Site Loader

Содержание

трансмиссионные линии (TQWT, ALT) / Pult.ru corporate blog / Habr

Сегодня самым популярным акустическим оформлением как домашних, так и студийных АС заслуженно считается фазоинверторное. Применение фазоинвертора — это простой и недорогой способ получить достаточное количество низких частот без использования большой площади излучающей поверхности динамиков и шкафоподобных корпусов. Однако, как и другие рациональные решения в электроакустике, применение фазоинверторов имеет недостатки. И недостатки критично сказываются на верности воспроизведения. Среди самых вредных недостатков этих АС можно выделить бубнение, турбулентное гудение, резонансное дребезжание, уханье и прочие “злокачественные” особенности ФИ-звучания.
От всего вышеописанного хочется избавиться. Сложно найти меломана, который хотя бы раз не ругал фазоинверторную акустику и не искал альтернативу. С последней всё не так просто. Среди возможных вариантов относительное распространение получила лабиринтная акустика. Проблема лабиринтов в том, что они не технологичны и требуют высокой культуры производства, что закономерно отражается на стоимости. Относительно бюджетный вариант лабиринта — трансмиссионная линия, она позволяет добиться плавной АЧХ, при этом сохранить высокое звуковое давление в НЧ диапазоне, но менее требовательна к расчетам, производственным затратам и конструктивно проще классической лабиринтной акустики. Под катом речь о её истории, особенностях и современном применении.

Общие сведения


Трансмиссионная линия представляет собой полый волновод переменного или постоянного сечения. Один конец волновода закрыт, второй открыт. Динамический излучатель размещается со стороны закрытого конца. Труба, как правило, свернута и качественно задемпфирована. Суть в том, чтобы уменьшить амплитуду колебаний диффузора динамического излучателя в области наиболее низких частот вблизи резонансной частоты трубы и при этом компенсировать уменьшение отдачи от динамика собственными колебаниями трансмиссионной линии в основной, наиболее низкочастотной моде.

В подавляющем большинстве случаев этого можно добиться, когда длина трансляционной линии совпадает с четвертью длины колебаний на частоте собственного резонанса динамика. Гапоненко в своей книге “Акустические системы своими руками” описывает это следующей формулой:


Где L — т.н. “акустическая” длина, которая превышает реальную геометрическую длину линии на величину:
где S — площадь поперечного сечения трансляционной линии.

Иными словами, необходимо настроить корпус на резонансную частоту, при которой воздух на выходе из волновода будет двигаться синфазно с колебаниями диффузора. Правильно спроектированная трансмиссионная линия характеризуется высокой точностью в НЧ диапазоне при сохранении достаточно мощных, акцентированных басов.


Суть в том, что спроектировать ТЛ легче, чем другие типы лабиринтного оформления, при этом типичных фазоинверторных проблем не будет. Характерные гундосые и турбулентные призвуки не характерны для такой акустики. Главным достоинством таких АС является верность воспроизведения в НЧ диапазоне, при этом с сохранением достаточно небольших габаритов.

“Обратной стороной” трансляционной линии, как и у конструктивно родственных лабиринтов, является критичность к верному расчету. Значительные ошибки при расчетах существенно отразятся на звуке, проявятся ненужные дребезжащие резонансы, либо внушительная неравномерность АЧХ. Радует здесь то, что рассчитать её проще, чем более сложные типы лабиринтов.

Хорошо забытая труба Войта


Самое раннее упоминание об использовании трансмиссионной линии, которое мне удалось обнаружить — это опыт Пола Войта. Этого пионера электроакустики мир предпочел забыть знает, как отца электродинамического излучателя. В 1930-м Войт разработал, запатентовал и даже пустил в ограниченную серию акустические системы с трансмиссионной линией оригинальной конструкции.
Paul Voigt

Дело в том, что в то время Войт разрабатывал АС для кинотеатров, которые традиционно для того времени оформлялись в рупоры. Затем он переключился на радиоприёмники и домашнюю акустику, где применяемый им широкополосный двухдиффузорный динамик с механическим кроссовером не отличался мощным низом. Это вызвало необходимость в поиске нового акустического оформления более подходящего для подобных АС.

Начав разработку, он экспериментировал и в определенный момент решил установить динамик в не очень традиционном месте, т.е. не в начале конусовидного рупора, а на одной из его сторон. В такой конструкции порт используется для регулировки заднего потока. Сама регулировка осуществляется увеличением, либо уменьшением количества демпфирующего материала в зависимости от типа используемого драйвера. Резонансная частота зависит от длины волновода, а также положения динамика.


Современный вариант TQWT

Трансмиссионная линия, названная позже трубой Войта — в разрезе очень напоминает классический рупор, снабженный дополнительными стенками. Сам Войт назвал динамик TQWT (Tapered Quarter Wave Tube) — конической четвертьволновой трубой. Такое название корпус получила по той причине, что как и во всех других классических типах ТЛ, для первой моды в трубе умещается четверть длины волны, для второй три четверти, для третьей пять и т.д.


Относительным недостатком такой конструкции является невозможность выбрать низкую частоту среза, так как в этом случае можно получить выражение искажения на НЧ. В остальном оформление позволяет создать сравнительно компактную напольную акустику с “ровными” НЧ, близкую по характеристикам к более сложным лабиринтам.

TQWT — практически не применяется в массовой акустике, но очень часто используется радиолюбителями при создании собственных АС. Проблема в том, что полноценной, развитой теории, описывающей акустические процессы TQWT-систем, пока нет, чего нельзя сказать о хорошо описанных фазоинверторах.

ATL — трансмиссионная линия в полочниках


Когда упоминаются трансмиссионные линии, как правило речь идёт о напольных системах. Считается, что формфактор и объем полочников требуют максимально компактных решений, коим является фазоинвертор. Однако есть компания, которая нашла сравнительное эффективное конструкторское решение по трансмиссионной линии в полочниках. Основатели и разработчики из PMC являются принципиальными противниками ФИ-акустики и убеждены, что будущее за их инновацией. PMC одна из немногих современных компаний, которые специализируются на АС с трансмиссионной линией.

За десятилетия существования компания разработала десятки моделей для студийных и домашних АС с трансмиссионной линией, некоторые из которых существуют до сих пор. До 2000-х годов они производили преимущественно напольные системы, так как классическая ТЛ зачастую предполагала именно такой формфактор.


Позже инженеры несколько усложнили конструкцию и создали т.н. «трансмиссионную линию последнего поколения» или ATL (Advanced Transmission Line). Особенность такой конструкции в дополнительных элементах, позволяющих получить достоинства ТЛ в полочниках.
Относительный минус этой конструкции в том, что по сложности и технологичности ATL близка к прочей лабиринтной акустике, что гарантированно увеличивает стоимость. Радует лишь то, что один из руководителей PMC Питер Томас считает, что:
”мы действительно верим в то, что с повышением цены должно расти и качество… наши покупатели далеко не дураки.” (из интервью Саше Метсону в 2010 году).»

Итог и несколько слов в защиту ФИ


Несмотря на ощутимые минусы фазоинверторной акустики, физика её работы хорошо описана, и большинство акустических эффектов предсказуемы. Это безусловно позволяет получить прогнозируемый результат, что очень важно при массовом производстве. Ряд компаний освоили трансляционные линии, однако она остается менее технологичной и более дорогой.

Возможно, в определенный момент трансмиссионные линии станут достаточно доступными и массовыми, но это произойдет не раньше момента, когда будут теоретически описаны основные процессы, происходящие в трансмиссионной линии. Если говорить о массовых и недорогих (до $500) АС найти что-то кроме ФИ и колонок с пассивным излучателем будет крайне сложно.

Тем, кому надоели проблемы фазоинверторных АС, при этом эстетика или габариты помещений не позволяют применять закрытый ящик, пожалуй, стоит задуматься над приобретением или созданием собственной трансмиссионной линии. Я буду признателен за любые мнения относительно трансляционной линии, особенно интересны люди, которым доводилось самостоятельно создавать такие АС.

Традиционная реклама
Мы продаём акустические системы, в нашем каталоге представлены как традиционная акустическа с ФИ, так и АС с другими типами акустического оформления, в том числе с трансляционной линией.

Расчёт корпуса и фильтров акустической системы

Конструирование акустических систем по готовым чертежам дело, конечно, увлекательное, но элемент творчества при этом, как ни крути, отсутствует. Вот если бы овладеть основными принципами построения АС, а затем все самому рассчитать и сделать из того, что есть под руками, — вот был бы класс! Это возможно, если взять несколько уроков у опытного мастера. Сегодня — первое занятие.

Все любители и специалисты, заинтересованные в достоверном воспроизведении звука, знают, что без хороших акустических систем не обойтись. Поэтому особенно озадачивают противоречия между различными взглядами на критерии качества АС. Ещё менее ясно, какие методы создания АС надежнее и приводят к приемлемым результатам.

Даже начального опыта прослушивания достаточно, чтобы заметить очень большую разницу между звучанием одной и той же музыки на разных моделях. При этом основной параметр — амплитудно-частотная характеристика (АЧХ) — почти всегда близок к идеалу, если верить данным фирм-производителей.

Большинство меломанов не может самостоятельно измерить АЧХ и приходит к выводу: проблема АЧХ практически решена, качество воспроизведения звука зависит от конструкции и материалов динамиков, корпусов, кроссоверов. Например: катушка без сердечника — хорошо, с сердечником — хуже. Или: корпус весом в 40 кг лучше, чем 20-килограммовый, при тех же габаритах и т.д.

Разумеется, оспаривать влияние динамиков, корпусов, элементов кроссовера, кабелей внутренней разводки, звукопоглотителей и прочих составляющих было бы ошибкой, но всё ли в порядке с АЧХ? Независимые измерения, например, в хорошо оснащённых лабораториях авторитетных зарубежных и отечественных аудиожурналов, не подтверждают оптимистических параметров, заявленных производителями.

На практике каждая модель АС имеет свою кривую АЧХ, разительно отличающуюся от других разновидностей колонок, причем это относится к любой ценовой группе. Наблюдаемая разница многократно превосходит порог заметности, известный из психоакустики, ее просто невозможно не услышать. И слушатели её, конечно, замечают как различие тембрального баланса при воспроизведении одних и тех же композиций разными АС. Идентифицировать искажения тембра с проблемами равномерности АЧХ нелегко, ведь перед глазами — ровные, будто по линейке нарисованные характеристики от изготовителя.

Не факт, что эти изумительные графики — обман. Просто для рекламы измерения производятся по методикам, обеспечивающим «благообразный» вид кривых. Например, при повышенной скорости сканирования рабочего диапазона в сочетании с высокой инерционностью, то есть усреднением пиков и провалов при регистрации зависимости звукового давления от частоты.

Производителей можно понять, в конце концов, все мы хотим выглядеть несколько лучше, чем на самом деле, и поэтому причёсываемся, умываемся и т.д. перед ответственными встречами.

Гораздо интереснее другое: почему одна АС с «плохой» АЧХ звучит хорошо, а другая, может быть, обладающая менее безобразной характеристикой, — гораздо хуже? Независимые, более «честные» измерения выявляют несовершенство передачи тембрального баланса из-за особенностей АЧХ, но не помогают интерпретировать, расшифровать смысл «перегибов» и дисбалансов характеристик, раскрыть связь между поведением кривой и конкретными особенностями звучания АС. Вот подходящее сравнение: кардиограмма ничего не говорит обычному человеку, тогда как врач-специалист способен прочитать по ней состояние пациента.

Наша сегодняшняя задача — научиться анализировать АЧХ. Начнём с самого общего вопроса. Почему, обладая всем необходимым, разработчики не создают идеальной, одинаково хорошо звучащей акустики. Ведь идеал, эталон — только один! Очевидно, что все колонки, близкие к нему, будут звучать очень похоже. Существует ряд общепризнанных методик обеспечения «ровной» АЧХ, и одна из основных — настройка АС в заглушенной, безэховой камере. Есть и другие, вроде бы логичные и адекватные методы, например, настройка по импульсным сигналам. Но работая по одинаковым алгоритмам, специалисты каждый раз получают разный результат. Вспомните откровения авторитетных зарубежных мастеров, опубликованные в аудиопрессе: «… обеспечив идеальную АЧХ в звукомерной камере, мы потом «портим» эту характеристику для получения приемлемого звучания в обычных условиях…». Не пора ли прекратить молиться на равномерность АЧХ с точки зрения некой общеизвестной методики измерения?

Ведь любой способ измерения в науке и технике неизбежно даёт целый комплекс разносортных ошибок. В нашем случае самые вредные ошибки — методические, то есть связанные с несовершенством самого подхода. Например, где располагать микрофон относительно АС в звуковой камере? На акустической оси? А где эта ось? Перед ВЧ-динамиком? А если он воспроизводит начиная с 8 кГц? Тогда, видимо, точнее мерить на оси СЧ-динамика? А если сместить микрофон на 5 см выше? Получим совсем другую АЧХ. На какую ориентироваться? И почему мы думаем, что ухо слушателя окажется именно там, где находился микрофон?

Кроме того, на НЧ и нижней середине АС активно взаимодействует с полом, влияние которого в безэховой камере отсутствует.

Об интеграции излучения АС с помещением прослушивания в данный момент даже и разговор не будем начинать. Это взаимодействие очень сильно влияет на звучание, но его конкретные проявления бесконечно разнообразны, поэтому не умещаются в «ложе» какой-либо математической модели, с достаточной точностью необходимой для действительно высокого качества воспроизведения.

Ещё интересный факт: в реальном помещении суммарная АЧХ двух АС стереопары, даже при сильном усреднении, сильно отличается от АЧХ одной АС. Традиционные методики настройки АС не учитывают этого важного обстоятельства. Это недопустимо, так как главные персоны в музыке — солисты — чаще всего локализуются в центре звуковой сцены, то есть — воспроизводятся обеими АС.

Можно сделать вывод: при таком обилии методических ошибок обычные способы контроля АЧХ дают неправильную характеристику для реально очень ровных АС (например, Audio Note, Magnepan и т.д.). С другой стороны, крайне подозрительно выглядят полученные по ненадёжным методикам слишком гладкие АЧХ. В этом случае ошибки измерений скомпенсированы специально сформированной характеристикой, которую разработчик обеспечивает, слепо доверяя не оправдавшим себя на практике способам измерений.

Меньше всего мне хотелось бы заменять веру в одни несовершенные принципы верой в другие, мои. Они тоже далеко не идеальны, в них присутствуют заметные методические ошибки, только менее грубые.

Залог прогресса — понимание недолговечности роли достигнутых знаний и умений, готовность воспринимать, в процессе практической работы и исследований, новые открытия. Надо уметь пересматривать подходы к достижению лучших результатов, если количественный рост позволяет совершить качественный скачок.

Итог работы зависит от методов и развития личности создателя АС. Известны превосходные изделия, рожденные в рамках традиционных подходов, при условии высочайшего класса и опыта разработчиков.

Моя цель — вооружить всех желающих достаточно эффективной методикой создания АС с приемлемым звучанием. Длинное вступление было необходимо для того, чтобы обратить ваше внимание на факторы, мешающие развивать искусство настройки АС.

Мне бы хотелось передать свой опыт, не тратя на это непомерных «писательских» усилий. Поэтому буду рассказывать только о добытых на практике фактах и методах работы, без обоснований и теоретических объяснений. Мой принцип — уверенно излагать своё мнение можно, если имеется аудиосистема, хорошим звучанием подтверждающая рекомендации автора. Для доступности расчёты и приёмы настройки максимально упрощены, без существенного вреда для результата.

Урок первый. Корпус

В первую очередь ограничим необъятную тему. Рассмотрим разработку и настройку двух полосных АС с фазоинвертором (ФИ). Такой тип легче «поддаётся» новичкам. Договоримся, что озвучиваем жилую комнату 10 — 20 м². Это определяет выбор диаметра НЧ/СЧ-динамика. В этом случае оптимальный диаметр диффузора — 10 — 20 см (примерно). Паспортная мощность (100 часов разового шума без повреждения громкоговорителя) — 20 — 60 Вт. Чувствительность — 86 — 90 дБ/Вт/м. Резонансная частота (вне корпуса) — не выше 60 Гц. Если вас устроит нижняя граничная частота (готовой АС) 100 Гц, можно брать динамик с резонансом 80 — 100 Гц.

Кстати, если АС без завала воспроизводит хотя бы от 100 Гц, звучание вполне фундаментально и «весомо», только иногда исчезают некоторые необязательные, но очень желательные элементы звуковой картины. Их можно восстановить сабвуфером, но чтобы при этом не испортить звук, надо набраться опыта его согласования с сателлитами.

Не обольщайтесь по поводу паспортных данных недорогих АС, свидетельствующих о воспроизведении НЧ от 30 до 40 Гц. Реально в формировании звуковой картины участвуют только те низкие ноты, которые отыгрываются без «завала». Всё, что имеет спад хотя бы 4 — 5 дБ, маскируется «верхним басом» (80 — 160 Гц), поэтому для большинства АС воспринимаемый на слух диапазон начинается с 50 — 80 Гц. Мы же привыкли думать, что это 30 — 40 Гц, поскольку ориентируемся на паспортные данные с допустимым отклонением -8 — -16 дБ. Повнимательнее посмотрите в аудиопрессе на реальные частотные характеристики колонок. Отмерьте, в соответствии с приведённым масштабом, -3 дБ от среднего уровня, и вы увидите, что даже крупные напольные АС эффективно работают где-то от 50 Гц.

Если диаметр диффузора — 10 — 12 см, чувствительность — 86 — 88 дБ/Вт/м, а мощность — 20 — 30 Вт (типичные параметры недорогого динамика), то о «домашней дискотеке» придётся забыть. С другой стороны, громкоговорители минимального диаметра нередко имеют более равномерную АЧХ, чем большие.

«Малыши» лучше по ширине и равномерности диаграммы направленности. Интересно, что одна из высочайших по качеству АС фирма System Audio принципиально использует только маленькие мидбасовые динамики. Полная добротность современных небольших НЧ-головок обычно составляет 0,2 — 0,5.

Не надейтесь на расчёты низкочастотного оформления, практические результаты им соответствуют недостаточно точно. Опыт показывает: лучше выбрать динамики с добротностью больше 0,3 — 0,4, иначе, даже с фазоинвертором, трудно обеспечить приемлемый бас. Для таких громкоговорителей имеет смысл изготавливать корпуса объёмом, примерно равным эквивалентному объёму громкоговорителя.

Очень ориентировочно для рекомендуемых по параметрам динамиков эквивалентный объём соответствует диаметру:

10 см — ≈ 18 литров;

16 см — ≈ 26 литров;

20 см — ≈ 50 литров.

В качестве базисного варианта рассмотрим корпус с ФИ для громкоговорителя диаметром 16 см. Объём — 26 литров. Площадь сечения ФИ — 44 см². Длина трубы ФИ — 20 см. Частота настройки — около 40 Гц. Площадь сечения ФИ должна составлять 20 — 25% от площади диффузора Sд.

Sд = π • (d/2)²,

где d — диаметр диффузора, ограниченный серединой подвеса (рис. 1).

 

Рис. 1

Если необходимо пересчитать габариты трубы ФИ для другого «литража» (другой диаметр динамика), сохраняя частоту настройки, действуйте в соответствии с примерами:

1. Громкоговоритель d = 9 см, Эквивалентный объём (Vэ) ≈ 8 л. 8 литров меньше 26 литров в 3,25 раза. Надо скомпенсировать разницу изменением длины (l) и площади (Sфи) трубы ФИ, иначе частота резонанса ФИ резко повысится.

Понижают частоту настройки Fфи увеличением lфи и снижением Sфи.

Оптимальная Sфи для динамика площадью:

Sд = π (9 см/2)² = 3,14 • (4,57 см)² ≅ 63,6 см²

находится в диапазоне:

Sфи ≈ 63,6 см²/5 … 63,6 см²/4 ≅ 13 см² … 16 см².

В данном случае уменьшение Sфи вносит вклад в понижение Fфи в

44 см²/(13 см² … 16 см²) ≈ 2,75 … 3,38 разa,

что вполне компенсирует изменение объёма АС в 3,25 раза.

Кстати, компенсировать снижение объёма увеличением длины трубы ФИ для маленького корпуса (V = 8 литров) невозможно. Тем более что от внутреннего среза трубы ФИ до ближайшего препятствия (до стенки корпуса АС) должно быть свободное расстояние не менее 8 см (в крайнем случае — 5 см). То есть один из габаритов корпуса (параллельный оси трубы ФИ) должен быть равен lфи (20 см) + 8 см (свободное пространство) + примерно 3 см (толщина двух стенок корпуса) = 31 см.

Для 8-литрового корпуса такой большой размер может быть только высотой. Возможная конструкция щелевого ФИ с прямоугольным сечением трубы показан на рис. 2а.

Рис. 2

Это очень непрактичная конструкция, так как требуется установка на специальную подставку, не загораживающую выход ФИ. Если вывести порт наверх, установка АС упростится, но вид сверху ухудшится, кроме того, колонка превратится в отличную ловушку для пыли, сора и мелких предметов.

Очень удобна конструкция, показанная на рис. 2б. Однако она требует увеличить высоту до 31 см + 8 см = 39 см. Это не всегда допустимо.

Можно изготовить корпус в виде глубокой «буханочки», с наибольшим размером — в глубину (рис. 2в).

Если не удаётся обеспечить нужную длину трубы, можно:

во-первых, выбрать минимальную

Sфи = Sд / 6; Sфи = 63,6 см² / 6 ≈ 10,6 см²;

во-вторых, несколько уменьшить lфи (≈ на 30 %), пожертвовав повышением Fфи до ≈ 50 — 60 Гц.

Уменьшение Sфи до 10,6 см² снизит эффективность ФИ и, соответственно, увеличит «завал» отдачи в диапазоне 40 — 60 Гц.

Рост Fфи при уменьшении lфи допустим, так как резонансная частота динамика диаметром 10 см выше, чем у громкоговорителя 16 см. Это значит, что ФИ с резонансом в 55 Гц не просуммирует свой подъём НЧ с резонансом динамика в ящике (≈ 70 — 90 Гц в данном случае) и не будет вредного для звучания подъёма на НЧ в области 50 — 100 Гц, который мог бы возникнуть, например, при укорочении ФИ для корпуса с динамиком 16 см.

Итак, для 8-литрового ящика и громкоговорителя диаметром 10 см вполне нормально выбрать lфи ≅ 14 см, Sфи ≅ 13 см².

2. Громкоговоритель d = 18 см, эквивалентный объём (Vэ) ≈ 50 л. 50 литров больше, чем 26 литров, в 1,92 раза.

Оптимальная Sфи для динамика площадью:

Sд ≅ 3,14 • (18 см / 6)² ≈ 254,3 см²

находится в диапазоне

Sфи ≈ 254,3 см²/5 … 254,3 см²/4 ≈ 51 см² … 64 см².

Увеличение Vэ в 1,92 раза сильнее влияет, чем увеличение Sфи в 1,45 раза. В целом Fфи понижается ориентировочно до 35 Гц. Так как резонансная частота динамика (Fд) диаметром 20 см ниже, чем Fд диаметром 16 см, то снижение Fфи — положительный фактор. Не стоит компенсировать это уменьшением lфи.

Опытные профессионалы способны точно настраивать параметры фазоинверсного акустического оформления, добиваясь максимально плоской АЧХ в диапазоне от нижней граничной частоты АС до 125 — 200 Гц. Любителю или новичку не стоит тратить на это особых усилий.

В дальнейшем я поясню, как проконтролировать полученную АЧХ на НЧ и как устранить недопустимые отклонения, если таковые обнаружатся. Кроме того, влияние на звучание неидеальности характеристики в области НЧ сильно зависит от соотношения уровня воспроизведения баса по сравнению со средними частотами. Нельзя забывать, что из-за взаимодействия АС с реальным помещением АЧХ в нижнем регистре в любом случае будет очень неравномерной.

Главные усилия необходимо сосредоточить на настройке желаемой АЧХ в области СЧ и балансировке между НЧ, СЧ и ВЧ. На первом этапе создания АС — при разработке корпуса, достаточно учесть следующие рекомендации.

Корпус должен молчать. В идеале воспроизводят звук только громкоговорители, но в реальной жизни корпус откликается на их работу. Переизлучение звука стенками ящика вносит искажения.

Один из простейших способов улучшения виброзащиты корпуса — увеличение толщины стенок. Здесь следует знать меру, прослушивание показывает, что начиная с некоторого значения эта мера даёт незначительноё улучшение звучания. Для полочных АС вполне достаточно будет 16 — 8 мм ДСП или ДВП. Выгодно укреплять корпус изнутри рёбрами жёсткости. Вариант их практического использования показан в моей статье «Повторение возможно» в «Практике» №2(4)/2002, июль).

Там же достаточно подробно изложены рекомендации по следующим вопросам:

  • размещение звукопоглощающих материалов внутри корпуса;
  • особенности изготовления фильтров;
  • как самостоятельно сделать кабели для внутренней разводки очень высокого качества;
  • требования к герметизации корпуса;
  • минимальные сведения, необходимые для выбора типа конденсаторов.

В упомянутой статье также рассмотрены вопросы выбора динамиков и затронуты некоторые другие проблемы. Имеет смысл отнестись к этому как к части изложения моих методов работы, поэтому повторяться не стану.

Разумеется, существует много способов виброзащиты корпуса АС. Они приведены, например, в книге «Высококачественные акустические системы и излучатели» (И.А. Алдошина, А.Г. Войшвилло. — М.: Радио и Связь, 1985.). Практика показывает, что 16-миллиметровые стенки, укреплённые рёбрами жёсткости, обеспечивают достаточную виброзащиту.

Абсолютных истин нет. У акустически мёртвых корпусов есть альтернатива — использование массива различных пород дерева, каждая из которых обладает собственным звучанием. Это — трудный путь с технологическими и творческими проблемами. Он не для новичков, здесь требуется высшая квалификация в области деревообработки, тонкое восприятие музыки, упорство в поиске приемлемых вариантов исполнения корпуса. Иногда таким образом удаётся создать превосходные АС.

Урок второй. Фильтры

Если вы думаете, что фильтр это просто схема, разделяющая сигнал на несколько частотных полос для соответствующих громкоговорителей, то вынужден буду вас разочаровать. Всё гораздо сложнее. Простой кроссовер нужен для идеальных динамиков с ровной АЧХ по звуковому давлению, но таковых, к сожалению, не существует. В лучшем случае некоторые типы динамиков позволяют обеспечивать приблизительно приемлемую балансировку АЧХ при лобовом использовании кроссоверов.

Положение усложняется из-за сложного взаимодействия громкоговорителей в полосе передачи эстафеты от низкочастотного к более высокочастотному. Например, имеем замечательно ровные в своих полосах СЧ и ВЧ-головки с аккуратными спадами АЧХ вне полос, а при совместной работе получаем ужасную АЧХ. Особенно проблематично для новичка состыковать НЧ и СЧ-динамики. Приёмы такого бесшовного соединения — тема отдельной статьи. Для начала необходимо набраться опыта, настраивая двухполосную АС.

Даже самые простые фильтры — мощный инструмент в умелых руках, позволяющий приблизить АЧХ реальной АС к желаемому идеалу. Для НЧ/СЧ-головок фильтры первого порядка (катушка индуктивности, включенная последовательно с динамиком) чаще всего не подходят. Они недопустимо деформируют АЧХ в полосе пропускания, заваливают середину, делая звучание тусклым, неритмичным, монотонно гудящим. В некоторых случаях такой фильтр позволяет чуть скорректировать АЧХ в верхней части диапазона, воспроизводимого НЧ/СЧ-головкой. При этом частота среза такого фильтра близка верхней частоте динамика.

У редких головок наблюдается рост отдачи, пропорциональный повышению частоты сигнала на протяжении нескольких октав. Сбалансировать АЧХ в этих случаях можно индуктивностью фильтра первого порядка, но чаще для этого применяют фильтры второго порядка. Они позволяют исключить сильные искажения АЧХ в полосе пропускания.

