Site Loader

Содержание

Охлаждающее устройство Пельтье Pfannenberg PTM 150V

Данные PTM150V PTM100V
Заказной номер 15315180055 15310180055
Номинальное напряжение ±10% 24В DC 24В DC
Мощность охлаждения согласно EN 14511 (L35/L35) 150Вт 100Вт
Потребление мощности (L35/L35) 240Вт 102Вт
Потребление тока (L35/L35) 10А 4.25А
Воздушный поток (свободная подача воздуха) внутренний 114 м³/ч внутренний 76 м³/ч
внешний 234 м³/ч внешний 156 м³/ч
Предохранитель 16А
Вид соединения подключение через клеммную колодку, max 2.5 мм²/AWG16
Длина кабеля датчика 1200 мм
Уровень звука согласно EN ISO 3741 47дБ (А)
Вес (без упаковки) 9.16 кг 6.7 кг
Температура окружающей среды -40°C…+50°C
Диапазон установок (регулируемый) 0°C…+50°C
Рабочий цикл 100%
Выделение конденсата отвод конденсата
Степень защиты согласно EN 60529 IP54 для оборудования в шкафу, при эксплуатации согласно предписанию
IP24 для внешнего контура, при эксплуатации согласно предписанию
Материал рамы оцинкованная сталь
Материал кожуха оцинковка/электростатическое порошковое покрытие (200°C)
Положение при монтаже V — вертикально
(при необходимости горизонтального монтажа использовать PTM150H)
Цвет (кожух) RAL 7035, другие цвета по запросу

Электростанция из кружки кипятка / Хабр

Как известно, электричество можно изготовить, используя электродинамические генераторы (паровые, ветряные или водные), солнечные фотоэлементы, а также преобразование разности температур двух разнородных проводников и полупроводников, работающее на эффекте Зеебека. Чаще, можно слышать про эффект Пельтье — разделение температур на разнородных спаянных проводниках и полупроводниках, что является обратным эффектом Зеебека.

Для анализа используем один такой элемент с маркировкой TEC1-12706.

Элемент рассчитан на номинальное напряжение 12В, максимальное несколько выше, но повышает риск порчи элемента и снижает его КПД. Элемент собран из 127 ячеек и рассчитан на максимальный ток 6 А. При подключении элемента к источнику напряжения, потребляемый ток составил около 2 А, а забираемая мощность от источника равна 24 Вт.

Для получении электроэнергии, следует одну пластину элемента нагревать, а вторую — охлаждать. В моем случае, для показанных цветов проводов, холодная сторона — с маркировкой, горячая — без маркировки. При смене полярности проводов, стороны тоже поменяются по своим свойствам.

Для охлаждения пластины используем радиатор в тающем льду, принимаем температуру холодной поверхности элемента Зеебека около 0 градусов.



Для нагрева пластины — поставим сверху кружку кипятка и примем температуру горячей части за 100 градусов. Дождемся стабилизации температуры на холодной стороне, которая составила 11 градусов.

При этом Полученное напряжение на клеммах элемента около 1.7 В (холостой ход).

На нагрузке 100 Ом напряжение уже составило 1.5 В.

Мощность выделяемая на резисторе равна 22.5 мВт. Подключим преобразователь Burst-Up 0.8 to 5 В к клеммам элемента Зеебека, а на выход преобразователя, мигающий светодиод.

Да, он мигает, диоду нужно совсем немного тока для работы (менее 10 мА).

Холостой ход на выходе Burst-Up преобразователя:

Теперь подключим фирменный PowerBank, способный аккумулировать, даже малые токи заряда. И он — заряжается!

Оценить ток заряда можно таким образом: КПД Burst-Up = 0.9, следовательно на PowerBank поступает около 20 мВт мощности. В повербанке стоит Step-Down преобразователь, для заряда Li-Ion аккумулятора с начальным напряжением 2.8 В и конечным 4.2 В, КПД преобразователя тоже примем за 0.9. Тогда, оставшаяся мощность составит 18 мВт. Зарядный ток аккумулятора будет находиться в пределах 4.3… 6.5 мА, т.е. около 5 мА.

Такая вот маломощная тепловая станция получилась. Не забываем, что данные числа получены при разности температур в 90 градусов, которая снижается, по мере охлаждения жидкости в чашке, а холодная жидкость, как известно, собирается на дне чашки.

Как компенсировать этот эффект читатель, наверное, уже догадался.

В заключение сравним энерговыход такого генератора и миниатюрной фотоэлектрической ячейки с размерами 52х9 мм, толщина, 0.2 мм, вес 0.24 грамма, U=0.5 В.

На эквиваленте солнечного излучения при оптимальном сопротивлении нагрузки в 1.5 Ом, ячейка выделяет 48 мВт мощности.

Что почти в 2 раза больше мощности, получаемой с элемента Зеебека в нашем эксперименте, однако в пасмурную погоду, можно смело считать выделяюмую мощность фотоэлементом меньше на порядок, т.е. всего 5 мВт. Тогда всего 4 солнечные ячейки 52х9 мм уже эквивалентны 1 Зеебеку в пасмурную погоду.

Модуль пельтье. Модуль на элемент Пельтье + интересное применение.


Модуль Пельтье: технические характеристики

Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, — появлению разности температур, когда протекает электрический ток.

Как работает элемент Пельтье?

Довольно просто применять модуль Пельтье, принцип работы которого заключается в выделении или поглощении тепла в момент контакта разных материалов при прохождении через него тока. Плотность энергетического потока электронов перед контактом и после него отличается. Если на выходе она меньше, значит, там выделяется тепло. Когда электроны в контакте тормозятся электрическим полем, они передают кинетическую энергию кристаллической решетке, разогревая ее. Если они ускоряются, тепло поглощается. Это происходит за счет того, что часть энергии забирается у кристаллической решетки и происходит ее охлаждение.

В значительной степени это явление присуще полупроводникам, что объясняется большой разностью зарядов.

Модуль Пельтье, применение которого является темой нашего обзора, используется при создании термоэлектрических охлаждающих устройств (ТЭМ). Простейшее из них состоит из двух полупроводников p- и n-типов, последовательно соединенных через медные контакты.

Если электроны движутся от полупроводника «p» к «n», на первом переходе с металлической перемычкой они рекомбинируют с выделением энергии. Следующий переход из полупроводника «p» в медный проводник сопровождается «вытягиванием» электронов через контакт электрическим полем. Данный процесс приводит к поглощению энергии и охлаждению области вокруг контакта. Аналогичным образом происходят процессы на следующих переходах.

При расположении нагреваемых и охлаждаемых контактов в разных параллельных плоскостях получится практическая реализация способа. Полупроводники изготавливаются из селена, висмута, сурьмы или теллура. Модуль Пельтье вмещает большое количество термопар, размещенных между керамическими пластинами из нитрида или оксида алюминия.

Факторы, влияющие на эффективность ТЭМ

  • Сила тока.
  • Количество термопар (до нескольких сотен).
  • Типы полупроводников.
  • Скорость охлаждения.

Больших величин достигнуть пока не удалось из-за низкого КПД (5-8 %) и высокой стоимости. Чтобы ТЭМ успешно работал, надо обеспечить эффективный отвод тепла с нагреваемой стороны. Это создает сложности в практическом воплощении способа. Если изменить полярность, холодная и горячая стороны меняются друг с другом.

Достоинства и недостатки модулей

Потребность в ТЭМ появилась с возникновением электронных устройств, нуждающихся в миниатюрных системах охлаждения. Преимущества модулей следующие:

  • компактность;
  • отсутствие подвижных соединений;
  • модуль Пельтье принцип работы имеет обратимый при смене полярности;
  • простота каскадных соединений для повышения мощности.

Главным недостатком модуля является низкий КПД. Это проявляется в больших затратах мощности при достижении требуемого эффекта охлаждения. Кроме того, он обладает высокой стоимостью.

Применение ТЭМ

Пельтье модуль применяется преимущественно для охлаждения микросхем и небольших деталей. Начало было положено для охлаждения элементов военной техники:

  • микросхемы;
  • инфракрасные детекторы;
  • элементы лазеров;
  • кварцевые генераторы.

Термоэлектрический модуль Пельтье постепенно стал применяться в бытовой технике: для создания холодильников, кондиционеров, генераторов, терморегуляторов. Главным его назначением является охлаждение небольших объектов.

Охлаждение процессора

Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.

Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.

С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.

С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.

Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.

Активизация охлаждения процессоров создает также некоторые проблемы.

  1. Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
  2. Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.

Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.

Автохолодильник своими руками

В середине прошлого века отечественная промышленность пыталась освоить выпуск малогабаритных холодильников, основанных на эффекте Пельтье. Существующие технологии того времени не позволили этого сделать. Сейчас сдерживающим фактором преимущественно является высокая цена, но попытки продолжаются, и успехи здесь уже достигнуты.

Широкое производство термоэлектрических устройств позволяет создать своими руками небольшой холодильник, удобный для использования в автомобилях. Его основой является «сэндвич», который делается следующим образом.

  1. На верхний радиатор наносится слой теплопроводной пасты типа КПТ-8 и приклеивается Пельтье модуль с одной стороны керамической поверхности.
  2. Аналогично к нему крепится с нижней стороны другой радиатор, предназначенный для помещения в камеру холодильника.
  3. Все устройство плотно сжимается и просушивается в течение 4-5 часов.
  4. На обоих радиаторах устанавливаются кулеры: верхний будет отводить тепло, а нижний — выравнивать температуру в камере холодильника.

Корпус холодильника делается с теплоизолирующей прокладкой внутри. Важно, чтобы он плотно закрывался. Для этого можно использовать обычный пластиковый ящик для инструментов.

Питание 12 В подается из системы автомобиля. Его можно сделать и от сети 220 В переменного тока, с блоком питания. Схема преобразования переменного тока в постоянной применяется самая простая. Она содержит выпрямительный мост и сглаживающий пульсации конденсатор. При этом важно, чтобы на выходе они не превышали величину 5 % от номинального значения, иначе эффективность устройства снижается. У модуля имеются два вывода из цветных проводов. К красному всегда подключается «плюс», к черному — «минус».

Мощность ТЭМ должна соответствовать объему бокса. Первые 3 цифры маркировки означают количество пар полупроводниковых микроэлементов внутри модуля (49-127 и более). Сила тока выражается двумя последними цифрами маркировки (от 3 до 15 А). Если мощности недостаточно, надо приклеить на радиаторы еще один модуль.

Обратите внимание! Если сила тока будет превосходить мощность элемента, он будет нагреваться с обеих сторон и быстро выйдет из строя.

Модуль Пельтье: генератор электрической энергии

ТЭМ можно использовать для выработки электроэнергии. Для этого надо создать перепад температуры между пластинами, и расположенные между ними термопары будут вырабатывать электрический ток.

Для практического использования нужен ТЭМ не менее чем на 5 В. Тогда с его помощью можно будет заряжать мобильный телефон. Из-за низкого КПД модуля Пельтье потребуется повышающий преобразователь постоянного напряжения. Для сборки генератора понадобятся:

  • 2 модуля Пельтье ТЕС1-12705 с размером пластин 40х40 мм;
  • преобразователь ЕК-1674;
  • алюминиевые пластины толщиной 3 мм;
  • кастрюля для воды;
  • термостойкий клей.

Между пластинами помещаются два модуля на клей, а затем вся конструкция фиксируется на дне кастрюли. Если ее заполнить водой и поставить на огонь, получится необходимая разность температуры, вырабатывающая ЭДС порядка 1,5 В. Подключив модули к повышающему преобразователю, можно повысить напряжение до 5 В, необходимых для зарядки аккумулятора телефона.

Чем больше разница температуры между водой и нижней подогреваемой пластиной, тем генератор работает эффективней. Поэтому надо стараться снижать нагрев воды разными способами: сделать ее проточной, почаще заменять свежей и т. п. Действенным средством увеличения разности температур является каскадное включение модулей, когда они накладываются слоями один на другой. Увеличение габаритных размеров устройства позволяет поместить между пластинами больше элементов и тем самым увеличить общую мощность.

Производительности генератора будет достаточно для зарядки небольших аккумуляторов, работы светодиодных ламп или радиоприемника. Обратите внимание! Для создания термогенераторов потребуются модули, способные работать при 300-400 0С! Остальные подойдут только для пробных испытаний.

В отличие от других средств альтернативного получения электроэнергии они могут работать во время движения, если создать что-то типа каталитического нагревателя.

Отечественные модули Пельтье

ТЭМ своего производства появились у нас на рынке не так давно. Они отличаются высокой надежностью и имеют хорошие характеристики. Модуль Пельтье, который пользуется широким спросом, имеет размеры 40х40 мм. Он рассчитан на максимальный ток 6 А и напряжение до 15 В.

Отечественный модуль Пельтье купить можно за небольшую цену. При потребляемой мощности 85 Вт он создает температурный перепад 60 0С. Вместе с кулером он способен защитить от перегрева процессор с рассеиваемой мощностью 40 Вт.

Характеристики модулей ведущих фирм

Зарубежные устройства представлены на рынке в большем разнообразии. Для защиты процессоров ведущих фирм применяется в качестве холодильника РАХ56В модуль Пельтье, цена которого в комплекте с вентилятором составляет $35.

При размерах 30х30 мм он поддерживает температуру процессора не выше 63 0С при выделяемой мощности 25 Вт. Для питания достаточно напряжения 5 В, а ток не превышает 1,5 А.

Хорошо подходит под охлаждение процессора модуль Пельтье РА6ЕХВ, обеспечивающий нормальный температурный режим при мощности рассеивания 40 Вт. Площадь его модуля составляет 40х40 мм, а потребляемый ток — до 8 А. Кроме внушительных размеров — 60х60х52,5 мм (вместе с вентилятором) — устройство требует наличия вокруг него свободного пространства. Цена его составляет $65.

Когда применяется модуль Пельтье, технические характеристики у него должны соответствовать потребностям охлаждаемых устройств. Недопустимо, чтобы у них была слишком низкая температура. Это может привести к конденсации влаги, которая губительно действует на электронику.

Модули для изготовления генераторов, такие как ТЕС1-12706, ТЕС1-12709, отличаются большей мощностью — 72 Вт и 108 Вт соответственно. Их различают по маркировке, всегда наносимой на горячую сторону. Максимальная допускаемая температура горячей стороны у них составляет 150-160 0С. Чем больше температурный перепад между пластинами, тем выше получается напряжение на выходе. Устройство работает при максимальном температурном перепаде 600 0С.

Модуль Пельтье купить можно недорого — порядка $10 и менее за штуку, если хорошо поискать. Довольно часто продавцы значительно завышают цены, но можно найти в несколько раз дешевле, если приобретать на распродаже.

Заключение

Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых современной технике. Обратимость процесса дает возможность изготовить микроэлектростанции, востребованные для зарядки аккумуляторов электронных устройств.

В отличие от других средств альтернативного получения электроэнергии, они могут работать во время движения, если установить каталитический нагреватель.

fb.ru

Модуль на элемент Пельтье + интересное применение.

Приветствую тебя читатель banggood астрологи объявили неделю Пельтье поэтому в обзоре речь пойдёт об одном интересном применении данной штуковины. Милости просим под CUT.

Начнём с ликбеза

Как говорит википедия «Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока.» Я уверен что после этой фразы понятнее не стало ).

Ок попробуем иначе. Представьте себе специфический аквариум, состоящий из зон двух типов. В первой зоне аквариума рыбки плавают быстро во второй медленно. Ещё представим себе на границах зон лопасти, крутящиеся в воде. Правила следующие 1) рыбка переплывает в другую зону только тогда когда её скорость соответствует скорости установленной для зоны.2) при переходе границ зоны рыбка может взаимодействовать с лопастями для увеличения либо для уменьшения своей скорости. Теперь представим несколько зон расположенных последовательно. (зоны с более высокой скоростью назовём З+ с низкой З- ) Рыбка находится в З+ она хочет перейти в З- она взаимодействует с лопастью на границе и начинает плыть медленнее, при этом лопасти (на границе З+/З-) начинают крутиться быстрее. Далее рыбка хочет перейти в следующую зону З+ ей надо ускориться она взаимодействует с лопастью на границе З-/З+ и ускоряется при этом лопасть начинает крутиться медленнее. Далее всё повторяется. Можно заметить что одни лопасти будут замедлятся а другие ускорятся. Элемент Пельтье работает по аналогичному принципу. Вместо рыбок там электроны вместо скорости рыбок энергия электронов в полупроводниках. При протекании тока через контакт 2х полупроводников, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, При этом чем больше ток тем выше эффект переноса энергии, энергия именно переноситься (а не волшебным образом пропадает) от «холодной» стороны к «горячей», поэтому элемент Пельтье способен охлаждать предметы до температуры ниже комнатной (проще говоря это полупроводниковый тепловой насос). Если у Вас задача просто отвести тепло от процессора транзистора и т.д. применение элемента Пельтье невыгодно т.к. Вам понадобиться Радиатор способный передать в окружающую среду тепло от охлаждаемого объекта + тепло возникающее при работе элемента Пельтье. Думаю с теорией покончено можно двигаться дальше. Давайте посмотрим как по мнению спонсора обзора выглядит 13,90 зелени. Модуль представляет из себя этакий 5 уровневый бутерброд, он состоит из пары радиаторов и вентиляторов и собственно самого элемента Пельтье.Вентилятор большего размера предназначен для отвода тепла. При приложении усилия его можно снять без выкручивания шурупов. Вентилятор самый обыкновенный ( Питание 12В размер 90мм) прикрыт решёткой, изначально вентилятор установлен на отвод воздуха.На противоположной стороне малый вентилятор (Питание 12В размер 40мм)Малыш прикручен на совесть Посмотрим на радиаторыБольшой радиатор размером 100мм*120мм высота 20ммМалый радиатор 40мм*40мм высота 20мм. Радиаторы скреплены двумя винтами, в малом радиаторе нарезана резьба. При снятии радиатора обнаружена термопаста это хорошо, но можно увидеть что есть недожим.Контакт с большим радиатором идеальным тоже не назовёшь.Главный вывод — если хотите выжать из этого модуля максимум то обязательно загляните под радиаторы. А если стереть термопасту то можно увидеть что тут установлен элемент TEC1-12705 (размер 40мм*40мм*4мм) хотя заявлен более мощный TEC1-12706. Мануал на TEC1-12705 peltiermodules.com/peltier.datasheet/TEC1-12705.pdfСнимем малый радиатор и попробуем запустить модуль замерив температуры «тёплой» и «холодной» сторон.Температура «холодной» стороны -16,1 «горячей» 37,5 дельта 53,6. ток потребления при 12В составил 4,2А. На режим элемент Пельтье вышел через 90с.

А теперь весёлая часть. Находим металлическую и блестящую пластину и делаем в ней отверстие для термопары.Кладём термопасту и устанавливаем термопаруДалее изготавливаем узконаправленный фотоприёмник и фотодиод из чёрной бумаги и обычных компонентовСобираем готовое устройство вспоминая правило «угол падения равен углу отражения»Кто догадался что это такое? Это прибор (ну точнее модель для демонстрации принципа действия) для определения температуры точки росы/относительной влажности воздуха. Действует следующим образом: ИК-светодиод светит в отражающую пластинку, после отражения свет от ИК-светодиода попадает на ИК-фотодиод. С обратносмещённого ИК-фотодиода снимается сигнал напряжения. При охлаждении пластинки до температуры точки росы на ней начинает собираться конденсат, интенсивность отражаемого излучения падает, сигнал на фотодиоде изменяется. Регистрируя температуру пластины, и окружающего воздуха можно найти относительную влажность. Для работы я использовал Brymen BM869 (с самодельным кабелем и софтом) и Uni-t UT61E Ниже представлен результат Рыжий график температура пластины, синий график сигнал с фотодиода. Будем считать момент, когда напряжение с фотодиода изменилось на половину от общего изменения напряжения есть момент выпадения конденсата. Исходя из поставленных условий измеренная температура точки росы в комнате +9С.Температура окружающего воздуха 26,7 (на графиках не отображалась т.к. она была неизменна).Одновременно я запустил модуль HTU21 и наблюдал за показаниями в терминале.(скриншот терминала добавлен к графику).Далее я использовал онлайн калькулятор planetcalc.ru/248/ для пересчёта влажности в температуру точки росы Результат пересчёта влажности с HTU21 в температуру точки росы совпал с измеренной напрямую температурой точки росы. Это значит, что если описанным выше методом определять точку росы, а затем делать пересчёт, то можно достаточно точно определять влажность (Ну естественно если делать всё по-взрослому). Данный метод называется методом охлаждаемого зеркала, а гигрометры, построенные на таком принципе, называются конденсационными. Надеюсь вам понравился обзор, и Вы узнали для себя что-то новое. Всем спасибо за внимание.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Пельтье (элемент) своими руками как сделать?

Элементом Пельтье принято называть преобразователь, который способен работать от разности температур. Происходит это путем протекания электрического тока по проводникам через контакты. Для этого в элементах предусмотрены специальные пластины. Тепло от одной стороны переходит в другую.

На сегодняшний день указанная технология является востребованной в первую очередь из-за значительной мощности теплоотдачи. Дополнительно устройства способны похвастаться компактностью. Радиаторы для многих моделей устанавливаются слабенькие. Связано это с тем, что тепловой поток довольно быстро остывает. В результате нужная температура поддерживается постоянно.

Подвижных частей указанный элемент не имеет. Работают устройства абсолютно бесшумно, и это является несомненным преимуществом. Также следует сказать, что эксплуатироваться они способны очень долго, а случаи поломок возникают крайне редко. Самый простой тип состоит из медных проводников с контактами и соединительными проводами. Дополнительно с охлаждающей стороны имеется изолятор. Изготовляют его, как правило, из керамики или нержавеющей стали.

Зачем нужны элементы Пельтье?

Элементы Пельтье чаще всего используются для изготовления холодильников. Обычно речь идет о компактных моделях, которые могут применяться, к примеру, автомобилистами в дороге. Однако на этом область применения устройств не подходит к концу. В последнее время элементы Пельтье активно начали устанавливать в звуковую, а также акустическую технику. Там они способны выполнять функции куллера.

В результате охлаждение усилителя устройства происходит без какого-либо шума. Для портативных компрессоров элементы Пельтье являются незаменимыми. Если говорить о научной отрасли, то ученые применяют данные устройства для охлаждения лазера. При этом можно добиться значительной стабилизации волны изучения у светодиодов.

Недостатки моделей Пельтье

Казалось бы, такое простое и эффективной устройство лишено недостатков, однако они имеются. В первую очередь специалисты сразу отметили малую пробивную способность модуля. Это говорит о том, что у человека возникнут определенные проблемы, если он захочет охладить прибор, который работает от сети с напряжением 400 В. В данном случае частично поможет решить эту проблему специальная диэлектрическая паста. Однако пробой тока все равно будет высоким и обмотка элемента Пельтье может не выдержать.

Дополнительно указанные модели не советуют применять для точной электроники. Поскольку в конструкции элемента имеются металлические пластины, то чувствительность транзисторов может нарушаться. Последним недостатком элемента Пельтье можно назвать малый коэффициент полезного действия. Достигнуть значительной разности температур указанные устройства не способны.

Модуль для регулятора

Сделать элемент Пельтье своими руками для регулятора довольно просто. Для этого следует заранее заготовить две металлические пластины, а также проводку с контактами. В первую очередь для установки готовят проводники, которые будут располагаться у основания. Обычно их закупают с маркировкой «РР».

Дополнительно для нормального контроля температуры следует предусмотреть полупроводники на выходе. Они необходимы для того, чтобы быстро отдавать тепло на верхнюю пластину. Для установки всех элементов следует использовать паяльник. Чтобы доделать элемент Пельтье своими руками, в последнюю очередь подсоединяют два провода. Первый монтируется у нижнего основания и фиксируется у крайнего проводника. Соприкосновения при этом с пластиной следует избегать.

Далее крепят второй провод у верней части. Фиксация осуществляется также к крайнему элементу. Для того чтобы проверить работоспособность устройства, применяют тестер. Для этого два провода нужно подсоединить к прибору. В результате отклонение напряжения должно составить примерно 23 В. В данной ситуации многое зависит от мощности регулятора.

Холодильники с терморезистором

Как сделать элемент Пельтье своими руками для холодильника с терморезистором? Отвечая на этот вопрос, важно отметить, что пластины для него подбираются исключительно из керамики. При этом проводников используется около 20 штук. Это необходимо для того, чтобы перепад температуры был более высоким. Повысить коэффициент полезного действия можно до 70 %. В данном случае важно рассчитать энергопотребление устройства.

Сделать это можно исходя из мощности оборудования. Холодильник на жидком фреоне в этом случае походит идеально. Непосредственно элемент Пельтье устанавливается возле испарителя, который располагается рядом с мотором. Для его монтажа потребуется стандартный набор инструментов, а также прокладки. Они необходимы для того, чтобы оградить модель от пускового реле. Таким образом, охлаждение нижней части устройства будет происходить намного быстрее.

Чтобы добиться получения разницы в температурах (эффект Пельтье) своими руками, проводников может понадобиться не менее 16 штук. Главное при этом — надежно изолировать провода, которые будут подключаться к компрессору. Для того чтобы сделать все правильно, нужно в первую очередь отсоединить осушитель холодильника. Только после этого есть возможность соединить все контакты. По завершении установки предельное напряжение следует проверить при помощи тестера. При нарушении работы элемента в первую очередь страдает терморегулятор. В некоторых случая происходит его короткое замыкание.

Модель для холодильника 15 В

Делается холодильник Пельтье своими руками с малой пропускной способностью. Крепятся модули в основном возле радиаторов. Для того чтобы надежно их закрепить, специалисты используют уголки. К фильтру элемент не должен прислоняться, и это следует учитывать.

Чтобы доделать термоэлектрический модуль Пельтье своими руками, нижнюю пластину в основном выбирают из нержавеющей стали. Проводники, как правило, применяются с маркировкой «ПР20». Нагрузку они максимум способны выдерживать на уровне 3 А. Максимальное отклонение температуры способно достигать 10 градусов. В этом случае коэффициент полезного действия может составлять 75 %.

Элементы Пельтье в холодильниках 24 В

Используя элемент Пельтье, холодильник своими руками сделать можно только из проводников с хорошей герметизацией. При этом они для охлаждения должны укладываться в три ряда. Рабочий ток в системе обязан поддерживаться на уровне 4 А.. Проверить его можно при помощи обычного тестера.

Если использовать керамические пластины для элемента, то максимального отклонения температуры можно добиться в 15 градусов. Провода к конденсатору устанавливаются только после того, как будет подложена прокладка. Закрепить ее на стенке устройства можно разными способами. Главное в данной ситуации — не использовать клей, который чувствителен к температурам свыше 30 градусов.

Элемент Пельтье для автомобильного охладителя

Чтобы сделать качественный автохолодильник своими руками, Пельтье (модуль) подбирается с пластиной, толщина которой не более 1.1 мм. Провода лучше всего использовать немодульного типа. Также для работы потребуются медные проводники. Их пропускная способность должна составлять не менее 4А.

Таким образом, максимальное температурное отклонение будет доходить до 10 градусов, это считается нормальным. Проводники чаще всего используют с маркировкой «ПР20». Они в последнее время показали себя более стабильными. Также они подходят для различных контактов. Для соединения устройства с конденсатором используют паяльник. Качественная установка возможна только на блок реле прокладку. Перепады в данном случае будут минимальными.

Как сделать элемент для кулера питьевой воды?

Модуль Пельтье (элемент) своими руками делается для кулера довольно просто. Пластины для него важно подбирать только керамические. Проводников в устройстве используют не менее 12. Таким образом, сопротивление будет выдерживаться высокое. Соединение элементов стандартно осуществляется при помощи пайки. Проводов для подключения к прибору должно быть предусмотрено два. Крепиться элемент обязан в нижней части кулера. При этом с крышкой устройства он может соприкасаться. Для того чтобы исключить случаи коротких замыканий, всю проводку важно зафиксировать на решетке либо корпусе.

Кондиционеры

Модуль «Пельтье» (элемент) своими руками делается для кондиционера только с проводниками класса «ПР12». Их выбирают для этого дела в основном из-за того, что они хорошо справляются с низкими температурами. Максимум модель способна выдавать напряжение 23 В. Показатель сопротивления при этом будет находиться на уровне 3 Ом. Перепад температуры максимум достигает 10 градусов, а коэффициент полезного действия — 65 %. Укладывать проводники между листами можно только в один ряд.

Изготовление генераторов

Изготовить генератор, используя модуль Пельтье (элемент), своими руками можно. Производительность устройства поднимется в целом на 10 %. Достигается это за счет большего охлаждения мотора. Максимум нагрузка прибором выдерживается 30 А. За счет большого количества проводников сопротивление способно составлять 4 Ом. Отклонение температуры в системе равняется примерно 13 градусов. Крепится модуль непосредственно к ротору. Для этого в первую очередь следует отсоединить центральный вал. Во многих случаях статор не мешает. Чтобы обмотка ротора не нагревалась от индуктора, используют керамические пластины.

Охлаждение видеокарты на компьютере

Для охлаждения видеокарты следует подготовить не менее 14 проводников. Лучше всего подбирать медные модели. Коэффициент проводимости тепла у них довольно высокий. Для подключения устройства к плате используются провода немодульного типа. Монтируется модель возле кулера видеокарты. Для ее закрепления обычно используют маленькие металлические уголки.

Для фиксации их можно воспользоваться обычными гаечками. Появление излишнего шума при эксплуатации говорит том, что устройство работает не должным образом. В данном случае необходимо проверит целостность проводки. Также нужно осмотреть проводники.

Элемент Пельтье для кондиционера

Чтобы качественно сделать элемент Пельтье своими руками для кондиционера, пластины используют двойные. Минимальная их толщина должна составлять не менее 1 мм. В таком случае можно надеяться на температурное отклонение в 15 градусов. Производительность кондиционеров после оснащения модулей в среднем увеличивается на 20 %. Многое в данной ситуации зависит от температуры окружающей среды. Также следует учитывать стабильность напряжения от сети. При небольших помехах нагрузка устройством выдерживается примерно 4 А.

При пайке проводников их следует размещать не слишком близко друг к другу. Чтобы правильно доделать модули Пельтье своими руками, входные и выходные контакты надо устанавливать только на одну из двух пластин. В таком случае прибор получится более компактным. Грубой ошибкой в данной ситуации будет подключать модуль непосредственно к блоку. Это приведет к неминуемой поломке элемента.

Установка модуля на конденсатор

Чтобы установить модуль Пельтье своими руками, важно оценить мощность конденсатора. Если она не превышает 20 В, то элемент следует монтировать с проводниками, на которых указана маркировка «ПР30» или «ПР26». Для того чтобы закрепить модуль Пельтье (элемент) своими руками на конденсаторе, используют маленькие металлические уголки.

Лучше всего их устанавливать по четыре на каждую из сторон. По производительности конденсатор, в конечном счете, способен прибавить плюс 10 %. Если говорить о теплопотерях, то они будут незначительными. Коэффициент полезного действия прибора в среднем равняется 80 %. Для высоковольтных конденсаторов модули не рассчитаны. В данном случае не поможет даже большое количество проводников.

fb.ru

Элемент Пельтье: характеристики, описание, применение

Справочник

Впервые я столкнулся с элементами Пельтье (ЭП) несколько лет назад, когда разрабатывал устройство охлаждения воды в аквариуме. Сегодня ЭП стали еще более доступными, а сфера их применения существенно расширилась. К примеру, в охладителях воды, которые часто можно встретить в офисах, используются ЭП. Там они в форме квадрата 4×4 см (рис.2)с помощью специальной термопасты и стяжных винтов закреплены между радиатором охлаждения и корпусом водяного резервуара, “холодной” поверхностью к резервуару. Распространены и другие ЭП.

 

Рис. 2 Элемент Пельтье

В основе работы элемента Пельтье лежит эффект, открытый французским часовщиком Жаном Пельтье. В 1834 г. Пельтье обнаружил, что при протекании постоянного тока в цепи, состоящей из разнородных проводников, в местах контактов (спаях) проводников поглощается или выделяется тепло (в зависимости от направления тока). Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и пропорциональна проходящему току. Элемент Пельтье обратим. Если приложить к нему разность температур, в цепи потечет ток.

Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного металла в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника. В результате, происходит охлаждение.

Наиболее сильно эффект Пельтье наблюдается в случае использования полупроводников (р- и n-типа проводимости). В зависимости от направления электрического тока через р-n-переходы вследствие взаимодействия зарядов, представленных электронами (n) и дырками (р), и их рекомбинации энергия либо поглощается, либо выделяется.

Рис. 3 Эффект Пельтье

Эффект Пельтье лежит в основе работы термоэлектрического модуля (ТЭМ). Единичным элементом ТЭМ является термопара, состоящая из одного проводника (ветки) p-типа и одного проводника n-типа. При последовательном соединении нескольких таких термопар теплота (Qc), поглощаемая на контакте типа n-р, выделяется на контакте типа p-n (Qh). В результате, происходит нагрев (Тh) или охлаждение (Тс) участка полупроводника, непосредственно примыкающего к р-п-переходу (рис.3), и возникает разность температур (AT=Th-Tc) между его сторонами: одна пластина охлаждается, а другая нагревается. Традиционно сторона, к которой крепятся провода, горячая, и она изображается снизу.

Рис. 4

Термоэлектрический модуль представляет собой совокупность таких термопар (рис.4), обычно соединенных между собой последовательно по току и параллельно по потоку тепла. Термопары помещаются между двух керамических пластин (рис.5). Ветки напаиваются на медные проводящие площадки (шинки), которые крепятся к специальной теплопроводящей керамике, например, из оксида

Рис. 5 Термоэлектрический модуль Пельтье

алюминия. Количество термопар может варьироваться в широких пределах (от нескольких единиц до нескольких сотен), что позволяет создавать ТЭМ с холодильной мощностью от десятых долей ватта до сотен ватт. Наибольшей термоэлектрической эффективностью среди промышленно используемых материалов обладает теллурид висмута, в который для получения необходимого типа и параметров проводимости добавляют специальные присадки (селен и сурьму).

 

 

Рис. 6

Типичный модуль (рис.6) обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающейся поверхности вторая поверхность-холодильник позволяет достичь отрицательных значений температуры. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье (рис.7) при обеспечении их достаточного охлаждения. Устройства охлаждения на основе модулей Пельтье часто называют “активными холодильниками Пельтье” или просто “кулерами Пельтье”.

Рис. 7, каскадное включение термоэлектрических модулей Пельтье

Использование модулей Пельтье в активных кулерах делает их более эффективными по сравнению со стандартными кулерами на основе радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей и их принципа работы.

Большое значение имеет мощность модуля Пельтье, которая, как правило, зависит от его размеров. Модуль малой мощности не обеспечит необходимого охлаждения, что может привести к нарушению работы защищаемого элемента вследствие его перегрева. Однако применение модулей слишком большой мощности может вызвать понижение температуры охлаждающего радиатора до

Рис. 8, активный кулер, на основе полупроводникового модуля Пельтье

уровня конденсации влаги из воздуха, что опасно для электронных устройств. Модули Пельтье в процессе работы выделяют сравнительно большое количество тепла. По этой причине следует применять в составе кулера мощный вентилятор. На рис.8 показан активный кулер, в котором использован полупроводниковый модуль Пельтье.

Подаваемое на модуль напряжение определяется количеством пар ветвей в модуле. Наиболее распространенными являются 127-парные модули, максимальное напряжение для которых составляет примерно 16 В. Но на эти модули обычно подается напряжение питания 12 В, т.е. примерно 75% Umax. Такой выбор напряжения питания в большинстве случаев является оптимальным: позволяет обеспечить достаточную мощность охлаждения при приемлемой экономичности. При повышении напряжения питания более 12 В увеличение холодильной мощности незначительно, а потребляемая мощность резко увеличивается. При понижении напряжения питания экономичность растет, поскольку холодильная мощность также уменьшается, но линейно.

Табл.1 элемент Пельтье, характеристики

Тип модуля

 

 

Характеристики

 
 

Imax,A

Umax,B

Qmax,Bт

ΔTmax, 0C

Размеры, мм

А-ТМ8,5-27-1 ,4

8,5

| 15,4

72,0

72

40x40x3,7

А-ТМ8,5-127-1,4HR1

8,5

15,4

72,0

71

40x40x3,4

А-ТМ8,5-127-1,4HR2

8,5

15,4

72,0

70

140x40x3,7

А-ТМб.0-127-1,4

6,0

15,4

53,0

72

40x40x4,2

А-ТМ6,0-127-1.4HR1

6,0

15,4

53,0

71

40x40x3,8

А-ТМ6,0-127-1,4HR2

6,0

15,4

53,0

70

40x40x4,2

А-ТМЗ,9-127-1,4

3,9

15,4

35,0

73

40x40x5,1

А-ТМЗ,9-127-1,4HR1

3,9

15,4

35,0

71

40x40x4,8

А-ТМЗ,9-127-1,4HR2

3,9

15,4

35,0

70

40x40x5,1

A-TM3,9-127-1,4

3,9

15,4

34,0

71

30x30x3,9

А-ТМЗ,9-127-1,4HR1

3,9

15,4

34,0

70

30x30x3,9

А-ТМЗ,9-127-1,4HR2

3,9

15,4

34,0

70

30x30x3,9

А-ТМ37,5-49-3,0

37,5

5,9

130,0

71

40x40x4,3

A-TM37,5-49-3,0HR1 i

8,5

15,4

72,0

70

40x40x4,3

A-TM6,0-31-1,4

6,0

3,75

12,5

72

20x20x4,2

A-TM6,0-31-1,4HR1

6,0

3,75

12,5

72

20x20x4,2

Примечание: модули с маркировной HR1 и HR2 отличаются повышенной надежностью.

Для модулей с другим числом пар ветвей (отличным от 127) напряжение можно выбирать по тому же принципу: 75% от Umax, но при этом необходимо учитывать особенности конкретного устройства, прежде всего, условия теплоотвода с горячей стороны и возможности источников питания. Например, на модули серии “ДРИФТ” (199 термоэлектрических пар) рекомендуется подавать напряжение от 12 до 18 В.

При эксплуатации важен надежный термический контакт между теплообменником и радиатором, поэтому ТЭМ крепится с использованием термопроводящей пасты (например, КПТ-8). Если нет специальной термопасты, можно с успехом применить фармакологические средства, купленные в аптеке, например, пасту Лассари или салицилово-цинковую пасту.

Поскольку максимальная температура на горячей стороне ТЭМ достигает +80°С (в высокотемпературных охладителях фирмы Supercool — +150°С), важно, чтобы ЭП охлаждался правильно. Горячая поверхность ТЭМ должна быть обращена к радиатору, с другой стороны которого установлен вентилятор охлаждения (поток воздуха направляется от радиатора). Вентилятор и ТЭМ в соответствии с полярностью подключаются к источнику питания, который может быть простейшим: понижающий трансформатор, выпрямитель на диодах и сглаживающий оксидный конденсатор. Но пульсации питающего напряжения не должны превышать 5%, в противном случае эффективность ТЭМ уменьшается. Лучше, если вентилятор и ТЭМ управляются электронным устройством на основе компаратора и датчика температуры. Как только температура охлаждаемого объекта повышается свыше установленного порога, автоматически включаются охладитель и вентилятор, и начинается охлаждение. Степень охлаждения (или нагрева) пропорциональна проходящегому через ТЭМ току, что позволяет с высокой точностью регулировать температуру “обслуживаемого” объекта.

Термоэлектрические модули загерметизированы, так что их можно применять даже в воде. Керамическая поверхность ТЭМ зашлифована, к ламелям (выводам) припаяны черный (“-”) и красный (“+”) провода. Если ТЭМ (рис.2) расположить выводами к себе так, чтобы черный провод был слева, а красный справа, сверху будет холодная сторона, а снизу — горячая. Маркировка обычно наносится на горячую сторону.

Табл.2

Температура воздействия, 0С

Место воздействия (сторона 1 или 2)*

Время воздействия, сек

Сотротивление (по прошествии времени воздействия), кОм

19

1,2

Постоянное

87

36

1

2

64

36

2

2

136

Нагрев зажигалкой

1

2

10

Нагрев зажигалкой**

2

2,4

>2000

-5 (в холодильнике)

1,2

300

135

-20 (на улице зимой)

1,2

300

98

36 после охлаждения в холодильнике (-5)

1

2

45

36 после охлаждения на улице (-20)

1

2

404

100 (кипящая вода)

1,2

60

2

Топка русской печи (открытое пламя)

1,2

60

0,06

Примечания:

* — сторона 1 — сторона с нанесенной маркировкой, сторона 2 — обратная сторона (относительно маркировки).

** При нагреве тыльной стороны в течение 4 с зажигалкой с открытым пламенем, касавшимся поверхности ЗП, на выводах был зафиксирован ток 200 мкА.

 

 

Наиболее «ходовые» типы модулей Пельтье — это однокаскадные модули максимальной мощностью до 65 Вт (12 В) и 172 Вт (24 В). Обозначения модулей расшифровываются следующим образом: первое число — это количество термопар в модуле, второе — ширина сторон ветки (в мм), третье — высота ветки (в мм). Например, ТВ-127-1,4-1,5 — модуль, состоящий из 127 пар термоэлектрических веток, размеры которых 1,4×1,4×1,5 мм. Размеры модулей — 40×40 мм, толщина — около 4 мм. Стандартные однокаскадные модули выпускаются с максимальной мощностью до 70 Вт (12 В) и 172 Вт (24 В). Типовые параметры ТЭМ приведены в табл.1.

Табл.3 Параметры термоэлектрического генератора

Параметр

Значение

Длина, мм

252

Ширина, мм

252

Высота, мм

170

Масса, кг, не более

8,5

Выходное напряжение, В

12

Максимальная выходная мощность, Вт

25

Температура установочной повехности, °С, не более

300

Рис. 9 термоэлектрический генератор

В экспериментах с ТЭМ я проверил изменение его сопротивления в разных режимах. К выводам (ламелям) модуля подключался тестер М830 в режиме измерения сопротивления. Результаты сведены в табл.2. При температурном воздействии, большем чем комнатная температура, на сторону ТЭМ с маркировкой, его сопротивление уменьшалось, на оборотную сторону — пропорционально увеличивалось (в строках 2 и 3 таблицы показана реакция на прикосновение ребром ладони к поверхности ТЭМ, температура указана приблизительно 36°С).

Учитывая обратимость элементов Пельтье, на их основе можно разрабатывать источники электропитания. Например, термоэлектрический генератор “В25-12(М)” компании “Криотерм” (рис.9) позволяет заряжать аккумуляторы мобильных телефонов, цифровых фотоаппаратов, смотреть телевизор, продолжительное время работать на ноутбуке и пр. Единственное требование — нужна нагретая поверхность размерами 20×25 см. Параметры генератора приведены в табл.3.

А.Кашкаров.

 

radiopolyus.ru

Что можно сделать из элементов Пельтье и за счет каких механизмов?

Элементы Пельтье — казалось бы, давно уже не новость, однако многие не полностью представляют принцип их работы, и не знают, что можно сделать из модулей и зачем они нужны. Изобретатель Игорь Белецкий покажет несколько наглядных экспериментов, чтобы у вас сложилось понимание того, на что способны эти пластинки.

Их легко приобрести в интернете и заказать доставку по почте. Купить Пельтье лучше всего в этом китайском магазине. Есть и специальный кулер охлаждения.

Модуль (элемент) Пельтье

Самый популярный модуль Пельтье TEC1-12706

Самым популярным среди практиков, увлеченных идеями свободной природной энергии и производителей технических устройств является элемент размером 40 на 40 миллиметров с маркировкой TEC1-12706.  Это означает, что он состоит из 127 пар малюсеньких термоэлементов — полупроводников разного типа, которые попарно соединены при помощи медных перемычек в последовательную цепь и рассчитаны на постоянный ток до 5 А при напряжении 12 вольт.

Схема Элемента Пельтье

Некоторые думают что модули Peltier, это что-то типа солнечных панелей — ведь они такие же плоские, торчат проводки, и те и другие могут генерировать электрический ток. Увы, это не совсем так на самом деле. Чтобы понять, как функционируют загадочные пластинки, посмотрите видео И. Белецкого, описание в текстовом формате ниже.

Эффекты Пельте и Зебека — функции модуля

У этого девайса есть целых два режима работы — 1. выработка холода и тепла; 2 — генерация электрического тока.

1. Итак, знаменитый эффект Пельтье (тепло и холод). Это когда вы подводите к элементу постоянный ток и замечаете, что одна из его сторон стала теплее, а другая холоднее. Таким образом он работает как тепловой насос. Очень полезное свойство. Спору нет.

2. Но оказалось, что имеет место и обратный процесс — так называемой эффект Зебека, а именно возникновение электрического тока при установлении и поддержании определенной разности температур на сторонах самого модуля (пластинки).

Примечание. Никогда не перегревайте элементы, если хотите и далее проводить эксперимент с ними. Полупроводники в модуле спаяны припоем, температура плавления которого может лежать в пределах от восьмидесяти до двухсот градусов. А учитывая, где сегодня производится большинство этих элементов, можно только догадываться на каких соплях их спаяли.

Схема. Как создается электричество при нагреве сторон Пельтье

Вся неприятность в том, что этот элемент будет нормально работать только при эффективном охлаждении.

Тест с получением электричества

Например, мы хотим проверить эффект Зебека. Поставим сверху кружку с кипятком. Тем самым не превышено 100 градусов, допустимых по нагреву.

Наблюдаем появление напряжения. Интересно, что если изменить направление тепловой потока через модуль, то изменится направление постоянного тока. Но со временем на второй стороне благодаря теплопроводности элемента Пельтье температура тоже поднимется и напряжение, естественно, упадет.

Чтобы эффект был постоянным, нужен постоянный отвод тепла. Для этого модуль размещают на массивным радиаторое и желательно с активным охлаждением. Показатели явно лучше, как вы понимаете. Это требует дополнительных энергозатрат.

Допустим, вы хотите сделать из этого элемента походную зарядку для мобильников. Тогда на природе радиатор можно поместить в холодную воду, возможно даже проточную или ледяную, что несомненно еще лучше. Применение этих модулей зимой при хорошем дармовом минусе — наиболее перспективно.

Правда, одного элемента для зарядки телефона явно будет маловато. А вот два — это уже лучше. Естественно, если увеличить нагрев, то выходная мощность тоже возрастет. Но это очень рискованный шаг, который можно сделать только ради эксперимента. Работа такого генератора будет длиться недолго.

Теперь перейдем к эффекту Пельтье, то есть к производству холода.

Холодильник на модулях Пельте — насколько он эффективен?

Для эксперимента будет использован автомобильный холодильник. Полезный объем его 20 литров. Обратите внимание — заявленная мощность — 48 ватт при токе 4 ампера и постоянном напряжении 12 вольт. А это значит, что внутри стоит всего лишь 1 маленький элемент Пельтье. Для тех кто не в теме откроем секрет — такую же мощность имеет обычный домашний холодильник, размеры которого в разы больше. Ну да ладно, сейчас не об этом. Проверим его эффективность. Например поставим ему минимальную задачу охладить стаканчик с водой, имеющей комнатную температуру 26 градусов. Для работы холодильника будем использовать блок питания, идеально подходящий по своим параметрам. Дополнительно в цепь будем помещен ваттметр. Он будет в реальном времени отображать ток, напряжение и мощность. Но самое главное — потребление, так называемый ватт в час. Таким образом мы сможем примерно оценить энергозатраты нашего холодильника.

Включаем и видим, все прекрасно работает. Вот ток 4,29 А. Напряжение 11,15 Вольт. Мощность 47,9 Ватт. 0,1 Ватт-часов.

Пока процесс идет, проведем более наглядный эксперимент, который покажет, что же именно происходит в холодильнике. Когда подадим на элемент постоянный ток, он начнет перекачивать тепло с одной стороны на другую.

Кстати, если поменять направление тока, то изменится и направление перекачки тепла, что весьма удобно. Главное не забываем об активном охлаждении, потому что пятьдесят ватт электрической мощности нагревает элемент мгновенно. Чем эффективнее мы отведем тепло с горячий стороны, чем холоднее на другой.

Как видите, на самой поверхности модуля вода замерзает очень быстро, ну еще бы — столько энергии сжирает.

Но вернемся к нашему холодильнику. Спустя один час работы температура воздуха внутри упала до пятнадцати градусов, а у воды опустилась до 20. Удивило, что за час работы он съел четко 48 ватт. Через два часа у воздуха было 13 градусов, а у воды 17. И наконец, после трех часов работы температура воздуха остановилась на 13-ти градусах, а в стакане с водой была 15 и ниже 12 она уже не опустится. Ну так себе холодильник, учитывая что он был забит напитками не полностью. Но при этом этот монстр потребил 140 Ватт. Для домашней сети может и не много, но для автомобильного аккумулятора это уже весьма ощутимо. Поэтому здесь и стоит всего лишь один элемент. Потому что больше никакой аккумулятор просто не потянет. А это значит, что кпд такого модуля ничтожно мал — буквально считанные проценты, что опять же зависит от производителя. Такой холодильник больше напоминает хороший термос. Если бы взяли из дома холодные продукты, то он бы просто не позволил им быстро нагреться. Делать такие холодильники большими энергетически невыгодно.

В каких случаях Пельтье эффективен?

Кстати это относится и к самодельщикам,  пытающихся делать на этом принципе автомобильные кондиционеры. Есть более эффективные технологии, а вот использовать элементы Пельтье для охлаждения чего-то маленького и компактного — просто идеальное решение. Есть целый спектр таких устройств, например охлаждать процессоры или микросхемы различных малогабаритных приборов. В этом скорее всего и есть самый главный плюс таких элементов. Они миниатюрны и минимальны по весу. По сравнению с теми же фотоэлементами у Пельтье минусов конечно больше, ну а самый эффект безусловно заслуживает внимания. В конце концов все зависит от решаемых задач а если энергия халявная, то высокий КПД не так уж и важен.

До скольки градусов можно охладить элемент? Об этом в отдельном видео.

Заключение

Популярные среди радиолюбителей и инженеров модули Пельтье — электронные элементы, активно использующиеся для систем охлаждения и получения электроэнергии. На их основе разрабатываются источники питания для освещения или зарядки девайсов в походных условиях, мобильные компактные холодильники для автомобилей. Существуют попытки применения для охлаждения компьютерных процессоров. Работа устройств основана на 2 механизмах: при нагреве одной стороны пластины Пельтье и охлаждении второй, вырабатывается электроток; при подаче электричества на контакты одна сторона пластины охлаждается, вторая — нагревается.

izobreteniya.net

Элемент Пельтье он же термоэлектрический модуль

Чуть чуть теории.

Единичным элементом термоэлектрического модуля (ТЭМ)  является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.

Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле термопары помещаются между двух плоских керамических пластин на основе оксида или нитрида алюминия. Количество термопар может изменяться в широких пределах — от единиц до сотен пар, что позволяет создавать ТЭМ практически любой холодильной мощности — от десятых долей до сотен ватт.

При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.

Практика.

Элементы Пельте широко используются в системах охлаждения. Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих их возможностей и посвящена данная лабораторная работа. 

50*50 мм элемент, установлен между двумя алюминиевыми брусками. Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из брусков просверлены сквозные отверстия, через которые пропущена медная трубка, для водяного охлаждения. Вот, что получилось:

   Подключаем воду к охладителю  к одной стороне элемента Пельтье, а другую ставим на конфорку.  К выходу элемента подключаем 10Вт 6 вольтовою лампочку. Результат — наш генератор работает !

  Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта. 

Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%. 

   Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима…

При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки.

Использование термоэлектрического модуля.

Такой термоэлектрический генератор прекрасно помнят те, кто помнит советские совхозы и колхозы. Говорят, в войну немцы не могли понять, как партизаны могут подолгу вести радиопередачи из осажденного леса.

Да, как говорится — если бы нашим ученым платили деньги, то они бы iphone  ещё в `85 изобрели бы ! 🙂

Термоэлектрический холодильник

Термоэлектрический холодильник (вариант 2)

Термоэлектрический холодильник (вариант 3)

Автомобильный охладитель для баночных напитков

Кулер для питьевой воды

Термоэлектрический кондиционер для кабины КАМАЗа

В такой «ковшик» наливается вода, ставится на огонь и, пожалуйста, подзаряжай мобильник. Весь секрет в дне, там «зарыт» Пельтье

Давайте поподробней об этой конструкции.

В настоящее время растет интерес к использованию термоэлектрических генераторных модулей в бытовых устройствах. В первую очередь это касается возможности питания маломощных потребителей электроэнергии — радиоприемники, сотовые и спутниковые телефоны, переносные компьютеры, устройства автоматики и т.п. от имеющихся источников тепла. Термоэлектрический генератор, в котором отсутствуют вращающиеся, трущиеся и какие-либо другие изнашиваемые части, позволяет непосредственно получать электричество из любого источника тепла: выхлопных газов двигателей внутреннего сгорания, горячей воды геотермальных источников, «бросового» тепла ТЭЦ и т.п. Руководствуясь опытом, полученным при создании промышленных термоэлектрических генераторов (ТЭГ) различной мощности — от нескольких Ватт до нескольких килоВатт ИПФ КРИОТЕРМ приступила к серийному производству бытового ТЭГ номинальной мощностью 8 Вт. Конструктивно генератор выполнен в виде алюминиевого ковшика с внутренним объемом около 1 л в донной части которого установлены генераторные модули производства ИПФ Криотерм.

 

Необходимый для работы генератора перепад температур достигается при разогреве ковшика, например, пламенем костра. Вода, нагреваемая внутри ковшика может идти на приготовление пищи или на другие цели. Данный генератор в первую очередь предназначен для использования в глухих, труднодоступных местах для подзарядки элементов питания индивидуальных средств связи и навигации, освещения и т.п. Он незаменим для охотников, туристов, моряков, сотрудников спасательных и специальных служб, вынужденных долгое время находится вдали от источников центрального энергоснабжения.

Преимуществом генератора является малый вес и объем, высокая удельная генерируемая мощность, функциональность и высокая надежность. Конструкция генератора исключает возможность его перегрева при правильном использовании. В качестве дополнительной опции к генератору предлагается ступенчатый стабилизатор напряжения с диапазонами 3 В — 6 В — 9В -12В и переходники для зарядных устройств.

БЫТОВОЙ ГЕНЕРАТОР ТЕРМОЭЛЕКТРИЧЕСКИЙ 1TG-8

Техническая спецификация

Масса без жидкости , кг, не более 0,55

Габаритные размеры, мм

с ручкой

без ручки 250х130х110 ? 123, h=100

Внутренний объем, дм3 1,0

Номинальная генерируемая мощность, Вт, не менее 8,0

Выходное напряжение, В 3,0 ? 12,0

Ток, мА 660 ? 2660

А вот ещё один пример использования .

Из таких небольших термоэлектрических конденсаторов и состоит генератор.

Уже сейчас термоэлектрические генераторы (TEG) благодаря применению новейших материалов способны вырабатывать электроэнергию мощностью до 1000 Вт.

Термогенератор особенно порадует любителей динамичной езды: ведь чем выше обороты мотора, тем больше вырабатывается электроэнергии, которая в будущем может использоваться в гибридных силовых установках, например, для еще лучшей разгонной динамики.

Почти две трети энергии топлива в современных ДВС «улетает» в атмосферу вместе с теплом. Поэтому инженеры BMW вместе со специалистами американского аэрокосмического агентства NASA активно работают над технологиями превращения тепловой энергии выхлопных газов в электрическую. Такие установки имеют еще один позитивный эффект: дополнительное нагревание непрогретого мотора. Пока TEG «окутывает» отрезок выхлопной трубы, но в будущем планируется интегрировать эту систему в катализатор, используя тем самым его тепловой режим. Для более масштабного внедрения данной технологии в автомобиле придется модернизировать днище, расширив в некоторых местах центральный тоннель. Ожидается, что подобная система уже совсем скоро сможет давать 5-процентную экономию топлива, повышая КПД двигателя внутреннего сгорания.

Вот такой он Элемент Пельтье или термоэлектрический модуль!

sdelaysam-svoimirukami.ru

как сделать в домашних условиях и практическое применение

Элемент Пельтье – это специальный термоэлектрический преобразователь, который работает по одноименному принципу Пельтье – возникновении разности температур во время подачи электрического тока. В английском языке чаще всего упоминается как ТЕС, что в переводе означает термоэлектрический охладитель.

Как работает элемент Пельтье

Работа элемента Пельтье базируется на контакте двух токопроводящих материалов, которые обладают разным уровнем энергии электронов в зоне проводимости. При подаче электрического тока через подобную связь, электрон приобретает высокую энергию, чтобы потом перейти в более высокоэнергетическую зону проводимости другого полупроводника. В момент поглощения этой энергии осуществляется охлаждение места охлаждения проводников. Если же ток протекает в обратном направлении – то это приводит к нагреванию места контакта и к обычному тепловому эффекту.

Если с одной стороны сделать хороший отвод тепла, например, при использовании радиаторных систем, то холодная сторона сможет обеспечить очень низкую температуру, которая на десятки градусов будет ниже температуры окружающего мира. Величина тока пропорциональна степени охлаждения. Если же сменить полярность электрического тока, то стороны (тёплая и холодная) просто поменяются местами.

В контакте с металлической поверхностью элемент Пельтье становится настолько малым, что его практически невозможно заметить на фоне омического нагрева и других эффектов теплопроводности. Именно поэтому на практике применяется два полупроводника.

Количество термопар может быть самым разнообразным – от 1 до 100, за счёт чего можно сделать элемент Пельтье практически с любыми показателями холодильных мощностей.

Практическое применение

В наше время элементы Пельтье активно применяются для:

  1. холодильников;
  2. кондиционеров;
  3. автомобильных охладителей;
  4. кулеров для воды
  5. видеокарт ПК;

Элемент Пельтье получил широкое применение в различных холодильных системах, в том числе и среди холодильников и кондиционеров. Возможность достигать очень низких температур делает его превосходным решением для охлаждения электрических приборов или технического оборудования, подвергающегося нагреву. Сегодня разработчики применяют элементы Пельтье в акустических и звуковых системах, где они выполняют роль обычного куллера. Отсутствие интенсивных звуков делает процесс охлаждения практически бесшумным, что является прекрасным преимуществом элемента.

В наше время подобная технология пользуется большой популярностью за счёт очень мощной теплоотдачи. К тому же, современные элементы Пельтье отличаются очень компактными габаритами, а их радиаторы способны хранить нужную температуру на протяжении длительного времени. Ещё одним преимуществом элементов Пельтье является их долговечность, т.к. они состоят из цельных неподвижных элементов, что уменьшает вероятность поломок. Конструкция самого распространённого типа выглядит очень просто и включает в себя два медные проводника с контактами и соединительными проводами, также изолирующий элемент, который изготовляется из нержавеющей стали или керамических материалов.

Модуль для регулятора

Учитывая простоту конструкции, сделать элемент Пельтье своими руками в домашних условиях совсем несложно. Его можно будет использовать для холодильников или прочих приборов. Перед началом работ вам нужно подготовить две металлические пластины и проводку с контактами. Изначально подготовьте проводники, которые необходимо установить у основания элемента. Как правило, применяются проводники с маркировкой «РР».

Также стоит заранее позаботиться об полупроводниках на выходе. Они будут применяться для отдачи тепла на верхнюю пластину. В процессе установки задействуйте паяльник. На конечном этапе нужно присоединить два провода. Первый устанавливается у основания и прочно закрепляется возле крайнего проводника. Важно учесть, чтобы любые соприкосновения с пластиной были устранены.

Второй проводник прикрепляется у верхней части. Фиксируется он таким же образом, как и первый – к крайнему проводнику. Чтобы проверить функциональность устройства стоит применить тестер. Просто соедините два провода к прибору и проверьте вольтаж. Отклонение напряжения будет составлять где-то 23 В.

Как сделать элементы Пельтье для холодильника?

Элементы Пельтье своими руками для холодильника изготавливаются также просто и быстро. Первое, что нужно учесть перед работами, это – материал пластины. Это должна быть прочная керамика. Что касается проводников, то их нужно подготовить не меньше 20-ти штук, что позволит добиться максимального перепада температур. При правильном расчете коэффициент полезного действия может быть увеличен на 70%.

Многое зависит от мощности используемого оборудования. Если холодильник работает на основе жидкого фреона, то проблем с мощностью никогда не будет. Элемент Пельтье, который был изготовлен своими руками устанавливается непосредственно возле испарителя, который установлен вместе с мотором. Для подобного монтажа вам понадобится запастись самым стандартным набором инструментов и прокладками. Они будут применены для элемента модели от пускового реле. С помощью подобного решения охлаждение в нижней части устройства произойдёт намного быстрее.

Стоит помнить, что перед тем как сделать элемент Пельтье для холодильника своими руками, вам нужно запастись достаточным количеством электрических проводников. Для того чтобы добиться разницы в температурах при разработке элемента своими руками, используйте не меньше 16 проводов. Обязательно обеспечьте им качественную изоляцию и только тогда подключайте к компрессору. Убедившись в надёжности и безопасности связи между проводами можно переходить к их соединению. После завершения установки ещё раз проверьте силу предельного напряжения с помощью тестера. Если работа элемента была нарушена, это первым делом скажется на терморегуляторе. Иногда случается его короткое замыкание.

Помимо холодильников, элементы Пельтье активно применяются и в автомобильных охладителях. Сделать качественный автомобильный холодильник своими руками тоже достаточно просто. Для этого необходимо найти хорошую керамическую пластину с толщиной не меньше 1.1 миллиметра. Провода должны быть немодульными. В качестве проводников лучше всего использовать медные провода с пропускной способностью не меньше 4 Ампера.

В связи с этим максимальное отклонение температур будет доходить до десяти градусов, что считается нормой. В частых случаях используются проводники с маркировкой «ПР20», которые сумели отличиться максимальной надёжностью и стабильностью работы. К тому же они подходят для различных типов контактов. При соединении устройства с конденсатором стоит применить паяльник.

Как сделать элемент Пельтье для кулера питьевой воды?

Кулер питьевой воды – это очень важное и необходимое устройство, которое вовремя охлаждает или нагревает питьевую воду. Чтобы ускорить процесс охлаждения, можно применить элемент Пельтье. Сделать его можно так же просто, как и для холодильника или автомобильного охладителя:

  • В качестве пластины стоит использовать исключительно керамическую поверхность.
  • В устройстве применяется не меньше 12 проводников, которые смогут выдерживать высокое сопротивление.
  • Для подключения нужно использовать два провода (желательно медные). Элемент устанавливается в нижней части кулера. К тому же он может соприкасаться с крышкой устройства. Но чтобы предотвратить возможные короткие замыкания фиксируйте всю проводку на решетке либо корпусе.

Элемент Пельтье для кондиционеров своими руками

Если речь идёт об элементе Пельтье для кондиционеров, то он может быть изготовлен только из проводника «ПР12». Дело в том, что этот тип проводников отлично выдерживает аномальные температуры и способен выдавать до 23В напряжения. Сопротивление при этом должно колебаться в пределах 3 Ом. Максимальные перепады температур будут достигать 10 градусов и КПД – 65 процентов. Проводники нужно укладывать в один ряд.

Стоит отметить, что элемент Пельтье может служить в качестве охладителя для видеокарты персонального компьютера. Для изготовления охладителя нужно взять 14 проводников, желательно из меди. Чтобы подключить элемент Пельтье к видеокарте ПК нужно задействовать немодульный проводник. Само устройство монтируется рядом с встроенным кулером на видеокарте. Для закрепления можно использовать маленькие металлические уголки, а для фиксации обычные гаечки.

Если при работе замечаются какие-то интенсивные шумы и прочие неестественные звуки, стоит проверить работоспособность проводки и осмотреть каждый проводник.

Оцените статью: Поделитесь с друзьями!

elektro.guru

Охлаждающий кожух TPCC Dx100 | SICK

Охлаждающий кожух TPCC Dx100 | SICK

Тип:Охлаждающий кожух TPCC Dx100

Артикул: 6048328

Постоянное наличие:

Технический паспорт изделия Русский Cesky Dansk Deutsch English Español Suomi Français Italiano 日本語 – Японский 한국어 – Корейский Nederlands Polski Portugues Svenska Türkçe Traditional Chinese Китайский

Copy shortlink
  • Охлаждающий кожух TPCC работает с использованием эффекта Пельтье и дает возможность эксплуатировать датчики длительное время при температуре окружающей среды до +75 °C. Кроме того, с помощью ТРСС может существенно увеличиваться срок службы лазерных датчиков. Физически обусловлено снижение срока службы лазерного датчика наполовину на каждые 10 °C повышения температуры. При применении в условиях высоких температур, связанных с климатом или технологией, TPCC предлагает оптимальную защиту датчика, снижает риск неожиданных поломок и, соответственно, простои оборудования. Целенаправленное продление срока службы датчиков позволяет снизить расходы на их замену и сократить простои производства. Инновационный охлаждающий кожух TPCC надежно защищает датчики, повышает производительность и снижает расходы.

    Краткий обзор
    • Эффективная защита для датчиков при повышенных температурах окружающей среды
    • Не требующая техобслуживания система охлаждения с использованием эффекта Пельтье
    • Прочный корпус из полиамида-6 с передним защитным стеклом
    • Термостатическое регулирование внутренней температуры
    • Контроль температуры с автоматическим отключением при превышении температуры
    • Юстировочное крепление для простого монтажа
    Ваши преимущества
    • Активное охлаждение датчиков с использованием эффекта Пельтье увеличивает их срок службы на 15 % при температуре окружающей среды 25 °C и на 400 % при температуре окружающей среды 45 °C. Благодаря более редкой замене датчиков значительно снижаются расходы на их замену.
    • Повышенная доступность датчиков исключает неожиданные поломки и связанные с этим простои оборудования. Тем самым исключаются затраты вследствие поломки оборудования и повышается производительность.
    • Постоянная внутренняя температура гарантирует высокую точность измеряемых значений и, соответственно, обеспечивает получение прецизионных результатов измерения
    • Электрическое охлаждение с использованием эффекта Пельтье не требует техобслуживания, необходимо лишь обеспечить подключение напряжения 24 В вместо затратного водяного охлаждения

    Технические чертежи

    Dimensional drawing

Пожалуйста, подождите…

Ваш запрос обрабатывается, это может занять несколько секунд.

Охлаждающий кожух TPCC DME4000/DME5000 | SICK

Охлаждающий кожух TPCC DME4000/DME5000 | SICK

Тип:Охлаждающий кожух TPCC DME4000/DME5000

Артикул: 6036180

Постоянное наличие:

Технический паспорт изделия Русский Cesky Dansk Deutsch English Español Suomi Français Italiano 日本語 – Японский 한국어 – Корейский Nederlands Polski Portugues Svenska Türkçe Traditional Chinese Китайский

Copy shortlink
  • Охлаждающий кожух TPCC работает с использованием эффекта Пельтье и дает возможность эксплуатировать датчики длительное время при температуре окружающей среды до +75 °C. Кроме того, с помощью ТРСС может существенно увеличиваться срок службы лазерных датчиков. Физически обусловлено снижение срока службы лазерного датчика наполовину на каждые 10 °C повышения температуры. При применении в условиях высоких температур, связанных с климатом или технологией, TPCC предлагает оптимальную защиту датчика, снижает риск неожиданных поломок и, соответственно, простои оборудования. Целенаправленное продление срока службы датчиков позволяет снизить расходы на их замену и сократить простои производства. Инновационный охлаждающий кожух TPCC надежно защищает датчики, повышает производительность и снижает расходы.

    Краткий обзор
    • Эффективная защита для датчиков при повышенных температурах окружающей среды
    • Не требующая техобслуживания система охлаждения с использованием эффекта Пельтье
    • Прочный корпус из полиамида-6 с передним защитным стеклом
    • Термостатическое регулирование внутренней температуры
    • Контроль температуры с автоматическим отключением при превышении температуры
    • Юстировочное крепление для простого монтажа
    Ваши преимущества
    • Активное охлаждение датчиков с использованием эффекта Пельтье увеличивает их срок службы на 15 % при температуре окружающей среды 25 °C и на 400 % при температуре окружающей среды 45 °C. Благодаря более редкой замене датчиков значительно снижаются расходы на их замену.
    • Повышенная доступность датчиков исключает неожиданные поломки и связанные с этим простои оборудования. Тем самым исключаются затраты вследствие поломки оборудования и повышается производительность.
    • Постоянная внутренняя температура гарантирует высокую точность измеряемых значений и, соответственно, обеспечивает получение прецизионных результатов измерения
    • Электрическое охлаждение с использованием эффекта Пельтье не требует техобслуживания, необходимо лишь обеспечить подключение напряжения 24 В вместо затратного водяного охлаждения

    Технические чертежи

    Dimensional drawing

Пожалуйста, подождите…

Ваш запрос обрабатывается, это может занять несколько секунд.

Термоэлемент Пельтье термогенератор Зеебека TEC1-27145 SP1848

Термоэлемент Пельтье TEC1-27145 SP1848 используется в ситуациях, когда необходимо охлаждение с небольшой разницей температур или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах (Полимеразная цепная реакция), маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, необходимая мощность охлаждения невелика.
Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например, в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.
Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения. В приборах при низкой мощности охлаждения элементы Пельтье часто используются, как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30 – 40 Кельвин ниже, чем с помощью обычных компрессионных охладителей (до -80 для одностадийных холодильников и до -120 для двухстадийных).
Для использования термоэлемента Пельтье нужно собрать на его основе макет, подключить питание в полярности, в соответствии с поставленной задачей (нагрев или охлаждение). Если подключать красный проводник элемента Пельтье к позитивному полюсу, а черный к негативному, то сторона с маркировкой будет «холодной», соответственно обратная сторона — «горячей». Если поменять полярность питания, поменяется направление «перекачки» тепла (холода), т.е. можно простым переключателем превратить его из холодильника в нагреватель. Чем эффективнее будет отвод тепла с горячей стороны, тем эффективнее будет охлаждение.
Устройство термоэлемента Пельтье TEC1-27145 SP1848:

Термоэлемент TEC1-27145 SP1848 можно использовать в качестве термогенератора. Для этого необходимо одну сторону термоэлемента охлаждать, а другую нагревать. При разнице температур между холодной и горячей сторонами термоэлемента, возникает разница электрических потенциалов и появляется ЭДС. Чем больше разница температур, тем выше выходная мощность.
Абсолютные параметры:

  • Выходное напряжение при разнице температуры 100°C: 4,8 В;
  • Максимальный выходной ток при разнице температуры 100°C: 669 мА.
  • Но на практике удается получить с этого элемента немного больше 1 Вт выходной мощности.

Характеристики:

модель: TEC1-27145 SP1848;
вид модуля: однокаскадный;
максимальная температура горячей стороны без отвода тепла: 50°C;
максимальное выходное напряжение: 4,8 В;
максимальный выходной ток: 669 мА;
максимальная выходная мощность: 3,4 Вт;
реальная выходная мощность: немного больше 1 Вт;
длина проводов: 270 мм;
размеры: 40 x 40 х 4 мм;
вес: 22 г.

ВАЖНО: категорически запрещается допускать нагрев «горячей» стороны термоэлемента выше 50 градусов иначе через 1 — 2 минуты работы, без отвода тепла, термоэлемент выгорит (выйдет из строя). При проектировании обязательно выбирайте радиатор, способный рассеять выделяемое тепло. По возможности контролируйте температуру «горячей» стороны термоэлемента любыми доступными Вам средствами (термопара, терморезистор т.п.).

Даташит.

Автоматический компактный поляриметр POL-1/2 (POL-HALF) с контролем температуры Пельтье : Колизей 21

Производитель: ATAGO

Поляриметры компании ATAGO используются для измерений активных субстанций, таких как сахарид, аскорбиновая кислота, глаумат натрия и других.

Новые поляриметры ATAGO предлагает высочайшую эффективность в малой площадью основания. 
Благодаря усовершенствованиям, внесенным в конструкцию, POL-1/2 теперь потребуется только половина пространства сравнительно с обычной моделью. компактный дизайн способствует гибкости установки.  Молниеносный отклик -время от 60сек, оптимизирует эффективность работы.  Дополнительно Пельтье температура блока управления обеспечивает вполне контролируемой температурой измерений. Контроль единицы измерения температуры Пельтье не требует использования воды.

Измерение пункта

Угол поворота, удельное вращение, 
международная сахарная шкала, концентрация, чистота

Принцип измерения

Симметричный ,Угол поворота, оптический  нулевым методом

Диапазон измерения

± 90 ° угла поворота

Разрешение

0.0001°

Точность

± 0,002 ° отображенных значений (менее 1 °), 
относительной точностью ± 0,2% (больше или равно 1 °)

Диапазон температур

0.0 до 99.9℃

Стабильность

±0.002°

Время реакции

60 ° / сек макс.

Поляризатор

Поляризационный фильм

Длина волны

589nm

Детектор

Фотодиод

Длина тубуса

До 100 мм

Метод ввода

Сенсорный

Дисплей

5,7-дюймовый цветной ЖК-дисплей

Обработка данных

Непрерывное измерение, статистические вычисления

Хранение данных

Принтер (продается отдельно), USB флэш-накопитель

Сетевое подключение

Ethernet

Термометр расположения

В ячейке или в ячейке

Источник питания

AC100V к AC240V, (50-60 Гц)

Мощность потребления

100VA

Размеры и вес

490 (Ш) х 250 (Д) х 200 (В) мм, 13 кг

Пельтье температура блока управления TCS-1

Метод контроля температуры

Автонастройки ПИД-регулятор температуры

Диапазон температур

15 to 30 ℃

Точность управления

* ± 0,1 ℃ (термометр сопротивления) 
* точность датчика температуры (термометра сопротивления или 
термопары) не принимается во внимание. 
точности предполагает стабильные условия окружающей среды. Фактическая точность может 
изменяться в зависимости от среды, в которой устройство используется.

Точность показаний

0.1℃

Разрешение

0.1℃

Диапазон температур окружающей среды

0 дo 40℃

Диапазон влажности

Менее 90% относительной влажности, без конденсации

Источник питания

AC100V к AC240V, (50-60 Гц)

Потребляемая мощность

150VA

Особенности безопасности

Предохранитель (перебивает избыточный ток), звуковой сигнал

Размеры и вес

* 150 (Ш) х 216 (Д) х 105 (В) мм, прибл. 2,5 кг. 

Информация для заказа: 

5272

Автоматический компактный поляриметр POL-1/2 (POL-HALF) с контролем температуры Пельтье.

3133

Цифровой принтер DP-AD24

RE-89403 

Бумага для принтера (обычная ) для DP-AD24 

RE-89402

Кассета с лентой для DP- AD24

Источник питания

— Подключение нескольких блоков Пельтье

Я вижу, что эта тема довольно старая, но я хотел добавить свои несколько центов для потомков.

Эффект, о котором говорит Жюль, — сценарий, обычно наблюдаемый в электронике. В общем, опытные инженеры-электрики будут называть это «проблемой балластировки». Токи в термоэлектрических генераторах вызовут нагрев. Нагревание приведет к снижению сопротивления. Это уменьшение сопротивления вызывает повышение тока.Если бы уменьшение сопротивления было второго порядка или выше, мы бы указали, что устройство работает от напряжения. Поскольку эффект нагрева до напряжения имеет 1-й порядок, мы обычно будем говорить об устройстве, управляемом током. Когда что-то управляется током, мы «балластируемся», управляя им от источника тока. Если что-то управляется напряжением (при этом текущая реакция на тепловую энергию имеет 1-й порядок), мы управляем им от источника напряжения. Мы должны «балласт», чтобы предотвратить тепловой разбег. Для чистоты мы должны выполнить мультифизическое моделирование, учитывающее саморазогрев и перекачку тепла вместе с собственными ВАХ устройства и его собственной теплопроводностью.Теплопроводность устройства Пельтье меняется с током гораздо меньше, чем с напряжением. Если вы используете источник тока смещения, любые изменения температурного градиента (например, из-за дросселирования процессора или графического процессора) вызовут очень небольшое изменение напряжения. Однако, если бы мы управляли модулями с фиксированным источником напряжения, любое резкое изменение температуры сначала коснулось бы горячей стороны. Горячая сторона ответит увеличением тока. Увеличение тока приведет к еще большему увеличению градиента температуры в первой ячейке, и мы обнаружим, что процесс завершается, когда только один блок выполняет всю тепловую накачку и рискует сжечь другие ячейки Пельтье.

Для максимальной эффективности, а также термостабильности лучше всего использовать устройство с пропорциональным регулятором тока. В противном случае преобразователь не будет согласован. Фактически, все термоэлектрические тепловые насосы представляют собой внутри несколько последовательно соединенных ячеек Пельтье. (Подробнее см. Ниже).

Чтобы прекратить обобщать проблему и поговорить конкретно с термоэлектрическими модулями:

Эффект Зеебека — это соотношение первого порядка (достаточно близкое для инженеров) между разностью напряжений на градиенте температуры в легированном полупроводнике (или проводнике).Более того, это обратная зависимость:

ЭДС = -Коэффициент Сибека * дельта T = -S dT / dr r-hat (вектор направления)

Если мы замкнем цепь, мы позволим току развиваться из результирующей ЭДС. По закону Ома этот ток генерирует тепло. Плотность тока, генерируемого вокруг соединения разнородных материалов, составляет

J = сигма E = -sigma dV / dL

Напряжение, создаваемое в цепи этим током, равно

. 2 / sigma) + d (k * dT) / dJunction + qExt

Если мы последовательно подключаемся и управляем от источника тока, то J между модулями будет постоянным.2. Это радикально. Увеличение омической диссипации второго порядка происходит с изменением доступной мощности накачки только первого порядка.

В заключение хочу сказать, что вы на правильном пути. Последовательное соединение резко повышает эффективность термоэлектрического охлаждения, за исключением мощности на холостом ходу. По этой причине хорошо продуманная комбинация пропорционального управления с регулированием мощности на холостом ходу может быть наиболее эффективным методом на сегодняшний день.

Можно ли каскадировать устройства Пельтье?

Непосредственная укладка модулей Пельтье на практике проблематична.Требуется значительный теплоотвод. Вы можете представить себе последовательный массив Пельтье (сложенный) в системе как машину, которую необходимо «запустить».

Если теплоотвод слишком велик, запуск нагрева / охлаждения занимает вечность. Это легко компенсируется использованием вентилятора с радиатором, а затем снижением скорости вращения вентилятора при запуске.

Хотя я не могу понять преимущества нагрева на основе Пельтье, кроме системы, которая переключается между нагревом и охлаждением для одной и той же задачи.

Резистивные элементы более долговечны и легче контролируются, чем элементы Пельтье для нагрева, потому что они могут многократно подвергаться жесткому переключению.

Я использовал несколько модулей Пельтье, уложенных друг на друга: модуль 12706 между радиатором / вентилятором на выходной стороне и готовой медной планкой, вдвое превышающей ширину 12706, на выходе.

С другой стороны медной шины были (2) 12706 параллельно, механически, и тяжелый алюминиевый радиатор / вентилятор на стороне выпускного отверстия.

Отдельные элементы Пельтье (ТЕС) были подключены параллельно. Я управлял параллельным массивом из 12706 с максимальным напряжением 15 А, 12 В постоянного тока, RTD-дисциплинированным, линейным блоком питания и постоянным напряжением.

Линейные блоки питания сами по себе неэффективны. Таким образом, SMPS с дисциплиной RTD (КПД> 90%) — более эффективный вариант.

Эта система предназначалась для охлаждения (достигала -12 ° C при комнатной температуре), но если вы перевернете ее, она будет работать на нагрев. Элементы Пельтье нельзя нагревать выше температуры припоя, из которого они изготовлены.Неосторожное или неопытное экспериментирование легко может привести к этому.

Вы просто хотите обеспечить (2) вещи: вы не отводите слишком много тепла от горячей стороны, потому что теплопередача зависит от разницы температур двух сторон. Это свойство модулей TEC имеет специфические ограничения.

Если горячая сторона недостаточно горячая, система не будет передавать тепло и потребляемая мощность будет низкой. А также то, что теплопередача не становится паразитной и не исчерпывает холодную сторону, поэтому весь массив является просто нагревателем.Это может расплавить припой в модуле TEC (Пельтье).

Я обнаружил, что самая полезная спецификация модуля TEC — это оптимальные номинальные диапазоны температур на горячей и холодной сторонах. Все остальное, кроме потребляемой электроэнергии, можно получить экспериментальным путем. Но если вы попытаетесь получить указанную deltaT, используя неверные высокие и низкие температуры, вы можете не получить полную теплопередающую способность модуля.

Значительное преимущество качественных модулей ТЕС заключается в том, что они работают с пониженным номинальным перепадом температур.66C дельта может быть 44C-100C или 0C-66C.

Не все модули TEC, рассчитанные на дельту> = 66C, будут хорошо работать при дельте 0C-66C или ниже. Они могут обеспечить максимальную теплопередачу при дельте 44–100 ° C. Обычно, чем холоднее на холодной стороне, тем желательнее система.

Также требуется, чтобы между модулями ТЕС и тем, с чем они взаимодействуют, наносился термопереносящий интерфейсный состав. Никакой модуль TEC не взаимодействует напрямую с атмосферой. По обе стороны от модулей Пельтье всегда что-то есть.

Мне «не удалось» получить удовлетворительные результаты, укладывая 12712 прямо на горячую сторону 12706.

Охладитель Пельтье — термоэлектрический

6.0 Установка термоэлектрических модулей

В этом разделе технического справочного руководства объясняются методы, которые можно использовать для установки или монтажа термоэлектрического модуля или охладителя Пельтье, включая:

Зажим
Склеивание эпоксидной смолой
Пайка
Монтажные площадки и другие материалы

6.1 Важные рекомендации по установке

Чрезвычайно важны методы, используемые для установки термоэлектрических модулей в системе охлаждения. Несоблюдение некоторых основных принципов может привести к неудовлетворительной работе или надежности. Некоторые из факторов, которые следует учитывать при проектировании системы и установке модуля, включают следующее:

  • Термоэлектрические модули имеют высокую механическую прочность в режиме сжатия, но прочность на сдвиг относительно низка. В результате охладитель TE не должен входить в систему, в которой он служит важным опорным элементом механической конструкции.
  • Все интерфейсы между компонентами системы должны быть плоскими, параллельными и чистыми, чтобы минимизировать тепловое сопротивление. Для обеспечения хорошего контакта между поверхностями часто используется теплопроводный материал с высокой проводимостью.
  • «Горячую» и «холодную» стороны стандартных термоэлектрических модулей можно определить по положению проводов. Провода прикрепляются к горячей стороне модуля, то есть к лицевой стороне модуля, контактирующей с радиатором.Для модулей с изолированными проводами, когда красный и черный провода подключены к соответствующим положительным и отрицательным клеммам источника питания постоянного тока, тепло будет перекачиваться с холодной стороны модуля через модуль в радиатор. Обратите внимание, что для модулей TE с выводами без оголенных проводов положительное соединение находится с правой стороны, а отрицательное соединение — слева, когда выводы обращены к зрителю, а подложка с присоединенными выводами представлена ​​снизу.
  • При охлаждении ниже температуры окружающей среды охлаждаемый объект должен быть максимально изолирован, чтобы минимизировать потери тепла в окружающий воздух.Для уменьшения конвективных потерь вентиляторы не следует располагать так, чтобы воздух дул прямо на охлаждаемый объект. Кондуктивные потери также могут быть минимизированы за счет ограничения прямого контакта между охлаждаемым объектом и внешними конструктивными элементами.
  • При охлаждении ниже точки росы на открытых охлаждаемых поверхностях будет образовываться влага или иней. Чтобы предотвратить попадание влаги в ТЕ-модуль и серьезное снижение его тепловых характеристик, необходимо установить эффективный влагозащитный кожух.Это уплотнение должно быть образовано между радиатором и охлаждаемым объектом в области, окружающей модуль (модули) ТЕ. Гибкая изоляционная лента из вспененного материала или листовой материал и / или силиконовый каучук RTV относительно просты в установке и обеспечивают эффективную изоляцию от влаги. Доступно несколько методов монтажа термоэлектрических модулей, и конкретное применение продукта часто диктует метод, который будет использоваться. Возможные методы монтажа описаны в следующих параграфах.

6.1.1 ДОПУСК ПО ВЫСОТЕ: Большинство термоэлектрических охлаждающих модулей доступны с двумя значениями допуска по высоте: +/- 0,3 мм (+/- 0,010 ″) и +/- 0,03 мм (0,001 ″). Когда в термоэлектрическом узле используется только один модуль, модуль с допуском +/- 0,3 мм обычно является предпочтительным, поскольку он обеспечивает небольшое преимущество в стоимости по сравнению с сопоставимым модулем с жесткими допусками. Однако для приложений, в которых необходимо установить более одного модуля между радиатором и охлаждаемым объектом, необходимо точно согласовывать толщину всех модулей в группе, чтобы обеспечить хорошую теплопередачу.По этой причине модули допуска +/- 0,03 мм (+/- 0,001 ″) следует использовать во всех многомодульных конфигурациях.

6.2 Зажим

Самый распространенный метод монтажа заключается в зажиме термоэлектрического модуля (ов) между радиатором и плоской поверхностью охлаждаемого изделия. Этот подход, как показано на рисунке (6.1), обычно рекомендуется для большинства приложений и может применяться следующим образом:

a) Обработайте или отшлифуйте плоские монтажные поверхности, между которыми будет располагаться ТЕ-модуль (модули).Для достижения оптимальных тепловых характеристик монтажные поверхности должны быть плоскими с точностью до 1 мм / м (0,001 дюйма / дюйм).

b) Если несколько модулей TE монтируются между данной парой монтажных поверхностей, все модули в группе должны быть согласованы по высоте / толщине, чтобы общее изменение толщины не превышало 0,06 мм (0,002 дюйма). Необходимо указать P / N модуля с окончанием «B».

c) Монтажные винты должны быть расположены симметрично относительно модуля (модулей), чтобы обеспечить равномерное давление на модуль (модули), когда сборка зажата вместе.Чтобы свести к минимуму потери тепла через крепежные винты, желательно использовать винт наименьшего размера, который практичен для механической системы. В большинстве случаев подойдут винты из нержавеющей стали M3 или M3,5 (4-40 или 6-32). В качестве альтернативы можно использовать неметаллические застежки, например нейлон. Винты меньшего размера могут использоваться в сочетании с очень маленькими механическими узлами. Под головкой каждого винта следует использовать пружинные шайбы Belleville или разрезные стопорные шайбы для поддержания равномерного давления при нормальном тепловом расширении или сжатии компонентов системы.

d) Очистите модуль (модули) и монтажные поверхности, чтобы удалить все заусенцы, грязь и т. Д.

e) Покройте «горячую» сторону модуля (модулей) тонким слоем (обычно толщиной 0,02 мм / 0,001 дюйма или меньше) теплопроводящей смазки и поместите модуль горячей стороной вниз на радиатор в желаемое место. Слегка надавите на модуль и вращайте его взад-вперед, чтобы выдавить излишки термопасты.Продолжайте комбинированное давление вниз и поворот, пока не почувствуете легкое сопротивление. Ferrotec America рекомендует и имеет на складе American Oil and Supply (AOS) тип 400, код продукта 52032.

f) Нанесите на «холодную» сторону модуля (ей) термопасту, как указано в шаге (e) выше. Поместите охлаждаемый объект так, чтобы он соприкасался с холодной стороной модуля (модулей). Выдавите излишки термопасты, как описано ранее.

g) Скрепите вместе радиатор и охлаждаемый объект винтами из нержавеющей стали и пружинными шайбами.Важно прикладывать равномерное давление к монтажным поверхностям, чтобы поддерживать хорошую параллельность. Если приложить значительно неравномерное давление, тепловые характеристики могут снизиться или, что еще хуже, могут быть повреждены ТЕ-модуль (модули). Чтобы обеспечить равномерное давление, сначала затяните все крепежные винты вручную, начиная с центрального винта (если есть). Используя динамометрическую отвертку, постепенно затягивайте каждый винт, двигаясь от винта к винту крест-накрест, и увеличивайте крутящий момент небольшими приращениями.Продолжайте процедуру затяжки, пока не будет достигнуто надлежащее значение крутящего момента. Типичное монтажное давление составляет от 25 до 100 фунтов на квадратный дюйм в зависимости от области применения. Если динамометрической отвертки нет в наличии, правильное значение крутящего момента можно приблизительно определить, выполнив следующую процедуру:

Крестообразно затяните винты до тех пор, пока они не будут «плотно», но не сильно затянуты. Таким же крестообразным образом затяните каждый винт примерно на четверть оборота, пока не почувствуете пружинящее действие шайбы.

h) Небольшое дополнительное количество термопасты обычно выдавливается вскоре после того, как узел впервые будет зажат. Чтобы гарантировать сохранение надлежащего крутящего момента винта, подождите не менее одного часа и перепроверьте крутящий момент, повторив шаг (g) выше.

i) ВНИМАНИЕ : Чрезмерная затяжка зажимных винтов может привести к изгибу или искривлению поверхности радиатора или холодного объекта, особенно если эти компоненты изготовлены из относительно тонкого материала.Такой изгиб, в лучшем случае, снизит тепловые характеристики, а в тяжелых случаях может вызвать физическое повреждение компонентов системы. Изгиб можно минимизировать, расположив зажимные винты рядом с термоэлектрическим модулем (модулями) и используя материалы средней толщины. Однако, если горячие и / или холодные поверхности изготовлены из алюминия толщиной менее 6 мм (0,25 дюйма) или меди толщиной менее 3,3 мм (0,13 дюйма), может потребоваться применить крутящий момент винта с меньшим значением, чем указанные в шаге (g) выше.


Рисунок (6.1)

Установка модуля TE с использованием метода зажима


Надлежащий момент затяжки болта для сборок модуля TE может быть определен следующим соотношением:

T = крутящий момент на каждом болте
S a = цикл 25-50 фунтов на кв. Дюйм, статический 50-75 фунтов на квадратный дюйм.
A = общая площадь модуля (модулей)
N = количество болтов, используемых в сборке
K = коэффициент крутящего момента (используйте K = 0.2 для стали, K = 0,15 для нейлона)
d = номинальный диаметр болта

Для стальных крепежных изделий мы обычно рекомендуем:

6-32 d = 0,138 дюйма (0,350 см)
4-40 d = 0,112 дюйма (0,284 см)

Следующий рекомендуемый крутящий момент рассчитан для девяти модулей 9500/065/018, удерживаемых четырьмя стальными креплениями 4-40:

T = ((75 фунтов / дюйм 2 x (0,44 дюйма x 0,48 дюйма) x 9) / 4) x 0.2 x 0,112 дюйма = 0,8 дюйма на фунт

6.3 Склеивание эпоксидной смолой

Второй метод монтажа модуля, который полезен для определенных приложений, включает приклеивание модуля (модулей) к одной или обеим монтажным поверхностям с помощью специального эпоксидного клея с высокой теплопроводностью. Поскольку коэффициенты расширения керамики модуля, радиатора и охлаждаемого объекта различаются, мы не рекомендуем приклеивать эпоксидную смолу для более крупных модулей. Проконсультируйтесь со своим инженером по приложениям. Примечание. Если не используются подходящие процедуры для предотвращения выделения газа, эпоксидное соединение не рекомендуется, если система охлаждения TE будет использоваться в вакууме.Для монтажа модуля эпоксидной смолой:

a) Обработайте или отшлифуйте плоские монтажные поверхности, между которыми будет располагаться ТЕ-модуль (модули). Хотя плоскостность поверхности менее важна при использовании эпоксидной смолы, всегда желательно, чтобы монтажные поверхности были как можно более плоскими.

b) Очистите и обезжирьте модуль (модули) и монтажные поверхности, чтобы убедиться, что все заусенцы, масло, грязь и т. Д. Были удалены. Следуйте рекомендациям производителя эпоксидной смолы относительно правильной подготовки поверхности.

c) Покройте горячую сторону модуля тонким слоем теплопроводящей эпоксидной смолы и поместите модуль горячей стороной вниз на радиатор в желаемом месте. Слегка надавите на модуль и вращайте его взад-вперед, чтобы выдавить излишки эпоксидной смолы. Продолжайте комбинированное давление вниз и поворот, пока не почувствуете легкое сопротивление.

d) Взвешивайте или зажимайте модуль на месте, пока эпоксидная смола не затвердеет должным образом.Конкретную информацию об отверждении см. В техническом паспорте производителя эпоксидной смолы. Если указано отверждение в печи, убедитесь, что максимальная рабочая температура ТЕ-модуля не превышается во время процедуры нагрева. Обратите внимание, что большинство охлаждающих модулей TE, производимых Ferrotec, имеют максимальную рабочую температуру 200 ° C для серии 95.

6.4 Пайка

Термоэлектрические модули с металлизированными внешними поверхностями могут быть впаяны в сборку при условии, что будут приняты соответствующие меры для предотвращения перегрева модуля.Припаивание к жесткому структурному элементу сборки должно выполняться только на одной стороне модуля (обычно на горячей стороне), чтобы избежать чрезмерного механического напряжения на модуле. Обратите внимание, что, если горячая сторона модуля припаяна к жесткому телу, компонент или небольшая электронная схема может быть припаяна к холодной стороне модуля при условии, что компонент или схема не связаны жестко с внешней структурой. В системе пайки необходимо поддерживать хороший контроль температуры, чтобы предотвратить повреждение модуля TE из-за перегрева.Наши термоэлектрические модули рассчитаны на непрерывную работу при относительно высоких температурах (150 или 200 ° C), поэтому они подходят для большинства применений, где желательна пайка. Естественно, что эти относительные температуры не должны превышаться в процессе. Поскольку коэффициенты расширения керамики модуля, радиатора и охлаждаемого объекта различаются, мы не рекомендуем паять модули размером более 15 x 15 миллиметров. Не следует рассматривать пайку при термоциклировании. Для монтажа модуля припоем необходимо соблюдать следующие шаги:

a) Обработайте или отшлифуйте плоскую монтажную поверхность, на которой будет расположен модуль (модули).Хотя плоскостность поверхности не является критически важной для метода пайки, всегда желательно, чтобы монтажные поверхности были как можно более плоскими. Очевидно, что поверхность радиатора должна быть из материала для пайки, такого как медь или материал с медным покрытием.

b) Очистите и обезжирьте поверхность радиатора и удалите все сильные окисления. Убедитесь, что в области установки модуля нет заусенцев, сколов или других посторонних материалов.

c) Предварительно залудите поверхность радиатора в области монтажа модуля подходящим припоем.Выбранный припой должен иметь температуру плавления, которая меньше или равна номинальной максимальной рабочей температуре устанавливаемого устройства TE. При лужении радиатора припоем температура радиатора должна быть достаточно высокой, чтобы припой расплавился, но ни в коем случае не следует поднимать температуру больше, чем максимальное значение, указанное для устройства TE.

d) Нанесите паяльный флюс на горячую сторону ТЕ-модуля и поместите модуль на заранее луженую поверхность радиатора.Позвольте модулю «плавать» в ванне припоя и совершайте возвратно-поступательное вращательное движение на модуле, чтобы облегчить лужение припоем поверхности модуля. Тенденция модуля к волочению по поверхности припоя, а не к плаванию, свидетельствует о недостаточном количестве припоя. В этом случае снимите модуль и добавьте еще припоя на радиатор.

e) Через несколько секунд поверхность модуля должна быть хорошо залужена. Зажмите или утяжелите модуль в желаемом положении, снимите радиатор с источника тепла и дайте узлу остыть.После достаточного охлаждения обезжирьте узел, чтобы удалить остатки флюса.

6.5 Монтажные площадки и другие материалы

Существует широкий спектр продуктов, предназначенных для замены теплопроводящей смазки в качестве материала интерфейса. Пожалуй, наиболее распространенными являются монтажные площадки на основе силикона. Изначально предназначенные для монтажа полупроводниковых устройств, эти контактные площадки часто демонстрируют чрезмерное тепловое сопротивление в термоэлектрических устройствах. Поскольку прокладки обеспечивают быстрое производство и исключают время очистки, они популярны в менее требовательных приложениях.Ведущими производителями в этой области являются The Bergquist Company и подразделение Chomerics корпорации Parker Hannifin Corporation.

Series-параллельные модули — TE Tech Products

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2NvbGRwbGF0ZTEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvY29sZHBsYXRlMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI + TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC 1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI2LjE2ODA0NTM0MzEzNzI1JSIsInkiOiI0LjA5ODM2MDY1NTczNzcwNSUiLCJ3aWR0aCI6IjM3LjU4NzQxMjU4NzQxMjU5ZW0iLCJoZWlnaHQiOiI1LjA2OTkzMDA2OTkzMDA3ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cG FkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5DT0xEIFBMQVRFIENPT0xFUlM8L3A + PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiQ09MRCBQTEFURSBDT09MRVJTIiwiYWxpZ24iOiJsZWZ0Iiwic2l6ZSI6IjMiLCJjb2xvciI6IiNmZmZmZmYiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjE5Ljg0OTEwMTkyMTQ3MDM0My UiLCJ5IjoiMzcuNzIxMzU0MTY2NjY2NjY0JSIsIndpZHRoIjoiNTAuMzQ5NjUwMzQ5NjUwMzU0ZW0iLCJoZWlnaHQiOiI2LjY0MzM1NjY0MzM1NjY0M2VtIiwiaWQiOjIsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxkaXYgc3R5bGU9J3Bvc2l0aW9uOmFic29sdXRlO3RvcDowO3JpZ2h0OjA7Ym90dG9tOjA7bGVmdDowO292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOiBjZW50ZXI7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogMmVtO2NvbG9yOiAjMjYzMjQ4O2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5Db2xkIFBsYXRlIENvb2xlcnMgZm9yIGRpcmVjdCBjb250YWN0IGNvb2xpbmcuXG5cbkNhbGwgb3VyIGVuZ2luZWVycyBmb3IgaGVscCB3aXRoIHNpemluZyBhbmQgc2VsZWN0aW9uLjwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJDb2xkIFBsYXRlIENvb2xlcnMgZm9yIGRpcmVjdCBjb250YWN0IGNvb2xpbmcuXG5cbkNhbGwgb3VyIGVuZ2luZWVycyBmb3IgaGVscCB3aXRoIHNpemluZyBhbmQgc2VsZWN0aW9uLiIsImFsaWduIjoiY2VudGVyIiwic2l6ZSI6IjIiLCJjb2xvciI6IiMyNjMyND giLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjI0LjIyMDcwODAyMDA1MDEyNSUiLCJ5IjoiNzIuMzY5NzkxNjY2NjY2NjclIiwid2lkdGgiOiIzMi42OTIzMDc2OTIzMDc2OWVtIiwiaGVpZ2h0IjoiNC43MjAyNzk3MjAyNzk3MjFlbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS9jb2xkLXBsYXRlLWNvb2xlcnMvJyBjbGFzcz0nc2FuZ2FyLWJ0bi1zcXVhcmUnIHRhcmdldD0nX3NlbGYnIHN0eWxlPSd3aGl0ZS1zcGFjZTogbm93cmFwOyBwYWRkaW5nOiAxLjBlbSAyLjVlbTtiYWNrZ3JvdW5kOiByZ2IoMjU1LCAxNTIsIDApOycgb25Nb3VzZU92ZXI9XCJcIiBvbk1vdXNlT3V0PVwidGhpcy5nZXRFbGVtZW50c0J5VGFnTmFtZSgnc3BhbicpWzBdLnN0eWxlLm NvbG9yPScjMDAwMDAwJzt0aGlzLnN0eWxlLmJhY2tncm91bmQ9J3JnYigyNTUsIDE1MiwgMCknO1wiPjxzcGFuIHN0eWxlPSdmb250LXNpemU6IDEuN2VtO2NvbG9yOiAjMDAwMDAwO2ZvbnQtd2VpZ2h0OiBcImJvbGRcIjsnPlZpZXcgQ29sZCBQbGF0ZSBDb29sZXIgUHJvZHVjdHM8L3NwYW4 + PC9hPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiYnV0dG9uX2NsYXNzIjoic2FuZ2FyLWJ0bi1zcXVhcmUiLCJ0ZXh0IjoiVmlldyBDb2xkIFBsYXRlIENvb2xlciBQcm9kdWN0cyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8iLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInRleHRfc2l6ZSI6IjEuNyIsInRleHRfY29sb3IiOiIjMDAwMDAwIiwidGV4dF9mb250IjoiIiwidGV4dF93ZWlnaHQiOiJib2xkIiwiYmFja2dyb3VuZCI6InJnYigyNTUsIDE1MiwgMCkiLCJob3Zlcl90ZXh0X2NvbG9yIjoiIiwiaG92ZXJfYmFja2dyb3VuZCI6IiIsImJvcmRlcl9jb2xvciI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMS41ZW0gNGVtIDEuNWVtIDRlbSIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImJ1dHRvbiIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9XX0sIm1vYmlsZSI6eyJudW1iZXIiOj AsIm9wdGlvbnMiOnt9LCJjb250ZW50IjpbXX19

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuODY1MzE5ODY1MzE5ODY1ZW0iLCJpZCI6MCwiel9pbmRleCI6OTksImh0bWwiOiI8aW1nIHNyYz1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9haXJjb29sZXIxLmpwZ1wiID4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7ImltZ19zaXplX29wdGlvbiI6IjxzZWxlY3Q + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS0xNTB4MTUwLmpwZ1wiIHdpZHRoPVwiMTUwXCIgaGVpZ2h0PVwiMTUwXCIgdmFsdWU9XCJ0aHVtYm5haWxcIj5UaHVtYm5haWwg4oCTIDE1MCDDlyAxNTA8L29wdGlvbj48b3B0aW9uIHNlbGVjdGVkPVwiXCIgdXJsPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2FpcmNvb2xlcjEtMzAweDMwLmpwZ1wiIHdpZHRoPVwiMzAwXCIgaGVpZ2h0PVwiMzBcIiB2YWx1ZT1cIm1lZGl1bVwiPk1lZGl1bSDigJMgMzAwIMOXIDMwPC9vcHRpb24 + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVu dC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS0xMDI0eDEwMi5qcGdcIiB3aWR0aD1cIjEwMjRcIiBoZWlnaHQ9XCIxMDJcIiB2YWx1ZT1cImxhcmdlXCI + TGFyZ2Ug4oCTIDEwMjQgw5cgMTAyPC9vcHRpb24 + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS5qcGdcIiB3aWR0aD1cIjIwMDBcIiBoZWlnaHQ9XCIyMDBcIiB2YWx1ZT1cImZ1bGxcIj5GdWxsIOKAkyAyMDAwIMOXIDIwMDwvb3B0aW9uPjwvc2VsZWN0PiIsImltZ19zaXplIjoiZnVsbCIsImltZ19zcmMiOiJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS0zMDB4MzAuanBnIiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJpbWFnZSIsImFuaW1hdGlvbiI6ImRpc2FibGUifSx7IngiOiIyNi4xNjgwNDUzNDMxMzcyNSUiLCJ5IjoiNC4wOTgzNjA2NTU3Mzc3MDUlIiwid2lkdGgiOiIzNy41NDIwODc1NDIwODc1MzZlbSIsImhlaWdodCI6IjUuMjE4ODU1MjE4ODU1MjE5ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGlu ZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5BSVIgQ09PTEVSUzwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJBSVIgQ09PTEVSUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIzIiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxOC42ODYwMzgwMTE2OTU5MDYlIiwieSI6IjM2LjY1MzY0NTgz MzMzMzMzJSIsIndpZHRoIjoiNTUuNzIzOTA1NzIzOTA1NzJlbSIsImhlaWdodCI6IjYuNTY1NjU2NTY1NjU2NTY1ZW0iLCJpZCI6Miwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGNlbnRlcjtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA + PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyZW07Y29sb3I6ICMyNjMyNDg7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPkFpciBDb29sZXJzIGZvciBlbGVjdHJpY2FsIGVuY2xvc3VyZXMgYW5kIHJlZnJpZ2VyYXRlZCBjYWJpbmV0cy5cblF1YWxpdHkgY29vbGVycyBtYW51ZmFjdHVyZWQgaGVyZSBpbiB0aGUgVVNBLjwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJBaXIgQ29vbGVycyBmb3IgZWxlY3RyaWNhbCBlbmNsb3N1cmVzIGFuZCByZWZyaWdlcmF0ZWQgY2FiaW5ldHMuXG5RdWFsaXR5IGNvb2xlcnMgbWFudWZhY3R1cmVkIGhlcmUgaW4gdGhlIFVTQS4iLCJhbGlnbiI6ImNlbnRlciIsInNpemUiOiIyIiwiY29sb3IiOiIjMjYzMjQ4IiwibGlu ZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIyNS41NTczODMwNDA5MzU2NzIlIiwieSI6IjcwLjcwMzEyNSUiLCJ3aWR0aCI6IjI1LjU4OTIyNTU4OTIyNTU4OGVtIiwiaGVpZ2h0IjoiNS4yMTg4NTUyMTg4NTUyMTllbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS9haXItY29vbGVycy8nIGNsYXNzPSdzYW5nYXItYnRuLXNxdWFyZScgdGFyZ2V0PSdfc2VsZicgc3R5bGU9J3doaXRlLXNwYWNlOiBub3dyYXA7IHBhZGRpbmc6IDEuMGVtIDIuNWVtO2JhY2tncm91bmQ6IHJnYigyNTUsIDE1MiwgMCk7JyBvbk1vdXNlT3Zlcj1cIlwiIG9uTW91c2VPdXQ9XCJ0aGlzLmdldEVsZW1lbnRzQnlUYWdOYW1lKCdzcGFuJylbMF0uc3R5bGUuY29sb3I9JyMwMDAwMDAnO3RoaXMu c3R5bGUuYmFja2dyb3VuZD0ncmdiKDI1NSwgMTUyLCAwKSc7XCI + PHNwYW4gc3R5bGU9J2ZvbnQtc2l6ZTogMS43ZW07Y29sb3I6ICMwMDAwMDA7Zm9udC13ZWlnaHQ6IFwiYm9sZFwiOyc + VmlldyBBaXIgQ29vbGVyIFByb2R1Y3RzPC9zcGFuPjwvYT4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7ImJ1dHRvbl9jbGFzcyI6InNhbmdhci1idG4tc3F1YXJlIiwidGV4dCI6IlZpZXcgQWlyIENvb2xlciBQcm9kdWN0cyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2Fpci1jb29sZXJzLyIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwidGV4dF9zaXplIjoiMS43IiwidGV4dF9jb2xvciI6IiMwMDAwMDAiLCJ0ZXh0X2ZvbnQiOiIiLCJ0ZXh0X3dlaWdodCI6ImJvbGQiLCJiYWNrZ3JvdW5kIjoicmdiKDI1NSwgMTUyLCAwKSIsImhvdmVyX3RleHRfY29sb3IiOiIiLCJob3Zlcl9iYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX2NvbG9yIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIxLjVlbSA0ZW0gMS41ZW0gNGVtIiwieW91dHViZV9wb3B1cCI6ZmFsc2UsInlvdXR1YmVfc291cmNlIjoiIn0sImNvbnRlbnRUeXBlIjoiYnV0dG9uIiwiYW5pbWF0aW9uIjoiZW5hYmxlIn1dfSwibW9iaWxlIjp7Im51bWJlciI6MCwib3B0aW9ucyI6e30sImNvbnRlbnQiOltdfX0 =

Е.Ю. JkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2N1c3RvbTEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvY3VzdG9tMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI + TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMT AyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI2LjE2ODA0NTM0MzEzNzI1JSIsInkiOiI0LjA5ODM2MDY1NTczNzcwNSUiLCJ3aWR0aCI6IjM3LjU4NzQxMjU4NzQxMjU5ZW0iLCJoZWlnaHQiOiI1LjA2OTkzMDA2OTkzMDA3ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2Zvbn Qtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5DVVNUT00gQ09PTEVSUzwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJDVVNUT00gQ09PTEVSUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIzIiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxOC45MzAxMzc4NDQ2MTE1MyUiLCJ5IjoiMzguNTU0Njg3NSUiLCJ3aWR0aCI6IjU0Ljg5NTEwNDg5NTEwNDllbSIsImhlaWdodCI6IjYuNjQzMzU2NjQzMzU2Nj QzZW0iLCJpZCI6Miwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGNlbnRlcjtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA + PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyZW07Y29sb3I6ICMyNjMyNDg7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPkN1c3RvbSBDb29sZXJzIG9wdGltaXplZCBmb3IgeW91ciBleGFjdCByZXF1aXJlbWVudHMuXG5DYWxsIG91ciBlbmdpbmVlcnMgdG8gZGlzY3VzcyB0aGUgcG9zc2liaWxpdGllcy48L3A ​​+ PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiQ3VzdG9tIENvb2xlcnMgb3B0aW1pemVkIGZvciB5b3VyIGV4YWN0IHJlcXVpcmVtZW50cy5cbkNhbGwgb3VyIGVuZ2luZWVycyB0byBkaXNjdXNzIHRoZSBwb3NzaWJpbGl0aWVzLiIsImFsaWduIjoiY2VudGVyIiwic2l6ZSI6IjIiLCJjb2xvciI6IiMyNjMyNDgiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZG Vjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjI1LjA1NjEyOTkwODEwMzU5MyUiLCJ5IjoiNzIuMzY5NzkxNjY2NjY2NjclIiwid2lkdGgiOiIyOS43MjAyNzk3MjAyNzk3MmVtIiwiaGVpZ2h0IjoiNS4yNDQ3NTUyNDQ3NTUyNDVlbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS9jb2xkLXBsYXRlLWNvb2xlcnMvJyBjbGFzcz0nc2FuZ2FyLWJ0bi1zcXVhcmUnIHRhcmdldD0nX3NlbGYnIHN0eWxlPSd3aGl0ZS1zcGFjZTogbm93cmFwOyBwYWRkaW5nOiAxLjBlbSAyLjVlbTtiYWNrZ3JvdW5kOiByZ2IoMjU1LCAxNTIsIDApOycgb25Nb3VzZU92ZXI9XCJcIiBvbk1vdXNlT3V0PVwidGhpcy5nZXRFbGVtZW50c0J5VGFnTmFtZSgnc3BhbicpWzBdLnN0eWxlLmNvbG9yPScjMDAwMDAwJzt0aGlzLnN0eWxlLmJhY2tncm91bmQ9J3JnYigyNTUsIDE1MiwgMCknO1wiPjxzcGFuIHN0eWxlPSdmb250LXNpemU6IDEuN2 VtO2NvbG9yOiAjMDAwMDAwO2ZvbnQtd2VpZ2h0OiBcImJvbGRcIjsnPlZpZXcgQ3VzdG9tIENvb2xlciBQcm9kdWN0czwvc3Bhbj48L2E + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJidXR0b25fY2xhc3MiOiJzYW5nYXItYnRuLXNxdWFyZSIsInRleHQiOiJWaWV3IEN1c3RvbSBDb29sZXIgUHJvZHVjdHMiLCJoeXBlcmxpbmsiOiIvcHJvZHVjdC1jYXRlZ29yeS9jb2xkLXBsYXRlLWNvb2xlcnMvIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ0ZXh0X3NpemUiOiIxLjciLCJ0ZXh0X2NvbG9yIjoiIzAwMDAwMCIsInRleHRfZm9udCI6IiIsInRleHRfd2VpZ2h0IjoiYm9sZCIsImJhY2tncm91bmQiOiJyZ2IoMjU1LCAxNTIsIDApIiwiaG92ZXJfdGV4dF9jb2xvciI6IiIsImhvdmVyX2JhY2tncm91bmQiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjEuNWVtIDRlbSAxLjVlbSA0ZW0iLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJidXR0b24iLCJhbmltYXRpb24iOiJlbmFibGUifV19LCJtb2JpbGUiOnsibnVtYmVyIjowLCJvcHRpb25zIjp7fSwiY29udGVudCI6W119fQ ==

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIw IiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2xpcXVpZDEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvbGlxdWlkMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI + TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDD lyAxMDI8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI2LjE2ODA0NTM0MzEzNzI1JSIsInkiOiI0LjA5ODM2MDY1NTczNzcwNSUiLCJ3aWR0aCI6IjM3LjU4NzQxMjU4NzQxMjU5ZW0iLCJoZWlnaHQiOiI1LjA2OTkzMDA2OTkzMDA3ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJh bnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5MSVFVSUQgQ09PTEVSUzwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJMSVFVSUQgQ09PTEVSUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIzIiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxNy40NjA0NzQzMDgzMDAzOTUlIiwieSI6IjM3LjY3MjI0NDA5NDQ4ODE4NSUiLCJ3aWR0aCI6IjU5Ljc5MDIwOTc5MDIwOTc5ZW0iLCJoZWlnaHQiOiI2LjQ2ODUzMTQ2ODUzMTQ2OWVtIiwiaWQiOjIsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxkaXYgc3R5 bGU9J3Bvc2l0aW9uOmFic29sdXRlO3RvcDowO3JpZ2h0OjA7Ym90dG9tOjA7bGVmdDowO292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOiBsZWZ0O3BhZGRpbmc6IDAuNWVtIDAuNzVlbTsnID48cCBzdHlsZT0nbWFyZ2luOiAwcHg7bGluZS1oZWlnaHQ6IDEuNTtmb250LXNpemU6IDJlbTtjb2xvcjogIzI2MzI0ODtmb250LXdlaWdodDogYm9sZDt0ZXh0LXRyYW5zZm9ybTogbm9uZTt0ZXh0LWRlY29yYXRpb246IG5vbmU7Zm9udC1zdHlsZTogbm9ybWFsOyc + TGlxdWlkIENvb2xlcnMgZGVsaXZlciBjb25jZW50cmF0ZWQgY29vbGluZyB0byByZW1vdGUgaGVhdCBzb3VyY2VzLiBPdXIgZXhwZXJ0cyBjYW4gaGVscCB3aXRoIHNpemluZyBhbmQgc2VsZWN0aW9uLjwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJMaXF1aWQgQ29vbGVycyBkZWxpdmVyIGNvbmNlbnRyYXRlZCBjb29saW5nIHRvIHJlbW90ZSBoZWF0IHNvdXJjZXMuIE91ciBleHBlcnRzIGNhbiBoZWxwIHdpdGggc2l6aW5nIGFuZCBzZWxlY3Rpb24uIiwiYWxpZ24iOiJsZWZ0Iiwic2l6ZSI6IjIiLCJjb2xvciI6IiMyNjMyNDgiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250 X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjI3LjU2Mjk5NDA3MTE0NjI0NiUiLCJ5IjoiNzIuNTYzOTc2Mzc3OTUyNzYlIiwid2lkdGgiOiIzMi44NjcxMzI4NjcxMzI4N2VtIiwiaGVpZ2h0IjoiNS40MTk1ODA0MTk1ODA0MmVtIiwiaWQiOjMsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxhIGhyZWY9Jy9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8nIGNsYXNzPSdzYW5nYXItYnRuLXNxdWFyZScgdGFyZ2V0PSdfc2VsZicgc3R5bGU9J3doaXRlLXNwYWNlOiBub3dyYXA7IHBhZGRpbmc6IDEuMGVtIDIuNWVtO2JhY2tncm91bmQ6IHJnYigyNTUsIDE1MiwgMCk7JyBvbk1vdXNlT3Zlcj1cIlwiIG9uTW91c2VPdXQ9XCJ0aGlzLmdldEVsZW1lbnRzQnlUYWdOYW1lKCdzcGFuJylbMF0uc3R5bGUuY29sb3I9JyMwMDAwMDAnO3RoaXMuc3R5bGUuYmFja2dyb3VuZD0ncmdiKDI1NSwgMTUyLCAwKSc7XCI + PHNwYW4gc3R5bGU9J2ZvbnQtc2l6ZTogMS43ZW07Y29sb3I6ICMwMDAwMDA7Zm9udC13 ZWlnaHQ6IFwiYm9sZFwiOyc + VmlldyBMaXF1aWQgQ29vbGVyIFByb2R1Y3RzPC9zcGFuPjwvYT4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7ImJ1dHRvbl9jbGFzcyI6InNhbmdhci1idG4tc3F1YXJlIiwidGV4dCI6IlZpZXcgTGlxdWlkIENvb2xlciBQcm9kdWN0cyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8iLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInRleHRfc2l6ZSI6IjEuNyIsInRleHRfY29sb3IiOiIjMDAwMDAwIiwidGV4dF9mb250IjoiIiwidGV4dF93ZWlnaHQiOiJib2xkIiwiYmFja2dyb3VuZCI6InJnYigyNTUsIDE1MiwgMCkiLCJob3Zlcl90ZXh0X2NvbG9yIjoiIiwiaG92ZXJfYmFja2dyb3VuZCI6IiIsImJvcmRlcl9jb2xvciI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMS41ZW0gNGVtIDEuNWVtIDRlbSIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImJ1dHRvbiIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9XX0sIm1vYmlsZSI6eyJudW1iZXIiOjAsIm9wdGlvbnMiOnt9LCJjb250ZW50IjpbXX19

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMC4wMD AwMDAwMDAwMDAwM2VtIiwiaGVpZ2h0IjoiMTkuOTE2MTQyNTU3NjUxOTk1ZW0iLCJpZCI6MCwiel9pbmRleCI6OTksImh0bWwiOiI8aW1nIHNyYz1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90ZW1wMS5qcGdcIiA + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJpbWdfc2l6ZV9vcHRpb24iOiI8c2VsZWN0PjxvcHRpb24gdXJsPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L3RlbXAxLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvdGVtcDEtMzAweDMwLmpwZ1wiIHdpZHRoPVwiMzAwXCIgaGVpZ2h0PVwiMzBcIiB2YWx1ZT1cIm1lZGl1bVwiPk1lZGl1bSDigJMgMzAwIMOXIDMwPC9vcHRpb24 + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvdGVtcDEtMTAyNHgxMDIuanBnXCIgd2lkdGg9XCIxMDI0XCIgaGVpZ2h0PVwiMTAyXCIgdmFsdWU9XCJsYXJnZVwiPkxhcmdlIOKAkyAxMDI0IMOXIDEwMjwvb3B0aW9uPjxvcH Rpb24gdXJsPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L3RlbXAxLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90ZW1wMS0zMDB4MzAuanBnIiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJpbWFnZSIsImFuaW1hdGlvbiI6ImRpc2FibGUifSx7IngiOiIyNS4zMDMzMzI2MTQzMjI2OSUiLCJ5IjoiNS43OTIwMjU4NjIwNjg5NjUlIiwid2lkdGgiOiI0OC4wMDgzODU3NDQyMzQ4MWVtIiwiaGVpZ2h0IjoiNC44MjE4MDI5MzUwMTA0ODJlbSIsImlkIjoxLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8ZGl2IHN0eWxlPSdwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtyaWdodDowO2JvdHRvbTowO2xlZnQ6MDtvdmVyZmxvdzpoaWRkZW47dGV4dC1hbGlnbjogbGVmdDtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA + PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyLjdlbTtjb2xvcjogI2ZmZmZmZjtmb250LXdlaWdodDogYm9sZDt0ZXh0LXRyYW5zZm9ybTogbm9uZTt0ZXh0LW RlY29yYXRpb246IG5vbmU7Zm9udC1zdHlsZTogbm9ybWFsOyc + VEVNUEVSQVRVUkUgQ09OVFJPTExFUlM8L3A + PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiVEVNUEVSQVRVUkUgQ09OVFJPTExFUlMiLCJhbGlnbiI6ImxlZnQiLCJzaXplIjoiMi43IiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxNi44MTkzOTIyMzA1NzY0NCUiLCJ5IjoiMzYuOTY2MTQ1ODMzMzMzMzM2JSIsIndpZHRoIjoiNjAuNTg3MDAyMDk2NDM2MDY2ZW0iLCJoZWlnaHQiOiI2LjkxODIzODk5MzcxMDY5MmVtIiwiaWQiOjIsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxkaXYgc3 R5bGU9J3Bvc2l0aW9uOmFic29sdXRlO3RvcDowO3JpZ2h0OjA7Ym90dG9tOjA7bGVmdDowO292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOiBjZW50ZXI7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogMmVtO2NvbG9yOiAjMjYzMjQ4O2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5UZW1wZXJhdHVyZSBDb250cm9sbGVycyBmb3IgcHJlY2lzZSB0aGVybWFsIG1hbmFnZW1lbnQuXG5Db21wbGV0ZSBlbmdpbmVlcmluZyBhc3Npc3RhbmNlIGZyb20gY29vbGVycyB0byBjb250cm9scy48L3A ​​+ PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiVGVtcGVyYXR1cmUgQ29udHJvbGxlcnMgZm9yIHByZWNpc2UgdGhlcm1hbCBtYW5hZ2VtZW50LlxuQ29tcGxldGUgZW5naW5lZXJpbmcgYXNzaXN0YW5jZSBmcm9tIGNvb2xlcnMgdG8gY29udHJvbHMuIiwiYWxpZ24iOiJjZW50ZXIiLCJzaXplIjoiMiIsImNvbG9yIjoiIzI2MzI0OCIsImxpbmVfaGVpZ2h0IjoiIiwiZm9udF90eXBlIjoiIiwiZm9udF93ZWlnaHQiOiJib2xkIiwidGV4dF90cmFuc2Zvcm0iOiJub25lIiwidGV4dF9kZWNvcmF0aW9uIjoibm9uZSIsIm ZvbnRfc3R5bGUiOiJub3JtYWwiLCJsZXR0ZXJfc3BhY2luZyI6IiIsInRleHRfc2hhZG93IjoiIiwiYmFja2dyb3VuZCI6IiIsImJvcmRlcl9wb3NpdGlvbiI6ImJvcmRlciIsImJvcmRlcl9zaXplIjoiIiwiYm9yZGVyX2NvbG9yIjoiIiwiYm9yZGVyX3JhZGl1cyI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMi41ZW0gMi41ZW0gMi41ZW0gMi41ZW0ifSwiY29udGVudFR5cGUiOiJ0ZXh0IiwiYW5pbWF0aW9uIjoiZW5hYmxlIn0seyJ4IjoiMjQuMzg3NzkyMzk3NjYwODE3JSIsInkiOiI3Mi4zNjk3OTE2NjY2NjY2NyUiLCJ3aWR0aCI6IjI5LjU1OTc0ODQyNzY3Mjk1N2VtIiwiaGVpZ2h0IjoiNS4yNDEwOTAxNDY3NTA1MjRlbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS90ZW1wZXJhdHVyZS1jb250cm9sbGVycy8nIGNsYXNzPSdzYW5nYXItYnRuLXNxdWFyZScgdGFyZ2V0PSdfc2VsZicgc3R5bGU9J3doaXRlLXNwYWNlOiBub3dyYXA7IHBhZGRpbmc6IDEuMGVtIDIuNWVtO2JhY2tncm91bmQ6IHJnYigyNTUsIDE1MiwgMCk7JyBvbk1vdXNlT3Zlcj1cIlwiIG9uTW91c2VPdXQ9XCJ0aGlzLmdldEVsZW1lbnRzQnlUYWdOYW1lKCdzcGFuJylbMF0uc3R5bGUuY29sb3I9JyMwMDAwMDAnO3RoaXMuc3R5bGUuYmFja2dyb3VuZD0ncmdiKDI1NSwgMTUyLCAwKSc7XCI + PHNwYW4gc3R5bGU9J2ZvbnQtc2l6ZTogMS43ZW07Y29sb3I6ICMwMD AwMDA7Zm9udC13ZWlnaHQ6IFwiYm9sZFwiOyc + VmlldyBUZW1wZXJhdHVyZSBDb250cm9sbGVyczwvc3Bhbj48L2E + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJidXR0b25fY2xhc3MiOiJzYW5nYXItYnRuLXNxdWFyZSIsInRleHQiOiJWaWV3IFRlbXBlcmF0dXJlIENvbnRyb2xsZXJzIiwiaHlwZXJsaW5rIjoiL3Byb2R1Y3QtY2F0ZWdvcnkvdGVtcGVyYXR1cmUtY29udHJvbGxlcnMvIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ0ZXh0X3NpemUiOiIxLjciLCJ0ZXh0X2NvbG9yIjoiIzAwMDAwMCIsInRleHRfZm9udCI6IiIsInRleHRfd2VpZ2h0IjoiYm9sZCIsImJhY2tncm91bmQiOiJyZ2IoMjU1LCAxNTIsIDApIiwiaG92ZXJfdGV4dF9jb2xvciI6IiIsImhvdmVyX2JhY2tncm91bmQiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjEuNWVtIDRlbSAxLjVlbSA0ZW0iLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJidXR0b24iLCJhbmltYXRpb24iOiJlbmFibGUifV19LCJtb2JpbGUiOnsibnVtYmVyIjowLCJvcHRpb25zIjp7fSwiY29udGVudCI6W119fQ ==

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6 IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L3RoZXJtbzEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvdGhlcm1vMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI+TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8 L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24+PC9zZWxlY3Q+IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI1LjkxODI2OTIzMDc2OTIzJSIsInkiOiI1Ljc4MTI1JSIsIndpZHRoIjoiNDcuOTAyMDk3OTAyMDk3OTFlbSIsImhlaWdodCI6IjQuODk1MTA0ODk1MTA0ODk1ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogMi43ZW07Y29sb3I6ICNmZmZmZmY7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7 dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPlRIRVJNT0VMRUNUUklDIE1PRFVMRVM8L3A+PC9kaXY+IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiVEhFUk1PRUxFQ1RSSUMgTU9EVUxFUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIyLjciLCJjb2xvciI6IiNmZmZmZmYiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjE5LjUxNTgxMDI3NjY3OTg0NCUiLCJ5IjoiMzcuODMyMTg1MDM5MzcwMDglIiwid2lkdGgiOiI0OC4yNTE3NDgyNTE3NDgyNWVtIiwiaGVpZ2h0IjoiNi42NDMzNTY2NDMzNTY2NDNlbSIsImlkIjoyLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8ZGl2 IHN0eWxlPSdwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtyaWdodDowO2JvdHRvbTowO2xlZnQ6MDtvdmVyZmxvdzpoaWRkZW47dGV4dC1hbGlnbjogbGVmdDtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA+PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyZW07Y29sb3I6ICMyNjMyNDg7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPkxhcmdlIGludmVudG9yeSBvZiBwcmVtaXVtIHF1YWxpdHkgUGVsdGllciBtb2R1bGVzLlxuT25saW5lIGNhbGN1bGF0b3JzIHRvIGhlbHAgeW91IHNlbGVjdC48L3A+PC9kaXY+IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiTGFyZ2UgaW52ZW50b3J5IG9mIHByZW1pdW0gcXVhbGl0eSBQZWx0aWVyIG1vZHVsZXMuXG5PbmxpbmUgY2FsY3VsYXRvcnMgdG8gaGVscCB5b3Ugc2VsZWN0LiIsImFsaWduIjoibGVmdCIsInNpemUiOiIyIiwiY29sb3IiOiIjMjYzMjQ4IiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9z aGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIyNy41NjI5OTQwNzExNDYyNDYlIiwieSI6IjcyLjU2Mzk3NjM3Nzk1Mjc2JSIsIndpZHRoIjoiMzIuODY3MTMyODY3MTMyODdlbSIsImhlaWdodCI6IjUuNTk0NDA1NTk0NDA1NTk1ZW0iLCJpZCI6Mywiel9pbmRleCI6MTAwLCJodG1sIjoiPGEgaHJlZj0nL3Byb2R1Y3QtY2F0ZWdvcnkvY29sZC1wbGF0ZS1jb29sZXJzLycgY2xhc3M9J3Nhbmdhci1idG4tc3F1YXJlJyB0YXJnZXQ9J19zZWxmJyBzdHlsZT0nd2hpdGUtc3BhY2U6IG5vd3JhcDsgcGFkZGluZzogMS4wZW0gMi41ZW07YmFja2dyb3VuZDogcmdiKDI1NSwgMTUyLCAwKTsnIG9uTW91c2VPdmVyPVwiXCIgb25Nb3VzZU91dD1cInRoaXMuZ2V0RWxlbWVudHNCeVRhZ05hbWUoJ3NwYW4nKVswXS5zdHlsZS5jb2xvcj0nIzAwMDAwMCc7dGhpcy5zdHlsZS5iYWNrZ3JvdW5kPSdyZ2IoMjU1LCAxNTIsIDApJztcIj48c3BhbiBzdHlsZT0nZm9udC1zaXplOiAxLjdlbTtjb2xvcjogIzAwMDAwMDtmb250LXdlaWdodDogXCJib2xkXCI7Jz5WaWV3IFBlbHRpZXIgTW9kdWxlczwvc3Bh bj48L2E+IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJidXR0b25fY2xhc3MiOiJzYW5nYXItYnRuLXNxdWFyZSIsInRleHQiOiJWaWV3IFBlbHRpZXIgTW9kdWxlcyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8iLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInRleHRfc2l6ZSI6IjEuNyIsInRleHRfY29sb3IiOiIjMDAwMDAwIiwidGV4dF9mb250IjoiIiwidGV4dF93ZWlnaHQiOiJib2xkIiwiYmFja2dyb3VuZCI6InJnYigyNTUsIDE1MiwgMCkiLCJob3Zlcl90ZXh0X2NvbG9yIjoiIiwiaG92ZXJfYmFja2dyb3VuZCI6IiIsImJvcmRlcl9jb2xvciI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMS41ZW0gNGVtIDEuNWVtIDRlbSIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImJ1dHRvbiIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9XX0sIm1vYmlsZSI6eyJudW1iZXIiOjAsIm9wdGlvbnMiOnt9LCJjb250ZW50IjpbXX19

Quick-Cool Library: Peltier-Element

Peltier modules or thermoelectric coolers (TEC) are basically thermoelectric heat pumps.Это означает, что при подаче электроэнергии тепло может передаваться против своего естественного градиента с одной стороны модуля Пельтье, где тепло поглощается, к другой стороне, где тепло выделяется. Таким образом, эти модули Пельтье можно использовать для отопления или охлаждения. Это поведение определяется направлением тока. Теоретически разница температур может доходить до 73К для простого элемента и до более 100К для многоуровневых элементов.

Как правило, модули Пельтье используются везде, где требуется охлаждение с небольшой разницей температур, точное управление и динамические характеристики.Применение модулей Пельтье очень разнообразно, от сложных технологий анализа в области медицины до светочувствительных ПЗС-датчиков и мобильных систем охлаждения.

Рабочие и физические воздействия

Название и функциональность модулей Пельтье произошли от так называемого эффекта Пельтье, который является частью термоэлектричества. К ним относятся различные физические эффекты, при которых тепловые и электрические явления влияют друг на друга.


Четыре основных эффекта, связанных с термоэлектричеством:

1. Эффект Пельтье: Когда ток течет через множество проводников из разных материалов, электроны, движущиеся через проводник, имеют разные уровни энергии в разных материалах проводника. Если электрон попадает в границу раздела между двумя проводниками, энергия должна либо поглощаться, либо испускаться для поддержания тока. Поглощение энергии отводит тепло от поверхности раздела.Точно так же высвобождение энергии нагревает интерфейс. Эффект Пельтье отвечает за перенос тепла в активном элементе Пельтье.

2. Эффект Зеебека: Причина этого термоэлектрического эффекта заключается в связывании и свободном потоке электронов в металле. Если металлическая проволока нагревается только с одного конца, колебания решетки и движение свободных электронов увеличиваются. Из-за этого они расширяются и диффундируют все больше и больше к холодному концу, где кинетическая энергия электронов мала, в результате они не отталкиваются сильными столкновениями.Это означает, что в проводе неравномерное распределение заряда. Следовательно, на нагретой стороне не хватает электронов, а на холодной стороне — избыточные электроны. Результирующее электрическое напряжение также известно как термоэлектрическое напряжение или напряжение Зеебека. Величина этого напряжения определяется коэффициентом Зеебека.

Попытка отвести это напряжение не удается, потому что оно влияет на физическое состояние таким образом, что напряжения компенсируют друг друга.Однако, чтобы это напряжение можно было использовать, используются два разных материала, которые генерируют максимально разные напряжения. Теперь эту разницу можно использовать для выработки электроэнергии. Кроме того, эту замену материала можно повторять столько раз, сколько потребуется, так что можно достичь значительного напряжения. Эффект Зеебека снижает эффект Пельтье, поскольку здесь создается противодействующее напряжение, которое увеличивает внутреннее сопротивление.

3. Эффект Томсона: Если существует разница температур между двумя точками на проводнике с током, теплопередача увеличивается или уменьшается в зависимости от типа металла.Хотя это также передается через теплопроводность материала, возникающее в результате сопротивление обеспечивает дальнейший нагрев. Это означает, что эффект может быть продемонстрирован только в ограниченной степени. Эффектом Томсона можно пренебречь при расчете охлаждающей способности модулей Пельтье.

4. Джоулева теплота: Джоулева теплота описывает нагрев проводника с током из-за его внутреннего сопротивления. В основном на этом принципе построены все электронагревательные элементы и лампочки.

Джоулева тепла нежелательно в режиме охлаждения. Поскольку он добавляет тепло той стороне, с которой тепло было отведено за счет эффекта Пельтье. В результате джоулев нагрев в значительной степени является причиной того, что общий эффект может быть увеличен только до значения Imax. Выше этого тока вводится больше тепла, чем рассеивается.

Конструкция: Модули Пельтье обычно состоят из двух квадратных пластин, изготовленных из керамики из оксида алюминия, которые устанавливаются одна на другую на расстоянии 3-5 миллиметров.Эти пластины используются для механического удержания сложной конструкции. С одной стороны, материал должен быть теплопроводным, чтобы пропускать тепловой поток, а с другой стороны, он должен быть электрически изолирован, чтобы последовательное соединение пар материалов не было короткозамкнутым. Между ними есть небольшие кубоиды, называемые ножками или кубиками, сделанные из полупроводникового материала, такого как теллурид висмута или кремний-германий. В результате p- и n-легирования материала образуются два разных материала проводников, которые при подаче энергии создают эффекты, описанные выше.

В модуле Пельтье все электрические проводники, изготовленные из двух разных материалов, электрически соединены последовательно, так что тепло многократно поглощается и излучается. Пространственное расположение отдельных проводников теперь выбрано таким образом, чтобы поглощающие энергию границы раздела находились исключительно на одной стороне Пельтье, а излучающие энергию границы раздела — на другой стороне. Таким образом, ток извивается между двумя керамическими пластинами. Следовательно, с электрической точки зрения устройство представляет собой последовательную цепь; с тепловой точки зрения все проводники параллельны.

Тепловые и электрические свойства модуля Пельтье определяются количеством кубиков и их геометрией.

Как уже было описано, различные эффекты накладываются друг на друга и, таким образом, влияют на желаемый перенос тепла модуля Пельтье. Выше тока Imax или напряжения Umax преобладают нежелательные эффекты, и дальнейшее увеличение подводимой энергии вызывает уменьшение транспортной способности. Для теллурида висмута этот эффект достигается при температуре около 0.12 В на пару кубиков и температура теплой стороны 25 градусов Цельсия.

Холодопроизводительность на холодной стороне рассчитывается следующим образом:

Q = S x I x TC — R x I2 — Gth x ∆T

Эффект Пельтье

Джоулевое тепло

естественный тепловой поток от теплого к холодному

Как упоминалось в описании каждого эффекта, на сопротивление R влияет эффект Зеебека.Кроме того, все свойства материала зависят от температуры. Температура полупроводникового кристалла описывает кривую пространственного расширения и даже превышает температуру теплой стороны внутри.

Поэтому правильное математическое описание чрезвычайно сложно.

Модуль со 127 парами кубиков имеет Umax примерно 15 В, тогда как модуль с 241 парой кубиков имеет примерно 28 В. Подавляющее большинство модулей Пельтье основаны на одной и той же сетке с 17, 31, 63, 71, 127, 61, 241 парами кубиков всех производителей.Их больше или меньше пар, в зависимости от того, как пары ножек расположены между керамикой и как выполнено электрическое соединение. Для модулей Пельтье с таким же количеством кубиков мощность устанавливается через максимальный ток. Чем тоньше модули, тем мощнее они становятся. Более тонкие кубики снижают внутреннее сопротивление, джоулев нагрев и термическое сопротивление, в то время как охлаждающая способность увеличивается.

Дизайн:

Существуют различные конструкции модулей Пельтье.Самая распространенная форма — это небольшая квадратная пластина с электрическими соединениями, через которые может подаваться постоянный ток. Изменяя силу и направление тока, можно контролировать температуру соприкасающихся объектов. Это самая распространенная конструкция.

Поскольку модули высокой мощности тоньше, чем модули малой мощности, часто здесь невозможно вставить кабель в пространство. В этом случае керамическая сторона, к которой крепится электрическое соединение, выбирается несколько большего размера, и соединения выполняются на образовавшемся выступе.Этот выступ называется крыльцом. Крыльцо также допускает интеграцию без проводов, например, с нажимными штифтами или клеммами, поскольку открытые электрические соединения могут иметь прямое ответвление. В тонких модулях также часто бывает, что горячая сторона больше с двух сторон, чем керамика с холодной стороны.

В этом случае положительный (+) полюс подключается с одной стороны, а отрицательный (-) полюс — с другой.

Техническая установка для охлаждения объекта по технологии Пельтье обычно состоит из элемента Пельтье, радиатора и интересующего объекта.Если эти компоненты правильно выбраны и установлены, температура объекта может регулироваться от минус 40 ° C до плюс 200 ° C.

Сложность этой техники заключается в подборе размеров. В конце концов, элемент Пельтье создает разницу температур вместо определенной температуры. Эта разница температур зависит от подаваемой мощности, которая вызывает эффект Пельтье, и передаваемой тепловой мощности. Кроме того, в материале есть температуры, которые влияют на все электрические и тепловые эффекты.Таким образом, температура охлаждаемого объекта является функцией этой разницы температур и температуры на теплой стороне. Температура теплой стороны определяется по прикрепленному к ней радиатору.

Инженеры Quick-Ohm могут настроить компоненты для достижения желаемых требований. При необходимости может быть изготовлена ​​конструкция, на основе которой изделие может быть запущено в серийное производство.

51 важное правило для элементов Пельтье:

1. Модули Пельтье обычно представляют собой прямоугольные пластины с длиной кромки от 10 мм до 50 мм. Толщина находится в диапазоне от 3 мм до 5 мм. С одной из узких сторон торчат два кабеля электропитания.


2. Модули Пельтье от Quick-Ohm становятся холодными вверху, если элемент расположен так, что красный провод находится справа и находится здесь под положительным напряжением. (красный-правый-над-холодный)

3. Разница температур из-за эффекта Пельтье возникает, когда электрическая энергия течет через два разных проводника, подключенных к границе раздела.

4. Модуль Пельтье сочетает в себе расположение множества интерфейсов, сделанных из двух разных проводящих материалов, которые в своей сумме, приводимые в действие электрической энергией, переносят тепло с одной стороны («холодная сторона») на другую сторону («теплая сторона». «) элемента.

5. Перенос тепла вызывает падение температуры в месте отвода тепла и повышение температуры в зоне поглощения тепла.

6. Элемент Пельтье создает разницу температур между двумя своими контактными поверхностями, подавая электрическую энергию.

7. Без какого-либо дополнительного теплового соединения с радиатором подаваемая электрическая энергия остается в элементе Пельтье и приводит к неконтролируемому повышению температуры.


8. Модулю Пельтье должна быть предоставлена ​​возможность высвобождения подаваемой энергии.

9. Если модуль Пельтье подключен к источнику питания без установления теплового соединения, он перегреется за очень короткое время.

10. Если модуль Пельтье подключен к недостаточному радиатору, желаемый эффект регулирования температуры не может быть управляем.

11. Самый распространенный недостаток в конструкции приложений Пельтье — это неадекватные размеры радиатора.

12. Разница температур на элементе Пельтье зависит от подаваемой мощности, передаваемой мощности и уровня температуры, при котором происходит процесс.

13. Взаимосвязь между подаваемым электричеством и передаваемым теплом (охлаждающая способность Q модуля Пельтье) примерно соответствует полиномиальной функции второй степени. Теплопередача увеличивается с увеличением электроэнергии до максимального значения.При превышении этого значения производительность транспорта снижается. Здесь модуль перегружен.


14. Если подаваемый ток примерно вдвое превышает значение Imax (техническое описание), тепло больше не передается. С этого момента энергия подводится к обеим сторонам элемента Пельтье. Элемент действует как чистый нагреватель.

15. Соотношение между подаваемым током и разностью температур примерно соответствует полиномиальной функции второй степени.Разница температур между двумя сторонами модуля Пельтье увеличивается с увеличением тока до максимального значения. Максимальный перепад температур превышает это значение Imax. Здесь модуль перегружен.

16. Если подаваемый ток превышает вдвое значение Imax (технический паспорт), знак разницы температур изменяется. Температура поверхности обеих сторон увеличивается в результате дальнейшего увеличения тока.

17. Мощность, подаваемая модулем Пельтье, непропорционально увеличивается по сравнению с мощностью охлаждения. В результате может быть выгодно заменить один полностью активированный элемент высокой мощности несколькими элементами низкой мощности. Эта мера снижает потребление энергии и требования к радиатору ниже по потоку.

18. Если была создана качественно адекватная система охлаждения, это создает зону с низкой температурой. Мы воспринимаем эту зону как «холодную».

19. Если зона охлаждения снабжается энергией, ее температура повышается. Энергия подается, например, за счет проникновения тепла окружающей среды или через активные части в зоне охлаждения.

20. Если в зону охлаждения подводится энергия Qmax и подаваемый ток I = Imax, если температура на «теплой стороне» составляет 25 ° C, теплопередача останавливается. Модуль Пельтье больше не может обеспечивать охлаждающий эффект.Эти значения определены как номинальные данные модуля Пельтье и могут быть прочитаны из таблицы данных.

21. Для передачи количества тепла Q ([Q] = ватт) и в то же время для достижения «охлаждающего эффекта» номинальная мощность Qmax элемента Пельтье должна быть больше, чем это количество тепла.

22. Направление теплопередачи контролируется направлением тока и может происходить в обоих направлениях.

23. Направление тока определяет, будет ли модуль Пельтье охлаждаться или нагреваться.

24. Амплитуда тока определяет, насколько сильно модуль Пельтье охлаждается или нагревается.

25. Охлаждаемый объект должен иметь термический контакт с холодной стороной модуля Пельтье. Это соединение представляет собой тепловое сопротивление. Тепловой поток через это тепловое сопротивление создает температурный градиент.Объект никогда не достигает температуры холодной стороны Пельтье.

26. Энергия, которая накапливается на теплой стороне модуля Пельтье, должна передаваться охлаждающей среде (воздух, вода и т. Д.) Через теплообменник. Этот теплообменник качественно описывается его термическим сопротивлением Rth. Охлаждающая мощность Q и подводимая мощность Pzu проходят через это сопротивление и вызывают перепад температуры. Температура на теплой стороне модуля Пельтье превышает температуру охлаждающей среды на это падение температуры.

27. Практическое правило проектирования теплообменника для модулей Пельтье: Rth <10K / Pzu


Где:
— Rth = тепловое сопротивление радиатора
— Q = рассеиваемое тепло
— Pzu = подводимая электрическая мощность

28. Согласно заявлению производителя, термическое сопротивление радиатора обычно относится к равномерному распределению тепла по всей поверхности поглощения тепла этим радиатором.При охлаждении модуля Пельтье эффективное тепловое сопротивление по сравнению с этой спецификацией значительно хуже (хуже = больше) из-за малой площади контакта с модулем Пельтье.

29. Если объект должен быть охлажден на 30 Кельвинов по сравнению с окружающей средой, модуль Пельтье должен создавать разницу температур около 50 Кельвинов между его поверхностями, чтобы обеспечить поток тепла от «холодного» к «теплому». «.


30. Чтобы иметь возможность генерировать очень низкую температуру с помощью модулей Пельтье, может потребоваться последовательное термическое соединение нескольких модулей Пельтье. (друг на друга)

31. Если два модуля Пельтье термически соединены последовательно для режима охлаждения, ступень предварительного охлаждения должна транспортировать сумму тепловой мощности и электроэнергии, подаваемой для работы первой ступени. Следовательно, второй этап должен быть более мощным, чем предыдущий.

32. Чтобы вторая ступень двухступенчатого модуля Пельтье могла рассеивать отходящее тепло от первой ступени, контактные поверхности должны быть полностью соединены друг с другом.

33. Размер отдельных поверхностей многоуровневого модуля Пельтье должен быть одинаковым, чтобы обеспечить термически когерентную связь между уровнями.

34. Модули Пельтье с более чем двумя ступенями вызывают значительные различия в номинальной мощности между первой и последней ступенями.Такие разные уровни больше не могут быть размещены на одной территории.

35. Многоступенчатые модули Пельтье должны собираться из уровней разного размера в зависимости от производственного процесса. Это приводит к потере качества теплового соединения. Большие его части становятся неэффективными. Следовательно, отдельные уровни эффективно одинаково сильны. Настоящего каскадирования не происходит. Большая часть потребляемой электроэнергии рассеивается на выступающих без функциональности краях.

36. Чтобы термически соединить большое количество ступеней Пельтье, необходимо ввести гомогенизирующие промежуточные слои из теплопроводящего материала.

37. Эффективность охлаждения элементов Пельтье снижается при низких температурах и увеличивается при высоких температурах.

38. Эффект Пельтье исчезает при температуре ниже минус 150 ° C.

39. Невозможно использовать модули Пельтье для достижения температур ниже минус 150 ° C.

40. Увеличивающееся предварительное охлаждение «теплой стороны» модуля Пельтье продолжается во все меньшей степени на «холодной стороне».

41. Каждый модуль Пельтье представляет собой термогенератор.

42. Максимальная эффективность преобразования тепловой энергии в электрическую достигает 5% с модулями Пельтье.

43. Поскольку конструкция теплового генератора, включая его тепловое соединение с источником и поглотителем, требует определенных усилий, а поскольку эффективность преобразования довольно низкая, ценность генерируемой энергии не соответствует затратам.

44. Для выработки электроэнергии модулями Пельтье тепловая энергия должна передаваться из «теплой зоны» через модуль Пельтье в «холодную зону».Благодаря этому потреблению энергии температура теплой зоны понижается, а температура холодной зоны повышается.

45. Тепловое избыточное тепло никогда не может быть полностью использовано для термоэлектрического преобразования.

46. Модули Пельтье можно подвергать давлению только на керамические пластины. На него могут действовать силы до 200 ньютонов на квадратный сантиметр. Сдвиговая нагрузка или растяжение недопустимы.

47. Модули Пельтье должны быть защищены от вибрации.

48. Из-за ограничений по нагрузке сборку Пельтье не следует выполнять только с использованием клея.

49. При длительной сборке модуль Пельтье всегда будет зажат между радиатором и зоной охлаждения.

50. Чтобы свести к минимуму термические напряжения, соединение между «радиатором» и «зоной контроля температуры» должно быть упругим.(например: тарельчатые пружины вместо шайб — см. ошибку! Ссылочный источник не найден.)

51. Если конструкция требует, чтобы сборка выполнялась исключительно с помощью клея, необходимо убедиться, что на модуль Пельтье не действуют силы сдвига или растяжения.

Создайте подставку для пельтье, чтобы кофе оставался теплым или холодным

В 1798 году Жану Шарлю Атанасу Пельтье было всего 13 лет, и, хотя он происходил из малообразованной семьи в сельской местности Франции, люди уже начали замечать интеллектуальные таланты юноши.

Помимо того, что он был заядлым читателем практически любой книги, которую он мог достать, Пельтье проявил способность устанавливать часы. Его семья была слишком бедной, чтобы продолжить его общее образование, поэтому отец отдал его в ученики часовщику. Молодой Пельтье находил своего хозяина, месье Брауна, крайне неприятным и чрезвычайно властным человеком. Браун запретил Пельтье заниматься чем-либо, кроме часового дела. Но по ночам Пельтье тайком читал при свечах. Так было до тех пор, пока Браун не обнаружил его и не убрал все свечи из своей комнаты.Даже тогда Пельтье пытался читать в своем окне при свете полной луны. Снова Браун нашел его и остановил его,
, даже в этом. Это была последняя капля: «Да хватит!» Пельтье заплакал и убежал в Париж.

Жизнь в Париже была лучше. Он нашел работу, пожалуй, у самого уважаемого часовщика во всей Франции: Авраама Луи Бреке. Пельтье стабильно работал на Бреке до 1815 года, когда он получил значительное наследство от матери своей жены. Эта финансовая свобода дала ему возможность выйти за рамки часового дела.Впервые в жизни Пельтье смог посвятить себя тому, что любил больше всего: учебе. Он читал все, что попадалось ему в руки: беллетристику Вольтера, философию Руссо, но больше всего книги по науке.

С каждой прочитанной книгой Пельтье становилось все более любопытным. Вскоре он отказался от чтения и начал проводить эксперименты. Немногие ученые с таким энтузиазмом занимались столькими разными областями. Он препарировал животных, наблюдал за ночным небом, исследовал химические процессы и предсказывал погоду, среди множества других занятий.Но больше всего его помнят сегодня за его эксперименты с электричеством.

В 1834 году Пельтье обнаружил, что когда он заставлял электрический ток течь по цепи, состоящей из двух разных проводников, в местах соединения разнородных проводов происходило нечто замечательное. В зависимости от направления тока один спай становился горячим, а другой — холодным. Чем больше подавалось напряжение, тем горячее и холоднее становилось.

Это явление теперь известно как эффект Пельтье и является ключевой идеей при разработке многих прецизионных инструментов, спутников, тепловых насосов, осушителей и даже холодильников для вина.

Научные принципы, лежащие в основе эффекта Пельтье, сложны, но в двух словах они работают следующим образом: для заданного напряжения количество энергии, которым обладают электроны при прохождении через проводящие провода, различается в зависимости от материала электрического проводника. В электрических соединениях между различными типами проводников плавный поток электронов прерывается, вызывая эквивалент электронной пробки. С одной стороны от затора электроны отводят избыточную энергию в окружающую среду, чтобы они могли войти в новый проводник.Здесь становится жарко. На другом стыке электроны делают противоположное: вынуждены поглощать энергию из своего окружения, они делают эту сторону холодной.

Вскоре инженеры и ученые выяснили, что эта сверхпростая схема (всего лишь пара соединенных вместе проводов разных типов и батарея) имеет множество интересных применений. Имея только источник напряжения и два типа проводов, можно создать электрическое устройство, которое нагревает и охлаждает без движущихся частей.

В этом выпуске журнала Remaking History мы воспользуемся термоэлектрическим принципом мсье Пельтье, чтобы сконструировать настольную подставку для напитков, которая может нагревать и охлаждать чашку — по вашему выбору — одним щелчком переключателя.

МАТЕРИАЛЫ

  • Трансформатор настенный, 12В 1,5А
  • Болты, ¼ ”× 2½”, с полной резьбой (4) с гайками
  • Шайба, внутренний диаметр ¼ ”(12)
  • Вентилятор охлаждения, 12 В, квадрат 50 мм
  • Радиатор с алюминиевыми ребрами, примерно 70 мм × 70 мм × 25 мм Скорее всего, вы не найдете точно такого размера, но все, что близко к нему, подойдет.
  • Алюминиевые полосы толщиной 1¼ ”× ½” × 0,019 ″ (4) Вы можете купить алюминиевый лист в строительном магазине и отрезать его до нужного размера ножницами для жести.Для безопасности закруглите и подпилите все края.
  • Двухполюсный двухпозиционный переключатель (DPDT), также известный как переключатель «вкл-выкл-вкл»
  • Проектная коробка, примерно 1½ дюйма × 2 дюйма × 2½ дюйма
  • Монтажный провод, изолированный, калибр 22, красный и черный (по 2 фута каждого)
  • Термоэлектрические модули Пельтье, 40 мм × 40 мм, 12 В, 6 А (2) В модулях Пельтье используется эффект Пельтье для нагрева и охлаждения. Они сделаны из двух керамических пластин, размещенных на противоположных сторонах массива полупроводников.
  • Термоклей в тюбике

ИНСТРУМЕНТЫ

  • Сверло с битами 5/16 ″ и ½ дюйма
  • Кусачки / стриппер
  • Маленькие разводные гаечные ключи (2) и / или отвертку в соответствии с головками болтов
  • Ножницы для жести
  • Файл

Все последующие шаги см. На схеме сборки.

1. Используя отверстия на корпусе вентилятора в качестве шаблона, отметьте места для сверления отверстий на плоской стороне алюминиевого радиатора. Просверлите отверстия диаметром 5/16 ″ в корпусе радиатора, как показано.

2. Согните алюминиевые полосы в L-образные формы и просверлите в каждой отверстие 5/16 дюйма. Вам нужно будет сформировать L на основе вашей конкретной чашки для напитка. Смотрите выше, как они будут размещены на верхней части устройства.

3. Соберите L-образные алюминиевые полосы, радиатор и охлаждающий вентилятор в единый узел с помощью болтов ¼ ”, как показано, с помощью двух небольших разводных гаечных ключей или отвертки.Поместите шайбы между головкой болта и полосами, вентилятором и радиатором, а также вентилятором и гайкой.

4. Просверлите отверстие под шток переключателя DPDT в центре коробки для проекта. Обычно это ½ дюйма в диаметре, но для уверенности измерьте шток переключателя. Просверлите аналогичное отверстие в противоположной стене проектной коробки, чтобы пропустить провода, как показано.

5. Подключите каждый модуль Пельтье к 12-вольтному настенному трансформатору и отметьте, какая сторона блока нагревается, а какая — холодная.

6. Используйте термоклей, чтобы приклеить модули Пельтье друг к другу горячей стороной вниз к плоской стороне радиатора, как показано на рисунке B. Двойное соединение модулей обеспечивает больший эффект нагрева и охлаждения, чем одиночный модуль.

7. Используйте кусачки и инструмент для зачистки проводов, чтобы подключить устройство, как показано на электрической схеме ниже, чтобы подставка имела три положения. Когда переключатель находится в верхнем положении, охлаждаемые стороны блоков Пельтье находятся сверху. Когда переключатель находится в нижнем положении, блоки Пельтье будут иметь теплые стороны вверх.Когда переключатель находится в среднем положении, устройство выключено.

На изображении ниже показано, как выполняются «перекрестные» подключения проводов между клеммами на переключателе DPDT.

Закройте коробку с проектом. Ваша подставка для Пельтье готова.

ВПЕРЕДИ — БЫТЬ ГОРЯЧИМ И ХОЛОДНЫМ

Чтобы использовать подставку Peltier Coaster, подключите настенный трансформатор к розетке и переведите переключатель в верхнее положение. Держите руку возле верхней поверхности модуля Пельтье, чтобы определить, не становится ли он холодным.Переведите переключатель в нижнее положение, чтобы убедиться, что он нагревается.

Если подставка не нагревается или не охлаждается, проверьте соединения и убедитесь, что устройство подключено правильно.

Металлические чашки лучше всего подходят для подставки Пельтье (рисунок). Наслаждайтесь теплым или холодным напитком!


Удивительный генератор Зеебека

Эффект Зеебека — это обратный эффект Пельтье: получить мощность 5 В от пламени свечи.Классика из Make: Volume 15.

Камера Вильсона с охлаждением Пельтье

Atomic Punk — постройте камеру Вильсона своими руками, чтобы сделать видимыми радиоактивные частицы и гамма-лучи.

Охлажденный напиток для напитков

Пельтье + помпа = охладите и раздайте ваш любимый напиток, температура регулируется безделушкой Adafruit.

% PDF-1.3 % 567 0 объект > эндобдж xref 567 100 0000000016 00000 н. 0000002370 00000 н. 0000002559 00000 н. 0000002712 00000 н. 0000002852 00000 н. 0000003826 00000 н. 0000004391 00000 п. 0000004422 00000 н. 0000004585 00000 н. 0000004994 00000 н. 0000005025 00000 н. 0000005185 00000 п. 0000005836 00000 н. 0000005867 00000 н. 0000006229 00000 п. 0000006397 00000 н. 0000006420 00000 н. 0000007958 00000 н. 0000007989 00000 п. 0000008020 00000 н. 0000008357 00000 н. 0000008509 00000 н. 0000008676 00000 н. 0000009166 00000 н. 0000009189 00000 н. 0000010537 00000 п. 0000011135 00000 п. 0000011166 00000 п. 0000011325 00000 п. 0000011348 00000 п. 0000012616 00000 п. 0000012639 00000 п. 0000014189 00000 п. 0000014220 00000 п. 0000014642 00000 п. 0000014803 00000 п. 0000014826 00000 п. 0000016397 00000 п. 0000016420 00000 п. 0000017957 00000 п. 0000018329 00000 п. 0000018489 00000 п. 0000018520 00000 п. 0000018543 00000 п. 0000020300 00000 п. 0000020323 00000 п. 0000021733 00000 п. 0000023177 00000 п. 0000023256 00000 п. 0000023279 00000 п. 0000023302 00000 п. 0000023546 00000 п. 0000023820 00000 п. 0000023842 00000 п. 0000027349 00000 н. 0000028202 00000 п. 0000028441 00000 п. 0000028804 00000 п. 0000032303 00000 п. 0000032382 00000 п. 0000032405 00000 п. 0000032427 00000 н. 0000032506 00000 п. 0000032528 00000 п. 0000032761 00000 п. 0000032840 00000 п. 0000032863 00000 н. 0000037856 00000 п. 0000037935 00000 п. 0000038172 00000 п. 0000038610 00000 п. 0000040641 00000 п. 0000040663 00000 п. 0000040742 00000 п. 0000040765 00000 п. 0000040787 00000 п. 0000041060 00000 п. 0000041082 00000 п. 0000041315 00000 п. 0000041395 00000 п. 0000041418 00000 п. 0000043358 00000 п. 0000044149 00000 п. 0000052829 00000 п. 0000053054 00000 п. 0000053077 00000 п. 0000053643 00000 п. 0000053665 00000 п.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.