Site Loader

Содержание

Новое. Системы охлаждения на интернет-аукционе Au.ru

в наличии нет ожидается поставка

Технические параметры

Модель: TEC1-12715.

Размеры: 40mm x 40mm x 4.1mm.

Номинальный рабочий ток: 8-10 A (при напряжении 12В)

Максимальный рабочий ток: 15A

Максимальное напряжение 15.4В

Рабочая температура: -30 до 70С.

Тепловая мощность (охлаждение)*1: 137Вт

Тепловая мощность (нагрев)*2: 368Вт

Максимальная электрическая мощность 231Вт

1) это максимальная мощность при нулевой разнице температур между пластинами

2) это максимальная мощность выделяемая на горячей стороне,при нулевой разнице температур между пластинами и максимальном напряжении и токе.

Элемент Пельтье представляет собой керамическую пластинку размером 40х40х4мм с двумя проводами.

При пропускании тока одна сторона нагревается, другая — охлаждается (тепловой полупроводниковый насос).

Для охлаждения процессоров холодную сторону прикладывают на термопасте к чипу, а на горячую сажают мощный радиатор. Однокаскадная схема способна создать разницу температур градусов в 30-40, т.е. при определённом старании процессор можно охладить почти до нуля градусов.

Модули обратимы — те при изменении полярности поверхности нагрева и охлаждения поменяются местами.

Подробнее можно прочитать здесь:

http://Мощность 150Вт

Мощность 200Вт

В наличии водоблоки

Универсальный водоблок

Теплозащитная прокладка против конденсата

Теплозащитная прокладка

В наличии много светодиодов для оформления

Синий 3мм

Белый 3мм

Пурпурный 5мм

Салатно-зеленый 3мм

Изумрудный Зеленый 5мм

Красный 5мм

Красный 3мм

Желтый 3мм

RGB c общим анодом

ВНИМАНИЕ!

элементы пельтье нельзя включать без радиатора с на горячей стороне

нельзя допускать нагрев горячей стороны выше 80С

фото поврежденного элемента пельтье

видно как на горячей стороне (в данном случае это нижняя на фото)

припой вытек, а полупроводниковые кристаллы повреждены

Пример неправильной установки элемента пельтье на процессор

при такой установке

— будет образовываться конденсат (края элемента пельтье оказались в воздухе)

— существенно снизится кпд охлаждения за счет переохлаждения краев элемента пельтье

правильно — между процессором и элементом пельтье установить медную пластину-темплораспределитель 40х40х5мм

Теплоизоляция нужна для предотвращения образования конденсата

один из примеров

ссылки и видео по теме защиты от конденсата

http://www.hwp.ru/articles/Ohlazhdenie_elementom_Pelte/

http://www.thg.ru/cpu/20031231/print.html

ЭЛЕМЕНТ ПЕЛЬТЬЕ TEC1 12706 12V

Работа данного устройства основана на термоэлектрическом явлении, известном как эффект Пельтье. Эффект Пельтье — термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников.

Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, направления и силы протекающего электрического тока. Причина возникновения явления Пельтье заключается в следующем. На контакте двух веществ имеется контактная разность потенциалов, которая создаёт внутреннее контактное поле. Если через контакт протекает электрический ток, то это поле будет либо способствовать прохождению тока, либо препятствовать. Если ток идёт против контактного поля, то внешний источник должен затратить дополнительную энергию, которая выделяется в контакте, что приведёт к его нагреву. Если же ток идёт по направлению контактного поля, то он может поддерживаться этим полем, которое и совершает работу по перемещению зарядов. Необходимая для этого энергия отбирается у вещества, что приводит к охлаждению его в месте контакта. (

https://ru.wikipedia.org/wiki/Эффект_Пельтье)

Термоэлектрический эффект можно пронаблюдать наглядно, собрав цепь из двух и более различных проводников, например нихрома и константана. Если в такой цепи имеется перепад температур, то в цепи потечет ток. От отдельного термоэлемента ток очень слаб и подходит только для демонстрации эффекта и измерения температуры.

Для того что бы повысить напряжение, выдаваемое таким источником надо объединить несколько элементов в батарею, и главное использовать материалы дающие возможно большую ЭДС и обладающие возможно меньшей теплопроводностью, что бы тепловая энергия от горячего контакта не грела холодный. Металлы и их сплавы плохо подходят по последнему параметру, но существуют специальные полупроводниковые материалы, используя которые можно получить значительный ток.

Эффект Пельтье обратим, поэтому можно использовать элемент Пельтье, как для получения электрической энергии от источника тепла, так и для создания перепада температур. В последнем случае термобатарею можно использовать как холодильник для лучшего охлаждения элементов компьютера с большим тепловыделением.

Данный элемент Пельтье был приобретен на Aliexpress.com всего за 2 доллара.

Как понимает автор штатное применение такого элемента Пельтье – это дополнительное охлаждение сильно нагревающейся микросхемы. Устройство представляет собой пластину размером 40 х 40 мм, толщиной около 4 мм и массой 19 г вместе с соединительными проводами.

Характеристики элемента Пельтье tec1 12706

По заявлению продавца, элемент работоспособен в диапазоне напряжений питания от 0 до 15 В. При этом, следует заметить, что устройство потребляет весьма значительный ток от 0,5 А при напряжении питания 2,5 В, до 2,1 А при напряжении 12 В. 

Подключение и испытание

При подключении элемента к источнику тока одна из поверхностей (в зависимости от полярности питания) начнет интенсивно нагреваться, а другая быстро остывать. Чем выше напряжение питания и чем, соответственно, выше потребляемая мощность, тем больший перепад температур может обеспечить устройство. При этом законы термодинамики, разумеется, никто не отменял.

Модель tec1 12706 отлично иллюстрирует принцип тепловой машины, которая, затрачивает энергию внешнего источника, и совершая работу, переносит энергию от холодного контакта к горячему. При этом на горячей поверхности выделяется как тепловая энергия, перенесенная с холодной поверхности, так и тепло выделяющееся в проводнике при протекании по нему электрического тока, так как закон Джоуля-Ленца никто не отменял. По этой причине горячая поверхность элемента Пельтье должна надежно охлаждаться радиатором с вентилятором. Без этого в реальности элемент Пельтье почти бесполезен, так как за счет теплопроводности тепловая энергия будет перемещаться в обратном направлении, нагревая холодную часть элемента.

В целом tec1 12706 интересное устройство, автор делал заказ на Алиэкспресс дважды, оба раз товар пришел без всяких нареканий. Denev

Originally posted 2019-02-09 10:43:11. Republished by Blog Post Promoter

Что такое элемент Пельтье, его характеристики и принцип работы | ASUTPP

Электричество прочно вошло в нашу жизнь и приборы, где оно выступает в качестве источника энергии, широко применяются в быту. Это разнообразные нагревательные элементы, насосы или моторы. С его помощью можно понижать температуру. Причём без использования термодинамики и свойства фреона охлаждаться при расширении.

Устройство, которое называется элемент Пельтье успешно справляется с этой задачей.

Принцип работы основан на эффекте изменения температуры у двух разных тесно соприкасающихся проводников. Если через них пропустить электрический ток, то один из них охлаждается, а другой нагревается. При смене полярности нагрев и охлаждение также меняются местами и их интенсивность напрямую зависит от силы тока. Это явление Ж. Пельтье открыл ещё в 1984 г., но только в середине 20 века, после начала широкого применения полупроводников, ему нашли практическое применение.

Принцип работы элемента Пельтье

Термоэлемент состоит из двух пластин, состоящих из разных материалов, проводимость которых отличается друг от друга. Соответственно в них разный уровень энергии электронов при одинаковой силе тока. Если эти пластины соприкасаются, то электрон с более низкой энергией должен увеличить её при переходе на более высокоэнергичную область. И пластина с такими электронами начинает охлаждаться. В другой пластине они тормозятся и излишек выделяемой энергии уходит на нагревание.

Этот эффект становится более выраженным при использовании полупроводников.

Как устроен термоэлемент?

Необходимое количество термопар собирается в термоэлектрический модуль. Каждая термопара состоит из двух разнородных полупроводников P и N, соединённых медной пластиной (на рисунке прямоугольник белого цвета). С двух сторон модуль закрывается керамическими пластинами.

Мощность элемента Пельтье зависит от количества термопар, соединённых последовательно.

Постоянный ток, протекающий через модуль, нагревает одну пластину и охлаждает другую. Если отводить тепло у нагреваемого элемента, то холодная сторона будет интенсивно терять температуру и разница с окружающей средой может достигать десятков градусов.

Достоинства и недостатки

Применение термоэлемента вытекает из его преимуществ:

  • Мощность и размеры модуля могут быть любыми.
  • Отсутствие шума при работе.
  • Чтобы сделать нагревательный элемент охлаждающим, достаточно поменять полярность питания.
  • Нет движущихся частей.
  • В конструкции отсутствуют газ или жидкость.

Есть и минус в использовании. Он только один – очень низкий КПД. Дело в том, что электроны переносят заряд и тепловую энергию. Поэтому в модуле должны использоваться материалы хорошо проводящие ток и одновременно с низкой теплопроводностью. Эти свойства взаимоисключающиеся. Используемые полупроводники на основе солей теллура, висмута или селена такими параметрами обладают, но в малой степени, а лучше пока ничего не создано.

Где применяются?

Если требуется мобильность или маленькие размеры для холодильника и энергетическая эффективность не так важна, элементы Пельтье – правильный выбор.

Примеры применения:

  • автомобильные холодильники,
  • кулеры для воды,
  • осушители воздуха,
  • ресторанные тележки,
  • приёмники в инфракрасных сенсорах,
  • для уменьшения теплового шума в фотографии,
  • охлаждение лазеров.

Маркировка и технические параметры термоэлемента

На каждом изделии присутствует ряд букв и цифр. Они означают:

1. «ТЕ» – перед нами термоэлемент.

2. «С» означает стандартный модуль. Может быть ещё «S» – малый.

3. Далее, идёт количество слоёв. В данном случае один.

4. Следующие 3 цифры указывают число термопар, в нашем примере их 127.

5. И «05» – номинальный ток. Здесь 5 ампер.

Параметры, которые характеризуют работу элемента следующие:

  • СОР или КПД. Максимально он достигает 50%.
  • RES – электрическое сопротивление.
  • Qmax – производительность холода.
  • Umax – максимальное напряжение.

Холодильное оборудование широко применяется в повседневной жизни. И если требуется мобильность или стабилизация теплового режима, то в холодильных агрегатах используется элемент Пельтье.

P.S. Еще больше информации про элемент Пельтье вы можете почитать в моей статье: https://www.asutpp.ru/chto-takoe-element-pelte-i-ego-primenenie.html

Модуль пельтье tec1-12706, характеристики и возможности

19.11.2019 Электронная техника

В данной статье мы разглядим модуль Пельтье для процессора, его охлаждения. Потом подробнее о правилах его работы, особенностях и видео с демонстрацией работы, нужной для применения в компьютере. Приобрести данный модуль возможно в этом китайском магазине. Плагин на Google Хром для экономии в нём: 7 процентов с приобретений возвращается вам.

Зайдя по ссылке, сходу заметите предложения оптом и в розницу (имеется предложения с бесплатной доставкой) Пельтье TEC1-12706. Имеется и кулер охлаждения.

Элемент Пельтье — это преобразователь контрастной энергии отличия температур в электричество либо напротив, электричества в мороз. Принцип работы модулей Пельтье основан на двух явлениях — эффект Пельтье и эффект Зеебека.

 Эффект Пельтье — создание разности температур при прохождении электричества по двум разнородным полупроводникам. В маркировке элементов (к примеру ТЕС1-12706) буквосочетание TEC свидетельствует британские слова Thermoelectric Cooler — термоэлектрический охладитель.

Эффект, обратный обрисованному выше, именуется эффектом Зеебека. Это происхождение электричества в электрической цепи из последовательно соединённых разнородных проводников, каковые имеют контрастные температуры (один полупроводник нагрет, второй охлажден). Данный эффект функционирует при применении модуля как электрогенератора.

Но нас интересует в этом случае конкретная модель — термоэлектрический модуль Пельтье TEC1-12706, его характеристики.

Итак:  напряжение для запитки устройства от 3,7 до 12 Вольт (чем выше подается на элемент напряжение, тем более замечательный эффект охлаждения) номинальное напряжение питания 12 Вольт; большой ток при 12 Вольт 4,5 А, мощность устройства 50- 60 Вт; громаднейшая отличие температур, что дает модуль 60 градусов Цельсия; размер: 40 х 40 х 4 мм, вес: до 25 гр.

механизм и Структура работы модуля Пельтье TEC1-12706.

Модуль является рядомпоследовательно связанных полупроводниковых элементов типа “n” и “p”. В то время, когда постоянный ток проходит через данное соединение, одна сторона p-n контактов нагревается, вторая наоборот охлаждается. Эти элементы укреплены на двух керамических пластинах в таком порядке, дабы нагревающиеся контакты расположились на одной пластине, а охлаждающиеся — на второй.

В случае если зажать между двумя пальцами модуль и включить ток, то возможно сходу убедиться, что одно сторона модуля нагрелась, а вторая остыла.

На данный момент благодаря изобретению элементов Пельтье, термоэлектрический эффект употребляется для охлаждения процессоров компьютеров, при конструировании мобильных холодильников, нагревателей и др.

Производство холода — лишь одна из возможностей изучаемого нами устройства. В случае если обеспечить высокий перепад тепла и холода на пластине, то у нас окажется настоящая маленькая электростанция на дому. Благодаря таковой способности, устройство легко находка для любителей походов, поскольку они смогут воспользоваться заводскими (статья о нем) и самодельными (пример смотрите тут) генераторами для освещения палатки, просмотра минителевизора либо зарядки телефона без электричества.

В маленьком ролике создатель, приобретший модуль Пельтье TEC1-12706, дает отзыв о нем и говорит как он трудится.

Канал «ТЕХНАРЬ» кроме этого предлагает выполнить обзор про элемент Пельтье с указанием черт, цены и другого.

В посылки находится Элемент Пельтье. Давайте разберем, что же он из себя воображает. В случае если почитать на Википедии, в том месте его именуют термоэлектрическим преобразователем.

Поясним собственными словами. По окончании подключения напряжения (возможно от 1 до 15 В), одна сторона модуля начинает охлаждаться, а вторая сторона нагреваться. Это происходит в один момент.

Элементы Пельтье употребляется в автомобильных холодильниках и во многих электронных компонентах. Доводилось просматривать, что они употребляются кроме того в фотоаппаратах. Не смотря на то, что как?

Возможно, они должны быть размером мельче.

Этот элемент (ТЕС1-12706) имеет размеры 4 на 4 см.

Кстати, еще такие устройства возможно применять для охлаждения компьютерных процессоров. Одна сторона устанавливается наверх процессора, а сверху устанавливается кулер.

По окончании того, как подключили питание к элементу, необходимо со стороны, которая нагревается, отводить тепло. В случае если же допустить перегрев элемента (рабочая температура чуть больше 100 градусов Цельсия), он может сгореть.

Что нам потребуется для проверки работы и демонстрации элемента его работоспособности? Пригодится компьютерный блок питания. С него мы будем брать напряжение 12 В, и подавать на кулер.

Кулер — простой бокс-кулер компании DEEPCOOL. Когда-то он приобретался для усилителей. Его мало доработали, в частности просверлили еще одно отверстие, одно уже было.

Сверху будет алюминиевая пластина. Установим Пельтье и сверху накроем алюминием также. Чтобы был лучше контакт, проводимость тепла, будем применять термопасту КРТ-8.

На Элемент подадим напряжение в 5 В, которое также заберём из ветхого компьютерного блока питания. Из-за чего 5 В, а не 12 В. Нет уверенности, что тут будет всё нормально. Другими словами будет обычный отвод тепла.

Элемент может не выдержать 12 вольт, лучше не рисковать.

Начинаем собирать. Та сторона, на которой надпись, будет охлаждаться. Исходя из этого ее наверх, а та которая нагревается — отвод тепла будет снизу.

Наносим термопасту и сверху прижимаем простыми шурупами. Помимо этого, вырезаются из кожи прокладки чтобы меньше тепла передавалось от верхней пластины к радиатору.

Продолжение тестовых опробований на видео с 5 60 секунд

Метки записи:

Модуль Пельтье

12V 60W TEC1-12706 Термоэлектрический модуль пельтье


Похожие статьи, которые вам понравятся:

Элемент пельтье параметры. Модуль Пельтье: технические характеристики

Чуть чуть теории.

Единичным элементом термоэлектрического модуля (ТЭМ) является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.

Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле термопары помещаются между двух плоских керамических пластин на основе оксида или нитрида алюминия. Количество термопар может изменяться в широких пределах — от единиц до сотен пар, что позволяет создавать ТЭМ практически любой холодильной мощности — от десятых долей до сотен ватт.

При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.

Практика.

Элементы Пельте широко используются в системах охлаждения. Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих их возможностей и посвящена данная лабораторная работа.

50*50 мм элемент, установлен между двумя алюминиевыми брусками. Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из брусков просверлены сквозные отверстия, через которые пропущена медная трубка, для водяного охлаждения. Вот, что получилось:

Подключаем воду к охладителю к одной стороне элемента Пельтье , а другую ставим на конфорку. К выходу элемента подключаем 10Вт 6 вольтовою лампочку. Результат — наш генератор работает!

Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта.

Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%.

Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима…

При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки.

Использование термоэлектрического модуля.

Такой термоэлектрический генератор прекрасно помнят те, кто помнит советские совхозы и колхозы. Говорят, в войну немцы не могли понять, как партизаны могут подолгу вести радиопередачи из осажденного леса.

Да, как говорится — если бы нашим ученым платили деньги, то они бы iphone ещё в `85 изобрели бы! 🙂

Термоэлектрический холодильник

Термоэлектрический холодильник (вариант 2)

Термоэлектрический холодильник (вариант 3)

Автомобильный охладитель для баночных напитков

Кулер для питьевой воды

Термоэлектрический кондиционер для кабины КАМАЗа

В такой «ковшик» наливается вода, ставится на огонь и, пожалуйста, подзаряжай мобильник. Весь секрет в дне, там «зарыт» Пельтье

Давайте поподробней об этой конструкции.

В настоящее время растет интерес к использованию термоэлектрических генераторных модулей в бытовых устройствах. В первую очередь это касается возможности питания маломощных потребителей электроэнергии — радиоприемники, сотовые и спутниковые телефоны, переносные компьютеры, устройства автоматики и т.п. от имеющихся источников тепла. Термоэлектрический генератор, в котором отсутствуют вращающиеся, трущиеся и какие-либо другие изнашиваемые части, позволяет непосредственно получать электричество из любого источника тепла: выхлопных газов двигателей внутреннего сгорания, горячей воды геотермальных источников, «бросового» тепла ТЭЦ и т.п. Руководствуясь опытом, полученным при создании промышленных термоэлектрических генераторов (ТЭГ) различной мощности — от нескольких Ватт до нескольких килоВатт ИПФ КРИОТЕРМ приступила к серийному производству бытового ТЭГ номинальной мощностью 8 Вт. Конструктивно генератор выполнен в виде алюминиевого ковшика с внутренним объемом около 1 л в донной части которого установлены генераторные модули производства ИПФ Криотерм.

Необходимый для работы генератора перепад температур достигается при разогреве ковшика, например, пламенем костра. Вода, нагреваемая внутри ковшика может идти на приготовление пищи или на другие цели. Данный генератор в первую очередь предназначен для использования в глухих, труднодоступных местах для подзарядки элементов питания индивидуальных средств связи и навигации, освещения и т.п. Он незаменим для охотников, туристов, моряков, сотрудников спасательных и специальных служб, вынужденных долгое время находится вдали от источников центрального энергоснабжения.

Преимуществом генератора является малый вес и объем, высокая удельная генерируемая мощность, функциональность и высокая надежность. Конструкция генератора исключает возможность его перегрева при правильном использовании. В качестве дополнительной опции к генератору предлагается ступенчатый стабилизатор напряжения с диапазонами 3 В — 6 В — 9В -12В и переходники для зарядных устройств.

БЫТОВОЙ ГЕНЕРАТОР ТЕРМОЭЛЕКТРИЧЕСКИЙ 1TG-8

Техническая спецификация

Масса без жидкости, кг, не более0,55

Габаритные размеры, мм

без ручки250х130х110 ? 123, h=100

Явление возникновения термо-ЭДС было открыто немецким физиком Томасом Иоганном Зеебеком в далеком в 1821 году. А заключается это явление в том, что в замкнутой электрической цепи, состоящей из соединенных последовательно разнородных проводников, при условии что их контакты находятся в условиях различных температур, возникает ЭДС.

Данный эффект, названный по имени его первооткрывателя эффектом Зеебека, называют теперь просто термоэлектрическим эффектом .

Если цепь состоит всего из пары разнородных проводников, то такая цепь называется . В первом приближении можно утверждать, что величина термо-ЭДС зависит лишь от материала проводников и от температур холодного и горячего контактов. Таким образом, в небольшом интервале температур термо-ЭДС пропорциональна разности температур холодного и горячего контактов, а коэффициент пропорциональности в формуле называется коэффициентом термо-ЭДС.

Так например, при разности температур в 100°С, при температуре холодного контакта 0°С, пара медь-константан обладает термо-ЭДС величиной в 4,25мВ.

Между тем, термоэлектрический эффект имеет в своей основе три составляющих:

Первый фактор — различие у разных веществ зависимости средней энергии электронов от температуры. В результате, если при нагреве проводника на одном его конце температура выше, то там электроны приобретают большие скорости, чем электроны на холодном конце проводника.

Кстати, у полупроводников с нагревом растет и концентрация электронов проводимости. Электроны с высокой скоростью устремляются к холодному концу, и там происходит накопление отрицательного заряда, а на горячем конце получается нескомпенсированный положительный заряд. Так возникает составляющая термо-ЭДС, называемая объемной ЭДС.

Второй фактор — у разных веществ контактная разность потенциалов зависит от температуры по-разному. Это связано с различием энергии Ферми у каждого из проводников, сведенных в контакт. Контактная разность потенциалов, возникающая при этом, оказывается пропорциональной разности энергий Ферми.

Получается электрическое поле в тонком приконтактном слое, причем разность потенциалов с каждой стороны (у каждого из сведенных в контакт проводников) будет одинаковой, и при обходе цепи по замкнутому контуру, результирующее электрическое поле будет равно нулю.

Но если температура одного из проводников будет отличаться от температуры другого, то в связи с зависимостью энергии Ферми от температуры, изменится и разность потенциалов. В результате возникнет контактная ЭДС — вторая составляющая термо-ЭДС.

Третий фактор — фононное увеличение ЭДС . При условии, что в твердом теле имеет место температурный градиент, количество фононов (фонон — квант колебательного движения атомов кристалла), движущихся в направлении от горячего конца к холодному будет преобладать, в результате чего вместе с фононами большое количество электронов будет увлекаться в сторону холодного конца, и там станет накапливаться отрицательный заряд, пока процесс не придет в равновесие.

Это дает третью составляющую термо-ЭДС, которая в условиях низких температур может в сотни раз превосходить две упомянутые выше составляющие.

В 1834 году французский физик Жан Шарль Пельтье открыл обратный эффект. Он обнаружил, что при прохождении электрического тока через контакт (спай) двух разнородных проводников выделяется или поглощается тепло.

Количество поглощаемого или выделяемого тепла связано с видом спаянных веществ, а также с направлением и величиной протекающего через спай электрического тока. Коэффициент Пельтье в формуле численно равен коэффициенту термо-ЭДС, умноженному на абсолютную температуру. Это явление известно теперь как .

В сути эффекта Пельтье в 1838 году разобрался русский физик Эмилий Христианович Ленц. Он экспериментально проверил эффект Пельтье, поместив каплю воды на место спая образцов сурьмы и висмута. Когда Ленц пропускал через цепь электрический ток, вода превращалась в лед, но когда ученый изменил направление тока на противоположное, лед быстро растаял.

Ученый установил таким образом, что при протекании тока не только выделялось джоулево тепло, но происходило также поглощение или выделение дополнительного тепла. Это дополнительное тепло получило название «тепло Пельтье».

Физическая основа эффекта Пельтье заключается в следующем. Контактное поле в месте спая двух веществ, созданное контактной разностью потенциалов, либо препятствует прохождению пропускаемого через цепь тока, либо способствует ему.

Если ток пропускается против поля, то требуется работа источника, который должен затратить энергию на преодоление контактного поля, в результате чего и происходит нагрев места спая. Ежели ток направлен так, что контактное поле поддерживает его, то работу совершает контактное поле, и энергия отнимается у самого вещества, а не расходуется источником тока. В результате вещество в месте спая охлаждается.

Наиболее выразителен эффект Пельтье у полупроводников, благодаря чему стали возможными модули Пельтье или термоэлектрические преобразователи .

В основе элемента Пельтье два полупроводника, контактирующие между собой. Эти полупроводники отличаются энергией электронов в зоне проводимости, поэтому при протекании тока через место контакта, электроны вынуждены приобретать энергию, чтобы смочь перейти в другую зону проводимости.

Так, при перемещении в более высокоэнергетическую зону проводимости другого полупроводника, электроны поглощают энергию, охлаждая место перехода. При обратном направлении тока электроны отдают энергию, и происходит нагрев дополнительно к джоулеву теплу.

Полупроводниковый модуль Пельтье состоит из нескольких пар , имеющих форму маленьких параллелепипедов. Обычно в качестве полупроводников используют теллурид висмута и твердый раствор кремния и германия. Полупроводниковые параллелепипеды соединены между собой попарно медными перемычками. Эти перемычки служат контактами для теплообмена с керамическими пластинками.

Перемычки расположены так, что с одной стороны модуля только перемычки обеспечивающие переход n-p, а с другой стороны — только перемычки обеспечивающие переход p-n. В результате, при подаче тока, одна сторона модуля нагревается, другая — охлаждается, а если полярность питания сменить на противоположную, то сторона нагрева и охлаждения соответственно поменяются местами. Таким образом, при прохождении тока происходит перенос тепла с одной стороны модуля на другую, и возникает разность температур.

Если теперь одну сторону модуля Пельтье нагревать, а другую охлаждать, то в цепи возникнет термо-ЭДС, то есть будет реализован эффект Зеебека. Очевидно, эффект Зеебека (термоэлектрический эффект) и эффект Пельтье — две стороны одной медали.

Сегодня можно легко приобрести модули Пельтье по относительно доступной цене. Наиболее популярны модули Перьтье типа ТЕС1-12706, содержащие 127 термопар, и рассчитанные на питание 12 вольт.

При максимальном потреблении в 6 ампер, достижима разница температур в 60°С, при этом заявляемый производителем безопасный диапазон рабочих температур — от -30°С до +70°С. Размер модуля 40мм х 40мм х 4мм. Модуль может работать как в режиме охлаждения-нагревания, так и в .

Есть и более мощные модули Пельтье, например TEC1-12715, рассчитанный на 165 Вт. При питании напряжением от 0 до 15,2 вольт, с силой тока от 0 до 15 ампер, данный модуль способен развить разность температур в 70 градусов. Размер модуля также 40мм х 40мм х 4мм, однако диапазон безопасных рабочих температур шире — от -40°С до +90°С.

В таблице ниже приведены данные по модулям Пельтье, широко доступным сегодня на рынке:

Андрей Повный

Впервые я столкнулся с элементами Пельтье (ЭП) несколько лет назад, когда разрабатывал устройство охлаждения воды в аквариуме. Сегодня ЭП стали еще более доступными, а сфера их применения существенно расширилась. К примеру, в охладителях воды , которые часто можно встретить в офисах, используются ЭП. Там они в форме квадрата 4×4 см (рис.2) с помощью специальной термопасты и стяжных винтов закреплены между радиатором охлаждения и корпусом водяного резервуара, “холодной” поверхностью к резервуару. Распространены и другие ЭП.

Рис. 2 Элемент Пельтье

Воснове работы элемента Пельтье лежит эффект, открытый французским часовщиком Жаном Пельтье. В1834 г. Пельтье обнаружил, что при протекании постоянного тока в цепи, состоящей из разнородных проводников, в местах контактов (спаях) проводников поглощается или выделяется тепло (в зависимости от направления тока). Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и пропорциональна проходящему току. Элемент Пельтье обратим. Если приложить к нему разность температур, в цепи потечет ток.

Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного металла в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника. В результате, происходит охлаждение.

Наиболее сильно эффект Пельтье наблюдается в случае исполь зования полупроводников (р- и n-типа проводимости). В зависимости от направления электрического тока через р-n-переходы вследствие взаимодействия зарядов, представленных электронами (n) и дырками (р), и их рекомбинации энергия либо поглощается, либо выделяется.

Рис. 3 Эффект Пельтье

Эффект Пельтье лежит в основе работы термоэлектрического модуля (ТЭМ). Единичным элементом ТЭМ является термопара, состоящая из одного проводника (ветки) p-типа и одного проводника n-типа. При последовательном соединении нескольких таких термопар теплота (Q c), поглощаемая на контакте типа n-р, выделяется на контакте типа p-n (Q h). В результате, происходит нагрев (Т h) или охлаждение (Т с) участка полупроводника, непосредственно примыкающего к р-п-переходу (рис.3), и возникает разность температур (AT=T h -T c) между его сторонами: одна пластина охлаждается, а другая нагревается. Традиционно сторона, к которой крепятся провода, горячая, и она изображается снизу.

Рис. 4

Термоэлектрический модуль представляет собой совокупность таких термопар (рис.4), обычно соединенных между собой последовательно по току и параллельно по потоку тепла. Термопары помещаются между двух керамических пластин (рис.5). Ветки напаиваются на медные проводящие площадки (шинки), которые крепятся к специальной теплопроводящей керамике, например, из оксида

Рис. 5 Термоэлектрический модуль Пельтье

алюминия. Количество термопар может варьироваться в широких пределах (от нескольких единиц до нескольких сотен), что позволяет создавать ТЭМ с холодильной мощностью от десятых долей ватта до сотен ватт. Наибольшей термоэлектрической эффективностью среди промышленно используемых материалов обладает теллурид висмута, в который для получения необходимого типа и параметров проводимости добавляют специальные присадки (селен и сурьму).

Рис. 6

Типичный модуль (рис.6) обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающейся поверхности вторая поверхность-холодильник позволяет достичь отрицательных значений температуры. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье (рис.7) при обеспечении их достаточного охлаждения. Устройства охлаждения на основе модулей Пельтье часто называют “активными холодильниками Пельтье” или просто “кулерами Пельтье”.

Рис. 7, каскадное включение термоэлектрических модулей Пельтье

Использование модулей Пельтье в активных кулерах делает их более эффективными по сравнению со стандартными кулерами на основе радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей и их принципа работы.

Большое значение имеет мощность модуля Пельтье, которая, как правило, зависит от его размеров. Модуль малой мощности не обеспечит необходимого охлаждения, что может привести к нарушению работы защищаемого элемента вследствие его перегрева. Однако применение модулей слишком большой мощности может вызвать понижение температуры охлаждающего радиатора до

Рис. 8, активный кулер, на основе полупроводникового модуля Пельтье

уровня конденсации влаги из воздуха, что опасно для электронных устройств. Модули Пельтье в процессе работы выделяют сравнительно большое количество тепла. По этой причине следует применять в составе кулера мощный вентилятор. На рис.8 показан активный кулер, в котором использован полупроводниковый модуль Пельтье.

Подаваемое на модуль напряжение определяется количеством пар ветвей в модуле. Наиболее распространенными являются 127-парные модули, максимальное напряжение для которых составляет примерно 16 В. Но на эти модули обычно подается напряжение питания 12 В, т.е. примерно 75% U max . Такой выбор напряжения питания в большинстве случаев является оптимальным: позволяет обеспечить достаточную мощность охлаждения при приемлемой экономичности. При повышении напряжения питания более 12 В увеличение холодильной мощности незначительно, а потребляемая мощность резко увеличивается. При понижении напряжения питания экономичность растет, поскольку холодильная мощность также уменьшается, но линейно.

Табл.1 элемент Пельтье, характеристики

Тип модуля

Характеристики

I max ,A

U max ,B

Q max ,Bт

Размеры, мм

А-ТМ8,5-27-1 ,4

| 15,4

72,0

40x40x3,7

А-ТМ8,5-127-1,4HR1

15,4

72,0

40x40x3,4

А-ТМ8,5-127-1,4HR2

15,4

72,0

140x40x3,7

А-ТМб.0-127-1,4

15,4

53,0

40x40x4,2

А-ТМ6,0-127-1.4HR1

15,4

53,0

40x40x3,8

А-ТМ6,0-127-1,4HR2

15,4

53,0

40x40x4,2

А-ТМЗ,9-127-1,4

15,4

35,0

40x40x5,1

А-ТМЗ,9-127-1,4HR1

15,4

35,0

40x40x4,8

А-ТМЗ,9-127-1,4HR2

15,4

35,0

40x40x5,1

A-TM3,9-127-1,4

15,4

34,0

30x30x3,9

А-ТМЗ,9-127-1,4HR1

15,4

34,0

30x30x3,9

А-ТМЗ,9-127-1,4HR2

15,4

34,0

30x30x3,9

А-ТМ37,5-49-3,0

37,5

130,0

40x40x4,3

A-TM37,5-49-3,0HR1 i

15,4

72,0

40x40x4,3

A-TM6,0-31-1,4

3,75

12,5

20x20x4,2

A-TM6,0-31-1,4HR1

3,75

12,5

20x20x4,2

Примечание: модули с маркировной HR1 и HR2 отличаются повышенной надежностью.

Для модулей с другим числом пар ветвей (отличным от 127) напряжение можно выбирать по тому же принципу: 75% от U max , но при этом необходимо учитывать особенности конкретного устройства, прежде всего, условия теплоотвода с горячей стороны и возможности источников питания. Например, на модули серии “ДРИФТ” (199 термоэлектрических пар) рекомендуется подавать напряжение от 12 до 18 В.

При эксплуатации важен надежный термический контакт между теплообменником и радиатором, поэтому ТЭМ крепится с использованием термопроводящей пасты (например, КПТ-8). Если нет специальной термопасты, можно с успехом применить фармакологические средства, купленные в аптеке, например, пасту Лассари или салицилово-цинковую пасту.

Поскольку максимальная температура на горячей стороне ТЭМ достигает +80°С (в высокотемпературных охладителях фирмы Supercool — +150°С), важно, чтобы ЭП охлаждался правильно. Горячая поверхность ТЭМ должна быть обращена к радиатору, с другой стороны которого установлен вентилятор охлаждения (поток воздуха направляется от радиатора). Вентилятор и ТЭМ в соответствии с полярностью подключаются к источнику питания, который может быть простейшим: понижающий трансформатор, выпрямитель на диодах и сглаживающий оксидный конденсатор. Но пульсации питающего напряжения не должны превышать 5%, в противном случае эффективность ТЭМ уменьшается. Лучше, если вентилятор и ТЭМ управляются электронным устройством на основе компаратора и датчика температуры. Как только температура охлаждаемого объекта повышается свыше установленного порога, автоматически включаются охладитель и вентилятор, и начинается охлаждение. Степень охлаждения (или нагрева) пропорциональна проходящегому через ТЭМ току, что позволяет с высокой точностью регулировать температуру “обслуживаемого” объекта.

Термоэлектрические модули загерметизированы, так что их можно применять даже в воде. Керамичес кая поверхность ТЭМ зашлифована, к ламелям (выводам) припаяны черный (“-”) и красный (“+”) провода. Если ТЭМ (рис.2) расположить выводами к себе так, чтобы черный провод был слева, а красный справа, сверху будет холодная сторона, а снизу — горячая. Маркировка обычно наносится на горячую сторону.

Табл.2

Температура воздействия, 0С

Место воздействия (сторона 1 или 2)*

Время воздействия, сек

Сотротивление (по прошествии времени воздействия), кОм

Постоянное

Нагрев зажигалкой

Нагрев зажигалкой**

>2000

5 (в холодильнике)

20 (на улице зимой)

36 после охлаждения в холодильнике (-5)

36 после охлаждения на улице (-20)

100 (кипящая вода)

Топка русской печи (открытое пламя)

0,06

Примечания:

* — сторона 1 — сторона с нанесенной маркировкой, сторона 2 — обратная сторона (относительно маркировки).

** При нагреве тыльной стороны в течение 4 с зажигалкой с открытым пламенем, касавшимся поверхности ЗП, на выводах был зафиксирован ток 200 мкА.

Наиболее «ходовые» типы модулей Пельтье — это однокаскадные модули максимальной мощностью до 65 Вт (12 В) и 172 Вт (24 В). Обозначения модулей расшифровываются следующим образом: первое число — это количество термопар в модуле, второе — ширина сторон ветки (в мм), третье — высота ветки (в мм). Например, ТВ-127-1,4-1,5 — модуль, состоящий из 127 пар термоэлектрических веток, размеры которых 1,4×1,4×1,5 мм. Размеры модулей — 40×40 мм, толщина — около 4 мм. Стандартные однокаскадные модули выпускаются с максимальной мощностью до 70 Вт (12 В) и 172 Вт (24 В). Типовые параметры ТЭМ приведены в табл.1.

Табл.3 Параметры термоэлектрического генератора

Рис. 9 термоэлектрический генератор

В экспериментах с ТЭМ я проверил изменение его сопротивления в разных режимах. К выводам (ламелям) модуля подключался тестер М830 в режиме измерения сопротивления. Результаты сведены в табл.2. При температурном воздействии, большем чем комнатная температура, на сторону ТЭМ с маркировкой, его сопротивление уменьшалось, на оборотную сторону — пропорционально увеличивалось (в строках 2 и 3 таблицы показана реакция на прикосновение ребром ладони к поверхности ТЭМ, температура указана приблизительно 36°С).

Учитывая обратимость элементов Пельтье , на их основе можно разрабатывать источники электропитания. Например, термоэлектрический генератор “В25-12(М)” компании “Криотерм” (рис.9) позволяет заряжать аккумуляторы мобильных телефонов, цифровых фотоаппаратов, смотреть телевизор, продолжительное время работать на ноутбуке и пр. Единственное требование — нужна нагретая поверхность размерами 20×25 см. Параметры генератора приведены в табл.3 .

А.Кашкаров.

Элементом Пельтье принято называть преобразователь, который способен работать от разности температур. Происходит это путем протекания электрического тока по проводникам через контакты. Для этого в элементах предусмотрены специальные пластины. Тепло от одной стороны переходит в другую.

На сегодняшний день указанная технология является востребованной в первую очередь из-за значительной мощности теплоотдачи. Дополнительно устройства способны похвастаться компактностью. Радиаторы для многих моделей устанавливаются слабенькие. Связано это с тем, что тепловой поток довольно быстро остывает. В результате нужная температура поддерживается постоянно.

Подвижных частей указанный элемент не имеет. Работают устройства абсолютно бесшумно, и это является несомненным преимуществом. Также следует сказать, что эксплуатироваться они способны очень долго, а случаи поломок возникают крайне редко. Самый простой тип состоит из медных проводников с контактами и соединительными проводами. Дополнительно с охлаждающей стороны имеется изолятор. Изготовляют его, как правило, из керамики или

Зачем нужны элементы Пельтье?

Элементы Пельтье чаще всего используются для изготовления холодильников. Обычно речь идет о компактных моделях, которые могут применяться, к примеру, автомобилистами в дороге. Однако на этом область применения устройств не подходит к концу. В последнее время элементы Пельтье активно начали устанавливать в звуковую, а также акустическую технику. Там они способны выполнять функции куллера.

В результате охлаждение усилителя устройства происходит без какого-либо шума. Для портативных компрессоров элементы Пельтье являются незаменимыми. Если говорить о научной отрасли, то ученые применяют данные устройства для охлаждения лазера. При этом можно добиться значительной стабилизации волны изучения у светодиодов.

Недостатки моделей Пельтье

Казалось бы, такое простое и эффективной устройство лишено недостатков, однако они имеются. В первую очередь специалисты сразу отметили малую пробивную способность модуля. Это говорит о том, что у человека возникнут определенные проблемы, если он захочет охладить прибор, который работает от сети с напряжением 400 В. В данном случае частично поможет решить эту проблему специальная диэлектрическая паста. Однако пробой тока все равно будет высоким и обмотка элемента Пельтье может не выдержать.

Дополнительно указанные модели не советуют применять для точной электроники. Поскольку в конструкции элемента имеются металлические пластины, то чувствительность транзисторов может нарушаться. Последним недостатком элемента Пельтье можно назвать малый коэффициент полезного действия. Достигнуть значительной разности температур указанные устройства не способны.

Модуль для регулятора

Сделать элемент Пельтье своими руками для регулятора довольно просто. Для этого следует заранее заготовить две металлические пластины, а также проводку с контактами. В первую очередь для установки готовят проводники, которые будут располагаться у основания. Обычно их закупают с маркировкой «РР».

Дополнительно для нормального контроля температуры следует предусмотреть полупроводники на выходе. Они необходимы для того, чтобы быстро отдавать тепло на верхнюю пластину. Для установки всех элементов следует использовать паяльник. Чтобы доделать элемент Пельтье своими руками, в последнюю очередь подсоединяют два провода. Первый монтируется у нижнего основания и фиксируется у крайнего проводника. Соприкосновения при этом с пластиной следует избегать.

Далее крепят второй провод у верней части. Фиксация осуществляется также к крайнему элементу. Для того чтобы проверить работоспособность устройства, применяют тестер. Для этого два провода нужно подсоединить к прибору. В результате отклонение напряжения должно составить примерно 23 В. В данной ситуации многое зависит от мощности регулятора.

Холодильники с терморезистором

Как сделать элемент Пельтье своими руками для холодильника с терморезистором? Отвечая на этот вопрос, важно отметить, что пластины для него подбираются исключительно из керамики. При этом проводников используется около 20 штук. Это необходимо для того, чтобы перепад температуры был более высоким. Повысить можно до 70 %. В данном случае важно рассчитать

Сделать это можно исходя из мощности оборудования. Холодильник на жидком фреоне в этом случае походит идеально. Непосредственно элемент Пельтье устанавливается возле испарителя, который располагается рядом с мотором. Для его монтажа потребуется стандартный набор инструментов, а также прокладки. Они необходимы для того, чтобы оградить модель от пускового реле. Таким образом, охлаждение нижней части устройства будет происходить намного быстрее.

Чтобы добиться получения разницы в температурах (эффект Пельтье) своими руками, проводников может понадобиться не менее 16 штук. Главное при этом — надежно изолировать провода, которые будут подключаться к компрессору. Для того чтобы сделать все правильно, нужно в первую очередь отсоединить осушитель холодильника. Только после этого есть возможность соединить все контакты. По завершении установки предельное напряжение следует проверить при помощи тестера. При нарушении работы элемента в первую очередь страдает терморегулятор. В некоторых случая происходит его

Модель для холодильника 15 В

Делается холодильник Пельтье своими руками с малой Крепятся модули в основном возле радиаторов. Для того чтобы надежно их закрепить, специалисты используют уголки. К фильтру элемент не должен прислоняться, и это следует учитывать.

Чтобы доделать термоэлектрический модуль Пельтье своими руками, нижнюю пластину в основном выбирают из нержавеющей стали. Проводники, как правило, применяются с маркировкой «ПР20». Нагрузку они максимум способны выдерживать на уровне 3 А. Максимальное отклонение температуры способно достигать 10 градусов. В этом случае коэффициент полезного действия может составлять 75 %.

Элементы Пельтье в холодильниках 24 В

Используя элемент Пельтье, холодильник своими руками сделать можно только из проводников с хорошей герметизацией. При этом они для охлаждения должны укладываться в три ряда. Рабочий ток в системе обязан поддерживаться на уровне 4 А.. Проверить его можно при помощи обычного тестера.

Если использовать керамические пластины для элемента, то максимального отклонения температуры можно добиться в 15 градусов. Провода к конденсатору устанавливаются только после того, как будет подложена прокладка. Закрепить ее на стенке устройства можно разными способами. Главное в данной ситуации — не использовать клей, который чувствителен к температурам свыше 30 градусов.

Элемент Пельтье для автомобильного охладителя

Чтобы сделать качественный автохолодильник своими руками, Пельтье (модуль) подбирается с пластиной, толщина которой не более 1.1 мм. Провода лучше всего использовать немодульного типа. Также для работы потребуются медные проводники. Их пропускная способность должна составлять не менее 4А.

Таким образом, максимальное температурное отклонение будет доходить до 10 градусов, это считается нормальным. Проводники чаще всего используют с маркировкой «ПР20». Они в последнее время показали себя более стабильными. Также они подходят для различных контактов. Для соединения устройства с конденсатором используют паяльник. Качественная установка возможна только на блок реле прокладку. Перепады в данном случае будут минимальными.

Как сделать элемент для кулера питьевой воды?

Для фиксации их можно воспользоваться обычными гаечками. Появление излишнего шума при эксплуатации говорит том, что устройство работает не должным образом. В данном случае необходимо проверит целостность проводки. Также нужно осмотреть проводники.

Элемент Пельтье для кондиционера

Чтобы качественно сделать элемент Пельтье своими руками для кондиционера, пластины используют двойные. Минимальная их толщина должна составлять не менее 1 мм. В таком случае можно надеяться на температурное отклонение в 15 градусов. Производительность кондиционеров после оснащения модулей в среднем увеличивается на 20 %. Многое в данной ситуации зависит от температуры окружающей среды. Также следует учитывать стабильность напряжения от сети. При небольших помехах нагрузка устройством выдерживается примерно 4 А.

При пайке проводников их следует размещать не слишком близко друг к другу. Чтобы правильно доделать модули Пельтье своими руками, входные и выходные контакты надо устанавливать только на одну из двух пластин. В таком случае прибор получится более компактным. Грубой ошибкой в данной ситуации будет подключать модуль непосредственно к блоку. Это приведет к неминуемой поломке элемента.

Установка модуля на конденсатор

Чтобы установить модуль Пельтье своими руками, важно оценить мощность конденсатора. Если она не превышает 20 В, то элемент следует монтировать с проводниками, на которых указана маркировка «ПР30» или «ПР26». Для того чтобы закрепить модуль Пельтье (элемент) своими руками на конденсаторе, используют маленькие металлические уголки.

Лучше всего их устанавливать по четыре на каждую из сторон. По производительности конденсатор, в конечном счете, способен прибавить плюс 10 %. Если говорить о теплопотерях, то они будут незначительными. Коэффициент полезного действия прибора в среднем равняется 80 %. Для высоковольтных конденсаторов модули не рассчитаны. В данном случае не поможет даже большое количество проводников.

Многие слышали про «магические» элементы Пельтье — при прохождении тока через них одна сторона охлаждается, а другая — нагревается. Это работает и в обратную сторону — если одну сторону нагревать, а другую охлаждать — вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей — есть точка максимальной мощности, и если работать далеко от неё — КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Классические «китайские» элементы Пельтье — это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В — то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:



Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея — вынести все на морозный воздух, но есть проблема — кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам — к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях — добавим килограммовую медную пластину — тепловой аккумулятор.


Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда — подключаем ток — на 12В температура моментально начинает расти, при 5В — падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты… Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах — я пробовал элементы разных моделей от 3-х разных продавцов — поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом — получится жидкий азот для «бедных» — в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей — получить обморожение существенно легче.

Разновидности популярных модулей пельтье — ООО «УК Энерготехсервис»

Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к  n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

  • Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.
  • Применение.
  • Термоэлектрические модули Пельтье применяются:
  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал холодильник для вина.

 Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками.

Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем.

Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.

Недостатки:

  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) — максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор. Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C ( в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5%. При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют  количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо, для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию.
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность, т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В, или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан контроллер элемента Пельтье для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации TEC1-12706.pdf компании производителя – HB Corporation.

Технические параметры TEC1-12706.

 ОбозначениеПараметрЗначение, при температуре горячей стороны
 25 °C50 °C
 QmaxХолодопроизводительность 50 Вт57 Вт
 Delta TmaxРазность температур 66 °C75 °C
 ImaxМаксимальный ток6.4 А6.4 А
 UmaxМаксимальное напряжение14.4 В16.4 В
 ResistanceСопротивление1.98 Ом2.3 Ом
  1. Графические характеристики.
  2. Габаритный чертеж модуля TEC1-12706.

 ОбозначениеРазмер
 A 40 мм
 B 40 мм
 C 3.8 мм

Рекомендации по эксплуатации.

  • Максимально – допустимая температура 138 °C.
  • Не допустимо превышение значения параметров Imax и Umax.
  • Срок службы 200 000 часов.
  • Параметр частота отказов основан на длительных испытаниях с выборкой 0.2%.
  • Производитель — HB Corporation.

Пример разработки на элементе Пельтье — холодильник для вина.

TEC1-12705 Термоэлектрический охладитель Пельтье 40 * 40 ММ 12 В Модуль охлаждения Пельтье Полупроводниковый холодильный лист

Характеристики

Страна производитель Китай
Вес

0.025 (кг) Показать все

Описание

Характерная черта:

  • Размеры: 40 * 40 * 3,8 мм номер элемента 127
  • Внутреннее сопротивление: 2,5 ~ 2,8 Ом (температура окружающей среды 23 ± 1, 1 кГц, испытание по переменному току)
  • Максимальная температура: Tmax (Qc = 0) более 67.
  • Рабочий ток: Imax = 4,3-4,6 А (номинал при 12 В)
  • Номинальное напряжение: 12 В (Vmax: пусковой ток 15 В 5.8 А)
  • Мощность охлаждения: Qcmax 50-60 Вт
  • Рабочая среда: диапазон температур -55 ~ 83 (сильное падение температуры окружающей среды напрямую влияет на эффективность охлаждения)

Процесс упаковки: четыре недели стандарт 704 силиконовой резины

В коплект входит:

1 х TEC1-12705 термоэлектрический охладитель Пельтье

Доступные разновидности товара:

https://imgaz.staticbg.com/images/oaupload/ser1/banggood/images/05/58/906d47d1-6ab2-45d1-963b-7238f098dbfe.JPG

Отзывы о компании ???? ВАМ НА ДОМ — доставим из Китая!

81% положительных
из 51 отзыва

Актуальность цены 95%
Актуальность наличия 83%
Актуальность описания 83%
Выполнение заказа в срок 75%

Применение элементы пельтье – Что такое элемент Пельтье и как его сделать своими руками?

Что такое элемент Пельтье – электро-, термопреобразователь, который состоит из нескольких пар ( в отдельных случаях одной) полупроводников различных по свойству типов («n» и «р»), последние соединяются перемычками из металла – в основном это — медь. На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока.

Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС1-12706, изображенная на рисунке 1.

В корне принципа работы положен термоэлектрический эффект Пельтье. Другими словами — при протекании и под действием электрического тока создается разница температур в местах контактов термопар — полупроводников «n» и «р» — типа.

Элементы Пельтье – доволи таки «чувствительные устройства» к перегреву и высоким температурам. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя. Очень важно отводить тепло, для этой цели необходимо устанавливать радиатор или вентилятор, в противном случае не достигается температура холодной стороны относительно горячей.

Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.

В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n — p и процесс выделения тепловой энергии на p — n контакте. В итоге часть термопары полупроводника, который сопрягается с n — p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны — соответственно, нагреваться.

В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.

Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.

Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.

Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.

Основными элементами термопреобразователя являются: полупроводники р — типа, n — типа, керамические пластины, медные сопряжения — проводники; контакты подвода электрического тока «плюс» и «минус».

Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.

Данное устройство в целом идеально работает в тех случаях, когда хорошо и надежно контактируют термопары с охладительным устройством, будь то радиатор охлаждения или вентилятор охлаждения со змеевиком, то есть – хороший теплосъем.

Модули Пельтье, как их часто называют, очень чувствительны к перепадам по току и напряжению (не более 5 %). Под действием высоких температур (наиболее критическая для элементов до 150 градусов) эффективность снижается во много раз (до 40 %) и модуль очень быстро ломается.

Как правило, в схему работы полупроводниковых элементов недопустимым условием является приспособление релейных устройств: ограничивающих мощность или регулирующих. Это приводит к деградации кристаллических составляющих и к неисправности в скором времени элемента.

Частое включение и выключение устройств также негативно влияет на работу и срок эксплуатации, и его долговечность функционирования.

Согласно законов физики — любой нагрев материала приводит к его тепловому расширению, а охлаждение — к сжатию.

Соответственно, особенно слабыми местами в полупроводниковых элементах являются «паечные», где из-за механического движения возможно появление дефектов в виде микротрещин и в конце концов к разрыву цепи.

Коэффициент теплопроводности термических пар элемента Пельтье достаточно высок, что с одной стороны является достоинством, а с другой стороны ограничивает срок эксплуатации и расчетное число циклов «стоп-старт-стоп».

Сравнивать устройство Пельтье с другими охладительными установками с различным приводом в принципе невозможно и нецелесообразно, так как в первом случае имеют полупроводниковые материалы в виде кристаллов, а во втором случае рабочее тело — газ или жидкость ( к примеру: компрессорный холодильник). В различных областях применяются и те и другие устройства.

Элементы Пельтье. Работа и применение. Обратный эффект

Элементы Пельтье называются специальные термоэлектрические преобразователи, работающие по принципу Пельтье. (образования разности температур при подключении электрического тока, другими словами, термоэлектрический охладитель).

Ни для кого не секрет, что электронные устройства при работе греются.

Нагрев отрицательно влияет на процесс работы, поэтому, чтобы как-то охладить приборы, в корпус устройств встраивают специальные элементы, называющиеся по имени изобретателя из Франции – Пельтье.

Это малогабаритный элемент, который может охлаждать радиодетали на платах устройств. При его установке собственными силами никаких проблем не возникнет, монтаж в схему производится обычным паяльником.

1 — Изолятор керамический 2 — Проводник n — типа 3 — Проводник p — типа

4 — Проводник медный

В ранние времена вопросы охлаждения никого не интересовали, поэтому это изобретение осталось без применения. Два века спустя, при использовании электронных устройств в быту и промышленности, стали применять миниатюрные элементы Пельтье, вспомнив об эффекте французского изобретателя.

Принцип действия

Чтобы понять, как работает элемент на основе изобретения Пельтье, необходимо разобраться в физических процессах. Эффект заключается в соединении двух материалов с токопроводящими свойствами, обладающими различной энергией электронов в районе проводимости.

При подключении электрического тока к зоне связи, электроны получают высокую энергию, для перехода в зону с более высокой проводимости второго полупроводника. Во время поглощения энергии проводники охлаждаются.

При течении тока в обратную сторону происходит обычный эффект нагревания контакта.

Вся работа осуществляется на уровне решетки атома материала. Чтобы лучше понять работу, представим газ из частиц – фононов. Температура газа имеет зависимость от параметров:

  • Свойства металла.
  • Температуры среды.

Предполагаем, что металл состоит из смеси электронного и фононного газа, находящегося в термодинамическом равновесии. Во время касания двух металлов с различной температурой, холодный электронный газ перемещается в теплый металл. Создается разность потенциалов.

На стыке контакта электроны поглощают энергию фононов и отдают ее на другой металл фононам. При смене полюсов источника тока, весь процесс будет обратного действия. Разность температур будет возрастать до того момента, пока имеются в наличии свободные электроны с большим потенциалом. При их отсутствии наступит уравновешивание температур в металлах.

Если на одну сторону пластины Пельтье установить качественный теплоотвод в виде радиатора, то вторая сторона пластины создаст более низкую температуру. Она будет ниже на несколько десятков градусов, чем окружающий воздух. Чем больше значение тока, тем сильнее будет охлаждение. При обратной полярности тока холодная и теплая сторона поменяются друг с другом.

При соединении элемента Пельтье с металлом, эффект становится незначительным, поэтому практически устанавливают два элемента. Их количество может быть любым, это зависит от потребности в мощности охлаждения.

Эффективность действия эффекта Пельтье зависит от того, насколько точно выбраны свойства металлов, силы тока, протекающей по прибору, скорости отвода тепла.

Сфера использования

Чтобы применить практически элемент Пельтье, ученые произвели несколько опытов, показавших, что повышение отвода тепла достигается увеличением числа соединений 2-х материалов. Чем больше число спаев материалов, тем выше эффект. Чаще в нашей жизни такой элемент служит для охлаждения электронных устройств, уменьшения температуры в микросхемах.

Вот их некоторые области использования:

  • Устройства ночного видения.
  • Цифровые камеры, приборы связи, микросхемы, нуждающиеся в качественном охлаждении, для лучшего эффекта картинки.
  • Телескопы с охлаждением.
  • Кондиционеры.
  • Точные часовые системы охлаждения кварцевых электрических генераторов.
  • Холодильники.
  • Кулеры для воды.
  • Автомобильные холодильники.
  • Видеокарты.

Элементы Пельтье часто используются в системах охлаждения, кондиционирования. Есть возможность достижения довольно низких температур, что открывает возможность применения для охлаждения оборудования с повышенным нагревом.

В настоящее время специалисты используют элементы Пельтье в акустических системах, выполняющих роль кулера. Элементы Пельтье не создают никаких звуков, поэтому бесшумность является одним из их достоинств.

Такая технология стала популярной из-за мощной отдачи тепла. Элементы, изготовленные по современной технологии, имеют компактные размеры, радиаторы охлаждения поддерживают определенную температуру долгое время.

Достоинством элементов является длительный срок службы, потому что они сделаны в виде монолитного корпуса, неисправности маловероятны. Простая конструкция обычного широко применяемого вида простая, состоит из двух медных проводов с клеммами и проводами, изоляции из керамики.

Это небольшой перечень мест применения. Он расширяется за счет устройств бытового назначения, компьютеров, автомобилей. Можно отметить использование элементов Пельтье в охлаждении микропроцессоров с высокой производительностью. Ранее в них устанавливались только вентиляторы. Теперь, при монтаже модуля с элементами Пельтье значительно снизился шум в работе устройств.

Будут ли меняться схемы охлаждения в обычных холодильниках на схемы с использованием эффекта Пельтье? Сегодня вряд ли это возможно, так как элементы имеют низкий КПД.

Стоимость их также не позволит применить их в холодильниках, так как она достаточно высока. Будущее покажет, насколько будет развиваться это направление.

Сегодня проводятся эксперименты с твердотельными растворами, аналогичными по строению и свойствам. При их использовании цена модуля охлаждения может уменьшиться.

Обратный эффект элементов Пельтье

Технология подобного вида имеет особенность с интересными фактами. Это заключается в эффекте образования электрического тока путем охлаждения и нагревания пластины модуля Пельтье. Другими словами, он служит генератором электрической энергии, при обратном эффекте.

Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.

Сегодня этот термоэлектрический эффект широко используется в электронике. Границы применения постоянно расширяются, что подтверждается докладами и опытами исследователей и ученых.

В будущем бытовая и электронная техника станет обладать совершенными инновационными возможностями. Холодильники станут бесшумными, так же, как и компьютеры.

А пока модули Пельтье монтируют в разные схемы для охлаждения радиодеталей.

Преимущества и недостатки

Достоинствами элементов Пельтье можно назвать следующие факты:

  • Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
  • Нет движущихся и трущихся частей, что повышает его срок службы.
  • Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
  • При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.

Недостатками можно назвать такие моменты:

  • Недостаточный коэффициент действия, влияющий на увеличение подводимого тока, для достижения необходимого перепада температур.
  • Довольно сложная система отведения тепла от поверхности охлаждения.

Как изготовить элементы Пельтье для холодильника

Изготовить такие элементы Пельтье можно самому быстро и просто. Для начала нужно определиться с материалом пластин. Нужно взять пластины элементов из прочной керамики, приготовить проводники в количестве больше 20 штук, для того, чтобы обеспечить наибольший перепад температур. При достаточном числе элементов КПД произойдет значительное увеличение производительности холодильника.

Большую роль играет мощность применяемого холодильника. Если он действует на жидком фреоне, то с производительностью проблем не возникнет. Пластины элементов монтируются возле испарителя, смонтированного вместе с двигателем. Для такого монтажа понадобится некоторый набор прокладок и инструмента. Таким образом, обеспечится быстрое охлаждение нижней части холодильника.

Необходима тщательная изоляция проводников, только после этого их подключают к компрессору. После окончания монтажа нужно проверить напряжение мультиметром. При нарушении работы элементов (например, короткое замыкание), сработает терморегулятор.

Другие применения термоэлектрических модулей

Эффект модуля Пельтье применяется сегодня, благодаря законам физики. Избыточная энергия элементов всегда пригодится там, где необходима бесшумный и быстрый обмен теплом.

Основные места использования модулей:

  • Охлаждение микропроцессоров.
  • Двигатели внутреннего сгорания выпускают отработанные газы, которые ученые стали применять для образования вспомогательной энергии с помощью термоэлектрических модулей. Полученная таким способом энергия подается снова в мотор, в виде электричества. Это создает экономию топлива.
  • В бытовых устройствах, действующих на нагревание или охлаждение.

Охлаждающий кулер может превратиться в нагреватель, а холодильник может выполнять функцию теплового шкафа, если изменить полярность постоянного тока. Это называется обратимым эффектом.

Такой принцип применяют в рекуператорах. Он состоит из бокса из двух камер. Они между собой сообщаются вентилятором. Элементы Пельтье нагревают холодный воздух, поступающий снаружи, с помощью энергии, которая извлечена из теплого воздуха в помещении. Такое устройство экономит расходы на отопление помещений.

Похожие темы:

Термоэлектрические модули и элементы Пельтье35

Термоэлектрические модули, или модули Пельтье относятся к термоэлектрическим преобразователям, принцип работы которых основан на т.н.

эффекте Пельтье — при протекании тока через пластину, состоящую из двух соприкасающихся полупроводников, одна сторона пластины нагревается, а вторая — охлаждается. Этот эффект также известен как «обратный эффект термопары».

Перепад температур при этом на обеих сторонах пластины — одинаков. По этой причине модуль Пельтье можно назвать «термонасосом», так как на самом деле происходит именно «перекачка» тепла с одной стороны модуля на другую.

То есть, модуль Пельтье выполняет функцию «активного» радиатора, отводя тепло от какого-либо объекта «холодной» стороной и рассеивая его «горячей» стороной.

Важно понимать, что выделяемое тепло необходимо куда-то отводить, причем не только тепло, выделяемое охлаждаемым объектом, но также и тепло, образующееся на «горячей» стороне модуля во время его работы.

Таким образом, применение модуля Пельтье в радиоэлектронном оборудовании оправдано лишь совместно с использованием вентилятора обдува, который будет рассеивать горячий воздух. По эффективности охлаждение с помощью модуля Пельтье можно сравнить с водяным охлаждением.

Наиболее известным отечественным производителем модулей Пельтье является завод «Криотерм».

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Волгоград, Воронеж, Гомель, Екатеринбург, Ижевск, Казань, Калуга, Краснодар, Красноярск, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Пермь, Ростов-на-Дону, Рязань, Самара, Саратов, Тверь, Томск, Тула, Тюмень, Уфа, Челябинск. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Евросеть» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Ярославль, Владивосток, Махачкала, Томск, Оренбург, Кемерово, Новокузнецк, Астрахань, Пенза, Липецк, Киров, Чебоксары, Калининград, Курск, Улан-Удэ, Ставрополь, Сочи, Иваново, Брянск, Белгород, Сургут, Владимир, Нижний Тагил, Архангельск, Чита, Смоленск, Курган, Орёл, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и др.

Товары из группы «Термоэлектрические модули и элементы Пельтье» вы можете купить оптом и в розницу.

Какая частота радиотелефонов вредна для человека

Цель данной статьи — дать описание процессов, которые протекают в организме под действием на него электромагнитного излучения, и дать оценку разным факторам электромагнитного излучения в процессе контакта с живым организмом.

Проблема действия НТП на жизнь и деятельность человека уже сто лет будоражит умы многих людей. С возникновением сотовых телефонов вопрос уровня действия электромагнитных полей разного диапазона на человека снова оказался в центре внимания.

Объективная действительность такова, что организм человека не может адаптироваться к электромагнитному техногенному излучению, так как у него нет соответствующих адаптационных механизмов.

Согласно радиобиологическим выводам, ионизирующие действия вредны при сколь угодно маленькой дозе. Причина зла скрыта только в недостатке информации у людей, с чем конкретно они имеют дело.

Если Вам необходима помощь справочно-правового характера (у Вас сложный случай, и Вы не знаете как оформить документы, в МФЦ необоснованно требуют дополнительные бумаги и справки или вовсе отказывают), то мы предлагаем бесплатную юридическую консультацию:

  • Для жителей Москвы и МО — +7 (499) 653-60-72 Доб. 448
  • Санкт-Петербург и Лен. область — +7 (812) 426-14-07 Доб. 773

Вред вай-фай роутера для здоровья человека должен быть верно оценен, поскольку большинство населения городов практически постоянно находится в зоне излучения.

Невозможно представить жизнь современного человека без телевизора, планшета, телефона, компьютера, игровой приставки с мгновенным доступом в интернет. Как правило, такая связь обеспечивается wi-fi проводниками.

Но, помимо пользы, существует и деструктивная составляющая такой услуги. Возникает вопрос: насколько же велико воздействие на здоровье человека?

В году операторами мобильной связи была повышена частота связи насыщают воздух положительными зарядами, что вредно для человека.

Влияние мобильных радиопереговорных устройств на здоровье человека неоднократно Человеческое ухо особенно чувствительно к звукам с частотой в диапазоне герц, Согласно документу, учёные опубликовали большое количество статей, опровергающих вред мобильных телефонов.

Сейчас у нас появился 3G, который использует частоту чуть выше 2 ГГц. В повседневной жизни человек подвергается воздействию в том числе и от радиотелефонов, домашних стационарных трубок, и от.

Здоровье и мобильный телефон

Удивительное человечество! Сначала мы придумываем различные удобные средства для того, чтобы упростить жизнь, а после — всячески пытаемся доказать их вред. Не обошли пытливые умы и радиоволны. Но такое изобретение, как радиотелефон, хоть и будоражит еще некоторых скептиков, но уже значительно реже.

Попробуем в рамках обывателя рассмотреть, реально ли радиотелефон приносит вред, так как польза от него понятна удобная стационарная связь. Это цифровой режим, который с начала х годов плотно вошел в жизнедеятельность, как предприятий, так и отдельных лиц, и держит позиции до сих пор. Все потому, что является удобным, не приковывая человека к основной телефонной станции.

Терминалы или трубки — легко перемещаются в радиусе действия устройства. Частота волн — до МГц. Такие телефоны в широком ассортименте представлены в интернет-магазине www. Больше всего претензий со стороны скептиков было именно в отношении частоты волновых колебаний радиотелефона. Какие только гипотезы не выдвигались.

Итак, давайте не будем хвататься за сердце, а включим логику и вспомним физику средних классов. Радиоволна — это волны, располагающиеся в электромагнитном спектре.

Рнпц гигиены: наибольший вред от излучения приносит сотовый телефон, а не базовая станция

Электрик Инфо — мир электричества. Электрика в квартире и доме, электроснабжение, электромонтаж, ремонт, освещение, домашняя автоматизация, практическая электроника.

Модуль Пельтье TEC1-12706, характеристики и использование


Эффекты термоэлектричества

21 июля 1820 года считается поворотной точкой развития истории: Эрстед решился опубликовать свои наблюдения о влиянии провода с током на ориентацию магнитной стрелки в пространстве. Дальнейшие открытия следуют чередой, нас интересует изобретение первого гальванометра. Изготовитель, Швейггер, назвал прибор мультипликатором за способность умножать результат действия на магнитную стрелку нескольких витков провода, несущего ток. Благодаря этому годом позже (1821) физик эстонского происхождения Зеебек открыл термоэлектричество. Общеизвестно, что случившееся помогло пятью годами позже Георгу Ому получить всемирно известный закон.

Ом Георг

Литература говорит, что Зеебек в качестве детектора использовал соленоид с многочисленными витками проволоки и магнитную стрелку. История умалчивает, как к учёному попала спайка висмут-сурьма, но повествует, что учёный подключил тандем в качестве источника питания и видел колебания компаса постоянно, когда брал термопару в руки. Вероятно, оказался близок к открытию собственных сверхспособностей, но в результате к выводу, что виновато тепло рук. Больших результатов учёный добился, используя осветительную лампу в качестве источника тепла.

Зеебек неправильно истолковал результат опыта, назвав открытие магнитной поляризацией: смещение точки нагрева на другой конец изменяло направление отклонения стрелки. В результате выстроилась неправильная теория. Стали утверждать, что температурой возможно непосредственно получить магнитные свойства, а поле Земли обусловлено деятельностью вулканов. Георг Ом уже вскоре после описанного открытия применил термо-ЭДС для вывода известного закона, а в 1831 году подобный источник использовался в опытах по электролизу.

Величина термо-ЭДС невелика. Обычно десятки мВ. Если требуется найти конкретное значение, пользуются таблицами. Эталоном для температур диапазона климата Земли служит платина. Таблицы содержат значение термо-ЭДС для термопар из указанного металла и исследуемого: хромель, алюмель, меди, железо. Значения бывают положительными и отрицательными. К примеру, для сурьмы это +4,7 мВ, а для висмута – минус 6,5. Значения складываются и становится ясно, что при разнице температур на концах пары в 100 градусов образуется ЭДС в 12,2 мВ. Георг Ом подобные условия и пытался создать, погрузив первый конец в лёд, а второй – в кипящую воду.

Эффект термоэлектричества

Справочные таблицы иногда содержат множество значений. К примеру, для разных температур с шагом в 100 градусов. Тогда удаётся посчитать значения для каждой, но и с замещением нуля на любую из указанных температур. Берётся разность между большим и меньшим значением. У отдельных термопар при определённой температуре направление термо-ЭДС меняется на противоположное. К примеру, для меди и железа граничной точкой станет 540 градусов Цельсия.

Элемент Пельтье. Что это такое.

Элемент Пельтье или модуль Пельтье это термоэлектрический преобразователь, который при пропускании через него тока, создает разность температур на стенках.

Своими словами: Это, пластина с двумя выводами, толщиной около 4 мм. Если подать ток на выводы (контакты) элемента, то одна его сторона нагревается, а другая охлаждается. Если сменить полярность, то и температуры, на стенках, так же поменяются на противоположные.

Эффект Пельтье

Эффект Пельтье называют зеркальным отражением термоэлектричества. В этом случае ток переносит тепло с первого конца термопары на второй. Причём с изменением направления и нагреваемая сторона обращается на противоположную. Эффект открыт в 1834 году, получив неправильное толкование. Лишь 4 года спустя «соотечественник» Ленц сумел заморозить и испарить каплю воды при помощи термопары. В каждом случае ток показывал собственное направление.

Эффект объясняется просто в современной физике. Допустим, имеется два разнородных полупроводника с одинаковым типом проводимости. Электроны в каждом обретают разное значение энергии, причём уровни в обоих случаях расположены близко. Теперь представим, что электрический ток начал переносить заряды из одной среды в другую. Что произойдёт? Электроны с повышенной энергией, оказавшись в среде пониженных уровней, отдадут лишнее количество кристаллической решётке, произведя нагрев. Напротив, если энергии недостаточно, она передастся от кристаллической решётки, что вызовет охлаждение спая.

Эффект Пельтье

Если тип проводимости полупроводников в термопаре неодинаков, эффект объясняется иначе. Электрон, попадая в p-материал занимает на энергетическом уровне место дырки (положительного носителя заряда). В результате теряет кинетическую энергию движения и разницу между нынешним и прошлым состоянием. Высвобожденное количество идёт на образование свободных носителей по обе стороны p-n-перехода. Остаток сообщается кристаллической решётке, от которой идёт нагрев. Если энергия в начальный момент меньше, начнётся охлаждения спая. Рекомбинирующие носители восполняются источником питания.

Количество теплоты, выделенное или поглощённое, пропорционально прошедшему через проводник заряду. Коэффициент в формуле линейной зависимости носит имя Пельтье. Аналогичная величина введена и для термоэлектричества, носит имя Зеебека. Из формулы следует, что количество выделившейся теплоты, в отличие от эффекта Джоуля-Ленца, пропорционально первой степени электрического тока (определяющего перенесённый заряд).

Как сделать элемент Пельтье своими руками

Чтобы собрать элемент Пельтье самостоятельно, нужно взять:

  • две пластины из керамики;
  • проводники, желательно сделанные из меди;
  • полупроводниковые приборы n-p и p-n.


Самодельный аппарат
Полупроводники помещаются в один ряд между двумя керамическими пластинами. Один медный проводник крепится на верхнюю поверхность, другой — на нижнюю. Пластины скрепляются между собой. Далее можно проводить испытания.

Важно! Даже при качественной сборке и успешном тестировании эффективность самодельного прибора будет крайне низкой. Такие элементы лучше купить в магазине.

Вам это будет интересно Особенности осциллографа С1-67

Эффект Томсона

На основании данных о коэффициентах Зеебека и Пельтье лорд Кельвин (Томсон) предсказал в 1856 году новый эффект: нагретый в центре проводник при пропускании электрического тока охлаждается с одной стороны и становится горячее с другой. Теоретические данные подтверждены опытным путём, открыв дорогу для создания климатической техники и прочего.

Идея лорда Томсона: если вдоль проводника присутствует градиент температуры (см. Электрическое поле), при протекании тока начнётся перенос тепла. Это устройство работает по принципу теплового насоса. Переносимая мощность пропорциональна градиенту: чем круче график изменения температуры по длине проводника, тем больший тепловой эффект проявляется.

Коэффициент пропорциональности в формуле носит имя Томсона и связан с коэффициентами термоэлектричества и Пельтье. Выше авторы привели объяснения согласно кинетической (микроскопической) теории, оперирующей уровнями энергетических состояний носителей заряда. Лорд Кельвин придерживался термодинамической (макроскопической) концепции, где во внимание принимаются глобальные потоки и силы. Это различие применимо ко множеству отраслей физики. К примеру, закон Ома для участка цепи возможно рассматривать как вариант термодинамического взгляда на вещи.

Называют и общие черты. В термодинамической концепции массово применяются константы: речь о коэффициенте теплопроводности (закон Фурье) и изотермической проводимости (закон Ома).

Как это работает

Из описания элемента (термоэлектрический преобразователь) понятно, что элементы Пельтье преобразовывают электричество в изменение температуры и наоборот, воздействие на стенки элемента разности температур преобразовывают в электричество, поэтому его ещё называют «термоэлектрический генератор». В основном, каждый из элементов состоит из 127ми полупроводников, соединённых последовательно. Из-за этого стоит помнить, что при выходе из строя одного из них, весь элемент придет в негодность.

При прохождении тока через «внутренности» элемента Пельтье, одна его стенка нагревается а обратная — охлаждается. Такой же принцип работает и в обратном порядке: если принудительно одну стенку элемента нагревать, и вторую охлаждать, то на контактах образуется постоянный ток. Полярность у которого будет зависеть от того, какую именно сторону будут нагревать.

Важно помнить о граничной температуре. Полупроводники, внутри элемента крепятся на припое с температурой плавления, около 140 °C. Это значит, что если температура нагрева приблизится к этому значению, вероятно весь элемент выйдет из строя (расплавится и развалится).

В работе, при охлаждении чего либо с помощью элементов Пельтье, не стоит забывать отводить высокую температуру с обратной стороны элемента. Так как это может привести к разрушению элемента. В автомобильный холодильниках, упоминавшихся ранее, стоит воздухоотвод, который выводит наружу горячий воздух.

Следствия

Ряд связанных с обсуждаемой темой полезных законов:

  1. В замкнутой цепи из однородного материала за счёт температуры электрический ток поддерживаться не может. Это утверждение носит имя немецкого физика Магнуса. Порой именуется законом однородной цепи.
  2. Закон промежуточных металлов гласит, что алгебраическая сумма термо-ЭДС замкнутого контура, состоящего из любого количества сегментов разнородных проводящих материалов равна нулю при условии, что температура участков одинаковая.

Эффект Томпсона

Использование термоэлектрических и электротермических эффектов

Долгое время прямой и обратный термоэлектрический эффект не находили применения, полезная величина оказывалась слишком мала. Постепенно физики создали сплавы свойства которых на два порядка перекрывают чистые металлы, использованные Пельтье и Ленцом. Теперь термоэлектричество находит применение. Вспомним термостат холодильника либо термоэлектрические холодильники без движущихся частей. Гораздо интереснее космическая отрасль, где явление применяется для охлаждения фоторезисторов: при понижении температуры лишь на 10 градусов чувствительность подобных датчиков вырастает на порядок.

Дополнительным плюсом описанных технических решений становятся компактность и малое потребление энергии: при весе 150 г установка охлаждает терморезистор на 50-60 градусов. В бытовой электронике эффектом Пельтье поддерживается нормальный режим процессоров в системном блоке персональных компьютеров. Да, стоит техническое решение недёшево, зато бесшумность гарантирована. К примеру, энтузиасты с 2010-х годов конструируют холодильники в домашних условиях. Высокого КПД не удаётся добиться из-за больших потерь через корпус. Но с появлением новых изолирующих строительных материалов положение дел улучшится.

Интересно, что при изменении направления электрического тока эффект начинает работать в противоположную сторону. Возможен нагрев. На базе описанных эффектов создают термостаты, отслеживающие температуру до тысячных долей градуса. Среди перспективных направлений отмечают бытовые кондиционеры и прочие системы охлаждения. Самым заметным недостатком считается цена. И не нужно забывать, что КПД кондиционера, как правило, больше 1, работает этот агрегат по принципу теплового насоса. Пусть эффективность резко падает с ростом температуры окружающей среды, термопары пока сильно отстают от традиционных методов охлаждения со своими 10%.

Высказываются иные мнения. Академик Иоффе, отдельные сентенции которого использованы в приведённом топике, предложил создавать системы для обогрева и охлаждения помещения по типу сплит-систем. В этом случае возникает осложнение, как с типичными кондиционерами, но КПД достигает 200%. Смысл: при обогреве, допустим, поглощающий тепло спай размещается снаружи, а выделяющий – в помещении. Качать из мороза жар нелегко, потому у методики присутствуют ограничения. Однако не запрещено на основе указанной методики создавать тепловые насосы.

К безусловным плюсам климатических систем, использующих элемент Пельтье, относится возможность работы в обратном направлении. Летом печка станет кондиционером. Следует лишь изменить направление протекания тока. Известны противоположные наработки, призванные превратить солнечное тепло в электрическую энергию. Но пока подобные конструкции изготавливают на основе кремния, и термопарам не находится места.

Достоинства и недостатки

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством является отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье[1] возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.

Материалы для создания термопар

Очевидно, обычные металлы для создания мощных систем не годятся. Требуются пары с мощностью от 100 мкВ на 1 градус. В последнем случае достигается высокий КПД. Материалами становятся сплавы висмута, сурьмы, теллурия, кремния, селена. К недостаткам компонентов относятся хрупкость и сравнительно малая температура работы. Низкий КПД добавляет ограничений, но с внедрением нанотехнологий появляется надежда, что привычные рамки окажутся преодолены. Учёные среди перспективных направлений называют разработку принципиально новой полупроводниковой базы с поистине уникальными свойствами, включая точное значение энергетических уровней материалов.

Руководство по проектированию элементов ТЕС / Пельтье

Контроллеры ТЕС используются для термоэлектрического охлаждения и нагрева в сочетании с элементами Пельтье или резистивными нагревателями. Элементы Пельтье — это тепловые насосы, которые передают тепло от одной стороны к другой в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В данном руководстве по проектированию системы содержится информация о том, как разработать простую систему термоэлектрического охлаждения с использованием контроллеров ТЕС и элементов Пельтье.При разработке термоэлектрического устройства охлаждение является критически важной частью. Итак, мы возьмем случай охлаждения объекта в качестве примера для руководства по дизайну.

TEC Controller Обзор продукта

Содержание

Проектирование полной термоэлектрической системы может быть большой сложной задачей. Однако для более простой системы не следует теряться в деталях. Это руководство является отправной точкой для оценки проектных параметров с некоторыми упрощениями для нового приложения термоэлектрического охлаждения.
Шаг за шагом мы проходим все необходимые этапы проектирования, выделяем важные моменты и, наконец, рассчитываем пример приложения. Мы обрабатываем систему одноступенчатым элементом Пельтье. Многоступенчатые элементы Пельтье достигают более низких температур, но их сложнее проектировать.

Консультации по сложным тепловым расчетам

Мы сотрудничаем с Elinter AG, поставщиком полных, более сложных решений в области теплового проектирования. Elinter может помочь вам в разработке вашего термоэлектрического приложения.Это включает моделирование, проектирование, механическое строительство, а также выбор подходящей электроники, радиаторов и тепловых трубок.

Видео с термоэлектрическим охлаждением

Это видео объясняет основы термоэлектрического охлаждения. Мы приводим примеры важных шагов проектирования для успешного проектирования термоэлектрического приложения с использованием контроллеров TEC и элементов Пельтье.

Справочная информация

Термоэлектрическое охлаждение и обогрев используется для различных целей, даже при активном охлаждении ниже температуры окружающей среды или высокой точности температуры (стабильность <0.01 ° C). Контроллер TEC - источник тока для элемента Пельтье - в сочетании с элементом Пельтье активно регулирует температуру данного объекта. Это делается без акустических и электрических шумов, вибраций и механических движущихся частей. Переход от охлаждения к нагреву возможен путем изменения направления тока без внесения каких-либо механических изменений.

При работе с элементами Пельтье существуют температурные пределы. Они доступны с максимальной рабочей температурой 200 ° C, где этот предел определяется температурой оплавления припоя и уплотнения.Другой предел — максимальная температура между горячей и холодной сторонами элемента Пельтье. В общих приложениях разница примерно в 50 К может быть реализована с помощью одноступенчатого элемента.
При использовании элемента Пельтье в качестве термоэлектрического охладителя существует предел, при котором температура снова будет повышаться при увеличении подачи тока. Это происходит из-за рассеивания мощности (I 2 R) внутри элемента Пельтье при потреблении большего тока, чем I max .

Типовая термоэлектрическая система

Основными частями термоэлектрической системы охлаждения, которые имеют отношение к нашему процессу проектирования, являются следующие:

  • Контроллер ТЕС
  • Элемент Пельтье
  • Радиатор

Другая важная деталь, напарник радиатора, не видна напрямую.Это окружающий воздух с его температурой, где рассеивается тепло.
Помимо вышеупомянутых частей, для всего приложения важны и другие компоненты. Это, например, датчики температуры, программное обеспечение для настройки и контроля контроллера ТЕС, вентилятор и, конечно же, источник питания.

Пожалуйста, посмотрите следующее видео, чтобы получить обзор контроллеров семейства TEC и их функций.

Тепловая схема

На этой схеме простой термоэлектрической системы показаны объекты, участвующие в пути теплового потока от объекта к окружающему воздуху.Это упрощенная схема, в которой мы предполагаем идеальную теплоизоляцию объектов, например на температуру объектов не влияет конвекция. (Q — теплоемкость каждой детали.)

Упрощенная схема системы охлаждения


Следующая — еще более упрощенная схема — представляет систему охлаждения и соответствующую температурную диаграмму справа. В этом случае объект охлаждается до -5 ° C холодной стороной элемента Пельтье.Горячая сторона элемента Пельтье имеет температуру 35 ° C. Радиатор отводит тепло в окружающий воздух, имеющий температуру 25 ° C.

Более упрощенная схема процесса проектирования и соответствующая диаграмма температур

Процесс проектирования

При проектировании термоэлектрического охлаждающего устройства необходимо выполнить следующие шаги:

  1. Оценить тепловую нагрузку охлаждаемого объекта
  2. Определить рабочий диапазон температуры объекта и радиатора
  3. Выберите элемент Пельтье, соответствующий требованиям
  4. Выберите контроллер ТЕС с подходящим диапазоном мощности
  5. Выбрать радиатор для элемента Пельтье
  6. Выберите вентилятор для вентиляции радиатора (дополнительно)
  7. Выберите датчик температуры объекта и дополнительный датчик раковины
  8. Выберите источник питания для контроллера ТЕС

Это итеративный процесс.Протестируйте свою экспериментальную установку, улучшите ее, повторите вышеуказанные шаги.

1. Оценка тепловых нагрузок

Важным параметром является количество тепла, которое должно быть поглощено от объекта холодной поверхностью ПЭМ или элемента Пельтье. (Q C [Вт])
В зависимости от области применения необходимо учитывать различные типы тепловой нагрузки:

  • Рассеиваемая мощность
  • Радиация
  • Конвективный
  • Проводящий
  • динамический (dQ / dT)

Эти нагрузки суммированы в тепловой нагрузке Q C , которая передается с холодной стороны на горячую, где расположен радиатор.

2. Определение температуры

Обычно задача состоит в том, чтобы охладить объект до заданной температуры. Если охлаждаемый объект находится в контакте с холодной поверхностью термоэлектрического модуля, температуру объекта можно считать равной температуре холодной стороны элемента Пельтье через определенное время.

При описании применения термоэлектрического охлаждения важны два конструктивных параметра.

  • T O Температура объекта (температура холодной стороны) [° C]
  • T HS температура радиатора (температура горячей стороны) [° C] = T окр. + ΔT HS
    См. Раздел 5.Радиатор для получения дополнительной информации.

Разница между T O и T HS известна как dT (ΔT или deltaT) [K]:
dT = T HS — T O = T amb + ΔT HS — Т О

3. Выбор элемента Пельтье / ТЕМ-модуля

Элемент Пельтье создает разницу температур между двумя сторонами из-за протекания тока. Этот раздел основан на справочной информации со следующих страниц:

Одним из важных критериев при выборе элемента Пельтье является коэффициент полезного действия (COP).Определение COP — это тепло, поглощенное на холодной стороне, деленное на входную мощность элемента Пельтье: COP = Q C / P el
Результатом максимального COP является минимальная входная мощность Пельтье, таким образом, минимальная общая тепло отводится радиатором. (Q h = Q C + P el ) Следовательно, мы пытаемся найти рабочий ток, который в сочетании с определенным dT приводит к оптимальному COP.

Наконец, мы получаем оценку Q max , которая позволяет нам выбрать элемент Пельтье.

Добавляем расчетную маржу на

  • выбор элемента Пельтье с мощностью теплового насоса выше требуемой,
  • путем разработки системы с рабочим током значительно ниже I max элемента Пельтье,
  • или в качестве третьего варианта, увеличив размер радиатора или добавив к нему вентилятор, чтобы поддерживать низкую температуру горячей стороны.

При применении этих мер изменение температуры окружающей среды или активной тепловой нагрузки не приводит к тепловому разгоне.

Список дистрибьюторов см. На странице Элементы Пельтье.

4. Выбор контроллера ТЕС

Контроллер ТЕС регулирует ток, подаваемый на элемент Пельтье, в соответствии с желаемой температурой объекта и фактической измеренной температурой объекта.

Мы выбираем рабочий ток для достижения оптимального COP. На основе этого тока мы выбираем контроллер TEC, а не на основе I max .

Пожалуйста, обратитесь к странице продукта контроллера TEC для обзора наших устройств.

5. Радиатор

Радиатор поглощает тепловую нагрузку с горячей стороны элемента Пельтье и отводит ее в окружающий воздух.

При подборе радиатора необходимо добавить некоторый запас, чтобы его температура не стала слишком высокой. На следующей диаграмме показано, что тепло Q h , отклоняемое элементом Пельтье, может быть в 2,6 раза больше Q max . Это происходит из-за внутреннего тепла в элементе Пельтье во время теплового насоса.Следовательно, общее тепло, которое должно рассеиваться на радиаторе, состоит из тепла объекта и тепла, производимого внутри элемента Пельтье.

На графике ниже показано соотношение между теплотой, отбрасываемой элементом Пельтье, в зависимости от тока для различных dT. Используйте графики, предоставленные производителем элемента Пельтье, чтобы оценить тепло, рассеиваемое радиатором.

Поскольку радиатор должен вписываться в приложение по форме и размерам, эффективность контроллера ТЕС также играет решающую роль, поскольку размер радиатора зависит от него.В зависимости от ваших требований решением может быть изготовленный на заказ радиатор или тепловая трубка.

Тепловое сопротивление рассчитывается по формуле: R thHS = ΔT HS / Q h [K / W]
ΔT HS = разница температур между радиатором и температурой окружающего воздуха [K]
Q h = Общая тепловая нагрузка (объект + потеря элемента Пельтье) [Вт]

Чтобы оценить ΔT HS , примите во внимание максимально возможную температуру окружающей среды, чтобы ваши расчеты в этом случае были верны.

Зависимость отклоненного тепла от dT

На следующем графике показано соотношение между Q h и Q C для различных dT. Отношение экспоненциально растет с каждым увеличением dT. Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.

Мы также можем использовать этот график для оценки результирующего теплоотвода на основе количества переносимого тепла Q C , даже до выбора элемента Пельтье.

Для расчета теплового сопротивления мы принимаем реальное значение для dT HS . Поскольку нам еще неизвестен реальный Q h , мы оцениваем его по приведенному выше графику.

Найдите отношение Q h / Q C при заданном токе и dT.

Выберите желаемую разницу температур между радиатором и температурой окружающего воздуха ΔT HS .

Теперь мы можем заменить в приведенной выше формуле для R thHS Q h нашим соотношением Q h / Q C .

R thHS = ΔT HS / (отношение * Q C )

Конечно, размеры сохраняются только в том случае, если мы позже задействуем элемент Пельтье в выбранной рабочей точке (т. Е. Выбранном токе).

Выбор теплового сопротивления радиатора может влиять на dT = T amb + ΔT HS — T O .
(ΔT HS = Q h / R thHS )

Дистрибьюторы / производители

6.Вентилятор

Вентиляторное охлаждение радиатора снижает тепловое сопротивление радиатора окружающему воздуху.

Следовательно, вентилятор увеличивает тепловую производительность. Это уменьшает разницу температур dT или позволяет использовать радиаторы меньшего размера.

Контроллеры TEC позволяют управлять максимум двумя вентиляторами, которые поддерживают следующие функции:

  • Входной сигнал управления ШИМ для управления скоростью вентилятора. TEC генерирует ШИМ-сигнал 1 кГц или 25 кГц в диапазоне от 0 до 100%.
  • Выходной сигнал генератора частоты, который представляет скорость вращения. Выход должен быть выходным сигналом с открытым коллектором.

Рекомендуется использовать вентилятор с таким же напряжением питания, что и напряжение питания контроллера ТЕС.

Рекомендации для поклонников

Для получения подробной информации о функциях вентилятора, предложениях вентилятора и оптимальных настройках, пожалуйста, обратитесь к Руководству пользователя TEC Family, глава 6.3 (PDF).

Подключение вентилятора к контроллеру ТЕС

См. Страницу с примечаниями к контроллеру TEC, чтобы узнать, как подключить вентилятор.

7. Примеры расчетов

Рассчитаем для примера расчетные параметры термоэлектрической системы охлаждения.

Для выбора элемента Пельтье необходимы два тепловых параметра .

  • Максимальная холодопроизводительность Q max
  • Разница температур dT
Оценка тепловых нагрузок и определение температуры

Мы предполагаем, что объект с тепловой нагрузкой Q C = 10 Вт должен быть охлажден до нуля градусов Цельсия.(T O = 0 ° C) Предположим, что температура в помещении составляет 25 ° C, а температура радиатора T S ожидается на уровне 30 ° C. Таким образом, разница температур между холодной и горячей сторонами элемента Пельтье dT составляет 30 К. Важно помнить, что было бы неправильно рассчитывать dT как разницу между температурой окружающего воздуха и желаемой температурой объекта.

Выбор модуля Пельтье / ТЕМ

Наша цель — найти Q max , который был бы достаточно большим, чтобы покрыть необходимый Q C и дать лучший COP.

На графике зависимости производительности от тока мы находим максимум кривой dT = 30 K при токе I / I max = 0,45 . Как правило, это соотношение не должно быть выше 0,7.

Используя этот коэффициент для тока, мы находим на графике тепловой насос в зависимости от тока значение Q C / Q max = 0,25 для данной разницы температур dT = 30 K и относительного тока 0,45.

Теперь мы можем рассчитать Q max для элемента Пельтье. Q макс = Q C / 0,25 = 10 Вт / 0,25 = 40 Вт

На графике зависимости производительности от тока мы находим COP = 0,6 для нашего ранее считанного I / I max . Это позволяет нам рассчитать P el = Q C / COP = 10 Вт / 0,6 = 16,7 Вт .

Производители элементов Пельтье предлагают широкий ассортимент элементов. В их продуктовой линейке мы ищем элемент с Q max 40 Вт.Поскольку у нас разница температур dT = 30 K, достаточно одноступенчатого элемента Пельтье.

В качестве примера мы выбираем элемент Пельтье с Q max = 41 Вт, dT max = 68 K, I max = 5 A и V max = 15,4 В.

Рабочий ток и напряжение рассчитываются следующим образом:
I = I max * (I / I max ) = 5 A * 0,45 = 2,25 A
V = P el / I = 16,7 Вт / 3.83A = 7,42 В

Выбор контроллера ТЕС

Исходя из рассчитанных значений, мы выбираем TEC-контроллер TEC-1091 с выходным током 4 А и выходным напряжением 21 В. Хорошо добавить некоторый расчетный запас, выбрав контроллер ТЕС с более высоким, чем требуется, выходным током. Позже, когда производительность системы станет общеизвестной, может быть достаточно другого контроллера с меньшей производительностью.

Радиатор

Чтобы найти радиатор для элемента Пельтье, нам нужно знать необходимое тепловое сопротивление радиатора.На графике отклонения тепла от тока мы находим Q h / Q max = 0,6 для выбранного нами тока и dT. Таким образом, Q h = Q max * 0,6 = 41 Вт * 0,6 = 24,6 Вт.

Расчет теплового сопротивления радиатора:
R thHS = ΔT HS / Q h = 5 K / 24,6 Вт = 0,2 K / Вт
Нам нужен радиатор с меньшим тепловым сопротивлением чем 0,2 К / Вт.

Приведенные выше расчеты являются первой оценкой параметров термоэлектрической системы охлаждения.Для определения оптимальных параметров системы необходимо тестирование реальной системы и повторение этапов проектирования.

8. Датчики температуры

Датчики температуры используются контроллером ТЕС для измерения температуры объектов и температуры радиатора.

Измерение температуры объекта

Чтобы иметь возможность контролировать температуру объекта, необходимо разместить на объекте температурный зонд (датчик). Обратите внимание, что важно разместить датчик как можно ближе к критической точке на объекте, где вам нужна желаемая температура.

Поскольку измерение температуры объекта требует более высокой точности и большего диапазона, мы предлагаем использовать датчики Pt100. Чтобы иметь возможность измерять температуру намного ниже 0 ° C, необходимы зонды Pt100 / 1000. Это связано с тем, что, если температура становится слишком низкой, датчики NTC не могут использоваться, поскольку значение сопротивления становится слишком большим. Значение сопротивления датчика должно быть меньше эталонного сопротивления в контроллере ТЕС.

При использовании датчиков Pt100 / 1000 температура объекта измеряется с использованием метода измерения с четырьмя контактами (4-проводное измерение) для достижения более высокой точности при низких сопротивлениях.Для измерения NTC используется двухпроводная технология.

Термин «4-проводной» не означает, что необходим датчик с четырьмя контактами. Используются отдельные пары токоведущих и чувствительных электродов. (Подробнее о четырехконтактном считывании)

Диапазон измерения температуры контроллера ТЕС зависит как от датчика температуры, так и от конфигурации оборудования. Пожалуйста, обратитесь к соответствующему техническому описанию для получения подробной информации.

Подключение датчика температуры

См. Страницу примечаний к контроллеру TEC, чтобы узнать, как подключить датчик температуры.

9. Требования к источникам питания

Блок питания является источником питания для контроллера ТЕС.

В зависимости от выбранного контроллера ТЕС необходимо выбрать источник питания. Убедитесь, что источник питания может обеспечить питание, необходимое для управления контроллером ТЕС с элементом Пельтье. (Как правило, вы можете добавить 10% резерва. Умножьте необходимую выходную мощность ТЕС на 1,1). Информацию о соотношении входного и выходного напряжения см. В таблице данных контроллера.

Рекомендации по источникам питания

10. Проверьте свою настройку

Теперь, когда вы выбрали системные компоненты, вы настраиваете приложение и начинаете тестирование и оптимизацию. Чтобы упростить сборку и первоначальную настройку с использованием нашего сервисного программного обеспечения, пожалуйста, обратитесь к нашему пошаговому руководству по установке контроллера TEC.
Комплексное сервисное программное обеспечение можно загрузить и использовать бесплатно.

11. Узлы термоэлектрического охлаждения

Существуют также универсальные предварительно собранные термоэлектрические охлаждающие узлы, если вы не хотите строить систему с нуля.Эти модули обычно содержат металлическую пластину для крепления объекта, элемент Пельтье, радиатор и вентилятор. Использование таких сборок представляет интерес на этапе создания прототипа для первых экспериментов.

Руководство по проектированию элементов TEC / Пельтье

Контроллеры ТЕС используются для термоэлектрического охлаждения и нагрева в сочетании с элементами Пельтье или резистивными нагревателями. Элементы Пельтье — это тепловые насосы, которые передают тепло от одной стороны к другой в зависимости от направления электрического тока.Контроллеры TEC используются для управления элементами Пельтье.
В данном руководстве по проектированию системы содержится информация о том, как разработать простую систему термоэлектрического охлаждения с использованием контроллеров ТЕС и элементов Пельтье. При разработке термоэлектрического устройства охлаждение является критически важной частью. Итак, мы возьмем случай охлаждения объекта в качестве примера для руководства по дизайну.

TEC Controller Обзор продукта

Содержание

Проектирование полной термоэлектрической системы может быть большой сложной задачей.Однако для более простой системы не следует теряться в деталях. Это руководство является отправной точкой для оценки проектных параметров с некоторыми упрощениями для нового приложения термоэлектрического охлаждения.
Шаг за шагом мы проходим все необходимые этапы проектирования, выделяем важные моменты и, наконец, рассчитываем пример приложения. Мы обрабатываем систему одноступенчатым элементом Пельтье. Многоступенчатые элементы Пельтье достигают более низких температур, но их сложнее проектировать.

Консультации по сложным тепловым расчетам

Мы сотрудничаем с Elinter AG, поставщиком полных, более сложных решений в области теплового проектирования.Elinter может помочь вам в разработке вашего термоэлектрического приложения. Это включает моделирование, проектирование, механическое строительство, а также выбор подходящей электроники, радиаторов и тепловых трубок.

Видео с термоэлектрическим охлаждением

Это видео объясняет основы термоэлектрического охлаждения. Мы приводим примеры важных шагов проектирования для успешного проектирования термоэлектрического приложения с использованием контроллеров TEC и элементов Пельтье.

Справочная информация

Термоэлектрическое охлаждение и обогрев используется для различных целей, даже при активном охлаждении ниже температуры окружающей среды или высокой точности температуры (стабильность <0.01 ° C). Контроллер TEC - источник тока для элемента Пельтье - в сочетании с элементом Пельтье активно регулирует температуру данного объекта. Это делается без акустических и электрических шумов, вибраций и механических движущихся частей. Переход от охлаждения к нагреву возможен путем изменения направления тока без внесения каких-либо механических изменений.

При работе с элементами Пельтье существуют температурные пределы. Они доступны с максимальной рабочей температурой 200 ° C, где этот предел определяется температурой оплавления припоя и уплотнения.Другой предел — максимальная температура между горячей и холодной сторонами элемента Пельтье. В общих приложениях разница примерно в 50 К может быть реализована с помощью одноступенчатого элемента.
При использовании элемента Пельтье в качестве термоэлектрического охладителя существует предел, при котором температура снова будет повышаться при увеличении подачи тока. Это происходит из-за рассеивания мощности (I 2 R) внутри элемента Пельтье при потреблении большего тока, чем I max .

Типовая термоэлектрическая система

Основными частями термоэлектрической системы охлаждения, которые имеют отношение к нашему процессу проектирования, являются следующие:

  • Контроллер ТЕС
  • Элемент Пельтье
  • Радиатор

Другая важная деталь, напарник радиатора, не видна напрямую.Это окружающий воздух с его температурой, где рассеивается тепло.
Помимо вышеупомянутых частей, для всего приложения важны и другие компоненты. Это, например, датчики температуры, программное обеспечение для настройки и контроля контроллера ТЕС, вентилятор и, конечно же, источник питания.

Пожалуйста, посмотрите следующее видео, чтобы получить обзор контроллеров семейства TEC и их функций.

Тепловая схема

На этой схеме простой термоэлектрической системы показаны объекты, участвующие в пути теплового потока от объекта к окружающему воздуху.Это упрощенная схема, в которой мы предполагаем идеальную теплоизоляцию объектов, например на температуру объектов не влияет конвекция. (Q — теплоемкость каждой детали.)

Упрощенная схема системы охлаждения


Следующая — еще более упрощенная схема — представляет систему охлаждения и соответствующую температурную диаграмму справа. В этом случае объект охлаждается до -5 ° C холодной стороной элемента Пельтье.Горячая сторона элемента Пельтье имеет температуру 35 ° C. Радиатор отводит тепло в окружающий воздух, имеющий температуру 25 ° C.

Более упрощенная схема процесса проектирования и соответствующая диаграмма температур

Процесс проектирования

При проектировании термоэлектрического охлаждающего устройства необходимо выполнить следующие шаги:

  1. Оценить тепловую нагрузку охлаждаемого объекта
  2. Определить рабочий диапазон температуры объекта и радиатора
  3. Выберите элемент Пельтье, соответствующий требованиям
  4. Выберите контроллер ТЕС с подходящим диапазоном мощности
  5. Выбрать радиатор для элемента Пельтье
  6. Выберите вентилятор для вентиляции радиатора (дополнительно)
  7. Выберите датчик температуры объекта и дополнительный датчик раковины
  8. Выберите источник питания для контроллера ТЕС

Это итеративный процесс.Протестируйте свою экспериментальную установку, улучшите ее, повторите вышеуказанные шаги.

1. Оценка тепловых нагрузок

Важным параметром является количество тепла, которое должно быть поглощено от объекта холодной поверхностью ПЭМ или элемента Пельтье. (Q C [Вт])
В зависимости от области применения необходимо учитывать различные типы тепловой нагрузки:

  • Рассеиваемая мощность
  • Радиация
  • Конвективный
  • Проводящий
  • динамический (dQ / dT)

Эти нагрузки суммированы в тепловой нагрузке Q C , которая передается с холодной стороны на горячую, где расположен радиатор.

2. Определение температуры

Обычно задача состоит в том, чтобы охладить объект до заданной температуры. Если охлаждаемый объект находится в контакте с холодной поверхностью термоэлектрического модуля, температуру объекта можно считать равной температуре холодной стороны элемента Пельтье через определенное время.

При описании применения термоэлектрического охлаждения важны два конструктивных параметра.

  • T O Температура объекта (температура холодной стороны) [° C]
  • T HS температура радиатора (температура горячей стороны) [° C] = T окр. + ΔT HS
    См. Раздел 5.Радиатор для получения дополнительной информации.

Разница между T O и T HS известна как dT (ΔT или deltaT) [K]:
dT = T HS — T O = T amb + ΔT HS — Т О

3. Выбор элемента Пельтье / ТЕМ-модуля

Элемент Пельтье создает разницу температур между двумя сторонами из-за протекания тока. Этот раздел основан на справочной информации со следующих страниц:

Одним из важных критериев при выборе элемента Пельтье является коэффициент полезного действия (COP).Определение COP — это тепло, поглощенное на холодной стороне, деленное на входную мощность элемента Пельтье: COP = Q C / P el
Результатом максимального COP является минимальная входная мощность Пельтье, таким образом, минимальная общая тепло отводится радиатором. (Q h = Q C + P el ) Следовательно, мы пытаемся найти рабочий ток, который в сочетании с определенным dT приводит к оптимальному COP.

Наконец, мы получаем оценку Q max , которая позволяет нам выбрать элемент Пельтье.

Добавляем расчетную маржу на

  • выбор элемента Пельтье с мощностью теплового насоса выше требуемой,
  • путем разработки системы с рабочим током значительно ниже I max элемента Пельтье,
  • или в качестве третьего варианта, увеличив размер радиатора или добавив к нему вентилятор, чтобы поддерживать низкую температуру горячей стороны.

При применении этих мер изменение температуры окружающей среды или активной тепловой нагрузки не приводит к тепловому разгоне.

Список дистрибьюторов см. На странице Элементы Пельтье.

4. Выбор контроллера ТЕС

Контроллер ТЕС регулирует ток, подаваемый на элемент Пельтье, в соответствии с желаемой температурой объекта и фактической измеренной температурой объекта.

Мы выбираем рабочий ток для достижения оптимального COP. На основе этого тока мы выбираем контроллер TEC, а не на основе I max .

Пожалуйста, обратитесь к странице продукта контроллера TEC для обзора наших устройств.

5. Радиатор

Радиатор поглощает тепловую нагрузку с горячей стороны элемента Пельтье и отводит ее в окружающий воздух.

При подборе радиатора необходимо добавить некоторый запас, чтобы его температура не стала слишком высокой. На следующей диаграмме показано, что тепло Q h , отклоняемое элементом Пельтье, может быть в 2,6 раза больше Q max . Это происходит из-за внутреннего тепла в элементе Пельтье во время теплового насоса.Следовательно, общее тепло, которое должно рассеиваться на радиаторе, состоит из тепла объекта и тепла, производимого внутри элемента Пельтье.

На графике ниже показано соотношение между теплотой, отбрасываемой элементом Пельтье, в зависимости от тока для различных dT. Используйте графики, предоставленные производителем элемента Пельтье, чтобы оценить тепло, рассеиваемое радиатором.

Поскольку радиатор должен вписываться в приложение по форме и размерам, эффективность контроллера ТЕС также играет решающую роль, поскольку размер радиатора зависит от него.В зависимости от ваших требований решением может быть изготовленный на заказ радиатор или тепловая трубка.

Тепловое сопротивление рассчитывается по формуле: R thHS = ΔT HS / Q h [K / W]
ΔT HS = разница температур между радиатором и температурой окружающего воздуха [K]
Q h = Общая тепловая нагрузка (объект + потеря элемента Пельтье) [Вт]

Чтобы оценить ΔT HS , примите во внимание максимально возможную температуру окружающей среды, чтобы ваши расчеты в этом случае были верны.

Зависимость отклоненного тепла от dT

На следующем графике показано соотношение между Q h и Q C для различных dT. Отношение экспоненциально растет с каждым увеличением dT. Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.

Мы также можем использовать этот график для оценки результирующего теплоотвода на основе количества переносимого тепла Q C , даже до выбора элемента Пельтье.

Для расчета теплового сопротивления мы принимаем реальное значение для dT HS . Поскольку нам еще неизвестен реальный Q h , мы оцениваем его по приведенному выше графику.

Найдите отношение Q h / Q C при заданном токе и dT.

Выберите желаемую разницу температур между радиатором и температурой окружающего воздуха ΔT HS .

Теперь мы можем заменить в приведенной выше формуле для R thHS Q h нашим соотношением Q h / Q C .

R thHS = ΔT HS / (отношение * Q C )

Конечно, размеры сохраняются только в том случае, если мы позже задействуем элемент Пельтье в выбранной рабочей точке (т. Е. Выбранном токе).

Выбор теплового сопротивления радиатора может влиять на dT = T amb + ΔT HS — T O .
(ΔT HS = Q h / R thHS )

Дистрибьюторы / производители

6.Вентилятор

Вентиляторное охлаждение радиатора снижает тепловое сопротивление радиатора окружающему воздуху.

Следовательно, вентилятор увеличивает тепловую производительность. Это уменьшает разницу температур dT или позволяет использовать радиаторы меньшего размера.

Контроллеры TEC позволяют управлять максимум двумя вентиляторами, которые поддерживают следующие функции:

  • Входной сигнал управления ШИМ для управления скоростью вентилятора. TEC генерирует ШИМ-сигнал 1 кГц или 25 кГц в диапазоне от 0 до 100%.
  • Выходной сигнал генератора частоты, который представляет скорость вращения. Выход должен быть выходным сигналом с открытым коллектором.

Рекомендуется использовать вентилятор с таким же напряжением питания, что и напряжение питания контроллера ТЕС.

Рекомендации для поклонников

Для получения подробной информации о функциях вентилятора, предложениях вентилятора и оптимальных настройках, пожалуйста, обратитесь к Руководству пользователя TEC Family, глава 6.3 (PDF).

Подключение вентилятора к контроллеру ТЕС

См. Страницу с примечаниями к контроллеру TEC, чтобы узнать, как подключить вентилятор.

7. Примеры расчетов

Рассчитаем для примера расчетные параметры термоэлектрической системы охлаждения.

Для выбора элемента Пельтье необходимы два тепловых параметра .

  • Максимальная холодопроизводительность Q max
  • Разница температур dT
Оценка тепловых нагрузок и определение температуры

Мы предполагаем, что объект с тепловой нагрузкой Q C = 10 Вт должен быть охлажден до нуля градусов Цельсия.(T O = 0 ° C) Предположим, что температура в помещении составляет 25 ° C, а температура радиатора T S ожидается на уровне 30 ° C. Таким образом, разница температур между холодной и горячей сторонами элемента Пельтье dT составляет 30 К. Важно помнить, что было бы неправильно рассчитывать dT как разницу между температурой окружающего воздуха и желаемой температурой объекта.

Выбор модуля Пельтье / ТЕМ

Наша цель — найти Q max , который был бы достаточно большим, чтобы покрыть необходимый Q C и дать лучший COP.

На графике зависимости производительности от тока мы находим максимум кривой dT = 30 K при токе I / I max = 0,45 . Как правило, это соотношение не должно быть выше 0,7.

Используя этот коэффициент для тока, мы находим на графике тепловой насос в зависимости от тока значение Q C / Q max = 0,25 для данной разницы температур dT = 30 K и относительного тока 0,45.

Теперь мы можем рассчитать Q max для элемента Пельтье. Q макс = Q C / 0,25 = 10 Вт / 0,25 = 40 Вт

На графике зависимости производительности от тока мы находим COP = 0,6 для нашего ранее считанного I / I max . Это позволяет нам рассчитать P el = Q C / COP = 10 Вт / 0,6 = 16,7 Вт .

Производители элементов Пельтье предлагают широкий ассортимент элементов. В их продуктовой линейке мы ищем элемент с Q max 40 Вт.Поскольку у нас разница температур dT = 30 K, достаточно одноступенчатого элемента Пельтье.

В качестве примера мы выбираем элемент Пельтье с Q max = 41 Вт, dT max = 68 K, I max = 5 A и V max = 15,4 В.

Рабочий ток и напряжение рассчитываются следующим образом:
I = I max * (I / I max ) = 5 A * 0,45 = 2,25 A
V = P el / I = 16,7 Вт / 3.83A = 7,42 В

Выбор контроллера ТЕС

Исходя из рассчитанных значений, мы выбираем TEC-контроллер TEC-1091 с выходным током 4 А и выходным напряжением 21 В. Хорошо добавить некоторый расчетный запас, выбрав контроллер ТЕС с более высоким, чем требуется, выходным током. Позже, когда производительность системы станет общеизвестной, может быть достаточно другого контроллера с меньшей производительностью.

Радиатор

Чтобы найти радиатор для элемента Пельтье, нам нужно знать необходимое тепловое сопротивление радиатора.На графике отклонения тепла от тока мы находим Q h / Q max = 0,6 для выбранного нами тока и dT. Таким образом, Q h = Q max * 0,6 = 41 Вт * 0,6 = 24,6 Вт.

Расчет теплового сопротивления радиатора:
R thHS = ΔT HS / Q h = 5 K / 24,6 Вт = 0,2 K / Вт
Нам нужен радиатор с меньшим тепловым сопротивлением чем 0,2 К / Вт.

Приведенные выше расчеты являются первой оценкой параметров термоэлектрической системы охлаждения.Для определения оптимальных параметров системы необходимо тестирование реальной системы и повторение этапов проектирования.

8. Датчики температуры

Датчики температуры используются контроллером ТЕС для измерения температуры объектов и температуры радиатора.

Измерение температуры объекта

Чтобы иметь возможность контролировать температуру объекта, необходимо разместить на объекте температурный зонд (датчик). Обратите внимание, что важно разместить датчик как можно ближе к критической точке на объекте, где вам нужна желаемая температура.

Поскольку измерение температуры объекта требует более высокой точности и большего диапазона, мы предлагаем использовать датчики Pt100. Чтобы иметь возможность измерять температуру намного ниже 0 ° C, необходимы зонды Pt100 / 1000. Это связано с тем, что, если температура становится слишком низкой, датчики NTC не могут использоваться, поскольку значение сопротивления становится слишком большим. Значение сопротивления датчика должно быть меньше эталонного сопротивления в контроллере ТЕС.

При использовании датчиков Pt100 / 1000 температура объекта измеряется с использованием метода измерения с четырьмя контактами (4-проводное измерение) для достижения более высокой точности при низких сопротивлениях.Для измерения NTC используется двухпроводная технология.

Термин «4-проводной» не означает, что необходим датчик с четырьмя контактами. Используются отдельные пары токоведущих и чувствительных электродов. (Подробнее о четырехконтактном считывании)

Диапазон измерения температуры контроллера ТЕС зависит как от датчика температуры, так и от конфигурации оборудования. Пожалуйста, обратитесь к соответствующему техническому описанию для получения подробной информации.

Подключение датчика температуры

См. Страницу примечаний к контроллеру TEC, чтобы узнать, как подключить датчик температуры.

9. Требования к источникам питания

Блок питания является источником питания для контроллера ТЕС.

В зависимости от выбранного контроллера ТЕС необходимо выбрать источник питания. Убедитесь, что источник питания может обеспечить питание, необходимое для управления контроллером ТЕС с элементом Пельтье. (Как правило, вы можете добавить 10% резерва. Умножьте необходимую выходную мощность ТЕС на 1,1). Информацию о соотношении входного и выходного напряжения см. В таблице данных контроллера.

Рекомендации по источникам питания

10. Проверьте свою настройку

Теперь, когда вы выбрали системные компоненты, вы настраиваете приложение и начинаете тестирование и оптимизацию. Чтобы упростить сборку и первоначальную настройку с использованием нашего сервисного программного обеспечения, пожалуйста, обратитесь к нашему пошаговому руководству по установке контроллера TEC.
Комплексное сервисное программное обеспечение можно загрузить и использовать бесплатно.

11. Узлы термоэлектрического охлаждения

Существуют также универсальные предварительно собранные термоэлектрические охлаждающие узлы, если вы не хотите строить систему с нуля.Эти модули обычно содержат металлическую пластину для крепления объекта, элемент Пельтье, радиатор и вентилятор. Использование таких сборок представляет интерес на этапе создания прототипа для первых экспериментов.

Руководство по проектированию элементов TEC / Пельтье

Контроллеры ТЕС используются для термоэлектрического охлаждения и нагрева в сочетании с элементами Пельтье или резистивными нагревателями. Элементы Пельтье — это тепловые насосы, которые передают тепло от одной стороны к другой в зависимости от направления электрического тока.Контроллеры TEC используются для управления элементами Пельтье.
В данном руководстве по проектированию системы содержится информация о том, как разработать простую систему термоэлектрического охлаждения с использованием контроллеров ТЕС и элементов Пельтье. При разработке термоэлектрического устройства охлаждение является критически важной частью. Итак, мы возьмем случай охлаждения объекта в качестве примера для руководства по дизайну.

TEC Controller Обзор продукта

Содержание

Проектирование полной термоэлектрической системы может быть большой сложной задачей.Однако для более простой системы не следует теряться в деталях. Это руководство является отправной точкой для оценки проектных параметров с некоторыми упрощениями для нового приложения термоэлектрического охлаждения.
Шаг за шагом мы проходим все необходимые этапы проектирования, выделяем важные моменты и, наконец, рассчитываем пример приложения. Мы обрабатываем систему одноступенчатым элементом Пельтье. Многоступенчатые элементы Пельтье достигают более низких температур, но их сложнее проектировать.

Консультации по сложным тепловым расчетам

Мы сотрудничаем с Elinter AG, поставщиком полных, более сложных решений в области теплового проектирования.Elinter может помочь вам в разработке вашего термоэлектрического приложения. Это включает моделирование, проектирование, механическое строительство, а также выбор подходящей электроники, радиаторов и тепловых трубок.

Видео с термоэлектрическим охлаждением

Это видео объясняет основы термоэлектрического охлаждения. Мы приводим примеры важных шагов проектирования для успешного проектирования термоэлектрического приложения с использованием контроллеров TEC и элементов Пельтье.

Справочная информация

Термоэлектрическое охлаждение и обогрев используется для различных целей, даже при активном охлаждении ниже температуры окружающей среды или высокой точности температуры (стабильность <0.01 ° C). Контроллер TEC - источник тока для элемента Пельтье - в сочетании с элементом Пельтье активно регулирует температуру данного объекта. Это делается без акустических и электрических шумов, вибраций и механических движущихся частей. Переход от охлаждения к нагреву возможен путем изменения направления тока без внесения каких-либо механических изменений.

При работе с элементами Пельтье существуют температурные пределы. Они доступны с максимальной рабочей температурой 200 ° C, где этот предел определяется температурой оплавления припоя и уплотнения.Другой предел — максимальная температура между горячей и холодной сторонами элемента Пельтье. В общих приложениях разница примерно в 50 К может быть реализована с помощью одноступенчатого элемента.
При использовании элемента Пельтье в качестве термоэлектрического охладителя существует предел, при котором температура снова будет повышаться при увеличении подачи тока. Это происходит из-за рассеивания мощности (I 2 R) внутри элемента Пельтье при потреблении большего тока, чем I max .

Типовая термоэлектрическая система

Основными частями термоэлектрической системы охлаждения, которые имеют отношение к нашему процессу проектирования, являются следующие:

  • Контроллер ТЕС
  • Элемент Пельтье
  • Радиатор

Другая важная деталь, напарник радиатора, не видна напрямую.Это окружающий воздух с его температурой, где рассеивается тепло.
Помимо вышеупомянутых частей, для всего приложения важны и другие компоненты. Это, например, датчики температуры, программное обеспечение для настройки и контроля контроллера ТЕС, вентилятор и, конечно же, источник питания.

Пожалуйста, посмотрите следующее видео, чтобы получить обзор контроллеров семейства TEC и их функций.

Тепловая схема

На этой схеме простой термоэлектрической системы показаны объекты, участвующие в пути теплового потока от объекта к окружающему воздуху.Это упрощенная схема, в которой мы предполагаем идеальную теплоизоляцию объектов, например на температуру объектов не влияет конвекция. (Q — теплоемкость каждой детали.)

Упрощенная схема системы охлаждения


Следующая — еще более упрощенная схема — представляет систему охлаждения и соответствующую температурную диаграмму справа. В этом случае объект охлаждается до -5 ° C холодной стороной элемента Пельтье.Горячая сторона элемента Пельтье имеет температуру 35 ° C. Радиатор отводит тепло в окружающий воздух, имеющий температуру 25 ° C.

Более упрощенная схема процесса проектирования и соответствующая диаграмма температур

Процесс проектирования

При проектировании термоэлектрического охлаждающего устройства необходимо выполнить следующие шаги:

  1. Оценить тепловую нагрузку охлаждаемого объекта
  2. Определить рабочий диапазон температуры объекта и радиатора
  3. Выберите элемент Пельтье, соответствующий требованиям
  4. Выберите контроллер ТЕС с подходящим диапазоном мощности
  5. Выбрать радиатор для элемента Пельтье
  6. Выберите вентилятор для вентиляции радиатора (дополнительно)
  7. Выберите датчик температуры объекта и дополнительный датчик раковины
  8. Выберите источник питания для контроллера ТЕС

Это итеративный процесс.Протестируйте свою экспериментальную установку, улучшите ее, повторите вышеуказанные шаги.

1. Оценка тепловых нагрузок

Важным параметром является количество тепла, которое должно быть поглощено от объекта холодной поверхностью ПЭМ или элемента Пельтье. (Q C [Вт])
В зависимости от области применения необходимо учитывать различные типы тепловой нагрузки:

  • Рассеиваемая мощность
  • Радиация
  • Конвективный
  • Проводящий
  • динамический (dQ / dT)

Эти нагрузки суммированы в тепловой нагрузке Q C , которая передается с холодной стороны на горячую, где расположен радиатор.

2. Определение температуры

Обычно задача состоит в том, чтобы охладить объект до заданной температуры. Если охлаждаемый объект находится в контакте с холодной поверхностью термоэлектрического модуля, температуру объекта можно считать равной температуре холодной стороны элемента Пельтье через определенное время.

При описании применения термоэлектрического охлаждения важны два конструктивных параметра.

  • T O Температура объекта (температура холодной стороны) [° C]
  • T HS температура радиатора (температура горячей стороны) [° C] = T окр. + ΔT HS
    См. Раздел 5.Радиатор для получения дополнительной информации.

Разница между T O и T HS известна как dT (ΔT или deltaT) [K]:
dT = T HS — T O = T amb + ΔT HS — Т О

3. Выбор элемента Пельтье / ТЕМ-модуля

Элемент Пельтье создает разницу температур между двумя сторонами из-за протекания тока. Этот раздел основан на справочной информации со следующих страниц:

Одним из важных критериев при выборе элемента Пельтье является коэффициент полезного действия (COP).Определение COP — это тепло, поглощенное на холодной стороне, деленное на входную мощность элемента Пельтье: COP = Q C / P el
Результатом максимального COP является минимальная входная мощность Пельтье, таким образом, минимальная общая тепло отводится радиатором. (Q h = Q C + P el ) Следовательно, мы пытаемся найти рабочий ток, который в сочетании с определенным dT приводит к оптимальному COP.

Наконец, мы получаем оценку Q max , которая позволяет нам выбрать элемент Пельтье.

Добавляем расчетную маржу на

  • выбор элемента Пельтье с мощностью теплового насоса выше требуемой,
  • путем разработки системы с рабочим током значительно ниже I max элемента Пельтье,
  • или в качестве третьего варианта, увеличив размер радиатора или добавив к нему вентилятор, чтобы поддерживать низкую температуру горячей стороны.

При применении этих мер изменение температуры окружающей среды или активной тепловой нагрузки не приводит к тепловому разгоне.

Список дистрибьюторов см. На странице Элементы Пельтье.

4. Выбор контроллера ТЕС

Контроллер ТЕС регулирует ток, подаваемый на элемент Пельтье, в соответствии с желаемой температурой объекта и фактической измеренной температурой объекта.

Мы выбираем рабочий ток для достижения оптимального COP. На основе этого тока мы выбираем контроллер TEC, а не на основе I max .

Пожалуйста, обратитесь к странице продукта контроллера TEC для обзора наших устройств.

5. Радиатор

Радиатор поглощает тепловую нагрузку с горячей стороны элемента Пельтье и отводит ее в окружающий воздух.

При подборе радиатора необходимо добавить некоторый запас, чтобы его температура не стала слишком высокой. На следующей диаграмме показано, что тепло Q h , отклоняемое элементом Пельтье, может быть в 2,6 раза больше Q max . Это происходит из-за внутреннего тепла в элементе Пельтье во время теплового насоса.Следовательно, общее тепло, которое должно рассеиваться на радиаторе, состоит из тепла объекта и тепла, производимого внутри элемента Пельтье.

На графике ниже показано соотношение между теплотой, отбрасываемой элементом Пельтье, в зависимости от тока для различных dT. Используйте графики, предоставленные производителем элемента Пельтье, чтобы оценить тепло, рассеиваемое радиатором.

Поскольку радиатор должен вписываться в приложение по форме и размерам, эффективность контроллера ТЕС также играет решающую роль, поскольку размер радиатора зависит от него.В зависимости от ваших требований решением может быть изготовленный на заказ радиатор или тепловая трубка.

Тепловое сопротивление рассчитывается по формуле: R thHS = ΔT HS / Q h [K / W]
ΔT HS = разница температур между радиатором и температурой окружающего воздуха [K]
Q h = Общая тепловая нагрузка (объект + потеря элемента Пельтье) [Вт]

Чтобы оценить ΔT HS , примите во внимание максимально возможную температуру окружающей среды, чтобы ваши расчеты в этом случае были верны.

Зависимость отклоненного тепла от dT

На следующем графике показано соотношение между Q h и Q C для различных dT. Отношение экспоненциально растет с каждым увеличением dT. Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.

Мы также можем использовать этот график для оценки результирующего теплоотвода на основе количества переносимого тепла Q C , даже до выбора элемента Пельтье.

Для расчета теплового сопротивления мы принимаем реальное значение для dT HS . Поскольку нам еще неизвестен реальный Q h , мы оцениваем его по приведенному выше графику.

Найдите отношение Q h / Q C при заданном токе и dT.

Выберите желаемую разницу температур между радиатором и температурой окружающего воздуха ΔT HS .

Теперь мы можем заменить в приведенной выше формуле для R thHS Q h нашим соотношением Q h / Q C .

R thHS = ΔT HS / (отношение * Q C )

Конечно, размеры сохраняются только в том случае, если мы позже задействуем элемент Пельтье в выбранной рабочей точке (т. Е. Выбранном токе).

Выбор теплового сопротивления радиатора может влиять на dT = T amb + ΔT HS — T O .
(ΔT HS = Q h / R thHS )

Дистрибьюторы / производители

6.Вентилятор

Вентиляторное охлаждение радиатора снижает тепловое сопротивление радиатора окружающему воздуху.

Следовательно, вентилятор увеличивает тепловую производительность. Это уменьшает разницу температур dT или позволяет использовать радиаторы меньшего размера.

Контроллеры TEC позволяют управлять максимум двумя вентиляторами, которые поддерживают следующие функции:

  • Входной сигнал управления ШИМ для управления скоростью вентилятора. TEC генерирует ШИМ-сигнал 1 кГц или 25 кГц в диапазоне от 0 до 100%.
  • Выходной сигнал генератора частоты, который представляет скорость вращения. Выход должен быть выходным сигналом с открытым коллектором.

Рекомендуется использовать вентилятор с таким же напряжением питания, что и напряжение питания контроллера ТЕС.

Рекомендации для поклонников

Для получения подробной информации о функциях вентилятора, предложениях вентилятора и оптимальных настройках, пожалуйста, обратитесь к Руководству пользователя TEC Family, глава 6.3 (PDF).

Подключение вентилятора к контроллеру ТЕС

См. Страницу с примечаниями к контроллеру TEC, чтобы узнать, как подключить вентилятор.

7. Примеры расчетов

Рассчитаем для примера расчетные параметры термоэлектрической системы охлаждения.

Для выбора элемента Пельтье необходимы два тепловых параметра .

  • Максимальная холодопроизводительность Q max
  • Разница температур dT
Оценка тепловых нагрузок и определение температуры

Мы предполагаем, что объект с тепловой нагрузкой Q C = 10 Вт должен быть охлажден до нуля градусов Цельсия.(T O = 0 ° C) Предположим, что температура в помещении составляет 25 ° C, а температура радиатора T S ожидается на уровне 30 ° C. Таким образом, разница температур между холодной и горячей сторонами элемента Пельтье dT составляет 30 К. Важно помнить, что было бы неправильно рассчитывать dT как разницу между температурой окружающего воздуха и желаемой температурой объекта.

Выбор модуля Пельтье / ТЕМ

Наша цель — найти Q max , который был бы достаточно большим, чтобы покрыть необходимый Q C и дать лучший COP.

На графике зависимости производительности от тока мы находим максимум кривой dT = 30 K при токе I / I max = 0,45 . Как правило, это соотношение не должно быть выше 0,7.

Используя этот коэффициент для тока, мы находим на графике тепловой насос в зависимости от тока значение Q C / Q max = 0,25 для данной разницы температур dT = 30 K и относительного тока 0,45.

Теперь мы можем рассчитать Q max для элемента Пельтье. Q макс = Q C / 0,25 = 10 Вт / 0,25 = 40 Вт

На графике зависимости производительности от тока мы находим COP = 0,6 для нашего ранее считанного I / I max . Это позволяет нам рассчитать P el = Q C / COP = 10 Вт / 0,6 = 16,7 Вт .

Производители элементов Пельтье предлагают широкий ассортимент элементов. В их продуктовой линейке мы ищем элемент с Q max 40 Вт.Поскольку у нас разница температур dT = 30 K, достаточно одноступенчатого элемента Пельтье.

В качестве примера мы выбираем элемент Пельтье с Q max = 41 Вт, dT max = 68 K, I max = 5 A и V max = 15,4 В.

Рабочий ток и напряжение рассчитываются следующим образом:
I = I max * (I / I max ) = 5 A * 0,45 = 2,25 A
V = P el / I = 16,7 Вт / 3.83A = 7,42 В

Выбор контроллера ТЕС

Исходя из рассчитанных значений, мы выбираем TEC-контроллер TEC-1091 с выходным током 4 А и выходным напряжением 21 В. Хорошо добавить некоторый расчетный запас, выбрав контроллер ТЕС с более высоким, чем требуется, выходным током. Позже, когда производительность системы станет общеизвестной, может быть достаточно другого контроллера с меньшей производительностью.

Радиатор

Чтобы найти радиатор для элемента Пельтье, нам нужно знать необходимое тепловое сопротивление радиатора.На графике отклонения тепла от тока мы находим Q h / Q max = 0,6 для выбранного нами тока и dT. Таким образом, Q h = Q max * 0,6 = 41 Вт * 0,6 = 24,6 Вт.

Расчет теплового сопротивления радиатора:
R thHS = ΔT HS / Q h = 5 K / 24,6 Вт = 0,2 K / Вт
Нам нужен радиатор с меньшим тепловым сопротивлением чем 0,2 К / Вт.

Приведенные выше расчеты являются первой оценкой параметров термоэлектрической системы охлаждения.Для определения оптимальных параметров системы необходимо тестирование реальной системы и повторение этапов проектирования.

8. Датчики температуры

Датчики температуры используются контроллером ТЕС для измерения температуры объектов и температуры радиатора.

Измерение температуры объекта

Чтобы иметь возможность контролировать температуру объекта, необходимо разместить на объекте температурный зонд (датчик). Обратите внимание, что важно разместить датчик как можно ближе к критической точке на объекте, где вам нужна желаемая температура.

Поскольку измерение температуры объекта требует более высокой точности и большего диапазона, мы предлагаем использовать датчики Pt100. Чтобы иметь возможность измерять температуру намного ниже 0 ° C, необходимы зонды Pt100 / 1000. Это связано с тем, что, если температура становится слишком низкой, датчики NTC не могут использоваться, поскольку значение сопротивления становится слишком большим. Значение сопротивления датчика должно быть меньше эталонного сопротивления в контроллере ТЕС.

При использовании датчиков Pt100 / 1000 температура объекта измеряется с использованием метода измерения с четырьмя контактами (4-проводное измерение) для достижения более высокой точности при низких сопротивлениях.Для измерения NTC используется двухпроводная технология.

Термин «4-проводной» не означает, что необходим датчик с четырьмя контактами. Используются отдельные пары токоведущих и чувствительных электродов. (Подробнее о четырехконтактном считывании)

Диапазон измерения температуры контроллера ТЕС зависит как от датчика температуры, так и от конфигурации оборудования. Пожалуйста, обратитесь к соответствующему техническому описанию для получения подробной информации.

Подключение датчика температуры

См. Страницу примечаний к контроллеру TEC, чтобы узнать, как подключить датчик температуры.

9. Требования к источникам питания

Блок питания является источником питания для контроллера ТЕС.

В зависимости от выбранного контроллера ТЕС необходимо выбрать источник питания. Убедитесь, что источник питания может обеспечить питание, необходимое для управления контроллером ТЕС с элементом Пельтье. (Как правило, вы можете добавить 10% резерва. Умножьте необходимую выходную мощность ТЕС на 1,1). Информацию о соотношении входного и выходного напряжения см. В таблице данных контроллера.

Рекомендации по источникам питания

10. Проверьте свою настройку

Теперь, когда вы выбрали системные компоненты, вы настраиваете приложение и начинаете тестирование и оптимизацию. Чтобы упростить сборку и первоначальную настройку с использованием нашего сервисного программного обеспечения, пожалуйста, обратитесь к нашему пошаговому руководству по установке контроллера TEC.
Комплексное сервисное программное обеспечение можно загрузить и использовать бесплатно.

11. Узлы термоэлектрического охлаждения

Существуют также универсальные предварительно собранные термоэлектрические охлаждающие узлы, если вы не хотите строить систему с нуля.Эти модули обычно содержат металлическую пластину для крепления объекта, элемент Пельтье, радиатор и вентилятор. Использование таких сборок представляет интерес на этапе создания прототипа для первых экспериментов.

Элементы Пельтье

Элементы Пельтье / термоэлектрические охладители (ТЭО) — это тепловые насосы, передающие тепло от одной стороны к другой в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В этой статье объясняется, как работают элементы Пельтье / термоэлектрические охладители, описываются особенности и упоминаются производители элементов Пельтье.

TEC Controller Обзор продукта

Содержание

Основы элемента Пельтье

Элемент Пельтье может переносить тепло с помощью эффекта Пельтье. Внутри элемента Пельтье эффект Пельтье создает разницу температур между двумя сторонами при протекании тока.

В зависимости от направления протекания постоянного тока возможно охлаждение и нагрев с помощью элементов Пельтье без изменения разъемов или механической настройки.Дополнительные преимущества заключаются в том, что можно реализовать небольшие конструкции и нет движущихся частей. Ток, подаваемый на элемент Пельтье, контролируется контроллером TEC.

Левая сторона: Стандартный элемент Пельтье Правая сторона: Специальные типы элементов Пельтье

Обычно идентификация производителя печатается на холодной стороне элемента Пельтье. Это холодная сторона, если положительное напряжение питания подключено к красному кабелю элемента Пельтье

.

Поскольку кабели обладают теплоемкостью, они подключаются к горячей стороне элемента Пельтье, чтобы не снизить охлаждающую способность элемента.

Как вы можете видеть на правом рисунке, существуют разные типы элементов Пельтье, они различаются по размеру и форме, мощности и температурному диапазону.

Диапазон размеров: от 1 мм x 1 мм до 60 мм x 60 мм
Формы: квадратные, кольцевые, многоступенчатые, одноступенчатые, герметичные или негерметичные, нестандартные
Диапазон температур: разница температур dT макс до 130 ° C (многоступенчатый), макс. температура до 200 ° C
Максимальная холодопроизводительность: до 290 Вт

Модель элемента Пельтье

Элементы Пельтье можно охарактеризовать с помощью модели.Модель

имеет следующие три эффекта.
  • Эффект Пельтье Q p : Передача тепла от одной стороны к другой. Описанный в этом уравнении Q p = I * α * T
  • Обратный поток тепла Q Rth : Тепловой поток от горячей стороны к холодной. Описанный в этом уравнении Q Rth = dT / Rth
  • Джоулевое нагревание / потери Q Rv представляют в сопротивлении R v : Описанное в этом уравнении Q Rv = I 2 * R v /2.
    Тепло, выделяемое R v , поровну распределяется между горячей и холодной стороной. Тепло, выделяемое на горячей стороне, непосредственно рассеивается радиатором и поэтому не учитывается в этом уравнении.

Результирующая нагнетаемая тепловая нагрузка Q c зависит от трех эффектов: Q p , Q Rth и Q Rv .

В случае охлаждения уравнение для Q c . Имеет вид: Q c = Q p — Q Rth — Q Rv .

Параметры элемента Пельтье

Помимо механических свойств, элементы Пельтье характеризуются четырьмя важными параметрами. Которые предоставляет производитель: Q max , dT max , U max , I max

  • Q max : Максимальная мощность теплового насоса при разнице температур между горячей и холодной стороной 0 ° K
  • dT max : максимальная разница температур на элементе Пельтье, когда тепло не перекачивается
  • I max : Ток через элемент Пельтье при Q max
  • U max : Напряжение через элемент Пельтье при Q max

Параметры Q max и dT max являются теоретическими значениями и используются для описания поведения элементов Пельтье.Однако эти максимальные значения никогда не достигаются в термоэлектрических устройствах. Они предоставляются производителем для характеристики производительности модуля Пельтье.

В термоэлектрических системах всегда существует компромисс между производительностью теплового насоса Q c и разностью температур dT.

Свойства и поведение элементов Пельтье

Следующие четыре диаграммы характеризуют товар с элементом Пельтье. Они полезны для понимания свойств и поведения элементов Пельтье.Подобные диаграммы когда-то используются производителями, например Ferrotec. Все значения в диаграммах относительны.

Тепловой насос в сравнении с текущим

Эта нормализованная диаграмма описывает взаимосвязь между производительностью теплового насоса по оси Y и током по оси X для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в случае охлаждения.


Динамика системы. Нормализованная диаграмма Тепловой насос vs.Текущий

Только при относительно небольших перепадах температур dT может передаваться значительное количество тепла. Многоступенчатые элементы Пельтье используются, когда требуется более высокая разница температур.

Перекачиваемое тепло Q C и разность температур dT обратно пропорциональны друг другу, поскольку тепло подается на холодную сторону, разница температур подавляется.

Обычно сквозной ток для элемента Пельтье должен быть в пределах от 0 до 0,7 от I max .

Динамика системы


Динамика системы. Нормализованная диаграмма зависимости теплоносителя от тока

Чтобы понять динамику системы, мы можем наблюдать, что происходит при изменении температуры — и, следовательно, dT — или при увеличении тепловой нагрузки.

Если мы эксплуатируем элемент Пельтье с током около 25% от I max , то можно скомпенсировать повышение dT на 10 Кельвинов — точка A — B — чтобы гарантировать, что производительность теплового насоса остается постоянной, ток должен быть увеличенным.Производительность теплового насоса также может быть увеличена без изменения dT, если перейти от A к C.

Если рабочая точка составляет около 60% от I max , нам потребуется больший ток, чем в предыдущем примере, чтобы компенсировать повышение dT на 10 Кельвинов — точка D в E — когда производительность теплового насоса не должна измениться. Производительность теплового насоса все еще может быть увеличена без потери разницы температур, если перейти от D к F.

Однако, если элемент Пельтье работает с близким к максимальному току, изменение температуры не может быть компенсировано увеличением тока.Переход от более низкой к более высокой разнице температур приведет к снижению производительности теплового насоса.

Коэффициент полезного действия (COP) (КПД)

Определение COP — это тепло, поглощаемое на холодной стороне Q C , деленное на входную мощность P el элемента Пельтье: COP = Q C / P el . COP — это, в основном, эффективность элемента Пельтье при охлаждении.

На следующей диаграмме показана зависимость производительности (COP) от отношения тока I / I max , значения на этой диаграмме являются относительными и нормализованными.


Эта диаграмма показывает зависимость производительности (COP) от текущей зависимости. Используйте его, чтобы найти рабочий ток, обеспечивающий максимальную производительность при соответствующей разнице температур dT.

Слева мы видим, что КПД максимален при минимальном перепаде температур. Следовательно, мы получаем большое количество тепла, перекачиваемого на единицу электроэнергии. Как мы видим, в зависимости от dT соответствующий максимум COP находится на разных уровнях тока — при более высоком dT он смещается вправо.Если мы проследим кривую вправо, мы обнаружим, что мы должны вложить в систему много электроэнергии, чтобы получить лишь небольшое количество тепла, что соответствует низкому значению COP. Мы также можем заметить, что более высокие токи необходимы для создания более высоких температурных перепадов.

Причина, по которой COP не начинается с нуля при dT> 0 K, заключается в том, что сначала необходимо компенсировать обратный поток тепла Q Rth за счет эффекта Пельтье Q p , прежде чем элемент Пельтье остынет.

Отвод тепла элемента Пельтье

На следующей диаграмме показана зависимость тепла Q h , рассеиваемого на теплой стороне элемента Пельтье, от тока при охлаждении.


Нормализованная диаграмма, показывающая тепло, отводимое радиатором, в зависимости от тока для различных температурных перепадов dT.

Значения нормированные и относительные. Как вы можете видеть, Q h , отклоненное элементом Пельтье, может быть до 2,6 раз больше Q max . Количество тепла на горячей стороне Q h может быть настолько большим, потому что тепло от эффекта Пельтье Q p и тепло сопротивления потерь Q Rv должны рассеиваться.Q h = Q p + Q Применяется Rv .

Зависимость отклоненного тепла от dT

На следующей диаграмме показано соотношение между Q h и Q C для различных dT в случае охлаждения. Отношение Q h / Q c является фактором того, насколько больше тепла должно рассеиваться на горячей стороне, чем на холодной.


Нормализованная диаграмма, показывающая тепло, отводимое радиатором, на количество перекачиваемого тепла по сравнению сток для разных dT.

Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.
Например, если вы хотите охладить один ватт на холодной стороне Q C = 1 Вт. Это дает 1,75 Вт тепла на горячей стороне Q h = 1,75 Вт, если dt = 20 К. При dT = 40 К это примерно 3,5 Вт на горячей стороне Q ч = 3,5 Вт

Напряжение vs.Текущий

Эта нормализованная диаграмма описывает соотношение между напряжением на оси y и током на оси x для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в корпус охлаждения.


Нормализованная диаграмма, показывающая зависимость напряжения от тока для различных dT.

Как видите, кривая линейная. Поведение элемента Пельтье такое же, как у резистора с источником напряжения.Наклон кривой уменьшается с увеличением dT. Смещение по оси ординат связано с эффектом Зеебека.

Многоступенчатые элементы Пельтье


Многоступенчатый элемент Пельтье

Все приведенные выше диаграммы относятся к стандартным элементам Пельтье, но поведение многоступенчатых элементов Пельтье аналогично. Многоступенчатые элементы Пельтье используются, когда требуются более высокие значения dT (до 125 K). Но Q max ниже, т.е. меньше тепла может рассеиваться.Это недостаток многоступенчатых элементов Пельтье.

Производителей

(PDF) Исследование тепловых и электрических характеристик термоэлектрического охладителя TEC1-127 Series

Исследование тепловых и электрических характеристик термоэлектрического охладителя

TEC1-127 Series

Akram M.N1, a), *, Nirmani H .R1, *, Jayasundere ND1

1 Кафедра электротехники и информационной инженерии

Инженерный факультет Университета Рухуна

Галле, Шри-Ланка

a) [email protected]

* Эти авторы внесли равный вклад в эту работу.

Реферат. Термоэлектрические охладители (ТЭО) широко используются в промышленности

для холодоснабжения. Хотя по ТИК было проведено обширное

исследований, они основаны либо на моделировании ТИК

, либо на приложениях ТИК. Следовательно, пользователям

трудно собрать необходимую информацию о ТИК, когда те

будут использоваться в приложениях.Это исследование основано на серии TEC1-127

для изучения их тепловых и электрических характеристик. Эта работа

включает в себя основные результаты испытаний, которые были проведены по заказу

для определения взаимосвязи между напряжением и температурой /

температурным градиентом двух поверхностей / током в ТЕС. Этот

также включает результаты разницы в поведении десяти образцов

ТЕС, соотношение между количеством ТЕС и временем

, требуемым для охлаждения статического объема воздуха и эффективностью, и влияние

различных методов охлаждения для отвода тепла от ТЕС. поверхности.

Помимо результатов испытаний, в документе обсуждаются практические

ограничения ТЕС массового производства.

Ключевые слова: охлаждение; поглощение тепла; Пельтье; градиент температуры

; термоэлектрические охладители; термоэлектрический модуль

I. ВВЕДЕНИЕ

ТЭО могут использоваться в целях охлаждения при практических ограничениях

, таких как меньшая эффективность [1-2]. ТЭО состоят из массива полупроводниковых пар

.Когда подается постоянное напряжение

, одна поверхность ТЭО поглощает тепло, делая поверхность

холодной, а противоположные стороны нагреваются [3-4].

Это явление можно описать с помощью эффекта Пельтье. Минимальная температура

, которую можно получить через холодную поверхность

, зависит от определенных факторов, включая температуру окружающей среды

, подаваемое напряжение, механизмы охлаждения, используемые в поверхностях

, и качество модуля TEC.TEC могут использоваться для охлаждения

поверхностей материала, статических или динамических потоков.

В зависимости от применения ТЕС должны использоваться оптимальным образом

.

Подробная принципиальная схема ТЭО показана на рис. 1.

Он содержит две керамические пластины. Между двумя керамическими пластинами

помещена матрица из полупроводниковых пар

n-типа. Эти элементы расположены электрически последовательно

и термически параллельно [1], [3-4].Когда положительное постоянное напряжение равно

,

, подаваемое на полупроводник n-типа, будет проходить от термоэлемента p-

к термоэлементу n-типа, вызывая уменьшение тепла

на холодной поверхности и увеличение нагрева на горячей поверхности. Скорость поглощения тепла

пропорциональна количеству термоэлектрических пар

и величине приложенного тока. Типичный TEC1-127

будет содержать 127 термоэлектрических пар

[6].

Есть три основных эффекта, которые вызывают физические изменения в

ТИК. Это эффект Пельтье, эффект Зеебека и эффект Томсона

. Первый был открыт Жаном Пельтье в 1834 году [4-6].

Эффект Пельтье описывает, что изменение температуры может происходить

, когда электрический ток проходит через соединение, которое

состоит из двух разнородных материалов [4]. Скорость теплопередачи

между двумя спаями определяется выражением (1).

(1)

где — коэффициенты Пельтье двух материалов.

Рис. 1. Подробная принципиальная схема термоэлектрического охладителя

Томас Зеебек расширил теорию Пельтье, объяснив

, что электродвижущая сила создается, когда градиент температуры

подается на соединение двух материалов, что составляет

напротив. эффекта Пельтье и названного эффектом Зеебека [4].

Уильям Томсон смог идентифицировать, что в проводнике

, несущем ток с разницей температур между двумя точками

, тепло либо поглощается, либо выделяется в зависимости от материала

[4].

Спецификации, предоставленные производителями для TEC, не являются подробным описанием

для использования в таких приложениях, как охлаждение статического объема воздуха

или охлаждение динамического потока, где должно использоваться количество

TEC. Исследования ТИК были

ограничены применением ТИК и моделированием ТИК. №

, недавние исследования были проведены для анализа характеристик

ТИК, которые различаются в зависимости от различных факторов.Пользователи TEC могут столкнуться с трудностями при выборе входного напряжения

и количества используемых TEC до

в зависимости от требований. Это исследование направлено на то, чтобы

облегчить пользователям TEC более точную справочную информацию по эксплуатационным характеристикам

TEC.

II. ЭКСПЕРИМЕНТЫ И РЕЗУЛЬТАТЫ

Был проведен ряд экспериментов для определения

практического поведения ТИК. Все эксперименты проводились

с образцами серии TEC1-127 при температуре окружающей среды

290 C.Входное напряжение ТЕС изменялось только до 13 В, начиная с

максимальное напряжение, указанное для модуля, составляет 14,4 В. Температуры

были измерены датчиком температуры

DS18B20.

Простой метод оценки физических характеристик термоэлектрического охладителя на основе технических данных поставщика

Введение

Термоэлектрический охладитель (ТЭО) — это твердотельный холодильник, работающий на эффекте Пельтье. Отсутствие движущихся частей, компактный размер, возможность точного контроля температуры и надежность — все это вместе делает TEC уникальным холодильником.ТИК находят применение [1, 2] во многих областях, от простых холодильников для продуктов питания и напитков для послеобеденного пикника до чрезвычайно сложных систем контроля температуры в космических аппаратах. Все больше и больше ТЕС используется для решения серьезных проблем с охлаждением, особенно в электронной промышленности; например, охлаждение лазерных диодов [3].

Из-за высокого спроса и экономической ценности многие производители продают широкий ассортимент ТЕС [4]. Каждый производитель указывает свои ТЕС, используя кривые производительности и несколько предельных значений: ΔT max , I max , V max и Q max [5].Инженеры по управлению температурным режимом должны найти TEC с максимальной производительностью, оптимизировать рабочие параметры с помощью простых расчетов и смоделировать общую систему охлаждения (включая TEC) с помощью имеющегося в продаже программного обеспечения CFD. Для всего этого необходимо знать основные физические свойства (s, ρ и k) материалов ТЭО. К сожалению, большинство производителей не предоставляют такую ​​информацию в своих каталогах продукции. Поэтому проектировщикам тепловых систем обычно трудно получить эти физические свойства.Хуанг и др. [6] разработали эксперимент, который может точно измерить физические свойства модуля TEC. Проблема в том, что у большинства проектировщиков тепловых систем обычно нет ни доступа к необходимому оборудованию, ни времени для проведения требуемых измерений.

В этой статье представлен простой метод расчета физических характеристик модуля ТЕС (например, напряжение Зеебека устройства S M , электрическое сопротивление устройства R M и теплопроводность устройства K M ) на основе информации (ΔT max , I max , V max и Q max ) легко доступны в техническом описании поставщика.Затем можно вычислить фундаментальные физические свойства s, ρ и k, если известны N (количество пар) и G (отношение площади поперечного сечения / длины каждого термоэлектрического элемента). Кроме того, в этой статье представлен пример приложения для оценки и оптимизации рабочих параметров ТЕС с помощью простых вычислений.

Моделирование
Базовая модель для TEC

Следующие теоретические уравнения (1-4) для TEC представлены во многих справочниках и статьях [7-10]:

Для упрощения определите S M , R M и K M по уравнению (5-7):

S M = 2 sN (5)

R M = 2ρN / G (6)

К M = 2 кг (7)

Тогда уравнения (1, 2 и 4) можно выразить как уравнения (8-10):

Параметры s, ρ и k являются фундаментальными физическими свойствами материалов ТЭО, а S M , R M и K M являются физическими характеристиками ТЕС как устройства.Показатель качества Z напрямую связан со способностью ТЭО перекачивать тепло и является критерием оценки качества ТЭО [11]. Все эти параметры являются необходимыми константами в расчетах или моделировании с использованием приведенных выше уравнений. К сожалению, ни один из них обычно не указывается в каталоге производителя. Обычно производители указывают ΔT max , I max , V max и Q max при заданной температуре горячей стороны T h .

Выражения для ΔT max , V max , I max и Q max

Проверка уравнения (8) показывает, что DT изменяется как квадрат тока I, когда Q c равно нулю, как показано уравнением (11).

Дифференцирование уравнения (11) относительно I приводит к уравнению (12):

Установка уравнения (12) равным нулю и решение для I для максимизации ΔT приводит к уравнению (13):

Уравнение (13) является предпосылкой для получения максимальной разницы температур ΔT max , а ток определяется как максимальный ток I max .Напряжение в это время определяется как максимальное напряжение V max . Теперь вставка значения I max из уравнения (13) в уравнение (11) приводит к уравнению (14) для ΔT max :

Заменяя ΔT и I на ΔT max и I max в уравнении (9), можно получить выражение для V max , как показано уравнением (15).

Обычно в технических характеристиках TEC указывается ΔT max , I max , V max при определенной температуре горячей стороны T h .Заменяя T c на (T h — ΔT max ) в уравнениях (13) и (14), получают уравнения (16) и уравнение (17).

Кроме того, Q max возникает также при определенной температуре горячей стороны, когда I = I max и ΔT = 0 ° C. Следовательно, уравнение (8) может быть преобразовано в уравнение (18):

Метод I для расчета S M , K M и R M

Хотя три параметра физических характеристик ТЕС S M , R M и K M неизвестны, как отмечалось ранее, в таблицах данных поставщика обычно указаны четыре максимальных параметра: ΔT max , V max , I max и Q max , и, кроме того, есть четыре уравнения (15-18).Любые три из четырех уравнений можно использовать для решения и получения выражений для S M , R M и K M . Метод I в этой статье использует только три уравнения ΔT max , V max и I max , и оставляет только четвертое для Q max . Таким образом, уравнения (19-22) получаются из уравнений (10), (15-17) для определения Z, S M , K M и R M :

.

Если известны S M , R M и K M , s, ρ и k можно рассчитать согласно уравнениям 5-7, если известны N и G.

Метод II для расчета S M , K M и R M

Как указано выше, любые три из четырех уравнений (15-18) могут использоваться для решения и получения выражения для S M , R M и K M . Метод II в этой статье можно использовать для расчета S M , R M и K M в соответствии с тремя уравнениями для ΔT max , I max и Q max , без использования V max. .Согласно методу II, в результате получаются уравнение (19) и уравнения (23-25).

В идеале, между четырьмя уравнениями (15-18) должна быть внутренняя согласованность, а результаты расчетов двумя методами должны быть одинаковыми. Тем не менее, это не всегда так. Ошибки действительно существуют, что можно увидеть в следующем примере приложения.

Таблица 1. Калькулятор электронных таблиц для TEC

Применение и обсуждения

Используя приведенные выше формулы, можно составить калькулятор электронной таблицы для определения физических характеристик, основных физических свойств и рабочих параметров ТЕС, как показано в таблице 1.После ввода технических характеристик в терминах T h , ΔT max , I max и V max , физические характеристики S M , R M , K M и Z рассчитываются в соответствии с к уравнениям 19-22 в методе I. Затем, ввод рабочих условий I, T h , T c и T a , рабочие параметры Q c , V, Q p , COP и R Радиатор рассчитывается согласно уравнениям 1-3, 26 и 27.

Кроме того, если значения N и G для рассматриваемого ТЕС предоставлены в качестве входных данных, можно также рассчитать фундаментальные физические свойства s, ρ и k.

Пример применения

В качестве примера применения следует выбрать имеющийся в продаже ТЕС для охлаждения лазерного диода, который рассеивает 5,5 Вт и должен поддерживаться при 20 ° C при температуре окружающей среды 25 ° C. Также необходимо, чтобы радиатор был как можно меньше; Другими словами, тепловое сопротивление радиатора R heatsink должно быть близко к максимально допустимому тепловому сопротивлению радиатора R hs-max .

1) Выбор ТЕС — Как известно, Z является критерием способности ТЕС перекачивать тепло. Таким образом, значение Z различных ТЕС от разных производителей рассчитывается на основе информации из каталогов производителей. Как показано в таблице 2, значение Z для второго TEC (1MC06-096-05) находится посередине. Учитывая другие факторы, такие как наименьший размер, выбирается TEC 1MC06-096-05.

2) Определение рабочих параметров — Рабочие параметры для TEC 1MC06-096-05 рассчитываются для различных DT с помощью калькулятора электронных таблиц (Таблица 1).Технические характеристики (T h , ΔT max , I max и V max ), показанные в таблице 2 для выбранного TEC (1MC06-096-05), вводятся вместе с условиями эксплуатации (I, T h , T c и T a ). Затем вводимый в калькулятор ток I регулируется до тех пор, пока расчетное значение Q c не станет равным указанной тепловой нагрузке (т. Е. 5,5 Вт). Результат вычислений для каждого Δ T записывается, как показано в таблице 3.Как также показано в таблице 3 для примера расчета, значение допустимого теплового сопротивления радиатора R heatsink достигает максимального значения около 2,57 ° C / Вт при ΔT = 45 ° C. Однако большее значение COP, равное 1,01, происходит при ΔT = 30 ° C, поэтому оно выбрано в качестве расчетной разницы температур.

Таблица 2. ТИК от разных производителей

Обсуждение двух методов расчета S M , K M и R M

В этой статье обсуждались два метода расчета S M , R M и K M .Между двумя методами расчета существуют ошибки, и самая большая из них составляет 5%, как показано в таблице 2. Одна из причин заключается в том, что наша модель, представляющая работу ТЕС, уравнения (8) и (9), является идеальной, а параметры модуля ТЕС (S M , R M и K M ) приняты как постоянные. На самом деле, S M , R M и K M более или менее зависят от температуры. Другая причина заключается в том, что технические характеристики от производителей являются экспериментальными результатами.Обычно разные производители используют разные экспериментальные методы в разных условиях.

Таблица 3. Рабочие параметры ТЕС (1MC06-096-05)

Сравнение с программным обеспечением производителя

В таблице 3 результаты расчетных примеров сравниваются с результатами программного обеспечения производителя. Как можно видеть, некоторые расхождения действительно существуют, и чем больше T h , тем больше расхождение для Q p от 300K (это температура горячей стороны, при которой указаны рабочие характеристики).Это связано с тем, что Z, S M , R M и K M не всегда являются константами, как указывалось ранее. Фактически, Z, S M , R M и K M в некоторой степени зависят от температуры. Несмотря на это несоответствие, допустима разница менее 10%.

Конечно, программное обеспечение производителя должно быть более точным. Однако не каждый производитель предоставляет программное обеспечение. Хотя кривые производительности иногда могут использоваться вместо расчетов, чаще всего кривые производительности даются при определенной температуре T h , например, 25 ° C или 50 ° C, что обычно отличается от рассматриваемого приложения.Другая проблема заключается в том, что считывание кривых и выполнение требуемых итераций утомительно и проблематично, особенно когда необходимо учитывать много разных ΔT. Соответственно, метод расчета, представленный в этой статье, может быть весьма полезным из-за его простоты и удобства, особенно для первоначальных оценок в процессе проектирования охлаждения.

Сводка

В этой статье был представлен простой метод расчета физических характеристик ТЕС и оценки характеристик ТЕС.Сравнение и обсуждение показывают, что метод расчета имеет некоторые недостатки. Несмотря на это, метод расчета полезен из-за его простоты и удобства, особенно в качестве помощи при выборе ТЕС и для получения первоначальных оценок его характеристик в желаемом приложении.

Благодарность

Автор благодарит редактора Роберта Саймонса за его усилия по улучшению читабельности. Автор также хотел бы поблагодарить рецензентов за конструктивные комментарии к более ранней версии этой статьи.

Список литературы
  1. Саймонс Р. и Чу Р., «Применение термоэлектрического охлаждения к электронному оборудованию: обзор и анализ», 16-й симпозиум IEEE SEMI-THERM, стр.1-9, 2000.
  2. Риффат, С., Ма, X., «Термоэлектрики: Обзор настоящего и потенциального применения», Прикладная теплотехника, Vol. 23, pp. 913-935, 2003.
  3. .
  4. Ли, Х., Юн, Дж., Ким, Си-Дж., «Численный анализ охлаждения корпуса лазерного диода с термоэлектрическим охладителем», Теплопередача — Азиатские исследования, Vol.30, Выпуск 5, стр. 357-370, 2001.
  5. http://www.peltier-info.com/manufacturers.html
  6. http://www.melcor.com/
  7. Хуанг Б., Чин К. и Дуанг К., «Метод проектирования термоэлектрического охладителя», Международный журнал холода, том. 23, стр. 208-218, 2000.
  8. Чейн Р. и Хуанг Г., «Применение термоэлектрического охладителя в электронном охлаждении», Прикладная теплотехника, Vol. 24, стр. 207-2217, 2004 г.
  9. Роу, Д., «Справочник по термоэлектрикам CRC», CRC press, Inc., 1995.
  10. Гиршек, Дж. И Джонсон, Д., «Последние разработки в области теплоотводов с улучшенными термоэлектрическими характеристиками», ElectronicsCooling, Vol. 11, No. 3, август 2005 г.
  11. Саймонс Р., «Применение термоэлектрических охладителей для улучшения охлаждения модулей», ElectronicsCooling, Vol. 6, No. 2, May 2000.
  12. Саймонс Р., «Влияние улучшенных термоэлектрических ZT на охлаждаемость электронного модуля», ElectronicsCooling, Vol. 12, № 4, ноябрь 2006 г.

Выбор модуля — термоэлектрический

9.0 Выбор термоэлектрического модуля

9.1 Выбор подходящего охладителя TE для конкретного применения требует оценки всей системы, в которой будет использоваться охладитель. Для большинства приложений должна быть возможность использовать одну из стандартных конфигураций модуля, в то время как в некоторых случаях может потребоваться специальная конструкция для удовлетворения строгих электрических, механических или других требований. Хотя мы поощряем использование стандартных устройств, когда это возможно, Ferrotec America специализируется на разработке и производстве индивидуальных TE-модулей, и мы будем рады предложить вам уникальные устройства, которые точно будут соответствовать вашим требованиям.

Система охлаждения в целом является динамичной по своей природе, и производительность системы зависит от нескольких взаимосвязанных параметров. В результате обычно необходимо выполнить серию итерационных вычислений для «обнуления» правильных рабочих параметров. Если есть какие-либо сомнения относительно того, какое устройство TE будет наиболее подходящим для конкретного применения, мы настоятельно рекомендуем вам обратиться за помощью к нашему инженерному персоналу.

Перед тем, как начать фактический процесс выбора модуля TE, разработчик должен быть готов ответить на следующие вопросы:

  1. При какой температуре необходимо поддерживать охлаждаемый объект?
  2. Сколько тепла нужно отводить от охлаждаемого объекта?
  3. Важно ли время теплового отклика? Если да, как быстро должна измениться температура охлаждаемого объекта после подачи питания постоянного тока?
  4. Какая предполагаемая температура окружающей среды? Изменится ли значительно температура окружающей среды во время работы системы?
  5. Каков внешний приток тепла (утечка тепла) к объекту в результате проводимости, конвекции и / или излучения?
  6. Сколько места доступно для модуля и радиатора?
  7. Какая мощность имеется?
  8. Нужно ли контролировать температуру охлаждаемого объекта? Если да, то с какой точностью?
  9. Какова предполагаемая приблизительная температура радиатора во время работы? Возможно ли, что температура радиатора существенно изменится из-за колебаний окружающей среды и т. Д.?


Очевидно, что каждое приложение будет иметь свой собственный набор требований, которые, вероятно, будут различаться по уровню важности. Основываясь на любых критических требованиях, которые нельзя изменить, работа проектировщика будет заключаться в выборе совместимых компонентов и рабочих параметров, которые в конечном итоге сформируют эффективную и надежную систему охлаждения. Пример дизайна представлен в разделе 9.5, чтобы проиллюстрировать концепции, используемые в типичном процессе проектирования.

9.2 ИСПОЛЬЗОВАНИЕ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК МОДУЛЯ TE: Перед тем, как приступить к проектированию термоэлектрических устройств, необходимо иметь представление об основных рабочих характеристиках модуля. Данные о производительности представлены в графическом виде и относятся к определенной базовой температуре радиатора. Большинство графиков производительности стандартизированы для температуры радиатора (Th) + 50 ° C, а полученные данные можно использовать в диапазоне приблизительно от 40 ° C до 60 ° C с небольшой погрешностью. По запросу мы можем предоставить графики производительности модулей для любой температуры в диапазоне от -80 ° C до + 200 ° C.

9,3 Чтобы продемонстрировать использование этих кривых производительности, приведем простой пример. Предположим, у нас есть небольшой электронный «черный ящик», который рассеивает 15 Вт тепла. Для правильной работы электронного блока его температура не должна превышать 20 ° C. Температура окружающей среды в помещении часто поднимается намного выше уровня 20 ° C, что требует использования термоэлектрического охладителя для снижения температуры устройства. В целях этого примера мы не будем рассматривать радиатор (на практике мы не можем этого сделать), кроме как заявить, что его температура может поддерживаться на уровне 50 ° C в наихудших условиях.Мы исследуем использование модуля на 71 пару, 6 ампер, чтобы обеспечить необходимое охлаждение.

9.3.1 ГРАФИК: Qc в зависимости от I Этот график, показанный на рисунке (9.1), связывает тепловую насосную мощность (Qc) модуля и разность температур (DT) как функцию входного тока (I). В этом примере установленные рабочие параметры для модуля TE включают Th = 50 ° C, Tc = 20 ° C и Qc = 15 Вт. Требуемый DT = Th-Tc = 30 ° C.

Сначала необходимо определить, способен ли один модуль на 71 пару, 6 ампер обеспечить достаточный отвод тепла для удовлетворения требований приложения.Мы обнаруживаем линию DT = 30 и обнаруживаем, что максимальное значение Qc происходит в точке A и при входном токе 6 ампер. Продлив линию от точки A к левой оси y, мы видим, что модуль способен перекачивать примерно 18 Вт при поддержании Tc на уровне 20 ° C. Поскольку этот Qc немного выше, чем необходимо, мы следуем вниз по линии DT = 30, пока не достигнем положения (точка B), которое соответствует Qc, равному 15 Вт. Точка B — это рабочая точка, которая удовлетворяет нашим тепловым требованиям.Продолжая линию вниз от точки B к оси x, мы обнаруживаем, что правильный входной ток составляет 4,0 ампера.


Рисунок (9.1)

Теплонасосная способность в зависимости от перепада температур как функция входного тока для модуля на 71 пару, 6 ампер

9.3.2 ГРАФИК: Vin в зависимости от I Этот график, показанный на рисунке (9.2), связывает входное напряжение модуля (Vin) и разность температур (DT) как функцию входного тока (I).В этом примере параметры модуля TE включают Th = 50 ° C, DT = 30 ° C и I = 4,0 ампер. Мы располагаем линию DT = 30 и на пересечении 4,0 ампер отмечаем точку C. Продвигая линию от точки C к левой оси y, мы видим, что требуемое входное напряжение модуля (Vin) составляет примерно 6,7 вольт.


Рисунок (9.2)

Входное напряжение в зависимости от температуры
Дифференциал как Функция входного тока для модуля с парами 7I, 6 ампер

9.3.3 ГРАФИК: COP по сравнению с I Этот график, показанный на рисунке (9.3), связывает коэффициент полезного действия модуля (COP) и перепад температур (DT) как функцию входного тока (I). В этом примере параметры модуля TE включают Th = 50 ° C, DT = 30 ° C и I = 4,0 ампер.

Находим линию DT = 30 и на пересечении 4,0 ампер отмечаем точку D. Продвигая линию от точки D к левой оси Y, мы видим, что коэффициент полезного действия модуля равен примерно 0.58.


Рисунок (9.3)

Коэффициент производительности, связанный с перепадом температур
как Функция входного тока для модуля на 71 пару, 6 ампер

Обратите внимание, что COP является мерой эффективности модуля, и всегда желательно максимизировать COP, когда это возможно. COP можно рассчитать по:

9,4 Дополнительный график зависимости Vin от Th, типа показанного на рисунке (9.4) связывает входное напряжение (Vin) и входной ток (I) модуля в зависимости от температуры горячей стороны модуля (Th). Из-за эффекта Зеебека входное напряжение при заданном значении I и Th является самым низким, когда DT = O, и самым высоким, когда DT находится в максимальной точке. Следовательно, график зависимости Vin от Th обычно представляется для условия DT = 30, чтобы получить среднее значение Vin.


Рисунок (9.4)

Входное напряжение, связанное с входным током, как функция
Температура горячей стороны для модуля на 71 пару, 6 ампер

9.5 ПРИМЕР КОНСТРУКЦИИ: Чтобы проиллюстрировать типичный процесс проектирования, давайте представим пример применения ТЕ-охладителя, включающего температурную стабилизацию лазерного диода. Диод вместе с соответствующей электроникой должен быть установлен в корпусе DIP Kovar и должен поддерживаться при температуре 25 ° C. Когда корпус установлен на системной плате, испытания показывают, что его тепловое сопротивление составляет 6 ° C / ватт. Общая мощность рассеивания лазерной электроники составляет 0,5 Вт, а расчетная максимальная температура окружающей среды составляет 35 ° C.

Необходимо выбрать модуль охлаждения TE, который не только будет обладать достаточной охлаждающей способностью для поддержания надлежащей температуры, но также будет соответствовать требованиям к размерам, предъявляемым к корпусу. Изначально был выбран 18-парный TE-кулер на 1,2 ампера, потому что он имеет совместимые размеры и, как представляется, соответствующие рабочие характеристики. Графики производительности для этого модуля будут использоваться для получения соответствующих параметров для выполнения математических расчетов.Чтобы начать процесс проектирования, мы должны сначала оценить теплоотвод и оценить температуру горячей стороны модуля (Th) в наихудшем случае. Для выбранного охладителя TE максимальную потребляемую мощность (Pin) можно определить по рисунку (9.5) в точке A.

  • Макс. Входная мощность модуля (вывод) = 1,2 А x 2,4 В = 2,9 Вт
  • Макс. Тепловая нагрузка на корпус = 2,9 Вт + 0,5 Вт = 3,4 Вт
  • Повышение температуры корпуса = 3,4 Вт x 6 ° C / Вт = 20.4 ° С
  • Макс. Температура корпуса (T,) = 35 ° C окружающей среды + повышение на 20,4 ° C = 55,4 ° C Поскольку температура горячей стороны (Th), равная 55,4 ° C, достаточно близка к имеющимся графикам рабочих характеристик Tin = 50 ° C, эти графики могут быть используется для определения тепловых характеристик с очень небольшой ошибкой.


Рисунок (9.5)
График зависимости Vin от I для 18-парного модуля I.2 Am

Теперь, когда мы установили значение Th для наихудшего случая, можно оценить производительность модуля.

Разница температур модуля (DT) = Th — Tc = 55,4 — 25 = 30 ° C

Рисунок (9.6)
График Qc в сравнении с I для модуля на 18 пар, 1,2 ампера

Из рисунка (9.6) видно, что максимальная мощность теплового насоса (Qc) для DT = 30 достигается в точке B и составляет примерно 0,9 Вт. Поскольку требуется Qc всего 0,5 Вт, мы можем проследить линию DT = 30 вниз, пока она не пересечет линию 0,5 Вт, отмеченную как точка C.Продлевая линию вниз от точки C до оси x, мы видим, что входной ток (I) приблизительно 0,55 ампер обеспечит требуемую эффективность охлаждения. Возвращаясь к графику Vin против I на рисунке (9.5), для тока 0,55 ампер, отмеченного точкой D, требуется напряжение (Vin) около 1,2 вольт. Теперь нам нужно повторить наш анализ, потому что требуемая входная мощность значительно ниже, чем значение, используемое для наших первоначальных расчетов. Новые значения мощности и температуры будут:

  • Макс.Входная мощность модуля (вывод) = 0,55 А x 1,2 В = 0,66 Вт
  • Макс. Тепловая нагрузка на корпус = 0,66 Вт + 0,50 Вт = 1,16 Вт
  • Повышение температуры корпуса = 1,16 Вт x 6 C / Вт = 7 ° C
  • Макс. Температура корпуса (Th) = 35 ° C окружающей среды + повышение на 7 ° C = 42 ° C


Разница температур модуля (DT) = Th-Tc = 42 ° C-25 ° C = 17 ° C

Видно, что, поскольку теперь у нас есть другое новое значение Th, необходимо будет продолжать повторять шаги, описанные выше, до тех пор, пока не будет достигнуто стабильное состояние.Обратите внимание, что расчеты обычно повторяются до тех пор, пока разница в значениях Th от последовательных расчетов не станет довольно небольшой (часто менее 0,1 C для хорошей точности).

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *