Лучшие проводники электрического тока: характеристики веществ, пропускающих электричество
При использовании электроприборов человек постоянно сталкивается с веществами, которые являются проводниками, полупроводниками и диэлектриками, не проводящими ток. Эти материалы отличаются степенью электропроводности. Для того чтобы работать с бытовой техникой, необходимо знать все их особенности и характеристику. Выбрать лучший проводник электрического тока можно из металлов.
Особенности понятия
Проводниками тока называют те вещества, в которых количество свободных электрических зарядов превышает число связанных. Они могут начинать двигаться под влиянием внешней силы. Состояние материалов может быть газообразным, твёрдым и жидким. Электричество может протекать по металлической проволоке, если её подключить между двумя проводниками с разными потенциалами.
Ток переносят электроны, не связанные между собой атомами. Именно они способны охарактеризовать способность предмета пропускать через себя электрические заряды, или величину проводимости тока. Её значение обратно пропорционально сопротивлению, она измеряется в сименсах: См = 1/Ом.
Основные носители электричества в природе — это ионы, дырки и электроны. Поэтому способность к проводимости делят на три вида:
- ионную;
- электронную;
- дырочную.
Приложенное напряжение даёт возможность оценить качество проводника. Эту способность вещества называют ещё вольт-амперной характеристикой.
Первый и второй род
После того как получилось разобраться с тем, что проводит электрический ток, нужно узнать особенности некоторых веществ. Проводники могут быть разными — металлическая проволока, морская вода.
- первого рода, в которых электричество протекает по электронам;
- второй вид — на основе ионов.
К первым относят все металлы и углерод. Ко второму роду относят щелочи, кислоты, соляные расплавы — электролиты. В них ток представляет упорядоченное движение отрицательных и положительных ионов. Электричество в таких материалах протекает при любом показателе напряжения. В обычных условиях
Их двух последних материалов изготавливают кабели, отличающиеся низкой стоимостью. Качественное жидкое вещество, проводящее ток — ртуть, а также ток хорошо протекает через углерод. Но это вещество не обладает гибкостью, поэтому на практике его не применяют. Хотя физики недавно смогли представить углерод в форме графена, что позволило из его нитей изготавливать шнуры.
У графеновых изделий сопротивление такое, что оно является недопустимым для проводников. Их позволительно использовать только в нагревателях. В этом случае металлические провода из никеля и хрома проигрывают, так как они не могут выдержать очень высокую температуру. Спирали в лампах дневного света изготавливают из вольфрама. Этот материал способен накаливаться, так как вещество является тугоплавким.
Процессы в электропроводниках
Во время протекания электричества проводник попадает под определённое воздействие. Самое главное — это повышение температуры. А также выделяют некоторые химические реакции, которые могут изменить физические свойства вещества. Более всего такому влиянию подвергаются проводники второго рода. В них протекает химическая реакция, которую называют электролизом.
Ионы веществ около электрических полюсов получают необходимый заряд и восстанавливают исходное состояние, которое было у них до образования щелочи, кислоты или соли. С помощью электролиза химики и физики могут получать чистые химические вещества из природного сырья. Таким образом создают алюминий и другие виды металлов.
Некоторые проводники не могут оказывать электричеству сопротивление при холодном воздухе. Такое явление называют сверхпроводимостью, которая соответствует значению температуры, близкой к химическому состоянию жидкого гелия. Но исследования привели к тому, что есть новые проводники с высокими показателями температуры.
Такие вещества были открыты в 20 веке. Керамика из кислорода, бария, меди и лантана при обычных условиях не проводит ток, но после нагревания становится сверхпроводником. На практике выгодно использовать вещества, которые могут пропускать электричество при 58 градусах по Кельвину и выше — температуре, превышающей отметку кипения азота.
Жидкость и газы, проводящие ток, используют реже твёрдых веществ. Но и они необходимы для изготовления современных электрических приборов.
Лучшие проводники электрического тока
Все вещества в зависимости от электропроводности делятся на проводники, полупроводники и диэлектрики.
Самыми хорошими проводниками электрического тока являются металлы. Металлы являются проводниками как в твёрдом, так и в жидком состоянии. При прохождении электрического тока через металлические проводники не изменяются ни их масса, ни их химический состав. Следовательно, атомы металлов не участвуют в переносе электрических зарядов. Исследования природы электрического тока в металлах показали, что перенос электрических зарядов в них осуществляется только электронами.
Особенностью атомов всех металлов является малое количество электронов на внешней электронной оболочке. При соединении атомов металлов в кристалл связь между атомами устанавливается путём объединения внешних электронных оболочек. Наличие большого числа вакантных мест на внешних оболочках позволяет электронам после объединения атомов в кристалл свободно переходить от одного атома к другому. В пределах кристалла валентные электроны металлов можно рассматривать как свободные заряженные частицы.
Экспериментально обнаружено, что удельное сопротивление р металлов линейно зависит от температуры:
р = р0 (1 + αt)
В данном уравнении р0 – удельное электрическое сопротивление при температуре 0˚ С, t – температура проводника по шкале Цельсия, α – температурный коэффициент сопротивления, р – удельное сопротивление при температуре t. Возрастание удельного сопротивления проводников с повышением температуры объясняется тем, что валентные электроны атомов металлов могут свободно переходить с оболочки одного атома на оболочку другого атома только при определённых расстояниях между центрами атомов, когда их валентные оболочки перекрываются. В результате теплового движения атомы в кристалле колеблются относительно равновесных положений. Смещение атомов от равновесных положений нарушает перекрывание их электронных оболочек и затрудняет переходы электронов от атома к атому.
При приближении температуры металлического проводника к абсолютному нулю количество дефектов в кристаллической решётке, создаваемых тепловым движением атомов, стремится к нулю, поэтому и удельное сопротивление проводника приближается к нулю.
Однако у некоторых металлов удельное электрическое сопротивление падает до нуля при температуре выше абсолютного нуля. Это явление называется сверхпроводимостью. Например, удельное сопротивление ртути становится равным нулю при температуре 4,2 К.
При создании электрического тока в кольце из сверхпроводника сила тока остаётся неизменной неограниченно долго, так как нет потерь на нагревание проводника.
К настоящему времени созданы материалы, переходящие в сверхпроводящее состояние при сравнительно высокой температуре около 100 К (-173˚ С).
Остались вопросы? Не знаете, как рассчитать сопротивление проводника?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!
© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Проводники электрического тока — СПИШИ У АНТОШКИ
Каждый человек, постоянно пользуясь электроприборами, сталкивается с со свойствами электропроводности, а именно:Все вещества в зависимости от электропроводности делятся на проводники, полупроводники и диэлектрики:
1. проводники — которые пропускают электрический ток;
2. диэлектрики — обладают изоляционными свойствами;
3. полупроводники — сочетают в себе характеристики первых двух типов веществ и изменяют их в зависимости от приложенного управляющего сигнала.
К проводникам относят те вещества, которые имеют в своей структуре большое количество свободных, а не связанных электрических зарядов, способных начинать движение под воздействием приложенной внешней силы. Они могут быть в твердом, жидком или газообразном состоянии.Самыми отличными проводниками электрического тока являются металлы. Растворы солей и кислот, влажная почва, тела людей и животных — также хорошие проводники электрических зарядов.
Если взять два проводника, между которыми образована разность потенциалов и подключить внутри них металлическую проволоку, то сквозь нее потечет электрический ток. Его носителями станут свободные электроны, не удерживаемые связями атомов. Они характеризуют величину электрической проводимости или способность любого вещества пропускать через себя электрические заряды — ток.
Значение электрической проводимости обратно пропорционально сопротивлению вещества и измеряется соответствующей единицей: сименсом (См).
1 См=1/1 Ом.
В природе носителями зарядов могут быть:
электроны;
ионы;
дырки.
По этому принципу электропроводность подразделяют на:
электронную;
ионную;
дырочную.
Качество проводника позволяет оценить зависимость протекающего в нем тока от значения приложенного напряжения. Ее принято называть по обозначению единиц измерения этих электрических величин — вольтамперной характеристикой.
Проводники с электронной проводимостью (проводники 1-го рода)
Наиболее распространенным представителем этого типа являются металлы. У них электрический ток создается исключительно за счет перемещения потока электронов.
При прохождении электрического тока через металлические проводники не изменяются ни их масса, ни их химический состав. Следовательно, атомы металлов не участвуют в переносе электрических зарядов. Исследования природы электрического тока в металлах показали, что перенос электрических зарядов в них осуществляется только электронами.
Внутри металлов они находятся в двух состояниях:
связанные силами атомного сцепления;
свободные.
Электроны, удерживаемые на орбите силами притяжения ядра атома, как правило, не участвуют в создании электрического тока под действием внешних электродвижущих сил. Иначе ведут себя свободные частицы.
Если к металлическому проводнику не приложена ЭДС, то свободные электроны движутся хаотически, беспорядочно, в любых направлениях. Такое их перемещение обусловлено тепловой энергией. Оно характеризуется различными скоростями и направлениями перемещения каждой частицы в любой момент времени.
Когда к проводнику приложена энергия внешнего поля с напряженностью Е, то на все электроны вместе и каждый в отдельности действует сила, направленная противоположно действующему полю. Она создает строго ориентированное движение электронов, или другим словами — электрический ток.
Вольтамперная характеристика металлов представляет собой прямую линию, укладывающуюся в действие закона Ома для участка и полной цепи.
Кроме чистых металлов электронной проводимостью обладают и другие вещества. К ним относят:
сплавы;
отдельные модификации углерода (графит, уголь).
Все вышеперечисленные вещества, включая металлы, относят к проводникам 1-го рода. У них электропроводность никоим образом не связана с переносом массы вещества за счет прохождения электрического тока, а обусловливается только движением электронов.
Если металлы и сплавы поместить в среду сверхнизких температур, то они переходят в состояние сверхпроводимости.
Проводники с ионной проводимостью (проводники 2-го рода)
К этому классу относятся вещества, у которых электрический ток создается за счет движения зарядов ионами. Они классифицируются как проводники второго рода.
Это:
растворы щелочей, кислот солей;
расплавы различных ионных соединений;
различные газы и пары́.
Электрический ток в жидкости
Проводящие электрический ток жидкие среды, в которых происходит электролиз — перенос вещества вместе с зарядами и осаждение его на электродах, принято называть электролитами, а сам процесс — электролизом.
Он происходит под действием внешнего энергетического поля за счет приложения положительного потенциала к электроду-аноду и отрицательного — к катоду.
Ионы внутри жидкостей образуются за счет явления электролитической диссоциации, которая заключается в расщеплении части молекул вещества, обладающих нейтральными свойствами.
Под действием приложенного напряжения к электролиту катионы начинают двигаться строго к катоду, а анионы — к аноду. Таким способом получают химически чистую, без примесей медь, которая выделяется на катоде.
Кроме жидкостей в природе существуют еще твердые электролиты. Их называют суперионными проводниками (супер-иониками), обладающими кристаллической структурой и ионной природой химических связей, обусловливающую высокую электропроводность за счет движения ионов одного типа.
Проводники с дырочной проводимостью
К ним относятся:
германий;
селен;
кремний;
соединения отдельных металлов с теллуром, серой, селеном и некоторыми органическими веществами.
Они получили название полупроводников и относятся к группе №1, то есть не образуют переноса вещества при протекании зарядов. Для увеличения концентрации свободных электронов внутри них необходимо потратить дополнительную энергию на отрыв связанных электронов. Она получила название энергии ионизации.
В составе полупроводника работает электронно-дырочный переход. За счет его полупроводник пропускает ток в одном направлении и блокирует в обратном, когда к нему приложено противоположное внешнее поле.
Структура полупроводника
Проводимость у полупроводников бывает:
1. собственной;
2. примесной.
Первый тип присущ конструкциям, у которых в процессе ионизации атомов своего вещества появляются носители зарядов: дырки и электроны. Их концентрация взаимно уравновешена.
Второй тип полупроводников создают за счет включения кристаллов с примесной проводимостью. Они обладают атомами трех- или пятивалентного элемента.
Полупроводники по проводимости бывают:
электронные n-типа «negative»;
дырочные p-типа «positive».
Сверхпроводники
При очень низких температурах вещества определенные категории металлов и сплавов переходят в состояние, которое получило название сверхпроводимости. У этих веществ электрическое сопротивление току снижается практически до нулевого значения.
Переход происходит за счет изменения тепловых свойств. По отношению к поглощению или выделению теплоты во время перехода в сверхпроводящее состояние при отсутствии магнитного поля сверхпроводники подразделяют на 2 рода: №1 и №2.
Таким образом, проводники электрического тока могут быть выполнены из совершенно различных веществ и обладать отличающимися друг от друга характеристиками. На них всегда оказывают влияние условия окружающей среды. По этой причине границы эксплуатационных характеристик проводников всегда оговариваются техническими нормативами.
ЧЕЛОВЕЧЕСКОЕ ТЕЛО — ПРОВОДНИК ЭЛЕКТРИЧЕСТВА
Если случайно человек окажется под напряжением, то возможна травма или даже смерть.
При работе с электроцепями категорически запрещено :
— одновременное двумя руками прикасаться к оголенным проводам.
— прикасаться к оголенному проводу, стоя на земле или на сыром ( даже цементном или деревянном) полу.
— пользоваться неисправными электрическими приборами.
— ремонтировать электрический прибор, не отключив его от источника тока.
Изолятор ( или диэлектрик ) — тело не содержащее внутри свободные электрические заряды.В изоляторах электрический ток невозможен.
К диэлектрикам можно отнести — стекло, пластик, резину, картон, воздух. тела изготовленные из диэлектриков называют изоляторами.
Абсолютно непроводящая жидкость – дистиллированная, т.е. очищенная вода,
(любая другая вода (водопроводная или морская) содержит какое-то количество примесей и является проводником)
кокое с физической точки зрения применение проводников? то,что проводят электричество-понятно,но надо подробней.
Какой вы дотошный.. . Проводники применяются как части электрических схем — провода и шины. Проводники применяются для переноса электроэнергии на дальние расстояния в линиях электропередачи — провода. Проводники применяются как составная часть элементов преобразования электрического тока и (или) напряжения, в трансформаторах, дросселях, электромагнитах — обмотки (катушка из провода) Как составная часть преобразователей электрической энергии в другие виды энергии, в двигателях (в механическую энергию) — обмотка якоря (ротора) , обмотки возбуждения статора, статорные обмотки асинхронных двигателей; электромагнитах (в энергию магнитного поля) — обмотки (катушка провода) , в электромагнитнгое поле и обратно — в антеннах (штыревая антенна — кусок провода определённой длины, полуволновой вибратор — телевизионная антенна — провод в форме дуги, магнитная антенна — катушки проводов на ферромагните) Проводники применяются в конденсаторах в качестве электродов (обкладок) ну и так далее. Это хоть нужно? или не угадал?
Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры [1]. Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ) . Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие) , огромное количество сплавов и химических соединений (арсенид галлия и др.) . Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий около 30 % земной коры. В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается. Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства диэлектриков.
А больше никокое!
спасибо большое
почему металлические проводники обладают электропроводимостью?
спины пирпиндикулярны, вроде..
проводники Перевод проводники проводники́ вещества, хорошо проводящие электрический ток, то есть обладающие высокой электропроводностью (>104—106 Ом-1·см-1), благодаря наличию в них большого количества подвижных заряженных частиц. Делятся на электронные (металлы) , ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма) . * * * ПРОВОДНИКИ ПРОВОДНИКИ́, вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. К хорошим проводникам обычно относят вещества с удельным сопротивлением 10-6 ом. см. Проводниками электрического тока (проводниковыми материалами) могут быть твердые тела, жидкости, а при соответствующих условиях и газы. Твердыми проводниками являются металлы (см. МЕТАЛЛЫ) , металлические сплавы (см. СПЛАВЫ) , некоторые модификации углерода, а также твердые электролиты (см. ТВЕРДЫЕ ЭЛЕКТРОЛИТЫ) . К жидким проводникам относятся жидкие металлы (см. ЖИДКИЕ МЕТАЛЛЫ) и различные электролиты (см. ЭЛЕКТРОЛИТЫ) . Механизм прохождения тока в металлах в твердом и жидком состоянии обусловлен направленным движением свободных электронов, поэтому их называют проводниками с электронной электропроводностью или проводниками 1 рода. При низких температурах многие металлы и сплавы переходят в сверхпроводящее состояние (см. Сверхпроводники (см. СВЕРХПРОВОДНИКИ)) . Проводимость в твердых электролитах обеспечивается переносом заряда одним типом ионов. Механизм прохождения тока в жидких электролитах, или проводниках 2 рода, связан с переносом вместе с электрическими зарядами ионов. Проводниками 2 рода являются растворы (в основном водные) кислот, щелочей и солей, а также расплавы ионных соединений. В результате прохождения тока через такие проводники состав электролита постепенно меняется, а на электродах выделяются продукты электролиза. Все газы и пары при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля выше некоторого критического значения, то газ может стать проводником, обладающим электронной и ионной электропроводностями. В ионизированных газах и парах веществ, в том числе в парах металлов, прохождение электрического тока будет обусловлено движением как электронов, так и ионов, и механизм проводимости будет смешанным. Сильно ионизированный газ, в котором концентрации положительных и отрицательных зарядов равны, называется плазмой (см. ПЛАЗМА) .
В них есть свободные электроны.
физика 7-й класс.
Того что там дофига свободных электронов.
Почему металлы являются хорошими проводниками
Все ответы неверные ((( Откуда в металле протоны? Бред сивой кобылы.. . Главная причина заключается в том, что в металлах практически отсутствует энергетическая щель между валентной зоной и зоной проводимости, поэтому и ток хорошо проводят, мала энергия возбуждения.
Потому что молекулы металлов очень близко расположены друг к другу
В металлах очень плотная упорядоченная малекулярная решетка.
У них есть свободные электроны на внешних орбитах, они то и способствуют перемещению заряда и проходит ток.
Дело не в плотности решетки, и даже не ее наличии вообще. Дело в том, что в металлах очень много свободных (незанятых в атомах) заряженных частиц блуждает — электронов и протонов. Именно они и занимаются создание электрического тока. Но не только металлы, и не только по этой причине являются хорошим проводниками. Например, графит — это углерод, т. е. не металл. Ток пропускает очень хорошо. Любой водный раствор — тоже. Только в жидкости ток обусловлен не свободно блуждающими зарядами, а тем, что поверхностные электроны в атомах «держатся» на своих местах сравнительно слабо, их легко оттуда вырвать. Приложив напряжение к жидкости, мы как бы создаем необходимый запас свободно движущихся заряженных частиц. И одновременно, атомы, потерявшие электрон-другой, начинают сами вести себя как положительные частицы. Это называется «ионизация». А поскольку в жидкости молекулы не связаны между собой жестко, то они сами и начинают перемещаться — и образуется электрический ток. В газах, в принципе, тоже возможна ионизация и электрический ток. Но поскольку в газе очень велики расстояния между молекулами, то приходится приложить очень высокое напряжение, чтобы газ начал ионизироваться. Зато уж после того, как в толще газа образуется ионизированная область (в виде извилистой линии, связывающей электроды) , то по этой линии ток может течь очень сильный. Пример — молния и вообще любая искра.
Браво, Надя. Только не «практически отсутствует» а «совсем отсутствует» — а если немного всё же есть — то это будет не металл, а узкозонный полупроводник, вроде халькогенидов титана. А автору вопроса могу добавить: поскольку нет верхней границы зоны для валентных электронов (см надин ответ) — то нет и ограничений на их движение. А это означает, что в металлах ВСЕ валентные электроны могут свободно двигаться (собственно именно таки вещества и НАЗЫВАЮТСЯ металлами, все их металлические физические свойства с этим связаны) . А электронов этих очень много. Столько же, сколько атомов или даже в 2-3 раза больше. А при таком количесве свободных носитлей заряда что б им не проводить-то?
Все дело в кристаллической решетке металлов . Она устроена так, что протоны не двигаются вовсе, а вот электроны так скажем гуляют по всей площади .
Все ли жидкости проводят электрический ток?
Ток проводят только электролиты и ионные жидкости. Причём они ИОННЫЕ проводники, а электронные — только расплавленные металлы, ртуь например. Все НЕПОЛЯРНЫЕ жидкости ток не проводят. Чистая деионизированная вода ток практически не проводит Не проводят керосин, бенхин, масла, в общем большинство органики.
масло не пропускает
Любое вещество может оказаться в жидком агрегатном состоянии! Стекло, например, даже расплавленное ток проводить не будет 🙂
Нет Дистилированная вода, обевоженные масла — хорошие изоляторы
вода не проводит эл. ток, растворы или расплавы солей проводят эл. ток
не все, если учитывать, что в жидком состоянии могут быть самые разнообразные материалы. например пластик и резина. или вопрос о жидкостях в условиях окружающей среды?
Ток проводят только солевые растворы (электролиты) Биологические молекулы не имеют свободных электронов, поэтому ток не проводят.
Электрический ток проводят те жидкости, у которых присутствуют ионы. Например, дисцилированная вода, трансформаторное масло являются прекрасными диэлектриками и не проводят эл. ток.