Подбором сочетаний величин ёмкости и индуктивности фильтра второго порядка можно обеспечить в полосе около частоты среза спад или подъём АЧХ, используя схему в качестве эквалайзера. Это — один из методов оптимизации АЧХ.

На рис. 3 показан фильтр второго порядка. Ёмкость включена параллельно динамику.

Рис. 3

Первое приближение

Рассчитаем значения L1 и С1 для фильтра без подъёма или спада на частоте среза. Поверим значению импеданса, приведённому производителем. Если бумажек нет, померяйте сопротивление по постоянному току и умножьте результат на 1,25. Обозначим полученное значение просто R.

L1 = R / (2π • Fc),

где Fс — частота среза,

C1 = 1 / ((2π • Fc)² L1).

Например: R = 4 Ом, Fс = 1,6 кГц.

L1 = 4 / (6,28 • 1.6 • 10³) = 3,98 • 10-4 H = 0,398 mH = 398 μH,

C1 = 1 / [(6,28 • 1,6 • 10³)² • 3,98 • 10-4] = 2,49 • 10-5  F = 24,9 μF.

Для справки:

Fc = 1 / (2π √L1 C1).

В этом случае модули (величины без учёта фазы) сопротивления L1 и C1 на частоте Fс равны R, то есть 4 Ом. Кстати, на частоте среза модули сопротивления L1 и C1 всегда равны.

Если выравнивание АЧХ требует подъёма на Fc, скажем, на 1 дБ, то есть примерно но 10%, необходимо снизить модули сопротивления L1(|ZL1|) и C1(|ZC1|) примерно на 10% по сравнению с R = 4 Ом, то есть до 4 Ом x 0,9 = 3,6 Ом.

L1 = 3,6 / (6,28 • 1,6 • 10³) = 3,58  10-4H = 0,358 mH = 358 μH.

C1 = 1 / [(6,28 • 1,6 • 10³)² • 3,58 • 10-4] = 2,77 • 10-5 F = 27,7 μF.

Частота среза остаётся прежней, но на Fс на головку подаётся ≈110% сигнала за счёт повышенного потребления тока от усилителя и преобразования его «звенящим» фильтром с добротностью больше единицы в форсированный сигнал на головке.

Если надо «завалить» область около Fc на 1 дБ, то нужно пересчитать фильтр, как будто его нагрузка — сопротивление динамика примерно 1,1 x 4 Ом = 4,4 Ом.

Проще получить нужные значения, увеличив L1 и уменьшив С1. Тогда Fc не изменится, а |ZL| и |ZC| будут равны 4,4 Ом.

L1 = 398 mН x 1,1 = 438 mН.

С1 = 24,9 mF x 1,1 = 22,64 mF.

Для справки:

|ZL1| = 2π • F • L1, |ZC1| = 1 / (2π • F • C).

Учтите, что при необходимости увеличения отдачи в области около FC придётся смириться с падением импеданса АС в этой же области.

Падение импеданса необходимо контролировать. Попробуйте следующий простой способ.

1 этап

Подключите к выходу вашего усилителя цепь, показанную на рис. 4а.

Рис. 4

На этом рисунке значок «+» соответствует красной клемме, а «-» — чёрной. На результаты измерений перемена полярностей не влияет.

Подайте на вход усилителя синусоидальный сигнал частотой 1 кГц от генератора. Регулятором громкости усилителя и регулятором выходного уровня генератора установите на выходных клеммах усилителя ≈1 В действующего напряжения. Для этого вам понадобится вольтметр, способный измерять действующее значение напряжения в области звуковых частот.

Переключите вольтметр для измерения напряжения на выходах резистора R2. Прибор покажет ≈38,5 мВ. Подрегулируйте уровень сигнала до показаний вольтметра ≈40 мВ.

2 этап

Подключите вашу АС вместо R2. Плавно изменяйте частоту сигнала на выходе генератора. Вы увидите, что показания вольтметра меняются. Эти изменения пропорциональны частотно-зависимому значению импеданса АС. Можно зарисовать измеряемую характеристику: по горизонтальной оси будет шкала частоты, по вертикальной — уровня напряжения. И то и другое выполняется в логарифмическом масштабе. (Пример пустого бланка будет опубликован в следующем номере «Практики AV».) Особенно внимательно ищите минимумы напряжения, плавно меняя частоту. Эти точки на характеристике соответствуют минимумам импеданса АС.

С достаточной точностью можно считать, что значение импеданса |ZAC| равны показаниям вольтметра, поделённым на 10.

Например, 40 мВ соответствует 4 Ом, 30 мВ — 3 Ом. Если у вас нет чувствительного вольтметра, то поможет хороший тестер. В режиме измерения переменного напряжения тестер является вольтметром. Его показания верны до 2 — 5 кГц, выше может быть существенная погрешность. Сверьтесь с паспортом тестера. Кроме того, не все модели тестеров позволяют измерять с хорошей точностью сигналы величиной десятки милливольт. В этом случае можно установить на клеммах усилителя выходной сигнал не 1, а 10 В. В режиме наших измерений усилитель нагружен на сопротивление более 100 Ом. Такая высокоомная нагрузка позволяет развить 10 В действующего напряжения даже большинству маломощных усилителей, причём без перегрева.

К сожалению, при 10 В на выходе есть опасность сжечь резистор цепи, обеспечивающей устойчивость, который присутствует в схемах многих усилителей. Поэтому не стоит проводить измерения на частотах выше 3 кГц.

Понятно, что в режиме «10 вольт» на пробном резисторе R2 надо установить не 40 мВ, а 400 мВ. Соответственно, шкала напряжения будет проградуирована от 125 мВ до 6000 мВ (6 В). При этом показания вольтметра делим на 100 и получаем величину импеданса АС. Например, 400 мВ соответствует 4 Ом.

(Продолжение в следующем номере)


ПрактикаAV #3/2002

расчёт нужной частоты, как сделать и настроить порт в домашних условиях

ФазоинверторФазоинверторЛюбители хорошего акустического звучания знают, что его качество в первую очередь зависит от передачи низкочастотной составляющей звука. Использование фазоинвертора способно существенно увеличить уровень звукового давления при одной и той же подводимой мощности. Но всё это возможно лишь при правильном расчёте размеров фазоинверторного (ФИ) отверстия, выравнивающего гармонические колебания и обеспечивающего качественный звук.

Виды акустических систем

Звук — это колебание, имеющее механическую природу возникновения, распространяющееся под давлением вызванным источником излучения. Акустическая система, представляющая собой звуковую колонку, преобразует электрические сигналы в механические, воспринимаемые слухом человека. Частота этих колебаний лежит в границах от 20 гц до 20 КГц. Существуют различные виды акустических систем:

  1. Акустический лабиринт. Имеет вид лабиринта, выполненного в виде туннеля, находящегося в середине колонки. Его предназначение — усиливать низкие частоты за счёт множества изгибов. Внутренние стенки лабиринта покрываются демпфирующим покрытием, за счёт чего лабиринт не привносит в звук паразитные призвуки.
  2. Виды фазоинверторовВиды фазоинверторовОткрытого типа. Представляет собой систему, в которой стенка, противоположная направлению излучения динамиков, не устанавливается. В таком типе исполнения невозможно получить хорошие низкие частоты из-за отсутствия компрессии, а средние и высокие звуки кажутся более открытыми и воздушными.
  3. Закрытого типа. Выполняется из полностью герметичного корпуса, создающего внутри замкнутый объём воздуха. Этот объём образует внутреннее давление, мешающее нормальному ходу диффузоров динамика. Такого рода колонки имеют большие габариты с накладкой на внутренние стенки — демпфера. Достоинством этой системы является чистота звука, в гамму которого не примешиваются нежеланные посторонние звуки.
  4. Изобарического типа. Отличается сложностью изготовления и дороговизной, но из-за конструктивных особенностей позволяет увеличивать мощность и глубину низкочастотной составляющей. В середине колонки располагаются два динамика, разделённые звуконепроницаемой перегородкой и направленные в одну сторону. Эти динамики подключаются параллельно друг другу и работают в фазе.
  5. Пассивная. Основное её предназначение — повысить эффективность воспроизведения низкочастотной составляющей звука за счёт использования пассивного излучателя. Этот излучатель располагается в глубине отверстия, выполненного в корпусе колонки и не обладает магнитной системой. При подаче сигнала диффузор излучателя движется не с помощью преобразования электрического сигнала, а под воздействием потока воздуха, вызванного установленным низкочастотным динамиком. Такая конструкция позволяет достичь глубокого баса, но может привнести гул в звук.
  6. С дипольным излучателем. Дипольного вида акустика воспроизводит звук в двух направлениях. Другое название такого типа — биполярный. По своему типу относится к открытому виду. Для получения приемлемых низких частот потребуется использование динамиков с большими размерами диффузоров.
  7. Корпус с фазоинверторомКорпус с фазоинверторомКонтрапертурная. Редко используемая конструкция. Динамики в ней направляются в верхнюю или нижнюю сторону, и к ним подводится одинаковый сигнал. При столкновении звука, излучаемого динамиками, он изменяет своё направление, распространяясь радиально. К недостаткам такой системы относят возникновение реверберации, из-за чего «размывается» стереопанорама. Достоинства заключаются в появлении эффекта «растворения» звуковых колебаний в помещении.
  8. Фазоинверторная. Эта система изготавливается в виде классической колонки закрытого типа, но со специальным отверстием. В него устанавливается труба, уходящая вглубь ящика. Такой подход позволяет получить низкочастотный звук значительно ниже по частоте, чем возможности динамиков. Такая система очень востребована, так как позволяет в относительно небольших размерах корпуса воспроизвести глубокие басы, выдавая частоты, недостижимые простым применением динамиков.

Использование фазоинверторного типа даёт возможность не только расширить нижний частотный диапазон, но и повысить коэффициент полезного действия. При этом частотный диапазон не изменится. Отверстие фазоинвертора выполняется разного вида и размеров. Размещаться оно может на любой поверхности колонки. При разработке акустической системы наиболее важно выполнить правильно расчёт размера фазоинверторного короба, от чего зависит не только диапазон воспроизводимой частоты, но и качество всего звука в целом.

Принцип работы устройства

Любая колонка фазоинверторного типа имеет в своём составе отверстие — фазоинвертор. Часто он называется акустическим туннелем или портом. Принцип работы его заключается в изменении фазы звукового колебания, вызванного задней стороной диффузора на сто восемьдесят градусов. При возникновении резонанса в ящике амплитуда колебания диффузора достигает минимального значения.

Связано это с тем, что при движении вперёд динамик создаёт разрежение в середине закрытой колонки, тем самым вытесняя воздух в фазоинверторный канал и увеличивая разряжение. Поэтому на частоте резонанса механические волны излучаются через отверстие, а не диффузором динамика.

Какой фазоинвертор лучшеКакой фазоинвертор лучше

От размера и вида фазоинверторного порта зависят объём воздуха и частота резонанса, на которую настроен канал. Объём воздуха в канале начинает резонировать и усиливать воспроизведение частоты при наступлении момента, когда диффузор излучает частоту, на которую рассчитан фазоинвертор.

По своей форме классический туннель выполняется кольцевой формы. Но для увеличения полезной внутренней площади ему часто придают щелевой вид. Отказ от цилиндрической формы тоннеля позволяет сократить его длину и снизить шумы, возникающие при выбросе воздуха.

При ошибках в расчёте щелевого фазоинвертора настроить его гораздо сложнее, чем классический вид, так как он изготавливается совместно с колонкой. Сам расчёт выполняется сложнее, чем для систем закрытого типа: при этом, кроме объёма ящика, учитывается настраиваемая частота резонанса. Оптимальные размеры подбираются с учётом амплитудно-частотной характеристики колонки, а именно её равномерности.

Расчёт низкочастотного туннеля

Существует несколько способов для проведения вычислений размеров ФИ. Наиболее популярным является расчёт фазоинвертора онлайн или с использованием специализированных программ. Такие способы обычно требуют знаний множества параметров используемых динамиков. Существуют варианты и проще, но с большим расхождением конечного результата с реальным значением. Хотя в любом случае после расчёта и изготовления приходится проводить настройку.

Простая формула для вычисления

Метод вычисления заключается в использовании несложных формул и происходит методом подбора данных, когда за основу используется желаемая длина ФИ канала.

F = (C/2 π) * K, где:

  • Формула расчета фазоинвертораФормула расчета фазоинвертораF — желаемая частота настройки;
  • C — скорость звука;
  • π — математическая постоянная, равная 3,14;
  • K — коэффициент, зависящий от размеров фазоинвертора.

При этом коэффициент K равен квадратному корню отношения S/LV, где:

  • S — площадь отверстия;
  • L — длина канала;
  • V — объем колонки.

В качестве единиц измерения везде используются метры, а для частоты — герцы. При определении значений объёма считается, что лучше выбрать узкий фазоинвертор, но такой подход неверен, ведь при этом в нём возрастает скорость движения воздуха, а это вносит искажения в звучание. Проектирование широкого и длинного ФИ также лишено смысла, ведь длина фазоинвертора не должна превышать длину волны в момент наступления резонанса. Выполнение этого правила помогает избавиться от стоячих волн.

Использование специализированных программ

Программа для расчета акустических системПрограмма для расчета акустических системСуществует много программ, позволяющих автоматизировать расчёты при построении акустических систем, например, Bassport. Эта программа специально разработана для автоматизации проведения расчёта порта фазоинвертора. При разработке программы учитывалось, что когда скорость потока воздуха в трубе становится более шести метров в секунду, то становятся заметными шумы.

Интерфейс программы интуитивно понятен, тем более она имеет локализацию на русском языке. Для получения нужных результатов понадобится ввести:

  • скорость звука;
  • объем колонки;
  • частоту фазоинвертора и динамика;
  • диаметр диффузора;
  • ход диффузора.

После ввода всех данных останется нажать кнопку «Пересчитать» и получить результат, соответствующий максимальной добротности, зависящей, прежде всего, от соотношения объёма ящика к диаметру порта. Программа Bassport позволяет выполнить расчёт для различных форм, но чаще всего, при скоростях потока до шести метров в секунду, применяется несложная форма для трубчатого или щелевого вида.

Необходимо отметить следующие нюансы при использовании программы. Измерение диаметра диффузора происходит между расстояниями противоположными средним точкам подвесов. Цвет отображения цифры скорости потока, обозначает возможные возникновения шума: чёрный — шума нет, красный — шум заметно слышимый.

Использование онлайн-программ построено по такому же принципу: вводятся параметры системы и выдаётся результат. Сайты с такими программами легко находятся по запросу «фазоинвертор онлайн-калькулятор» в любой поисковой системе. Хотя для достоверности результатов следует перепроверить полученные данные на нескольких сайтах.

После выполнения расчётов останется изготовить и настроить фазоинвертор. В домашних условиях выполнить такие операции несложно, при этом какие-то особые материалы не понадобятся.

Самостоятельное изготовление порта

Фазоинвертор так же, как и динамик, участвует в воспроизведении звука. Для избегания эффекта интерференции канал размещается поближе к излучателю низкой частоты на расстоянии, не превышающем его длину волны. В качестве ФИ используются жёсткие конструкции, например, в самодельных изделиях применяются канализационные пластиковые трубы.

Но при попытках рассчитать фазоинвертор для сабвуфера потребители сталкиваются с тем, что диаметр таких труб не совпадает с вычисленными значениями, поэтому труба изготавливается из подручного плотного материала — ватмана. Для того чтобы сделать канал самостоятельно, потребуются:

  • газетная бумага;
  • ватман;
  • клей.

Согласно выполненному расчёту, подбирается основание с диаметром немного меньше рассчитанного. Затем, используя оправку, на него наматывается несколько слоёв газетной бумаги, обработанной клеем. Намотка осуществляется плотно, с избеганием попадания между слоями воздуха.

Как изготовить сабвуфурКак изготовить сабвуфур

Вырезанная из ватмана полоска, ширина которой совпадает с длиной трубки, в несколько витков наматывается на поверхность газетной бумаги. При этом перед каждым витком наносится эпоксидный клей. Его получают путём смешивания смолы и отвердителя согласно инструкции. После того как выполнены все витки, изделие обтягивается по кругу нитью для придания жёсткости и ставится на просушку.

Самодельные колонкиСамодельные колонкиЧерез сутки основание извлекается. В случае возникновения трудностей его можно поломать изнутри и достать частями. Изготовленный канал такого вида имеет хорошую прочность и легко подвергается дополнительной обработке. Далее полученная трубка устанавливается в отверстие колонки, но не до конца и начинается прослушивание звука. В заводских условиях используется специальный прибор. Такое устройство работает на основе мультивибратора, который настраивается на резонансную частоту динамической головки. После подключения динамика запускается генератор и длина трубы регулируется по максимуму колебанию в ней воздуха.

Аналогично можно провести настройку и самостоятельно. Для этого на вход подаётся сигнал низкой частоты. Трубка выдвигается вперёд или погружается внутрь ящика, а после оценивается объём выходящего воздуха. Установив положение максимального его выхода, излишки трубы удаляют снаружи, а сам порт герметизируют. При желании для придания конструкции оконченного вида выполняется раскрыв трубы, но можно обойтись и без этого.

Оцените статью: Поделитесь с друзьями!

Теория и практика фазоинвертора. Отредактированное

От редакции: Статья итальянского специалиста-акустика, воспроизводимая здесь с благословения автора, в оригинале называлась «Teoria e pratica del condotto di accordo». То есть, в буквальном переводе – «Теория и практика фазоинвертора». Заголовок этот, на наш взгляд, соответствовал содержанию статьи только формально. Действительно, речь идет о соотношении простейшей теоретической модели фазоинвертора и тех сюрпризов, которые готовит практика. Но это – если формально и поверхностно. А по существу, статья содержит ответ на вопросы, которые возникают, судя по редакционной почте, сплошь и рядом при расчете и изготовлении сабвуфера-фазоинвертора. Вопрос первый: «Если рассчитать фазоинвертор по формуле, известной уже давным-давно, получится ли у готового фазоинвертора расчетная частота?» Наш итальянский коллега, съевший на своем веку собак эдак с десяток на фазоинверторах, отвечает: «Нет, не получится». А потом объясняет, почему и, что самое ценное, на сколько именно не получится. Вопрос второй: «Рассчитал тоннель, а он такой длинный, что никуда не помещается. Как быть?» И здесь синьор предлагает настолько оригинальные решения, что именно эту сторону его трудов мы и вынесли в заголовок. Так что ключевое слово в новом заголовке надо понимать не по-новорусски (иначе мы бы написали: «короче – фазоинвертор»), а совершенно буквально. Геометрически. А теперь слово для выступления имеет синьор Матараццо.

Фазоинвертор: короче!

Об авторе: Жан-Пьеро Матараццо родился в 1953 г. в городе Авеллино, Италия. С начала 70-х работает в области профессиональной акустики. Долгие годы был ответственным за тестирование акустических систем для журнала «Suono» («Звук»). В 90-х годах разработал ряд новых математических моделей процесса излучения звука диффузорами громкоговорителей и несколько проектов акустических систем для промышленности, включая популярную в Италии модель «Опера». С конца 90-х активно сотрудничает с журналами «Audio Review», «Digital Video» и, что для нас наиболее важно, «ACS» («Audio Car Stereo»). Во всех трех он – главный по измерению параметров и тестированию акустики. Что еще?.. Женат. Два сынишки растут, 7 годиков и 10.

Рис 1. Схема резонатора Гельмгольца. То, от чего все происходит.

Рис 2. Классическая конструкция фазоинвертора. При этом часто не учитывают влияние стенки.

Рис 3. Фазоинвертор с тоннелем, концы которого находятся в свободном пространстве. Здесь влияния стенок нет.

Рис 4. Можно вывести тоннель полностью наружу. Здесь опять произойдет «виртуальное удлинение».

Рис 5. Можно получить «виртуальное удлинение» на обоих концах тоннеля, если сделать еще один фланец.

Рис 6. Щелевой тоннель, расположенный далеко от стенок ящика.

Рис 7. Щелевой тоннель, расположенный вблизи стенки. В результате влияния стенки его «акустическая» длина получается больше геометрической.

Рис 8. Тоннель в форме усеченного конуса.

Рис 9. Основные размеры конического тоннеля.

Рис 10. Размеры щелевого варианта конического тоннеля.

Рис 11. Экспоненциальный тоннель.

Рис 12. Тоннель в форме песочных часов.

Рис 13. Основные размеры тоннеля в форме песочных часов.

Рис 14. Щелевой вариант песочных часов.

Магические формулы

Одно из наиболее часто встречающихся пожеланий в электронной почте автора – привести «магическую формулу», по которой читатель ACS мог бы сам рассчитать фазоинвертор. Это, в принципе, нетрудно. Фазоинвертор представляет собой один из случаев реализации устройства под названием «резонатор Гельмгольца». Формула его расчета не намного сложнее самой распространенной и доступной модели такого резонатора. Пустая бутылочка из-под кока-колы (только обязательно бутылка, а не алюминиевая банка) – именно такой резонатор, настроенный на частоту 185 Гц, это проверено. Впрочем, резонатор Гельмгольца намного древнее даже этой, постепенно выходящей из употребления упаковки популярного напитка. Однако и классическая схема резонатора Гельмгольца схожа с бутылкой (рис. 1). Для того чтобы такой резонатор работал, важно, чтобы у него был объем V и тоннель с площадью поперечного сечения S и длиной L. Зная это, частоту настройки резонатора Гельмгольца (или фазоинвертора, что одно и то же) теперь можно рассчитать по формуле:

  1. Fb – частота настройки трубы фазоинвертора (Гц)
  2. с – скорость звука, постоянная величина = 344 м/с
  3. S – площадь тоннеля фазоинвертора (м2)
  4. L – длина тоннеля фазоинвертора (м)
  5. V – объем корпуса (м3)
  6. П – постоянная величина = 3,14

Эта формула действительно магическая, в том смысле, что настройка фазоинвертора не зависит от параметров динамика, который будет в него установлен. Объем ящика и размеры тоннеля частоту настройки определяют раз и навсегда. Все, казалось бы, дело сделано. Приступаем. Пусть у нас есть ящик объемом 50 литров. Мы хотим превратить его в корпус фазоинвертора с настройкой на 50 Гц. Диаметр тоннеля решили сделать 8 см. По только что приведенной формуле частота настройки 50 Гц получится, если длина тоннеля будет равна 12,05 см. Аккуратно изготавливаем все детали, собираем их в конструкцию, как на рис. 2, и для проверки измеряем реально получившуюся резонансную частоту фазоинвертора. И видим, к своему удивлению, что она равна не 50 Гц, как полагалось бы по формуле, а 41 Гц. В чем дело и где мы ошиблись? Да нигде. Наш свежепостроенный фазоинвертор оказался бы настроен на частоту, близкую к полученной по формуле Гельмгольца, если бы он был сделан, как показано на рис. 3. Этот случай ближе всего к идеальной модели, которую описывает формула: здесь оба конца тоннеля «висят в воздухе», относительно далеко от каких-либо преград. В нашей конструкции один из концов тоннеля сопрягается со стенкой ящика. Для воздуха, колеблющегося в тоннеле, это небезразлично, из-за влияния «фланца» на конце тоннеля происходит как бы его виртуальное удлинение. Фазоинвертор окажется настроенным так, как если бы длина тоннеля была равна 18 см, а не 12, как на самом деле.

Заметим, что то же самое произойдет, если тоннель полностью разместить снаружи ящика, снова совместив один его конец со стенкой (рис. 4). Существует эмпирическая зависимость «виртуального удлинения» тоннеля в зависимости от его размеров. Для круглого тоннеля, один срез которого расположен достаточно далеко от стенок ящика (или других препятствий), а другой находится в плоскости стенки, это удлинение приблизительно равно 0,85D.

Теперь, если подставить в формулу Гельмгольца все константы, ввести поправку на «виртуальное удлинение», а все размеры выразить в привычных единицах, окончательная формула для длины тоннеля диаметром D, обеспечивающего настройку ящика объемом V на частоту Fb, будет выглядеть так:

  1. Fb – частота, на которую настраивается фазоинвертора (Гц)
  2. V – объем корпуса (л)
  3. D – диаметр трубы фазоинвертора (мм)
  4. L – длинна трубы фазоинвертора (мм)

Полученный результат ценен не только тем, что позволяет на этапе расчета получить значение длины, близкое к окончательной, дающей требуемое значение частоты настройки, но и тем, что открывает определенные резервы укорочения тоннеля. Почти один диаметр мы уже выиграли. Можно укоротить тоннель еще больше, сохранив ту же частоту настройки, если сделать фланцы на обоих концах, как показано на рис. 5.

Теперь, кажется, все учтено, и, вооруженные этой формулой, мы представляемся себе всесильными. Именно здесь нас и ждут трудности.

Первые трудности

Первая (и главная) трудность заключается в следующем: если относительно небольшой по объему ящик требуется настроить на довольно низкую частоту, то, подставив в формулу для длины тоннеля большой диаметр, мы и длину получим большую. Попробуем подставить диаметр поменьше – и все получается отлично. Большой диаметр требует большой длины, а маленький – как раз небольшой. Что же тут плохого? А вот что. Двигаясь, диффузор динамика своей тыльной стороной «проталкивает» практически несжимаемый воздух через тоннель фазоинвертора. Поскольку объем колеблющегося воздуха постоянен, то скорость воздуха в тоннеле будет во столько раз больше колебательной скорости диффузора, во сколько раз площадь сечения тоннеля меньше площади диффузора. Если сделать тоннель в десятки раз меньшего размера, чем диффузор, скорость потока в нем окажется большой, и, когда она достигнет 25 – 27 метров в секунду, неизбежно появление завихрений и струйного шума. Великий исследователь акустических систем Р. Смолл показал, что минимальное сечение тоннеля зависит от диаметра динамика, наибольшего хода его диффузора и частоты настройки фазоинвертора. Смолл предложил совершенно эмпирическую, но безотказно работающую формулу для вычисления минимального размера тоннеля:

Формулу свою Смолл вывел в привычных для него единицах, так что диаметр динамика Ds, максимальный ход диффузора Xmax и минимальный диаметр тоннеля Dmin выражаются в дюймах. Частота настройки фазоинвертора – как обычно, в герцах.

Теперь все выглядит не так радужно, как прежде. Очень часто оказывается, что, если правильно выбрать диаметр тоннеля, он выходит невероятно длинным. А если уменьшить диаметр, появляется шанс, что уже на средней мощности тоннель «засвистит». Помимо собственно струйных шумов, тоннели небольшого диаметра обладают еще и склонностью к так называемым «органным резонансам», частота которых намного выше частоты настройки фазоинвертора и которые возбуждаются в тоннеле турбулентностями при больших скоростях потока.

Столкнувшись с такой дилеммой, читатели ACS обычно звонят в редакцию и просят подсказать им решение. У меня их три: простое, среднее и экстремальное.

Простое решение для небольших проблем

Когда расчетная длина тоннеля получается такой, что он почти помещается в корпусе и требуется лишь незначительно сократить его длину при той же настройке и площади сечения, я рекомендую вместо круглого использовать щелевой тоннель, причем размещать его не посреди передней стенки корпуса (как на рис. 6), а вплотную в одной из боковых стенок (как на рис. 7). Тогда на конце тоннеля, находящемся внутри ящика, будет сказываться эффект «виртуального удлинения» из-за находящейся рядом с ним стенки. Опыты показывают, что при неизменной площади сечения и частоте настройки тоннель, показанный на рис. 7, получается примерно на 15% короче, чем при конструкции, как на рис. 6. Щелевой фазоинвертор, в принципе, менее склонен к органным резонансам, чем круглый, но, чтобы обезопасить себя еще больше, я рекомендую устанавливать внутри тоннеля звукопоглощающие элементы, в виде узких полосок фетра, наклеенных на внутреннюю поверхность тоннеля в районе трети его длины. Это – простое решение. Если его недостаточно, придется перейти к среднему.

Среднее решение для проблем побольше

Решение промежуточной сложности заключается в использовании тоннеля в форме усеченного конуса, как на рис. 8. Мои эксперименты с такими тоннелями показали, что здесь можно уменьшить площадь сечения входного отверстия по сравнению с минимально допустимой по формуле Смолла без опасности возникновения струйных шумов. Кроме того, конический тоннель намного менее склонен к органным резонансам, нежели цилиндрический.

В 1995 году я написал программу для расчета конических тоннелей. Она заменяет конический тоннель последовательностью цилиндрических и путем последовательных приближений вычисляет длину, необходимую для замены обычного тоннеля постоянного сечения. Программа эта сделана для всех желающих, и ее можно взять на сайте журнала ACS audioreview.it в разделе ACS Software. Маленькая программка, работает под DOS, можно скачать и посчитать самому. А можно поступить по-другому. При подготовке русской редакции этой статьи результаты вычислений по программе CONICO были сведены в таблицу, из которой можно взять готовый вариант. Таблица составлена для тоннеля диаметром 80 мм. Это значение диаметра подходит для большинства сабвуферов с диаметром диффузора 250 мм. Рассчитав по формуле требуемую длину тоннеля, найдите это значение в первом столбце. Например, по вашим расчетам оказалось, что нужен тоннель длиной 400 мм, например, для настройки ящика объемом 30 литров на частоту 33 Гц. Проект нетривиальный, и разместить такой тоннель внутри такого ящика будет непросто. Теперь смотрим в следующие три столбца. Там приведены рассчитанные программой размеры эквивалентного конического тоннеля, длина которого будет уже не 400, а всего 250 мм. Совсем другое дело. Что означают размеры в таблице, показано на рис. 9.

Таблица 1. Размеры конического тоннеля, эквивалентного цилиндрическому диаметром 80 мм и длинной Lo.

LoLdDhWinWout
1601206784605992
2001506485605395
2601806085604895
3302005486603998
4002505287603599
50035050996033129
630450461096028155
750500421126024164

Таблица 2. То же, для исходного тоннеля диаметром 100 мм

LoLdDhWinWout
270200791077071129
330220731087060131
420280701097054133
530350651147047143
650450621247043174
800550571347036200
1000650501417029224
1180750461517024257

Lo – длинная исходного цилиндрического тоннеля

L – длинна конического тоннеля

Таблица 2 составлена для исходного тоннеля диаметром 100 мм. Это подойдет для большинства сабвуферов с головкой диаметром 300 мм.

Если решите пользоваться программой самостоятельно, помните: тоннель в форме усеченного конуса делается с углом наклона образующей a от 2 до 4 градусов. Этот угол больше 6 – 8 градусов делать не рекомендуется, в этом случае возможно возникновение завихрений и струйных шумов на входном (узком) конце тоннеля. Однако и при небольшой конусности уменьшение длины тоннеля получается довольно значительным.

Тоннель в форме усеченного конуса не обязательно должен иметь круглое сечение. Как и обычный, цилиндрический, его иногда удобнее делать в виде щелевого. Даже, как правило, удобнее, ведь тогда он собирается из плоских деталей. Размеры щелевого варианта конического тоннеля приведены в следующих столбцах таблицы, а что эти размеры означают, показано на рис. 10.

Замена обычного тоннеля коническим способна решить много проблем. Но не все. Иногда длина тоннеля получается настолько большой, что укорочения его даже на 30 – 35% недостаточно. Для таких тяжелых случаев есть…

…экстремальное решение для больших проблем

Экстремальное решение заключается в применении тоннеля с экспоненциальными обводами, как показано на рис. 11. У такого тоннеля площадь сечения сначала плавно уменьшается, а потом так же плавно возрастает до максимальной. С точки зрения компактности для данной частоты настройки, устойчивости к струйным шумам и органным резонансам экспоненциальный тоннель не имеет себе равных. Но он не имеет себе равных и по сложности изготовления, даже если рассчитать его обводы по такому же принципу, как это было сделано в случае конического тоннеля. Для того чтобы преимуществами экспоненциального тоннеля все же можно было воспользоваться на практике, я придумал его модификацию: тоннель, который я назвал «песочные часы» (рис. 12). Тоннель-песочные часы состоит из цилиндрической секции и двух конических, откуда внешнее сходство с древним прибором для измерения времени. Такая геометрия позволяет укоротить тоннель по сравнению с исходным, постоянного сечения, по меньшей мере, в полтора раза, а то и больше. Для расчета песочных часов я тоже написал программу, ее можно найти там же, на сайте ACS. И так же, как для конического тоннеля, здесь приводится таблица с готовыми вариантами расчета.

Таблица 3. Размеры тоннеля в форме песочных часов, эквивалентного цилиндрическому диаметром 80 мм и длинной Lo.

LoLmaxdDL1L2hWminWmax
160100588160205052103
200125588175255052103
2601755882105355052104
3302005582120405048104
4002505583150505048105
5003005483180605045105
6304005484240805045106
7504505484270905045106

Таблица 4. То же, для исходного тоннеля диаметром 100 мм

LoLmaxdDL1L2hWminWmax
27017571100105356069130
33020071100120406069130
42025071100150506069130
53030069102180606066133
65040069102240806066133
800500681033001006063135
1000600681033601206063135
1180750681034501506063135

Что означают размеры в таблицах 3 и 4, станет ясно из рис. 13. D и d – это диаметр цилиндрической секции и наибольший диаметр конической секции, соответственно, L1 и L2 – длины секций. Lmax – полная длина тоннеля в форме песочных часов, приводится просто для сравнения, насколько короче его удалось сделать, а вообще, это L1 + 2L2.

Технологически песочные часы круглого поперечного сечения делать не всегда просто и удобно. Поэтому и здесь можно выполнить его в виде профилированной щели, получится, как на рис. 14. Для замены тоннеля диаметром 80 мм я рекомендую высоту щели выбрать равной 50 мм, а для замены 100-миллиметрового цилиндрического тоннеля – равной 60 мм. Тогда ширина секции постоянного сечения Wmin и максимальная ширина на входе и выходе тоннеля Wmax будут такими, как в таблице (длины секций L1 и L2 – как в случае с круглым сечением, здесь ничего не меняется). Если понадобится, высоту щелевого тоннеля h можно изменить, одновременно скорректировав и Wmin, Wmax так, чтобы значения площади поперечного сечения (h.Wmin, h.Wmax) остались неизменными.

Вариант фазоинвертора с тоннелем в форме песочных часов я применил, например, когда делал сабвуфер для домашнего театра с частотой настройки 17 Гц. Расчетная длина тоннеля получилась больше метра, а рассчитав «песочные часы», я смог сократить ее почти вдвое, при этом шумов не было даже при мощности около 100 Вт. Надеюсь, вам это тоже поможет…

Автор: Di Gian Piero Matarazzo

Перевод с итальянского Журковой Е., по материалам cxem.net

Статья обновлена в 2017 специально для ldsound.ru

Как лучше рассчитать фазоинвертор для акустической системы

15 Марта 2019 Автор: Ю. ЛЮБИМОВ

Предлагаемый метод расчета фазоинвертора основан на простейших измерениях, проводимых с вполне определенным экземпляром громкоговорителя, устанавливаемым в акустический фазоинвертор и на номографическом определении размеров последнего.

В первую очередь, руководствуясь рис. 1 и таблицей, необходимо изготовить «стандартный объем» — герметичный фанерный ящик, все стыки которого во избежание утечек воздуха тщательно подогнаны, проклеены и промазаны пластилином.


рис. 1

Диаметр диффузора
громкоговорителя, мм
Paзмеры,мм
 АВС
200255220170
250360220220
300360220270
375510220335

Далее измеряют собственную частоту резонанса громкоговорителя, находящегося в свободном пространстве. Для этого его подвешивают в воздухе вдалеке от крупных предметов (мебели, стен, потолка). Схема измерений приведена на рис. 2.


рис. 2

Здесь ЗГ — градуированный звуковой генератор, V — ламповый вольтметр переменного тока и R — резистор сопротивлением 100-1000 ом (при больших значениях сопротивления измерение оказывается более точным).

Вращая ручку настройки частоты звукового генератора в пределах от 15-20 до 200-250 гц, добиваются максимального отклонения стрелки вольтметра. Частота, при которой отклонение максимально и является резонансной частотой громкоговорителя в свободном пространстве Fв.

Следующий этап — определение резонансной частоты громкоговорителя Fв при его работе на «стандартный объем». Для этого громкоговоритель кладут диффузором на отверстие «стандартного объема» и слегка прижимают, во избежание утечек воздуха в месте стыка поверхностей. Метод определения частоты резонанса прежний, но в этом случае она будет в 2-4 раза выше.


рис. 3


рис. 4

Зная эти две частоты, с помощью номограмм находят размеры фазоинвертора. В зависимости от диаметра диффузора громкоговорителя выбирают номограмму, приведенную на рис. 3 (для диаметра ,200 мм), на рис. 4 (для диаметра 250 и 300 мм) или на рис. 5 (для диаметра 375 мм). По выбранной номограмме определяют объем фазоинвертора, для чего соединяют прямой линией точки, соответствующие найденным частотам, на осях «Резонансная частота»


рис. 5

Fв (см. рис. 4 точка А) и «Резонансная частота» Fя (точка В). Отмечают точку пересечения С с вспомогательной осью и отсюда ведут вторую прямую линию через точку D до оси «оптимальный объем». Значение, соответствующее новой точке пересечения Е, и является искомым объемом.

Если нет каких-либо особых соображений для конструирования ящика специальной конфигурации, то расчет внутренних размеров его при заданной объеме может быть сделан по номограмме, показанной на рис. 6. Ширина фазоинвертора будет равна 1,4 высоты, а высота — 1,4 глубины. Пользование номограммой не представляет трудностей: проводят прямую линию между крайними осями, на которых нанесены величины объемов. Точки пересечения прямой с осями А, В, С определят ширину, высоту и глубину ящика. Диаметр выреза для громкоговорителя берется равным размеру С, указанному в таблице.


рис. 6

Далее, задавшись диаметром туннеля, необходимо определить его длину и проверить вмещается ли он в ящик фазоинвертора. Длину туннеля находят из графиков, приведен ных на рис. 7, для трех внутренних диаметров: графики А — для диаметра 50 мм, В — для диаметра 75 мм и В — для диаметра 120 мм. Выбрав соответствующие графики, по частоте Fв и объему фазоинвертора, определенным ранее, находят длину туннеля (пример на рис. 7,В). Она должна быть на 35-40 мм меньше внутренней глубины ящика. Если этого не получается, можно нисколько изменить конфигурацию ящика, сохранив его объем, или взять Другой диаметр туннеля.


рис. 7

Фазоинвертор изготавливают из фанеры толщиной около 30 мм. Если нет такой толстой фанеры, то для повышения жесткости нужно приклеить внутри ящика по диагонали или крестообразно бруски размером 25×75 мм. Ящик собирают на винтах и клее и все швы герметизируют. Заднюю стенку рекомендуется крепить шурупами (по пять штук на одну сторону) с фетровой прокладкой. Туннель делают из толстостенной картонной трубки.

Изготовив фазоинвертор и установив в него г

Автозвук своими руками — Расчет фазоинверторного корпуса

Расчет фазоинверторного корпуса (короба) можно разложить на 3 части, но перед этим необходимо найти параметры Тиля-Смола для сабуферного динамика иначе не чего не выйдет. Для расчета ФИ короба достаточно трех параметров Fs, Vas и Qts

  • Fs – резонансная частота динамика, указывается в Гц (герцах).
  • Vas – эквивалентный объем, указанный в литрах.
  • Qts – полная добротность динамика. 

Данные параметры можно найти в инструкции к сабвуферному динамику или на сайте производителя.   

1. Расчет чистого объема и частоты настройки порта фазоинвертора.

 Чистый объем (Vb) – это внутренний объем короба, без учета объема порта фазоинвертора и объема вытесняемого динамиком.

 Настройка порта (Fb) – это конфигурация порта (длинна, ширина, высота) относительно чистого объема корпуса, настроенного на определенную частоту, для ее усиления, что приводит к формирования нужной АЧХ.   

 Данный расчет мы можем произвести в программах JBL SpeakerShop или BassBox 6 prо. Я рекомендую использовать первую, она проще и намного понятнее. В программе вводим параметры Fs, Vas и Qts, далее изменяя значения Vb (объем) и Fb (настройка порта) добиваемся желаемого графика АЧХ. Для универсального короба график должен быть не сильно горбатым с пиком в районе 35Гц — 40Гц. Если с программой возникли какие либо трудности, инструкцию к ней можно посмотреть здесь.  

 

  В программе мы узнали какой чистый объем короба и настройка порта нам нужна, в данном примере Vb — 45л. Fb — 36Гц.   

2. Расчет порта фазоинвертора.

Расчета порта фазоинвертора будем выполнять в программе BassPort.

 Вводим в программе:

  • Необходимую частоту настройки порта ФИ (Fb)
  • Полученный ранее чистый объем ящика (Vb)
  • Эффективную площадь диффузора сабвуферного динамика (замеряется, длинна по центру динамика от одной середины подвеса до противоположной середины подвеса)
  • Максимальный ход диффузора в одну сторону (указывается в инструкции или на сайте производителя как Xmax, может быть указан как в одну сторону, так и сразу в обе)
  • Вводим размеры порта W и h
  • Нажимаем кнопку пересчитать. 

 В данном примере рассчитан щелевой порт, выстой 35см и шириной 4см, длинна которого составила 61см и имет объем 8,5л. (округленно)   

 При подборе размеров порта нельзя, что бы длинна порта L превышала 1000мм., а максимальная скорость воздуха на выходе была красной.  

 3. Считаем общий объем корпуса ФИ и делаем чертеж.

 У нас есть следующие данные, которые необходимо сложить, что бы получить общий объем короба (грязный объем)  — чистый объем 45л., объем порта 8,5л., а так же добавляем сюда объем который вытеснит сам динамик, это в пределах 2-4л. возьмем в данном случае 3л., но так как это щелевой порт и одна из стенок так же вытеснит какой то объем, его тоже нужно учесть, здесь же это будет 4л. 

 Для расчета литража стенки, умножаем длинну внутренней стенки порта на высоту и толщену, затем делим на 1000. 

 Считаем: 45+8,5+3+4= 60,5л. 

 Итого нам нужен короб с общим объемом 60,5л.

 Переходим к чертежу короба.

 У нас есть объем 60,5 литра. Замеряем багажник, смотрим какие габариты нас устроят, например: высота — 39см, длина – 50см осталось узнать ширину. Отнимаем от высоты и длинны толщену стенок в данном случае это 2см и получаем: высота – 35см., длинна 46см. 

 Теперь считаем ширину короба:  60,51000 ÷ 35 ÷ 46 = 37,57см (округлим до 38см) – ширина корпуса, без учета стенок, со стенками будет 42см.

 Ну а дальше чертим или рисуем.

 Вот так, выглядит расчет фазоинверторного корпуса под определенный сабвуферный динамик, который будет играть так как нужно нам.  

Расчет фазоинверторного корпуса

Перед тем как производить расчет корпуса сабвуфера с фазоинвертором, необходимо узнать электроакустические характеристики нашего конкретного динамика — так называемые параметры Тиля-Смолла. Также нам потребуется понять значение следующих терминов:
1. Чистый объем – внутренний размер корпуса. При его определении не учитываются объемы порта фазоинвертора и динамика.
2. Настройка порта – его конфигурация по отношению к чистому объему корпуса. Усиление настройки на определенную частоту приводит к формированию требуемой амплитудно-частотной характеристики.
Чтобы провести расчет фазоинвертора для сабвуфера, необходимо знать следующие параметры Тиля-Смолла:
1. Резонансную частоту динамика (Fs), измеряется в герцах (Hz).
2. Эквивалентный объем (Vas), измеряется в литрах.
3. Полную добротность динамика (Qts).
Как правило, все эти данные можно найти в описании или инструкции к динамику, а также на сайте его производителя.

Рассчитываем чистый объем и частоту настройки фазоинвертора

Для выполнения этих действий нам потребуется программное обеспечение, рассчитывающее сабвуферные корпуса, которое можно легко найти в интернете. Одной из самых популярных и простых в обращении считается программа JBLSpeakerShop. В ней нам потребуется указать параметры Тиля-Смолла, подобрать объем ящика с настройкой порта и получить нужный график амплитудно-частотных характеристик.

Рассчитываем порт фазоинвертора

Для этого мы воспользуемся помощью программы BassPort, которая проводит быстрый, удобный, а главное — очень точный расчет фазоинвертора онлайн.

Нам нужно будет ввести следующие значения:
1. Требуемую частоту настройки порта.
2. Чистый объем (полученный ранее).
3. Площадь диффузора динамика (замеряем длину по центральной оси динамика от середины подвеса до такой же точки напротив).
4. Ход диффузора (максимальный) в одну из сторон (указан в описании как Xmax).
5. Теперь нам нужно выбрать сечение порта.
6. Ввести его габариты.
7. Далее – жмем кнопку «Рассчитать» — получаем длину порта (L), а также его литраж.

Определяем общий объем корпуса

Выполняя расчет фазоинвертора программой JBLSpeakerShop, мы определили требуемый чистый объем для нашего конкретного сабвуфера и частоту, на которую нужно настраивать порт. BassPort «подсказал» нам длину порта, а также объем, который он будет занимать. Теперь проводим следующие арифметические действия: складываем объемы – порта, чистый и вытесняемый динамиком. Полученное значение и будет являться общим внутренним литражом нашего будущего корпуса.
Следует отметить, что если в корпусе будут использованы округления, ребра жесткости, или он будет щелевой, то нам придется учесть все эти нюансы. Примерный расчет щелевого фазоинвертора:
1. Чистый объем равен 45 литрам.
2. Щелевой порт – площадь 140 см3, 36 Hz – 8,5 л. Добавим 3,8 л на стенки порта (из фанеры 18 мм).
3. Вытесняемый динамиком – 3 л.
4. Складываем эти значения и получаем 60,3 л – общий литраж корпуса.

Получаем размеры корпуса по известному литражу

Итак, подходим к финальному этапу мероприятий. Теперь нам нужно рассчитать, какие же геометрические размеры будет иметь фазоинверторный корпус, если известен его общий литраж – 60,3 л. Проводим замеры багажника, определяя приемлемые габариты. К примеру, нам подходит конструкция длиной в 60 см и высотой в 40 см. Остается узнать ширину.
Определимся, что стенки ящика мы будем выполнять из фанеры толщиной 1,8 см. Теперь нам нужно отнять от длины и высоты конструкции толщину стенок (1,8х2) и получить такие значения: длина – 56,4; высота – 36,4 см. Далее проводим такие вычисления: 60,3х1000:36,4:56,4=29,4. Это и будет ширина корпуса, правда, без учета толщины стенок. Прибавим ее и получим 33 см.
Так выглядит примерный расчет корпуса сабвуфера с фазоинвертором под определенный динамик. Отметим, что эта статья является лишь общим руководством, в ней не учтены многие тонкости и нюансы, которые возникают в процессе работы.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *