,5 5,00 19,63 1,5
    2,65 5,515 2,5 5,20 21,22 1,5
    2,80 6,16 2,5      
    1,32 1,37 5,0 3,00 7,07 2,5 Марка АПБ — алюминий
    1,40 1,51 5,0 3,15 7,795 2,0
    1,50 1,77 4,5 3,35 8,81 2,0
    1,60 2,015 4,0 3,55 9,895 2,0 5,30 22,06 1,5
    1,70 2,27 4,0 3,75 11. 05 1,5 6,00 28,26 1,5
    1,80 2,545 3,5       8,00 50,24 1,0
    1,90 2,805 3,5            

    Подобранные размеры для прямоугольного провода в мм, записываются так:

    Марка провода

    где nв2 – число параллельных проводов;

    — размеры провода без изоляции, мм

    — размеры провода с изоляцией, мм.

     

    Для провода круглого сечения размер провода будет записываться как:

     

    Марка провода

    где nв2 – число параллельных проводов;

    — диаметр провода без изоляции, мм

    — диаметр провода с изоляцией, мм.

     

    Полное сечение витка из nв2параллельных проводов, м2, определяется по формуле:

    П2 = nв2·П·10-6, (5.7)

    где П – сечение провода выбранного из таблицы, мм2.

     

    Уточненная плотность тока, А/м2

    j2 = I22, (5.8)

    где I2 –линейный ток обмотки НН, А;

    П2 – полное сечение витка обмотки НН, м2.

     

    Число витков в одном ряду обмотки НН:

    или (5.9)

    где l – высота обмотки, мм;

    dиз – диаметр изолированного круглого провода, мм;

    в/– большая сторона изолированного прямоугольного провода, мм.

    После расчета W2ряд округляется до меньшего целого числа.

     

    Число рядов обмотки низшего напряжения:

    (5.10)

    V2округляется до ближайшего большего целого числа.

     

    Рабочее напряжение двух слоев, В,

    Uмсл = 2·W2ряд ∙ Uв (5.11)

    где Uв – напряжение одного витка, В

     

    По рабочему напряжению двух слоев по таблице 5.4 выбирается величина δмсл .

     

    Таблица 5.4. Нормальная межслойная изоляция в многослойных цилиндрических обмотках

    Рабочее напряжение двух слоев обмотки, В Число слоев кабельной бумаги на толщину листов, мм
    До 150 2 х 0,05
    От 151 до 200 1 х 0,2
    От 201 до 300 2 х 0,12
    До 1000 2 х 0,12
    От1001 до 2000 3 х 0,12
    От 2001 до 3000 4 х 0,12
    От 3001 до 3500 5 х 0,12
    От 3501 до 4000 6 х 0,12
    От 4001 до 4500 7 х 0,12
    От 4501 до 5000 8 х 0,12
    От 5001 до 5500 9 х 0,12

     

    Радиальный размер обмотки НН (толщина обмотки НН, см. рис. 4.1), м:

     

    а2 = [V2∙dиз + δмсл ·(V21)] ∙ 10-3 (5.12)

    где dиз – диаметр изолированного круглого провода (если провод прямоугольный, то берется меньшая его сторона — , мм.

    δмсл – общая толщина кабельной бумаги в изоляции между двумя слоями

    обмотки (таблица 5.4).

     

    Внутренний диаметр обмотки НН, м

    Д =d + 2·а01 ∙ 10-3 (5.13)

    гдеd — диаметр стержня, м.

     

    ⇐ Предыдущая12345678910Следующая ⇒



    Читайте также:

    

    Организация работы процедурного кабинета

    Статус республик в составе РФ

    Понятие финансов, их функции и особенности

    Сущность демографической политии

    

    Последнее изменение этой страницы: 2016-12-16; просмотров: 364; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

    infopedia. su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь — 176.9.44.166 (0.014 с.)

    Расчет импульсного трансформатора для двухтактного преобразователя и согласующих устройств / Хабр

    В правильно сконструированном двухтактном преобразователе постоянный ток через обмотку и подмагничивание сердечника отсутствуют. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность. Поскольку трансформатор имеет много взаимозависимых параметров, расчет ведут по шагам, уточняя при необходимости исходные данные.

    1. Как определить число витков и мощность?

    Габаритная мощность, полученная из условия не перегрева обмотки, равна [1]:

    Pгаб = So ⋅ Sc ⋅ f ⋅ Bm / 150           (1)

    Где: Pгаб — мощность, Вт;
    Sc — площадь поперечного сечения магнитопровода, см2 ;
    So — площадь окна сердечника, см2;
    f — частота колебаний, Гц;
    Bm = 0,25 Тл — допустимое значение индукции для отечественных никель-марганцевых ферритов на частотах до 100 кГц.  

    Максимальную мощность трансформатора выбираем 80% от габаритной:

    Pmax = 0,8 ⋅ Pгаб           (2)

    Минимальное число витков первичной обмотки n1 определяется максимальным напряжением на обмотке Um и допустимой индукцией сердечника Bm:

    n1 = ( 0,25 ⋅ 104 ⋅ Um ) / ( f ⋅ Bm ⋅ Sc )           (3)

    Размерности единиц здесь те же, что и в формуле (1).

    Плотность тока в обмотке j для трансформаторов мощностью до 300 Вт принимаем 3..5 А/мм2 (большей мощности соответствует меньшее значение). Диаметр провода в мм рассчитываем по формуле:

    d = 1,13 ⋅ ( I / j )1/2           (4)

    Где I — эффективный ток обмотки в А.

    Пример 1:

    Для ультразвуковой установки нужен повышающий трансформатор мощностью 30..40 Вт. Напряжение на первичной обмотке синусоидальное, с эффективным значением Uэфф = 100 В и частотой 30 кГц.

    Выберем ферритовое кольцо К28x16x9.

    Площадь его сечения: Sc = ( D — d ) ⋅ h / 2 = ( 2,8 — 1,6 ) ⋅ 0,9 / 2 = 0,54 см2
    Площадь окна: So = π ⋅ ( d / 2 )2 = π⋅ ( 1,6 / 2 )2 = 2 см2
    Габаритная мощность: Pгаб = 0,54 ⋅ 2 ⋅ 30 ⋅ 103 ⋅ 0,25 / 150 = 54 Вт
    Максимальная мощность: Pmax = 0,8 ⋅ 54 = 43,2 Вт
    Максимальное напряжение на обмотке: Um = 1,41 ⋅ 100 = 141 В
    Число витков: n1 = 0,25 ⋅104 ⋅ 141 / ( 30 ⋅ 103 ⋅ 0,25 ⋅ 0,54 ) = 87
    Число витков на вольт: n0 = 87 / 100 = 0,87
    Эффективное значение тока первичной обмотки: I = P / U = 40 / 100 = 0,4 A
    Плотность тока выберем 5 А/мм2.
    Тогда диаметр провода по меди: d = 1,13 ⋅ ( 0,4 / 5 )1/2 = 0,31 мм

    2. Как уточнить плотность тока?

    Если мы делаем маломощный трансформатор, то можем поиграть с плотностью тока и выбрать более тонкие провода, не опасаясь их перегрева. В книге Эраносяна [2, Стр.109] дана такая табличка:

      Pн, Вт  

    1 .. 7  

      8 .. 15  

      16 .. 40  

      41 .. 100  

      101 .. 200  

    j, А/мм2

    7 .. 12

    6 .. 8

    5 .. 6

    4 .. 5

    4 .. 4,5

    Почему плотность тока зависит от мощности трансформатора?

    Выделяемое количество теплоты равно произведению удельных потерь на объем провода. Рассеиваемое количество теплоты пропорционально площади обмотки и перепаду температур между ней и средой. С увеличением размера трансформатора объем растет быстрее площади и для одинакового перегрева удельные потери и плотность тока надо уменьшать. Для трансформаторов мощностью 4..5 кВА плотность тока не превышает 1..2 А/мм2 [3].

    3. Как уточнить число витков первичной обмотки?

    Зная число витков первичной обмотки n вычислим ее индуктивность. Для тороида она определяется по формуле:

    L = μ0 ⋅ μ ⋅ Sс ⋅ n2 / la        (5)

    Где:
    Площадь   дана в м2
    средняя длина магнитной линии la в м;
    индуктивность в Гн;
    μ0 = 4π ⋅ 10-7 Гн/м — магнитная постоянная.

    В инженерном виде эта формула выглядит так:

    L = AL n2        (5А)    ,     n = ( L / AL )1/2        (5Б)

    Коэффициент AL и параметр мощности Sо ⋅ Sc для некоторых типов колец приведены в Таблице 2 [4,5,6]:

    Кольцо

    К7х4х2

    К10х6х3

    К10х6х4,5

    К16х10х4,5

    К20х12х6

    К32х20х6

    К38х24х7

    К40х25х11

    AL , нГн/вит2 ± 25%

    224

    310

    460

    430

    620

    570

    650

    1050

    Sc , см4

    0,004

    0,017

    0,025

    0,106

    0,271

    1,131

    2,217

    4,050

    Для работы трансформатора в качестве согласующего устройства должно выполняться условие:

    L > ( 4 . . 10 ) ⋅ R / ( 2 ⋅ π ⋅ fmin )         (6)

    Где L — индуктивность в Гн;
    R = U2эфф / Pн приведенное к первичной обмотке сопротивление нагрузки Ом;
    fmin — минимальная частота, Гц.

    В ключевых преобразователях в первичной обмотке трансформатора текут два тока: прямоугольный ток нагрузки Iпр = Um / R и треугольный ток намагничивания обмотки IT:

    Для нормальной работы преобразователя величина треугольной составляющей не должна превышать 10% от прямоугольной, т.е индуктивность обмотки должна удовлетворять неравенству:

    L > 5 R / f         (7)

    При необходимости число витков увеличивают или применяют феррит с большей μ. Чрезмерно завышать число витков в обмотке не желательно. Из-за роста межвитковой емкости на рабочей частоте могут возникнуть резонансные колебания.

    Выбранный феррит должен иметь достаточную максимальную индукцию и малые потери в рабочей полосе частот. Как правило, на низких частотах (до 1 МГц) применяют феррит с μ = 1000 .. 6000 , а на радиочастотах приходиться использовать материалы с μ = 50 .. 400.

    Пример 2:

    Трансформатор из Примера 1 намотан на кольце К28х16х9 из никель-марганцевого феррита 2000НМ с магнитной проницаемостью μ = 2000.
    Мощность нагрузки P = 40 Вт , эффективное напряжение первичной обмотки Uэфф = 100 В , частота f = 30 кГц. Уточним число его витков.

    Приведенное сопротивление нагрузки:  R = 1002 / 40 = 250 Ом
    Площадь поперечного сечения магнитопровода:  Sc = 0,54 см2 = 0,54 ⋅ 10 -4 м2
    Средняя длина магнитной линии: la = π ( D +d ) / 2 = π ( 2,8 + 1,6 ) ⋅ 10 -2 / 2 = 6,9 ⋅ 10 -2 м
    Коэффициент индуктивности: AL = 4π ⋅ 10-7 ⋅ 2000 ⋅ 0,54 ⋅ 10 -4 / 6,9⋅10-2 = 1966 нГн / вит2

    Минимальная индуктивность первичной обмотки по формуле (6): 
    L = 10 ⋅ 250 / ( 2π ⋅ 3 ⋅ 104 ) = 13,3 мГн
    Число витков: n = (13,3 ⋅ 10 -3 / 1,963 ⋅ 10 -6 ) 1/2 = 82      

    Оно даже меньше, чем рассчитанное ранее в Примере 1  nmin = 87.
    Таким образом, условие достаточной индуктивности выполнено и число витков первичной обмотки n = 87.

    4. Какие ферриты можно применить и почему?

    Как известно, сердечник в трансформаторе выполняет функции концентратора электромагнитной энергии. Чем выше допустимая индукция B и магнитная проницаемость μ , тем больше плотность передаваемой энергии и компактнее трансформатор. Наибольшей магнитной проницаемостью обладают т.н. ферромагнетики — различные соединения железа, никеля и некоторых других металлов.

    Магнитное поле описывают две величины: напряженность Н (пропорциональна току обмотки) и магнитная индукция В (характеризует силовое действие поля в материале). Связь В и H называют кривой намагничивания вещества. У ферромагнетиков она имеет интересную особенность — гистерезис (греч. отстающий) — когда мгновенный отклик на воздействие зависит от его предыстории.

    После выхода из нулевой точки (этот участок называют основной кривой намагничивания) поля начинают бегать по некой замкнутой кривой (называемой петлей гистерезиса). На кривой отмечают характерные точки — индукцию насыщения Bs, остаточную индукцию Br и коэрцитивную силу Нс.

    Рис.1. Магнитные свойства ферритов. Слева форма петли гистерезиса и ее параметры. Справа основная кривая намагничивания феррита 1500НМ3 при различных температурах и частотах: 1 — 20кГц, 2 — 50кГц, 3 — 100 кГц.

    По значениям этих величин ферромагнетики условно делят на жесткие и мягкие. Первые имеют широкую, почти прямоугольную петлю гистерезиса и хороши для постоянных магнитов. А материалы с узкой петлей используют в трансформаторах. Дело в том, что в сердечнике трансформатора есть два вида потерь — электрические, и магнитные. Электрические (на возбуждение вихревых токов Фуко) пропорциональны проводимости материала и частоте, а вот магнитные тем меньше, чем меньше площадь петли гистерезиса.

    Ферриты это пресс порошки окисей железа или других ферромагнетиков спеченные с керамическим связующим. Такая смесь сочетает два противоположных свойства — высокую магнитную проницаемость железа и плохую проводимость окислов. Это минимизирует как электрические, так и магнитные потери и позволяет делать трансформаторы, работающие на высоких частотах. Частотные свойства ферритов характеризует критическая частота fc , при которой тангенс потерь достигает 0,1. Тепловые — температура Кюри Тс , при которой μ скачком уменьшается до 1.

    Отечественные ферриты маркируются цифрами, указывающими начальную магнитную проницаемость, и буквами, обозначающими диапазон частот и вид материала.

    Наиболее распространен низкочастотный никель-цинковый феррит, обозначаемый буквами НН. Имеет низкую проводимость и сравнительно высокую частоту fc. Но у него большие магнитные потери и невысокая температура Кюри.

    Никель-марганцевый феррит имеет обозначение НМ. Проводимость его больше, поэтому fc низкая. Зато малы магнитные потери, температура Кюри выше, он меньше боится механических ударов.

    Иногда в маркировке ферритов ставят дополнительную цифру 1, 2 или 3. Обычно, чем она выше, тем более температурно стабилен феррит.

    Какие марки ферритов нам наиболее интересны?

    Для преобразовательной техники хорош термостабильный феррит 1500НМ3 с fc=1,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

    Для спец применений выпускают феррит 2000НМ3 с нормируемой дезакаммодацией (временной стабильностью магнитной проницаемости). У него fc=0,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

    Для мощных и компактных трансформаторов разработаны ферриты серии НМС. Например 2500НМС1 с Bs=0,45 Тл и 2500НМС2 c Bs=0,47 Тл. Их критическая частота fc=0,4 МГц, а температура Кюри Tc>200 ℃.

    Что касается допустимой индукции Bm, этот параметр подгоночный и в литературе не нормируется. Ориентировочно можно считать Bm = 0,75 Вsmin. Для никель-марганцевых ферритов это дает примерно 0,25 Тл. С учетом падения Bs при повышенных температурах и за счет старения в ответственных случаях лучше подстраховаться и снизить Bm до 0,2 Тл.

    Основные параметры распространенных ферритов сведены в Таблицу 3:

    Марка

    100НН

    400НН

    600НН

    1000
    НН

    2000
    НН

    2000
    НМ

    1000
    НМ3

    1500
    НМ1

    1500
    НМ3

    μнач

    80. .120

    350..
    500

    500..
    800

    800..
    1200

    1800..
    2400

    1700..
    2500

    800..
    1200

    1200..
    1800

    1200..
    1800

    fc, МГц

    7

    3,5

    1,5

    0,4

    0,1

    0,5

    1,8

    0,7

    1,5

    Tc, ℃

    120

    110

    110

    110

    70

    200

    200

    200

    200

    Bs, Тл

    0,44

    0,25

    0,31

    0,27

    0,25

    0,38..
    0,4

    0,33

    0,35..
    0,4

    0,35..
    0,4

    5. Насколько нагреется сердечник?

    Потери в магнетике.

    При частоте менее критической потери энергии в магнетике складываются в основном из потерь на перемагничивание, а вихретоковыми можно пренебречь.

    Опыт и теория показывают, что потери энергии в единице объема (или массы) на одном цикле перемагничивания прямо пропорциональны площади петли гистерезиса. Следовательно мощность магнитных потерь:

    PH = P0 ⋅ V ⋅ f      (8)

    Где:
    P0 – удельные потери в единице объема (измеренные на частоте f0 при индукции B0 ) ;
    V – объем образца.

    Таблица 4. Удельные объемные потери в ферритах 2500НМС при f0 =16 кГц ; B0=0,2 Тл:

    T , oC  

    P0 , мкВт / ( см 3 ⋅ Гц )

    2500НМС1

    2500НМС2

    25

    10,5

    8,5

    100

    8,7

    6

    Однако, с ростом частоты индукция насыщения уменьшается, петля гистерезиса деформируется, а потери растут. Для учета этих факторов Штейнмец (C. P. Steinmetz, 1890-1892) предложил эмпирическую формулу:

    PH = P1 ⋅ m ⋅ ( f / f1 ) α ( B / B1) β      (9)

    Условились [7, Стр.54], что f1 = 1 кГц, B1 = 1 Тл.
    Величины P1, α, β и массу сердечника m указывают в справочнике.

    Таблица 5. Удельные потери в некоторых ферритах

    Марка

    1500НМ3

    2000НМ1-А,Б

    2000НМ3

    2000НМ-17

    3000
    НМ-А

    6000НМ-1

    f

    0,4..100 кГц

    0,1..1 МГц

    0,4..100 кГц

    0,1..1 МГц

    0,4..200 кГц

    20..50 кГц

    50..100 кГц

    P1,
    Вт / кг

    23,2

    32±7

    13±3

    44,6

    63±10

    25±4

    48±8

    11±2

    38±0,8

    α

    1,2

    1,2

    1,4

    1,3

    1,2

    1,4

    1,2

    1,35

    1,6

    β

    2,2

    2,4

    2,7

    2,85

    2,76

    2,69

    2,6

    Потери в меди.

    Омические потери в первичной обмотке при комнатной температуре и без учета скин-эффекта:

    PM1 = I2 эфф ( ρ / Sm ) ( ( D — d ) + 2h ) ⋅ n1      (10)

    Где:
    Iэфф — эффективный ток,
    D — внешний, d — внутренний диаметр кольца, h — его высота в метрах;
    n1 — число витков; Sm — поперечное сечение провода, в мм2 ;
    ρ = 0,018 Ом ⋅ мм2 / м — удельное сопротивление меди.

    Суммарные потери во всех обмотках при повышенной температуре окружающей среды:

    PM = ( PM1 + PM2 + .. )( 1 + 0,004 ( T — 25oC ) )      (11)

    Общие потери в трансформаторе.

    Потери в магнетике и меди:

    PΣ = PH + PM      (12)

    Предполагаемая температура перегрева при естественной конвекции:

    ΔT = PΣ / ( αm Sохл )      (13)

    Где αm = (10. .15) -4 Вт/(см2oС)     ,     Sохл = π /2 ( D2 — d2 ) + π h ( D + d )

    Пример 3:

    Найдем потери в трансформаторе из Примеров 1 и 2. Для простоты считаем, что вторичная и первичная обмотка одинаковые. 

    Эффективный ток первичной обмотки Iэфф = 0,4 А.

    Потери в меди первичной обмотки:
    PM1 = 0,42 ⋅ ( 0,018 / 0,08 ) ⋅ ( 28 — 16 + 18 ) ⋅ 10 -3 ⋅ 87 ≈ 0,1 Вт.

    Потери в меди обеих обмоток: PM = 0,2 Вт.

    Согласно справочным данным для феррита 2000НМ P1 = 32 Вт / кг ; α = 1,2 ; β = 2,4 ; масса сердечника К28х16х9 равна 20 грамм.

    Потери в феррите: PH = 32 ⋅ ( 30 / 1 ) ⋅ 1,2 ⋅ ( 0,25 / 1 ) ⋅ 2,4 ⋅ 20 ⋅ 10 -3= 1,36 Вт

    Суммарные потери в трансформаторе:   PΣ = 1,56 Вт.     

    Ориентировочный КПД = ( 40 — 1,56 ) / 40 ⋅ 100% ≈ 96%

    6. Как учесть инерционные свойства трансформатора?

    На Рис.2. показана T-схема замещения трансформатора. В нее входят сопротивление источника ri , приведенное сопротивление нагрузки R = n2   или R = Pн / U2эфф   ,     где n = U1 / U2 — коэффициент трансформации, Uэфф — эффективное напряжение первичной обмотки.

    Рис.2. Эквивалентная схема трансформатора.

    Инерционные свойства трансформатора определяют малые индуктивности рассеяния Ls, индуктивность намагничивания (почти равна индуктивности первичной обмотки L1), параллельная емкость обмотки Сp (т.н. динамическая емкость) и последовательная емкость между обмотками Сп.

    Как оценить индуктивности и емкости?

    L1 рассчитывают по формуле (5) или измеряют экспериментально.
    Согласно [8] индуктивность рассеивания по порядку величины равна Ls ~ L1 / μ.
    Емкость Ср составляет примерно 1 пФ на виток.

    Трансформатор работает подобно полосовому фильтру. На малых частотах он представляет собой ФВЧ с частотой среза ωн = R / Lμ.
    На высоких частотах элементы Ls и Cp образуют ФНЧ с частотой среза ωв ≈ ( Ls Cp )-1/2
    Последовательная емкость Сп невелика и на работу практически не влияет.

    В модели есть два характерных резонанса:

    Низкочастотный (резонанс намагничивания) в параллельном контуре Lμ Ср.
    Его частота   fμ ≈ ( 1/ 2 π ) ⋅ (Lμ Cp )-1/2  , а добротность
    Qμ ≈ ( ri || R ) ⋅ ( Lμ / Cp)-1/2      (14)

    Высокочастотный (резонанс рассеивания) в контуре, образованном Ls и .
    Его частота fs ≈ ( 1/ 2 π ) ⋅ (Ls Cp )-1/2   , а добротность   Qs ≈ ( Ls / Cp)1/2 / ri         (15)

    Как влияют резонансы обмотки?

    Амплитудно-частотная характеристика трансформатора похожа на АЧХ полосового фильтра, но на ее верхнем краю резонанс fs дает характерный пик.

    Реакция же на импульсы напряжения зависит от способа включения источника и величин сопротивлений схемы.

    При малом внутреннем сопротивлении источника riпроявляется лишь резонанс fs в виде характерного «звона» на фронтах импульсов.
    Если же источник подключается через ключ, то при его размыкании могут возникать интенсивные колебания с частотой  fμ.

    Рис.3. Пример АЧХ и переходного процесса в трансформаторе. Его эквивалентная схема дана ниже на рисунке 4.

    7. Экспериментальное измерение параметров импульсного трансформатора.

    Для пробы было взято кольцо из феррита 3000НМ размера К10х6х2. Первичная обмотка составляла 21 виток; вторичная 14; коэффициент трансформации n = 1,5 ; сопротивление нагрузки равнялось 4,7 кОм; источником служил генератор прямоугольных импульсов на TTL микросхемах с уровнем 6В, частотой 1 МГц и внутренним сопротивлением ri ≈ 200 Ом.

    Рассчитаем теоретические параметры:

    Sc = 4 ⋅ 10 -6 м2 , la = 25,13 ⋅ 10 -3 м , ALтеор = 600 нГн / вит2 , L1теор = 0,6 ⋅ 212 = 265 мкГн, Ls теор ≈ 265/3000 = 0,09 мкГн , Сp теор ≈ 21+14 = 35 пФ.
    Приведенное сопротивление нагрузки R = n2 Rн = 2,25 ⋅ 4,7 ~ 10 кОм.

    Результаты измерений индуктивностей прибором АКИП-6107:

    L1 = 269 мкГн ,   L2 = 118 мкГн , закоротив вторичную обмотку получим 2Ls = 6,8 мкГн, что на два порядка выше ее теор оценки.

    Динамическую емкость Cp можно оценить по формуле (15), подав на трансформатор прямоугольные импульсы и измерив при помощи осциллографа период колебаний «звона» на фронтах импульсов на выходе вторичной обмотки. Частота «звона» fs оказалась 18,5 МГц , что дает Ср ≈ 21 пФ и неплохо согласуется с теор оценкой.

    Для сравнения с опытом эквивалентная схема с измеренными параметрами моделировалась в программе LT Spice.

    Рис.4. Модель трансформатора. Vout — приведенное напряжение, фактическое будет в n раз меньше.Рис.5. Результаты эксперимента. Масштаб вертикальной шкалы 1 вольт на деление.

    Итак, модель, построенная на основе измеренных Lμ , Ls и Cp вполне согласуется с экспериментом.

    Теоретическая оценка [8] емкости 1 пФ на виток для малых колец приемлема, но оценка индуктивности рассеяния на два порядка расходится с фактической. Ее проще определять на опыте.

    Приложение 1. Вывод формулы для числа витков.

    При подаче напряжения U на обмотку в ней возникнет ЭДС индукции E:
    U = -E = n Sc dB / dt

    Для синусоидального напряжения с амплитудой Um:
    Um = n Sc ω Bm
    Откуда число витков: n = Um / ( Sc ω Bm )

    Выразив круговую частоту через обычную, а площадь в см2 получим инженерную формулу:

    n = 0,16 ⋅ 104 / ( f ⋅ Bm⋅ Sc )

    Для прямоугольного напряжения величиной Um приращение индукции: 
    dB = dt Um / ( n Sc )
    Интегрируя ее по времени от 0 до T/2 и учитывая, что за половину периода поле изменится от -Bm до +Bm получим:     2Bm = ( T / 2) Um / ( n Sc )

    Выразив период через частоту, а площадь в см2 получим инженерную формулу:

    n = 0,25 ⋅104 / ( f ⋅ Bm ⋅ Sc )

    Она пригодна для обоих случаев.

    Приложение 2. Вывод формулы для габаритной мощности трансформатора.

    Согласно закону электромагнитной индукции Фарадея связь напряжения на катушке с изменением магнитной индукции в ней:  

    U dt = n Sc dB

    За время от 0 до T/2 индукция изменится от -Bm до +Bm.  Интегрируя в этих пределах получим среднее напряжение:

    Uср = 4n  ⋅  Sc ⋅  Bm ⋅  f

    Где:

    Но приборы измеряют не среднее, а действующее напряжение, которое эквивалентно постоянному по энергии. Связь среднего и действующего напряжения дает коэффициент формы кф = Uэфф / Uср . Для меандра он равен 1, для синуса 1,11.

    Отсюда эффективное напряжение на катушке:
    Uэфф = 4 ⋅  кф ⋅  n ⋅  Sc ⋅  Bm ⋅  f

    Габаритную мощность оценим из следующих соображений. Частота f не велика, потери на вихревые токи и перемагничивания малы и мощность ограничена лишь перегревом обмотки. Его определяет максимальная плотность тока j , одинаковая для обоих обмоток.

    Определим габаритную мощность как полусумму мощностей первичной и вторичной обмоток.

    Pгаб = ( P1+P2 ) / 2 = ( Uэфф1⋅ I1 + Uэфф2 ⋅ I2 ) / 2 = j ( S1 n1 + S2 n2 ) 4 кф Sc Bm f / 2       

    Где S1 и S2 площади витка первичной и вторичной обмоток.

    Это соотношение можно записать через площадь меди Sm: 

    Pгаб = 2⋅  кф ⋅ f ⋅ Sc ⋅ Sm ⋅ Bm ⋅ j

    Площадь меди связывают с коэффициентом заполнения окна σ = Sm / Sо.

    Сигма это некий эмпирический коэффициент, равен минимум 0,15 для однослойной обмотки и максимум 0,4 для многослойной (больше не поместится).

    В итоге наша формула имеет вид:

    Pгаб = 2 ⋅ кф ⋅ σ⋅  f ⋅ Sc⋅  Sо ⋅ Bm ⋅ j 

    Все величины здесь в СИ.

    Допустим, что напряжение имеет форму меандра, кф = 1. Выбирая плотность тока j = 2,2 А / мм2 ; коэффициент заполнения σ = 0,15 ; выразив площади в см2 ; Bm в Тл ; частоту в Гц получим расчетную формулу:

    Pгаб = Sc ⋅ So ⋅ f ⋅ Bm / 150

    Как видно, эта формула выведена с большим запасом, реально можно получить с трансформатора и большую мощность.

    Литература.

    1. Косенко С. “Расчёт импульсного трансформатора двухтактного преобразователя” // Радио, №4, 2005, с. 35 — 37, 44.

    2. Эраносян С. А. Сетевые блоки питания с высокочастотными преобразователями. — Л.: Энергоатомиздат. Ленингр. отд-ние, 1991,— 176 с: ил.

    3. С. В. Котенёв, А. Н. Евсеев. Расчет и оптимизация тороидальных трансформаторов и дросселей. — М.: Горячая линия-Телеком, 2013. — 359 с.: ил.

    4. А. Петров «Индуктивности, дроссели, трансформаторы «// Радиолюбитель, №12, 1995, с.10-11.

    5. Михайлова М.М., Филиппов В.В., Муслаков В.П. Магнитомягкие ферриты для радиоэлектронной аппаратуры. Справочник. — М.: Радио и связь, 1983. — 200 с., ил.

    6. Расчетные геометрические параметры кольцевых сердечников.

    7. Б.Ю.Семенов. Силовая электроника для любителей и профессионалов. М. : Солон-Р, 2001. — 327 с. : ил

    8. Курс лекций «Импульсная техника» для студентов 4-го курса кафедры Радиофизики. Глава 3.

    Тульский завод трансформаторов

    Тульский завод трансформаторов

    Ниже приведены краткие ответы на наиболее часто встречающиеся вопросы, возникающие при конструировании и применении трансформаторов и дросселей. Все эти вопросы подробно освещены в книге Котенева С.В., Евсеева А.Н. «Расчет и оптимизация тороидальных трансформаторов и дросселей» (Москва: Горячая линия — Телеком, 2017, 2-е издание). Здесь же дано конспективное изложение проблем. Специалисты, интересующиеся подробным обоснованием ответов на вопросы, могут обратиться к названной книге. Для упрощения изложения мы постараемся обойтись без формул.

    Раскрывающиеся блоки «div» на JavaScript. Демонстрация.

    В конечном счете, мощность трансформатора определяется его допустимым нагревом. Нагрев трансформатора вызван нагревом его магнитопровода (сердечника) и нагревом проводов обмоток. Нагрев сердечника определяется свойствами электротехнической стали (так называемыми удельными потерями, которые зависят от величины электромагнитной индукции) и не зависит от величины нагрузки, подключенной к трансформатору. Нагрев проводов обмоток определяется величиной тока, протекающего через обмотки, и удельного сопротивления материала обмоток (как правило, используются медные провода, реже — алюминиевые). Мощность нагрева обмоток пропорциональна квадрату силы тока и омическому (активному) сопротивлению обмотки. Таким образом, минимальный нагрев трансформатора будет иметь место в режиме холостого хода, когда нагрев обмоток минимален — через первичную обмотку протекает только ток холостого хода, а через вторичную обмотку ток совсем не протекает.

    Большинством производителей проектируют трансформаторы таким образом, чтобы при полной нагрузке перегрев трансформатора (то есть превышение его температуры над температурой окружающей среды) не превышал 50…70 °. Если нагрузка трансформатора превысит номинальную, то температура перегрева превысит расчетную величину. Это приведет к ускоренному старению материалов трансформатора и к уменьшению срока его службы. При дальнейшем увеличении температуры перегрева трансформатор выйдет из строя. Однако температура перегрева может быть снижена применением принудительного охлаждения трансформатора — например, с помощью воздушного охлаждения (обдув вентилятором) или водяного охлаждения (прокачка холодной воды через специальную систему охлаждения, совмещенную с магнитопроводом или обмотками трансформатора). Следовательно, применение дополнительного охлаждения позволяет увеличить мощность, которую трансформатор способен отдать в нагрузку.

    Можно также снизить нагрев применением проводов большего сечения. Однако для их размещения потребуется магнитопровод больших размеров (габаритов), и в результате получится трансформатор большей габаритной (номинальной) мощности. Поэтому увеличение номинальной мощности трансформатора сопряжено с увеличением его размеров (при сохранении температуры перегрева в допустимых пределах). Следует также заметить, что увеличение размеров трансформатора приводит к увеличению площади поверхности теплоотдачи и дает возможность рассеиванию большей тепловой мощности потерь в окружающую среду.

    Нет, не зависит. Мощность, отдаваемая в нагрузку (номинальная мощность трансформатора) определяется только током и напряжением нагрузки (или вторичной обмотки, что одно и то же). Поскольку мощность трансформатора, как было показано выше (в ответе на вопрос 1) определяется допустимым нагревом обмоток, который, в свою очередь, пропорционален квадрату тока, для работы трансформатора не имеет значения, какая доля тока является активной, а какая реактивной. Как известно, соотношение активной и реактивной составляющей тока (а также напряжения или мощности) количественно определяется косинусом ФИ (Cosφ). При выборе трансформатора имеет значение только полная мощность, которую потребляет нагрузка и которая измеряется в ВА (вольт-амперы) и не имеет значения величина Cosφ.

    В режиме холостого хода нагрев трансформатора определяется потерями мощности в стали магнитопровода. Нагрев провода катушек на холостом ходу отсутствует, поскольку ток в цепи вторичной обмотки не протекает, а через первичную обмотку протекает незначительный ток холостого хода, который практически не нагревает обмотку. В режиме холостого хода перегрев трансформатора составляет от 5 ° до 15 °, если трансформатор рассчитан правильно, а напряжение сети соответствует номинальному. Если же напряжение сети превышает номинальное, то нагрев увеличится, поскольку увеличатся потери в стали сердечника за счет увеличения величины индукции. При значительном (более 10…15 %) увеличении питающего напряжения возникнет насыщение стали магнитопровода. При этом, помимо резкого увеличения мощности потерь в сердечнике, резко увеличится также и ток холостого хода, что вызовет существенный нагрев обмоток. При длительном воздействии повышенного напряжения трансформатор выйдет из строя из-за перегрева.

    Нет, нельзя. Мощность потерь на холостом ходу равна произведению напряжения и активной составляющей тока холостого хода. Ток холостого хода равен векторной сумме активной и реактивной составляющих, и без применения специальных измерительных приборов эти токи определить невозможно. Приблизительно можно руководствоваться следующей информацией: для тороидальных трансформаторов активная составляющая тока составляет 40…60 % от величины полного тока холостого хода; для трансформаторов с магнитопроводом из пластин активная составляющая тока равна 5…20 % от общего тока холостого хода.

    Увеличение числа витков первичной обмотки трансформатора при заданном магнитопроводе и заданном питающем напряжении приведет к снижению величины индукции и, следовательно, — к уменьшению величины тока холостого хода. Однако увеличение числа витков увеличит сопротивление обмоток трансформатора, что увеличит потери мощности в обмотках. Поскольку мощность потерь в обмотках нагруженного трансформатора в несколько раз больше мощности потерь в магнитопроводе, при увеличении числа витков КПД трансформатора уменьшится.

    Иногда для подбора выходного напряжения трансформатора прибегают к уменьшению или увеличению числа витков первичной обмотки. При этом следует знать следующее. Уменьшение числа витков приведет к увеличению величины индукции в стали магнитопровода и может привести к насыщению магнитопровода, следствием чего может быть перегрев трансформатора и выход его из строя (см. также ответ на вопрос 3). Увеличение числа витков приведет к увеличению нагрева трансформатора под нагрузкой, однако при этом будет повышена устойчивость трансформатора при возможных повышениях питающего напряжения — трансформатор в этом случае не войдет в насыщение. Кроме того, увеличение числа витков уменьшает пусковой ток включения трансформатора. Однако увеличение числа витков приводит к увеличению массы и стоимости трансформатора.

    Известно, что расчетная плотность тока уменьшается с увеличением габаритной мощности трансформатора. Так для трансформаторов мощностью 5…25 ВА плотность тока может составлять 5…10 А/мм2, а для трансформаторов мощностью 4…5 кВА она не превышает 1…2 А/мм2. Плотность тока выбирается из условий обеспечения требуемой температуры перегрева и зависит от множества факторов: соотношения размеров магнитопровода, условий охлаждения трансформатора, расчетной величины индукции и др. Поэтому она может быть определена путем решения сложной системы уравнений, описывающих работу трансформатора. Величины плотности тока применительно к трансформаторам на конкретных сердечниках приведены в книге Котенева С.В., Евсеева А.Н. «Расчет и оптимизация тороидальных трансформаторов и дросселей» (М.: Горячая линия — Телеком, 2013).

    Можно. Но при этом надо помнить, что при включении в питающую сеть наименьшего числа витков первичной обмотки (что соответствует наибольшему напряжению вторичной обмотки) трансформатор не должен входить в насыщение. Трансформатор должен быть рассчитан так, чтобы при подключении к питающей сети секции первичной обмотки с наименьшим числом витков величина индукции не превышала бы номинальную. Тогда при подключении к сети всей обмотки индукция будет иметь значение меньше номинального. При этом свойства электротехнической стали будут использоваться не в полном объеме, а трансформатор будет иметь избыточность (увеличенное число витков первичной обмотки). Вследствие этого — увеличенная масса, большая стоимость. К такому способу прибегают в тех случаях, когда сделать отводы во вторичной обмотке затруднительно по технологическим соображениям, а также для более точной подгонки выходного напряжения.

    Практически не зависит. Для заданного магнитопровода величина индукции зависит от числа витков и величины ЭДС (электродвижущей силы), действующей в обмотке. При работе трансформатора на нагрузку величина ЭДС несколько уменьшается, поскольку ток первичной обмотки вызывает падение напряжения на омическом сопротивлении этой обмотки. Величина этого падения составляет 1…5 %, примерно на такую же величину уменьшается и индукция в магнитопроводе трансформатора.

    Да, может работать. При увеличении частоты, например, в два раза величина индукции также снижается в два раза. Это следует из формулы (2.25) названной выше книги. Однако увеличение частоты магнитного потока приводит к увеличению потерь в стали магнитопровода (это следует из формулы (2.27) книги). Потери растут пропорционально степени 3/2 частоты и степени 2 (квадрату) индукции, поэтому при повышении частоты потери в магнитопроводе будут уменьшаться. Разумеется, все написанное верно при неизменном питающем напряжении. Часто возникает вопрос о возможности работы трансформаторов, рассчитанных на 50 Гц в сети с частотой 60 Гц (в ряде стран в сети именно такая частота). Из сказанного выше следует, что увеличение частоты сети с 50 Гц до 60 Гц никак не повлияет на работоспособность трансформатора.

    В тех случаях, когда мощности одного трансформатора недостаточно для питания потребителей, можно прибегнуть к параллельному или последовательному соединению обмоток трансформаторов. В зависимости от способа соединения первичной и вторичной обмоток возможны четыре различных варианта соединения трансформаторов. Варианты соединения сведены в таблицу.

    Способы соединения первичных и вторичных обмоток
    Первичные обмотки соединены: Вторичные обмотки соединены:
    Последовательно Параллельно
    Последовательно Одинаковость обмоток не требуется Допустимо. Мощность нагрузки между трансформаторами распределяется пропорционально напряжением вторичных обмоток; если вторичные обмотки одинаковы, то мощности их равны
    Параллельно Допустимо во всех случаях. Мощность нагрузки между трансформаторами распределяется пропорционально напряжениям вторичных обмоток; если вторичные обмотки одинаковы, то мощности их равны Допустимо при одинаковости первичных и вторичных обмоток

    Действительно, иногда возникает ситуация, когда необходимо запитать однофазных потребителей от стандартной промышленной трехфазной сети. Задача преобразования трех фаз в одну довольно часто встречается, например, на различных производствах с мощными однофазными станками. В частном секторе также часто возникают проблемы невозможности равномерного распределения бытовых и профессиональных потребителей по трем фазам питающей сети частного дома.

    Казалось бы, можно однофазную нагрузку подключить к любой фазе сети. Но при этом, если потребитель достаточно мощный, а нагрузка по двум остальным фазам небольшая, может возникнуть так называемый перекос фаз: уменьшение напряжения на той фазе, к которой подключена нагрузка, и увеличение напряжения на двух других фазах. Чтобы этого не происходило, следует применять специальные трансформаторы, преобразующие трехфазное напряжение в однофазное. Такие трансформаторы решают проблему перекоса фаз, а также обеспечивают гальваническую развязку потребителей от питающей сети.

    Последовательное и параллельное соединение дросселей позволяет увеличить суммарную индуктивность и суммарный рабочий ток. Формулы для вычисления индуктивности и тока приведены в таблице. В таблице приняты следующие обозначения: L1, L2 и i1, i2 — соответственно номинальные значения индуктивности и тока первого и второго дросселей; L и I — суммарные значения индуктивности и тока двух дросселей, соединенных последовательно или параллельно.

    Вид соединения Формулы для вычисления
    Индуктивности Тока
    последовательное
    L = L1 + L2 i = i1 = i2
    параллельное
    i = i1 + i2

    Пропитка трансформаторов и дросселей электротехническим лаком (Тульский завод трансформаторов использует лак марки МЛ-92) преследует несколько целей. Во-первых, пленка лака после высыхания обладает очень высокой электрической прочностью (то есть способностью без электрического пробоя выдерживать высокое напряжение) — для данного лака 40…65 кВ/мм. Во-вторых, лаковое покрытие обеспечивает определенную влагозащиту трансформатора от воздействия окружающей среды. В-третьих, пропитка лаком уменьшает подвижность витков магнитопровода и провода обмоток и несколько снижает уровень шума трансформатора или дросселя.

    На Тульском заводе трансформаторов пропитке подвергаются все дроссели и трансформаторы мощностью более 0,1 кВА.

    Как известно, в нашей стране питающая трехфазная сеть 380/220 В обязательно заземляется, то есть имеет, как говорят, гальваническую связь с землей. Поэтому в электрической бытовой розетке два провода неравнозначны: связанный с землей провод называется нулевым (или нейтральным) проводом, а второй провод называется фазным проводом. При касании фазного провода индикаторной отверткой индикатор светится, а при касании нулевого провода — нет. Если человек прикоснется рукой или другой частью тела к фазному проводу, через его тело будет протекать переменный ток. Величина этого тока будет зависеть от сопротивления тела человека и переходного сопротивления между телом и землей. Уменьшению переходного сопротивления способствует влажность обуви, пола, одежды. Человек начинает чувствовать ток величиной от 0,1…0,3 мА, а ток более 100 мА считается смертельным.

    Применение разделительного трансформатора позволяет значительно снизить риск поражения электрическим током, поскольку вторичная обмотка такого трансформатора не имеет гальванической связи с землей. Применение разделительного трансформатора необходимо также для обеспечения нормальной работы некоторых типов газовых котлов.

    Иногда в наличии оказывается трансформатор, рассчитанный на более высокое напряжение, чем напряжение питающей сети. Например, трансформатор рассчитан на напряжение 380 В, а его требуется подключить к сети 220 В, при этом напряжение вторичной обмотки оказывается достаточным для питания нагрузки. В таком случае следует иметь в виду, что трансформатор не сможет отдать в нагрузку номинальную мощность. Это связано с тем, что мощность равна произведению напряжения и тока; при уменьшении напряжения для сохранения мощности неизменной следует увеличить ток. Однако при увеличении тока через обмотки трансформатора будет увеличиваться нагрев обмоток, поскольку мощность потерь в обмотках будет возрастать пропорционально квадрату силы тока. Следовательно, при питании трансформатора пониженным напряжением необходимо так рассчитать режим работы, чтобы токи в обмотках не превышали номинальных величин. При этом мощность нагрузки снизится, то есть трансформатор не сможет отдать номинальную мощность.

    Два наиболее распространённых примера питания нагрузки током несинусоидальной формы: регулирование мощности в нагрузке с помощью тиристорного регулятора с фазоимпульсным управлением и зарядное устройство для автомобильного аккумулятора. В первом случае форма напряжения представляет собой резаную вертикальной линией синусоиду, поскольку тиристор открывается с задержкой относительно нуля напряжения. Во втором случае форма тока представляет собой набор узких импульсов, поскольку ток заряда течёт только в те моменты времени, когда мгновенное значение напряжения на выходе зарядного устройства превышает напряжение заряжаемого аккумулятора.

    При питании трансформатора напряжением, форма которого отличается от синусоидального, в общем случае нагрев трансформатора увеличится. Во-первых, увеличатся потери в стали магнитопровода. Это связано с тем, что в спектре несинусоидального напряжения имеются гармонические составляющие частот, кратных частоте основной гармоники 50 Гц. Как было показано в ответе на вопрос 10, увеличение частоты магнитного потока приводит к росту потерь в стали.

    Во-вторых, возрастут потери в проводах обмоток при том же среднем значении тока, что и для сигнала синусоидальной формы. Количественно это характеризуется коэффициентом формы напряжения или тока. Попросту говоря, ток синусоидальной формы способен перенести большее количество энергии, чем ток такой же величины, но несинусоидальной формы. Это следует учитывать при выборе номинальной мощности трансформатора.

    Удельное сопротивление алюминия в полтора раза больше, чем удельное сопротивление меди. Поэтому, для сохранения температуры перегрева трансформатора неизменной, сечение алюминиевого провода должно быть в полтора раза больше, чем сечение медного провода. Для укладки алюминиевого провода в общем случае необходим магнитопровод большего размера, чем для размещения медного провода. Следует также учитывать, что плотность (удельная масса) алюминия в три раза меньше аналогичного параметра меди; обмотки из алюминиевого провода при прочих равных условиях будут иметь массу примерно вдвое меньшую, чем обмотки из медного провода. Однако необходимость применения магнитопровода большего размера может привести к увеличению массы трансформатора. Кроме того, паять алюминий гораздо сложнее, чем медь, необходимо применять специальные флюсы и припои. В то же время трансформатор с обмотками из алюминиевого провода будет несколько дешевле, нежели его аналог с медными проводами.

    Исходя из возможностей намоточного оборудования, разные производители для трансформаторов одной и той же мощности могут применять магнитопроводы с разным соотношением высоты к диаметру. Это первая причина различия в размерах трансформаторов одинаковой номинальной мощности. Другая причина — разные производители могут задавать разные температуры перегрева трансформатора. Выше, в ответе на вопрос 1, было показано, что увеличение температуры перегрева трансформатора приводит к снижению его размеров и массы. Поэтому, если имеются два трансформатора одинаковой номинальной мощности, но разных размеров, можно с уверенностью утверждать: меньший трансформатор будет сильнее нагреваться во время работы.

    Если не рассматривать заведомо неверно рассчитанный и неправильно изготовленный трансформатор, то есть две главные группы причин выхода из строя трансформаторов: 1) неосторожное обращение при транспортировке и монтаже и 2) неправильная эксплуатация трансформатора. Трансформаторы боятся ударов, поскольку при ударе деформируются провода обмоток, а эмалевая изоляция повреждается; это может вызвать замыкание соседних витков обмоток, что приводит к локальным коротким замыканиям и резкому повышению температуры в местах таких замыканий. При этом величина выходного напряжения трансформатора будет отличаться от своего номинального значения. При монтаже трансформаторов следует помнить, что вся поверхность тороидального трансформатора образована витками проводов обмоток, и производить затяжку крепежных элементов (чашек) следует крайне осторожно. На Тульском заводе трансформаторов для трансформаторов мощностью 1,6 кВА и выше (а по желанию заказчика — и на меньшую мощность) применяются методы крепления, полностью исключающие механическое воздействие на витки обмоток.

    При эксплуатации трансформаторов мощность подключённой нагрузки не должна превышать номинальную мощность трансформатора. Температура окружающей среды должна быть такой, чтобы температура трансформатора не превысила 120 °С (предельная температура нагрева эмальпровода). Чем меньше температура, тем медленнее происходит старение проводов обмоток. Одной из наиболее частых причин выхода из строя трансформаторов является их длительный перегрев по причине короткого замыкания в цепи нагрузки или подключения нагрузки с мощностью, превышающей номинальную мощность трансформатора. При таком перегреве происходит осыпание эмалевой изоляции проводов обмоток, что приводит к замыканию витков, ещё большему нагреву и, в конечном итоге, к расплавлению провода обмотки. Предохранитель в таких случаях срабатывает не всегда, поскольку перегрев может происходить при незначительном, но длительном превышении номинального тока.

    Нет, нельзя. В основе работы трансформатора лежит закон электромагнитной индукции, который предусматривает изменение магнитного потока по величине и направлению. Это можно обеспечить подачей только переменного напряжения на первичную обмотку трансформатора. Напряжение автомобильного аккумулятора (равно как и любого другого химического источника электроэнергии) является постоянным (по величине и направлению). Для преобразования постоянного напряжения в переменное, пригодное для подачи на трансформатор, следует применять специальные коммутаторы на механических или электронных элементах. Устройство, включающее в себя коммутатор и трансформатор и предназначенное для преобразования постоянного напряжения в переменное, называется инвертором.

    Такой вопрос иногда возникает, и он не так банален, как может показаться на первый взгляд. Возникает он обычно потому, что первичная обмотка трансформатора напоминает обмотку дросселя. Можно ли обмотку трансформатора использовать в качестве дросселя?

    Вначале — о различиях. Главная функция трансформатора — изменять величину напряжения, подводимого к первичной обмотке. Главная функция дросселя — обеспечивать определённую (и постоянную) величину индуктивности в диапазоне токов от нуля до некоторого номинального значения. Невозможность дросселя выполнить функцию трансформатора обусловлена отсутствием в дросселе вторичной обмотки. В то же время, первичная обмотка трансформатора в некоторых условиях может выполнять функцию дросселя, но индуктивность такого «дросселя» будет существенно зависеть от величины протекающего тока. Чтобы исключить такую нежелательную зависимость, дроссели на сердечниках из трансформаторной стали обязательно имеют немагнитный зазор, который уменьшает относительную магнитную проницаемость, но позволяет обеспечить неизменность величины индуктивности во всём диапазоне рабочих токов дросселя. Кстати, существуют устройства, имеющие свойства и трансформаторов, и дросселей. Их называют трансреакторами. Реактор — одно из названий дросселя. Трансреакторы выполняются на магнитопроводах с немагнитным зазором и имеют первичную и вторичную обмотки. Подробно о трансреакторах написано в разделе «Информация».

    2 подходит для обмоток трансформатора smps ….. частота переключения 84 кГц ….. естественное конвекционное охлаждение

     

    Саймон7000
    Участник

    #2