Site Loader

Основные характеристики и параметры диодов

  1. Полупроводниковые диоды, их параметры и характеристики. Область применения диодов.

Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.

  • Вольт-амперная характеристика

  • Максимально допустимое постоянное обратное напряжение

  • Максимально допустимое импульсное обратное напряжение

  • Максимально допустимый постоянный прямой ток

  • Максимально допустимый импульсный прямой ток

  • Номинальный постоянный прямой ток

  • Прямое постоянное напряжение на диоде при номинальном токе (т. н. «падение напряжения»)

  • Постоянный обратный ток, указывается при максимально допустимом обратном напряжении

  • Диапазон рабочих частот

  • Ёмкость

  • Пробивное напряжение (для защитных диодов и стабилитронов)

  • Тепловое сопротивление корпуса при различных вариантах монтажа

  • Максимально допустимая мощность рассеивания

Вольт-ампе́рная характери́стика (ВАХ) — зависимость тока через двухполюсник от напряжения на этом двухполюснике. Описывает поведение двухполюсника на постоянном токе. А также функция выражающая (описывающая) эту зависимость. А также — график этой функции. Чаще всего рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности 

), поскольку для линейных элементов ВАХ представляет собой прямую линию (описывающуюся законом Ома) и не представляет особого интереса.

Характерные примеры элементов, обладающих существенно нелинейной ВАХ: диод, тиристор, стабилитрон.

Для трёхполюсных элементо в (таких, как транзистор, тиристор или ламповый триод) часто строят семейства кривых, являющимися ВАХ для двухполюсника при так или иначе заданных параметрах на третьем выводе элемента.

Необходимо отметить, что в реальной схеме, особенно работающей с относительно высокими частотами (близкими к границам рабочего частотного диапазона) для данного устройства реальная зависимость напряжения от времени может пробегать по траекториям, весьма далёким от «идеальной» ВАХ. Чаще всего это связано с ёмкостью или другими инерционными свойствами элемента.

Диодные выпрямители

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диодный выпрямитель или диодный мост (То есть 4 диода для однофазной схемы, 6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы, соединённых между собой по схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме А. Н. Ларионова на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той особенностью данных выпрямителей, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию — пробою.

В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов.

Если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается.

  1. Тиристоры, их параметры и характеристики. Область применения.

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).

Тиристор имеет нелинейную вольт-амперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.

Общие свойства и параметры диодов

 

Система и перечень параметров, включаемые в технические описания и характеризующие свойства полупроводниковых диодов, выбираются с учетом их физико-технологических особенностей и области применения. В большинстве случаев важны сведения об их

статических, динамических и предельных параметрах.

Статические параметры характеризуют поведение приборов при постоянном токе, динамические — их частотно-временные свойства, предельные параметры определяют область устойчивой и надежной работы.

В справочники, стандарты или технические описания включается необходимая для детального расчета схем информация о параметрах: нормы на значения параметров, режимы их измерений, вольт-амперные характеристики, зависимости параметров от режима и температуры, максимальные и максимально допустимые значения параметров, конструктивно-технологические особенности приборов, их основное назначение, специфические требования, методы измерения параметров, типовые схемы применения.

Постоянные (случайные) изменения технологических факторов оказывают существенное влияние на значения параметров изготавливаемых приборов. Поэтому значения параметров даже одного типа приборов являются случайными величинами, т.е. имеется отклонение от среднего (типового, номинального) уровня. Для некоторых параметров устанавливаются граничные значения и возможные отклонения (

разброс). Нормы на разброс параметров устанавливаются на основе экспериментально-статистических данных при обеспечении надежной и устойчивой работы приборов в различных условиях и режимах применения, а также исходя из экономических соображений.

Необходимо отметить, что вследствие постоянного совершенствования конструкций и технологии изготовления полупроводниковых приборов происходят изменения средних значений параметров. Некоторые образцы приборов имеют параметры лучше, чем приведенные в технических описаниях и справочниках.

В разных странах существуют региональные унифицированные стандарты на параметры и характеристики полупроводниковых приборов, методики их измерений и контроля качества, которые могут существенно отличаться от международных стандартов.

Различают общие параметры, которыми характеризуется любой полупроводниковый диод, и специальные параметры, присущие только отдельным видам диодов. К общим параметрам диодов относят: параметры рассеиваемой мощности, тепловые параметры, пробивные максимальные и максимально допустимые токи и напряжения, параметры, определяемые по виду ВАХ прибора, параметры, характеризующие основные свойства \(p\)-\(n\)-перехода и т.п.

Рассеиваемая мощность (\(P_{пр}\), \(P_{обр}\), \(P_{ср}\), \(P_и\)). Когда через диод проходит ток, при заданном напряжении на диоде выделяется мощность \(P_д = I \cdot U\). При подаче на диод переменного напряжения общая мощность, рассеиваемая диодом, равна сумме мощностей рассеиваемых при прохождении тока в прямом (\(P_{пр}\)) и обратном (\(P_{обр}\)) направлениях \(P_д = P_{пр} + P_{обр}\).

Средняя рассеиваемая мощность (\(P_{ср}\)) определяется как среднее за период значение мощности, рассеиваемой диодом при протекании прямого и обратного токов. Максимальное значение рассеиваемой мощности, при которой гарантируется долговременная и стабильная работа диода при заданных внешних условиях, называется максимальной допустимой мощностью рассеяния диода. Наибольшее мгновенное значение мощности, рассеиваемой диодом, называется импульсной рассеиваемой мощностью (\(P_и\)).

Температура (\(T\), \(T_п\), \(T_{кор}\)). Выделение мощности сопровождается нагреванием диода, что приводит к росту обратного тока и увеличению вероятности возникновения теплового пробоя \(p\)-\(n\)-перехода. Для исключения теплового пробоя температура \(p\)-\(n\)-перехода должна быть меньше максимальной допустимой температуры перехода (\(T_{п max}\)). Как правило, эта температура для германиевых диодов составляет 70 °C, а для кремниевых — 125 °C. Выделяемая теплота рассеивается диодом в окружающую среду. Учитывая конструктивные особенности диода и условия его эксплуатации, иногда нормируются максимальная температура корпуса диода (\(T_{к max}\)) и максимальная температура окружающей среды вблизи диода (\(T\)).

Тепловое сопротивление (\(R_т\), \(R_{т пер-окр}\), \(R_{т пер-кор}\)). Перепад температур между переходом и окружающей средой определяется выражением: \(T_п – T = R_т \cdot P_д\), где \(R_т\) — тепловое сопротивление, характеризующее условия отвода теплоты от диода (определяется конструкцией корпуса, наличием радиатора и т.д.). В зависимости от расположения контрольной точки, в которой производится измерение температуры, различают: тепловое сопротивление переход – окружающая среда (\(R_{т пер-окр}\)), тепловое сопротивление переход – корпус диода (\(R_{т пер-кор}\)). Тепловое сопротивление переход – среда (\(R_{т пер-окр}\)) необходимо знать для расчета допустимой рассеиваемой мощности маломощных диодов обычно работающих без теплоотвода, а тепловое сопротивление переход – корпус (\(R_{т пер-кор}\)) — для расчета режима работы мощных приборов при наличии внешнего радиатора. Обычно \(R_{т пер-окр} \gg R_{т пер-кор}\) (сопротивление \(R_{т пер-кор}\) остается постоянным только в случае малых плотностей тока). Тепло от кристалла с переходами к корпусу или радиатору отводится за счет теплопроводности, а от корпуса в окружающее пространство — конвекцией и излучением. Режим диода необходимо выбирать из условия \(\newcommand{\slfrac}[2]{\left.#1\right/#2}U \cdot I \leq P_{д max}= \slfrac{\left( T_{п max} – T \right)}{R_{т пер-окр}}\).

Переходное тепловое сопротивление (\(Z_т\), \(Z_{т пер-окр}\), \(Z_{т пер-кор}\)). При определении тепловых режимов в случае работы диодов при малых длительностях импульсов используются их переходные тепловые характеристики, а именно переходное тепловое сопротивление диода (\(Z_т\)), которое является отношением разности изменения температуры перехода и температуры в контрольной точке за заданный промежуток времени, когда происходит это изменение температуры, к приращению рассеиваемой мощности диода, скачкообразно увеличенной в начале этого интервала. Производными этого параметра являются: переходное тепловое сопротивление переход – окружающая среда (\(Z_{т пер-окр}\)) и переходное тепловое сопротивление переход – корпус диода (\(Z_{т пер‑кор}\)).

Прямой ток и напряжение (\(I_{пр}\), \(I_{пр}\) и, \(I_{пр ср}\), \(U_{пр}\), \(U_{пр и}\)). При приложении к диоду постоянного прямого напряжения \(U_{пр}\) его температура зависит от величины протекающего прямого тока \(I_{пр}\). Прямой ток, при котором температура \(p\)-\(n\)-перехода диода достигает максимального допустимого значения (\(T_{п max}\)), называют допустимым прямым током (\(I_{пр max}\)). Наибольшее допустимое мгновенное значение прямого тока диода называют максимальным импульсным прямым током (\(I_{пр и max}\)). Наибольшее мгновенное значение прямого напряжения на диоде, обусловленное заданным импульсным прямым током, называется максимальным импульсным прямым напряжением диода (\(U_{пр и max}\)). Средний прямой ток диода (\(I_{пр ср}\)) определяется при подаче на диод переменного напряжения как среднее за период значение прямого тока.

Обратный ток и напряжение (\(I_{обр}\), \(I_{обр и}\), \(U_{обр}\), \(U_{обр и}\)). При приложении к диоду постоянного заданного обратного напряжения \(U_{обр}\) через него протекает постоянный обратный ток \(I_{обр}\) определенной величины. Важным параметром диодов является максимальное допустимое обратное напряжение \(U_{обр max}\), при котором не происходит пробоя \(p\)-\(n\)-перехода. Обычно \(U_{обр max} \le {0,8}U_{проб}\), где \(U_{проб}\) — значение обратного напряжения, вызывающее пробой перехода диода, при котором обратный ток достигает заданного значения, оно называется пробивным напряжением диода. Максимально допустимое импульсное обратное напряжение (\(U_{обр и max}\)) определяет максимальное мгновенное значение для обратного напряжения на диоде, а максимально допустимый импульсный обратный ток (\(I_{обр и max}\)) характеризует предельное мгновенное значение обратного тока, обусловленного импульсным обратным напряжением.

Дифференциальное сопротивление (\(r_{диф}\)). Прямое (\(r_{пр}\)) и обратное (\(r_{обр}\)) сопротивления диода постоянному току выражаются соотношениями: \(\newcommand{\slfrac}[2]{\left.#1\right/#2}r_{пр} = \slfrac{U_{пр 0}}{I_{пр 0}}\), \(r_{обр} = \slfrac{U_{обр 0}}{I_{обр 0}}\) , где \(U_{пр 0}\), \(I_{пр 0}\), \(U_{обр 0}\), \(I_{обр 0}\) задают конкретные точки на ВАХ прибора, в которых производится вычисление сопротивления. Поскольку типичная ВАХ полупроводникового прибора имеет участки с повышенной линейностью (один на прямой ветви, один — на обратной), то вводится понятие дифференциального сопротивления (\(r_{диф}\)), которое вычисляется как отношение малого приращения напряжения диода к малому приращению тока в нем при заданном режиме (\(r_{диф пр} = \slfrac{\Delta U_{пр}}{\Delta I_{пр}}\), \(r_{диф обр} = \slfrac{\Delta U_{обр}}{\Delta I_{обр}}\)).

Емкость перехода (\(C_{пер}\)) и накопленный заряд (\(Q_{нк}\)). Изменение внешнего напряжения \(\operatorname{d}U\) на \(p\)-\(n\)-переходе приводит к изменению накопленного в нем заряда \(\operatorname{d}Q\). Поэтому \(p\)‑\(n\)‑переход ведет себя подобно конденсатору, емкость которого \(C = \operatorname{d}Q/\operatorname{d}U\). В зависимости от физической природы изменяющегося заряда различают зарядную (барьерную) и диффузионную емкости. Зарядная (барьерная) емкость определяется изменением нескомпенсированного заряда ионов при изменении ширины запирающего слоя под воздействием внешнего обратного напряжения. При увеличении же внешнего напряжения, приложенного к \(p\)-\(n\)-переходу в прямом направлении, растет концентрация инжектированных носителей вблизи границ перехода, что приводит к изменению количества заряда, обусловленного неосновными носителями в \(p\)- и \(n\)-областях. Это можно рассматривать как проявление некоторой емкости. Поскольку она зависит от изменения диффузионной составляющей тока, ее называют диффузионной емкостью. Заряд электронов или дырок, накопленный при протекании прямого тока в базе диода или \(i\)‑области \(p\)-\(i\)-\(n\)-диода, называется накопленным зарядом (\(Q_{нк}\)). Полная емкость \(p\)-\(n\)-перехода определяется суммой зарядной и диффузионной емкостей: \(C_{пер} = C_{зар} + C_{диф}\). При включении \(p\)‑\(n\)‑перехода в прямом направлении преобладает диффузионная емкость, а при включении в обратном направлении — зарядная (емкость \(C_{диф}\) при этом пренебрежимо мала).

Заряд восстановления (\(Q_{вос}\)) и время восстановления (\(t_{вос обр}\), \(t_{вос пр}\)). При переключении диода с прямого тока на обратный весь накопленный заряд вытекает во внешнюю цепь. При заданных прямом токе и итоговом обратном напряжении весь суммарный заряд (с учетом накопленного заряда и заряда емкости обедненного слоя для полных процессов запаздывания и восстановления), вытекающий во внешнюю цепь, называется зарядом восстановления (\(Q_{вос}\)), а время, истекшее от момента прохождения тока через нулевое значение до момента достижения обратным током заданной величины — временем восстановления обратного сопротивления или просто временем обратного восстановления диода (\(t_{вос обр}\)). Аналогично определяется время установления прямого напряжения или время прямого восстановления диода (\(t_{вос пр}\)), которое равно промежутку времени, в течение которого прямое напряжение на диоде устанавливается от нулевого значения до заданного уровня.

Полный список общих параметров диодов и их принятых обозначений приведен в таб. 2.2‑1. Помимо описанных выше параметров он включает также:

  • эффективное время жизни неравновесных носителей заряда (\(t_{эф}\)), характеризующее материал и некоторые конструктивные параметры кристалла полупроводника;
  • емкость корпуса диода (\(C_{кор}\)), определяемую его конструктивными особенностями;
  • общие емкость (\(C_д\)) и индуктивность (\(L_п\)) диода, измеряемые в установившемся режиме работы.

 

Таб. 2.2-1. Общие основные параметры диодов

 

 

< Предыдущая   Следующая >

Основные параметры выпрямительных диодов

  1. постоянное прямое напряжение на диоде при заданном значении прямого тока через диод

  2. постоянный прямой ток

  3. величина обратного тока при заданном значении обратного напряжения

  4. максимальное обратное напряжение

  5. рабочий диапазон температур

  6. максимальная частота, на которой еще не происходит ухудшение основных параметров

  7. тепловое сопротивление переход-корпус, переход-среда

  8. максимальная емкость диода

  9. внутреннее или диф-ное сопротивление диода в рабочей точке

  10. сопротивление постоянного тока

коэффициент выпрямления

Вопрос 15

Стабилитрон – это прибор, предназначенный для стабилизации напряжения на присоединенной параллельно ему нагрузке в случае изменения ее сопротивления или величины напряжения питания

При работе стабилитрона используется участок пробоя на обратной ветви ВАХ, где значительному изменению тока соответствует очень малое изменение напряжения.

Напряжение стабилизации зависит от толщины p-nперехода, а толщина от величины удельного сопротивления материала

Рис 28 ВАХ стабилитрона

Рис 29 параметрический стабилизатор напряжения; 1 – нагрузка; 2 – для уменьшения пульсации вешается конденсатор.

При изменении температуры напряжение стабилизации изменяется неоднозначно. В слаболегированных полупроводниках (используются в высоковольтных стабилитронах) с ростом температуры длина свободного пробега носителей уменьшается. Для того, чтобы при меньшей длине свободного пробега носители могли приобрести энергию, достаточную для ионизации валентных связей, требуется большая величина напряженности электрического поля.

Напряжение пробоя с ростом температуры должно увеличиваться. В сильнолегированных полупроводниках при росте температуры ширина запрещенной зоны падает, вероятность тунеллирования носителей увеличивается, а напряжение пробоя уменьшается. Следовательно, высоковольтные и низковольтные стабилитроны должны иметь противоположные изменения величины стабилизации при изменении температуры

Основные параметры стабилитрона:

  1. напряжение стабилизации

  2. минимальный и максимальный токи стабилизации

  3. температурный коэффициент напряжения стабилизации

  4. дифференциальное сопротивление в рабочей точке

  5. статическое сопротивление в рабочей точке

  6. коэффициент качества

Стабисторы

Для стабилизации небольших напряжений (меньше 1В) используют прямую ветвь ВАХ. Предназначенные для этого полупроводниковые диоды называют стабисторами.

Кремниевые стабисторы имеют напряжение стабилизации около 0,7В. Для получения малого сопротивления базы диода и меньшего прямого дифф. сопротивления используют кремний с повышенной концентрацией примеси. Стабисторы могут выполняться на основе других полупроводниковых материалов.

1 .Проводники, изоляторы, полупроводники. Их зонные энергетические диаграммы.

2. Собственная электропроводность полупроводников.

3. Электронная электропроводность полупроводников.

4. Дырочная электропроводность полупроводников.

5. Электронно-дырочный переход. Виды пробоя электронно-дырочного перехода.

6. Механизм туннельного пробоя электронно-дырочного перехода.

7. Прямое и обратное включение р-п-перехода.

8. Переход металл-полупроводник.

9. ВАХ р-n-перехода и перехода металл-полупроводник.

10. Ширина и емкость электронно-дырочного перехода.

11. Эквивалентная схема р-п-перехода.

12. Переходные процессы в pn-переходе.

13. Основные виды диодов и технологии их производства.

14. Выпрямительные диоды.

15. Стабилитроны и стабисторы.

16. Высокочастотные и импульсные диоды.

17. Диоды с накоплением заряда.

18. Туннельные и обращенные диоды.

19. Диоды сверхвысокочастотные.

20. Устройство, конструктивно-технологические особенности, схемы включения биполяр­ных транзисторов.

21. Режимы работы биполярных транзисторов, статические параметры, физические процессы.

22. Модель Эберса — Молла.

23. Статические характеристики в схеме с общим эмиттером.

24. Устройство и основные виды полевых транзисторов. Полевые транзисторы с управляющим переходом.

25. Устройство и основные виды полевых транзисторов. Полевые транзисторы с изолированным затвором.

ВОПРОС 16

высокочастотные диоды предназначены для детектирования колебаний высокой частоты и используются в радиоприемной, телевизионной и другой аппаратуре.

Они могут быть точечными, дифф-ными, сплавными или иметь мезаструктуру.

Рис 31 конструкция ВЧ диода. 1 – внешние выводы; 2 – кристалл; 3 – стеклянный корпус; 4 – вольфрамовый электрод

Рис 32 а) эквивалентная схема pn перехода; б) ВАХ точечного германиевого диода

Эквивалентная схема кроме сопротивления перехода и емкости перехода содержит сопротивление растекания. Его величина определяется геометрическими размерами и конфигурацией точечного перехода. Если предположить, что контакт имеет полусферическую форму, то величина сопротивления растекания приближенно может быть определена: , где— удельное объемное сопротивление полупроводника;— радиус закругления контакта.

Барьерная емкость точечных диодов не превышает 1пФ, их рабочая частота достигает 150МГц.

Высокочастотные кремниевые диоды в конструктивном отношении не отличаются от германиевых. ВАХ кремниевых микросплавных диодов близки к теоретическим, если эксплуатация диодов соответствует паспортным режимам.

Импульсные диоды

Импульсные диоды предназначены для работы в устройствах импульсной техники. Особенностью их работы является значительное проявление эффектов накопления и рассеивания носителей при больших уровнях мощность переключающего сигнала.

Переходы импульсных диодов изготавливаются такими же методами, как и высокочастотные.

Рис 33 конструкция импульсных диодов. 1 – кристаллодержатель; 2 – стеклянный корпус; 3 – коваровая трубка; 4 – внешние выводы; 5 – контактная пружина; 6 – кристалл; 7 – припой.

Основные параметры высокочастотных и импульсных диодов

  1. постоянное прямое напряжение при заданном прямом токе

  2. максимальная величина обратного тока при максимальной величине обратного напряжения

  3. емкость диода при заданной величине обратного напряжения

  4. время восстановления обратного сопротивления

  5. постоянное и импульсное обратные напряжения

  6. средний выпрямленный ток

  7. импульсный прямой ток

  8. частота без снижения параметров, соответствующих паспортному режиму

  9. диапазоны рабочих температур.

Параметры и применение исследуемых типов диодов

Выпрямительные диоды.

Они предназначенные для преобразования переменного тока в постоянный при использовании схем однополупериодного, двухполупериодного или мостового выпрямления.

Основными параметрами выпрямительных диодов являются:

  1. Максимально допустимое значение постоянного (или импульсного) прямого тока, текущего через диод.

  2. Постоянное прямое (или импульсное) падение напряжения на диоде.

  3. Постоянный обратный ток диода.

  4. Максимально допустимое значение постоянного (или импульсного) обратного напряжения, приложенного к диоду.

  5. Максимально допустимая температура р-п перехода.

Импульсные диоды.

Такие диоды имеют малую длительность переходных процессов и предназначены для работы в импульсных режимах.

При подаче на диод прямоугольного импульса напряжения прямого смещения ток через диод устанавливается не сразу, так как накопление инжектированных носителей заряда в базе ограничивается временем их диффузии. При длительном прохождении прямого тока процесс инжекции неосновных носителей заряда уравновешивается процессом их рекомбинации. Возникает некоторое установившееся состояние (рис.4.6 а).

При переключении диода с прямого напряжение на обратное в начальный момент возникает достаточно большой обратный ток, ограниченный в основном последовательным сопротивлением базы диода. После чего начинается процесс рассасывания неосновных носителей заряда, накопленных в базе. Обратный ток начинает уменьшаться. С течением времени все накопленные в базе неосновные носители либо прорекомбинируют в базе, либо уйдут через р-п переход. Обратный ток достигнет своего стационарного значения тока насыщения.

Переходной процесс, в течение которого обратное сопротивление полупроводникового диода восстанавливается до постоянного значения после быстрого переключения с прямого направления на обратное, называют восстановлением обратного сопротивления диода. Соответственно для импульсного диода дополнительно вводится параметр время восстановления обратного напряжения tвос, равное интервалу времени от момента прохождения тока через ноль после переключения диода с заданного прямого тока в состояние заданного обратного напряжения до момента достижения обратным током заданного низкого значения.

При пропускании импульса тока в прямом направлении наблюдается выброс напряжения в первый момент после включения, что связано со значительным сопротивлением базы (рис.4.6 б). По мере инжекции неосновных носителей сопротивление базы уменьшится, что понизит прямое падение напряжения на диоде до стационарного значения. Переходной процесс, в течение которого прямое сопротивление диода устанавливается до постоянного значения после быстрого включения в прямом направлении, называют установлением прямого сопротивления диода. Соответственно следующим специфическим параметром импульсного диода является время установления прямого напряжения диода tуст.

Для повышения импульсных свойств диодов необходимо уменьшать время жизни неосновных носителей заряда, что достигается введением в полупроводниковый материал диода специальных примесей.

Диоды Шотки.

Вэтих диодах выпрямительные свойства основаны на использовании свойств перехода металл-полупроводник.

Существенное отличие диодов Шотки от диодов на основе р-п перехода в том, что в диодах Шотки токопрохождение осуществляется основными носителями заряда и не приводит к появлению процессов инжекции и последующего рассасывания носителей при переключении с прямого напряжения на обратное. Поэтому быстродействие диодов Шотки принципиально выше быстродействия диодов на р-п переходах. Диоды Шотки с успехом выполняют роль выпрямительных, импульсных и СВЧ диодов. Типовая конструкция диодов Шотки с двухслойной базой приведена на рис.4.7 а.

При включении диодов Шотки в прямом направлении прямой ток возникает благодаря движению основных носителей заряда полупроводника в металл, а носители другого знака (неосновные для полупроводника) практически не могут перейти из металла в полупроводник из-за высокого для них потенциального барьера на переходе металл-полупроводник.

Основными отличиями диода Шотки являются:

  1. Меньшее падение прямого напряжения на диоде из-за меньшей высоты потенциального барьера для основных носителей заряда полупроводник.

  2. Больший максимальный прямой ток, что связано с меньшим падением прямого напряжения и с лучшими условиями охлаждения перехода благодаря хорошему теплоотводу от выпрямляющего контакта Шотки.

  3. Выпрямительные диоды Шотки выдерживают большие перегрузки по току по сравнению с диодами на р-п переходах.

  4. Быстродействие диодов Шотки выше за счет отсутствия процессов инжекции неосновных носителей заряда.

  5. Прямая ветвь АЧХ практически точно описывается выражением (4.7). Поэтому диоды Шотки можно использовать как быстродействующие логарифмические преобразователи.

  6. Для диодов Шотки с тонкой базой обратная ветвь АЧХ имеет насыщение, а для диодов с толстой базой обратный ток пропорционален (рис.4.7 б).

Стабилитроны.

Стабилитроны это диоды, предназначенные для стабилизации напряжения в заданных пределах. Принцип действия стабилитрона основан слабой зависимости обратного напряжения от протекающего через диод тока в режиме туннельного или лавинного пробоя (см. рис.4.4). До наступления пробоя стабилитроны имеют очень большое статическое сопротивление (порядка единиц МОм), после пробоя дифференциальное сопротивление стабилитрона составляет единицы – десятки Ом.

ВАХ и схема включения стабилитрона приведена на рис.4.8. Сопротивление балластного резистора R0 определяется из соотношения:

(4.11)

Стабилитроны характеризуются следующими параметрами:

  1. Напряжением стабилизации UСт, которое может меняться от 3 до 200 В.

  2. Отклонением напряжения стабилизации от заданного ΔUСт.

  3. Минимальным и максимальным током стабилизации IСт min, IСт max.

  4. Дифференциальным сопротивлением:

(4.12)

Совершенствование стабилитронов привело к созданию стабилитронов с напряжением равным напряжению запрещенной (энергетической) зоны полупроводника. Это стало возможным по мере совершенствования технологии изготовления кремниевых ИС.

Кремниевые диоды, проводящие в прямом направлении, имеют четкий температурный коэффициент −2,1 мВ/°C. Если изготовить, например, 11 идентичных диодов на кремниевой подложке, и все, кроме одного, центрального, соединить параллельно, то можно сделать следующее. Пропустим одинаковые токи через один центральный диод и группу диодов. Тогда окажется, что плотность тока через центральный диод примерно в 10 раз выше, чем через один диод, входящий в диск. Напряжение на центральном диоде имеет отрицательный ТКН, а напряжение для диода из группы имеет положительный ТКН. Интегральное исполнение позволяет суммировать эти два напряжения (переход Uб-э + напряжение с положительным ТКН). При этом температурный коэффициент будет нулевым, когда суммарное напряжение равно напряжению запрещенной зоны кремния (для температуры абсолютного нуля), что составляет примерно 1, 205В.

Минимальные токи стабилизации таких стабилитронов очень малы (около 100 мкА), тогда как точность стабилизации менее 0,1 %. Кроме того, напряжение стабилизации таких диодов очень слабо зависит от температуры. Поэтому такие стабилитроны широко применяются как источники опорного напряжения.

Основные параметры диода

  • Постоянное прямое напряжение Uпр – постоянное напряжение на диоде при заданном прямом токе.

  • Постоянный прямой ток Iпр – постоянный ток, протекающий через диод в прямом направлении.

  • Постоянный обратный ток Iобр — постоянный ток, протекающий через диод в обратном направлении при заданном обратном напряжении.

  • Средний прямой ток Iпр.ср. – прямой ток, усредненный за период.

  • Средний обратный ток Iобр.ср.обратный ток, усредненный за период.

  • Дифференциальное сопротивление диода rдиф – отношение приращения напряжения на диоде к вызвавшему его малому приращению тока.

  • Рабочая частота – частота, при которой обеспечиваются заданные токи, напряжение и мощность.

Вольт-амперная характеристика стабилитрона

Стабилитрон (диод Зенера)полупроводниковый диод, предназначенный для стабилизации напряжения в источниках питания. Условное обозначение стабилитрона приведено на рис. 4. По сравнению с обычными диодами стабилитрон имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока.

Рис. 4. Условное обозначение стабилитрона

Материалы, используемые для создания p-n-перехода стабилитронов, имеют высокую концентрацию примесей. Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока).

Типовая статическая вольт-амперная характеристика стабилитрона представлена на рис. 5.

Рис. 5. Вольт-амперная характеристика стабилитрона

Обратная ветвь характеристики стабилитрона имеет крутой излом, обусловленный резким ростом тока. Этот излом соответствует напряжению стабилизации Uст. При достижении напряжения стабилизации обратный ток резко возрастает. Эффект стабилизации основан на том, что большое изменение тока вызывает малое изменение напряжения . Стабилизация тем лучше, чем круче идет эта кривая и, соответственно, чем меньше дифференциальное внутреннее сопротивление.

Диапазон рабочих токов стабилитрона снизу ограничен минимальным током стабилизации Iст мин, определяемым началом пробоя, а сверху – максимальным током стабилизации Iст макс, определяемым допустимой мощностью рассеяния прибора.

Основные параметры стабилитрона

  • Напряжение стабилизации Uстнапряжение на стабилитроне при заданном токе стабилизации.

  • Допускаемый разброс напряжения стабилизации от номинального ΔUст.ном. максимально допустимое отклонение напряжения стабилизации от номинального для стабилитронов данного типа.

  • Дифференциальное сопротивление стабилитрона rст – отношение приращения напряжения стабилизации к вызвавшему его малому приращению тока в заданном диапазоне частот.

  • Температурный коэффициент напряжения стабилизации αст – отношение относительного изменения напряжения стабилизации к абсолютному изменению температуры окружающей среды при постоянном токе стабилизации.

  • Полная емкость стабилитрона C – емкость между выводами стабилитрона при заданном напряжении смещения.

7.3. Классификация и основные параметры полупроводниковых диодов

Полупроводниковые диоды (выпрямительные, стабилитроны, туннельные, обращенные и т.д.) относятся к обширному классу полупроводниковых приборов, применяющихся при построении электронных устройств, систем управления, радиотехнических и вычислительных комплексов.

Полупроводниковые диоды являются простейшими полупроводниковыми приборами. Их работа основана на процессах протекания тока в pn-переходе. Полупроводниковый диод имеет два вывода (один от p— области, другой от n-области). Они соответственно называются анодом и катодом. Диод представляет собой пассивный нелинейный элемент (двухполюсник).

На условном графическом обозначении направление стрелки диода совпадает с направлением прямого тока. Классификация и условные графические обозначения полупроводниковых диодов приведены на рис. 7.8.

Полупроводниковые диоды

выпрямительные

светодиоды

стабилитроны

СВЧ-диоды

туннельные

обращенные

варикапы

фотодиоды

Рис. 7.8

Выпрямительный диод – полупроводниковый диод, в котором используется свойство pn-перехода – односторонняя проводимость. Выпрямительные диоды применяются для выпрямления переменного тока.

Полупроводниковый стабилитрон – полупроводниковый диод, напряжение на котором в области электрического пробоя на обратной ветви ВАХ pn-перехода слабо зависит от тока. Он служит для стабилизации напряжения.

Помимо выпрямительных диодов широко применяются импульсные диоды, у которых площадь pn-перехода значительно меньше, чем у выпрямительных диодов, в связи с чем они имеют малую длительность переходных процессов. Они используются в качестве ключевых элементов в схемах импульсной техники.

Еще одной разновидностью диодов являются диоды Шоттки. Диод Шоттки – это полупроводниковый диод, выпрямительные свойства которого основаны на использовании выпрямляющего электрического перехода между металлом и полупроводником. На основе выпрямляющего перехода Шоттки создаются выпрямительные, импульсные и сверхвысокочастотные полупроводниковые диоды, отличающиеся от диодов с pn-переходом лучшими частотными свойствами.

Сверхвысокочастотные (СВЧ) диоды предназначены для преобразования и обработки сверхвысокочастотного сигнала (более 300 МГц).

Туннельный диод – это полупроводниковый диод, в котором благодаря использованию высокой концентрации примесей возникает очень узкий барьер и наблюдается туннельный механизм переноса зарядов через pn-переход. Характеристика туннельного диода имеет область отрицательного сопротивления, т.е. область, в которой положительному приращению напряжения соответствует отрицательное приращение тока. Это свойство может быть использовано для генерации и усиления электромагнитных колебаний. Туннельные диоды способны работать на частотах до сотен ГГц.

Обращенным называют диод на основе полупроводника с критической концентрацией примесей, в котором проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении. Из принципа действия обращенных диодов ясно, что они, во-первых, способны работать при очень малых сигналах. Во-вторых, они обладают очень хорошими частотными свойствами, так как в них имеет место туннельный эффект.

Варикап – это полупроводниковый диод, действие которого основано на использовании зависимости емкости от обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой емкостью.

Светодиод – полупроводниковый диод с относительно большой шириной запрещенной зоны. Излучение квантов видимого света вызвано самопроизвольной рекомбинацией носителей заряда при прохождении прямого тока через выпрямляющий электрический переход.

Фотодиод – полупроводниковый диод, обратный ток которого зависит от освещенности. Обычно в качестве фотодиодов используют полупроводниковые диоды с pn-переходом, смещенным в обратном направлении внешним источником питания. При поглощении квантов света в pn-переходе образуются новые носители заряда. Неосновные носители, возникшие в прилегающих к pn-переходу областях, диффундируют к pn-переходу и проходят через него под действием электрического поля. В результате при освещении фотодиода обратный ток через него возрастает на величину, называемую фототоком.

Очень важным с точки зрения предоставляемых им возможностей полупроводниковым прибором является оптопара. Оптопара – это полупроводниковый прибор, состоящий из в общем случае из излучающего и фотоприемного элементов, между которыми имеется оптическая связь и обеспечена электрическая изоляция.

В частном случае в качестве одного элемента оптопары – излучателя – может быть использован светодиод, а в качестве второго элемента – фотоприемника может быть использован фотодиод (рис. 7.9).

Рис. 7.9

Эти элементы помещаются в общий корпус оптопары. Основным достоинством применения оптопар является почти идеальная гальваническая развязка управляющих цепей от исполнительных при сохранении сильной функциональной оптической связи. Можно отметить также однонаправленность оптической связи и отсутствие обратной реакции приемника излучения на излучатель.

После краткого рассмотрения предложенной классификации полупроводниковых диодов остановимся более подробно на параметрах и характеристиках двух типов, которые нашли наиболее массовое применение: выпрямительного диода и стабилитрона.

Вольт — амперные характеристики германиевых и кремниевых выпрямительных диодов показаны на рис. 7.10.

Рис. 7.10

Обратный ток для диодов широкого применения измеряется в микроамперах (обратите внимание на разный масштаб измерений по оси ординат для прямого и обратного тока), и его, как правило, можно не принимать во внимание до тех пор, пока обратное напряжение на диоде не достигнет значения напряжения пробоя.

Прямое падение напряжения, обусловленное прямым током через диод, составляет от 0.2 до 0.8 В. Таким падением напряжения можно пренебречь, и тогда диод можно рассматривать как проводник, пропускающий ток только в одном направлении.

Параметры выпрямительного диода:

— постоянный прямой ток, протекающий через диод в прямом направлении;

— постоянный обратный ток;

— максимально допустимый средний выпрямленный ток, который может длительно проходить через диод, не вызывая изменения его параметров;

— максимальный выпрямленный прямой ток;

— постоянное прямое напряжение;

— максимально допустимое обратное постоянное напряжение;

— общая емкость диода;

— рассеиваемая мощность при прямом включении диода;

— статическое сопротивление открытого диода в заданной точке ВАХ с координатами и;

— статическое сопротивление закрытого диода в заданной точке ВАХ с координатами и;

— коэффициент выпрямления.

Значения параметров зависят от типа диода. Для сравнения в табл. 7.1 приведены значения указанных параметров для маломощных германиевого и кремниевого диодов. Приведенные в табл. 7.1 параметры определены при значениях прямого тока до 1 мА.

Таблица 7.1

Тип диода

,

В

,

Ом

,

мкА

,

МОм

,

В

,

Ом

Германиевый

(типа Д311)

0.2

50

0.44

0.3

30

10

Кремниевый

(типа Д219)

0.6

60

5·10-7

70

70

17

Кроме того, следует учесть, что величина зависит от температуры:

,

где =293 Ко, — температура удвоения теплового тока насыщения, которая для германия принимается равной7 Ко, а для кремния — 4.5 Ко.

ВАХ идеализированного pn— перехода описывается выражением

(7.7)

где I – ток через p-n-переход; U – напряжение на pn–переходе; — тепловой (обратный) токpn-перехода; – коэффициент, учитывающий неоднородность полупроводника в области перехода (для идеального диодаm=1, для германиевых диодов , для кремниевых диодов;— тепловой потенциал,T – абсолютная температура, Ко; Дж/К – постоянная Больцмана; Кл – заряд электрона. При нормальной температуре T=300 Kо тепловой потенциал .

ВАХ реального диода, показанная на рис. 7.11 сплошной линией, отличается от идеализированной характеристики, показанной на рис. 7.11 штрих пунктирной линией и описываемой уравнением (7.7).

ВАХ реального диода имеет четыре участка: прямую ветвь, обратную ветвь (до зоны пробоя), зону электрического пробоя (до ), зону теплового пробоя.

Рис. 7.11

При моделировании диода его реальная характеристика аппроксимируется нелинейной и линейной моделями. При использовании нелинейной модели ВАХ диода заменяют ВАХ pn-перехода, а для уточнения модели последовательно с pn-переходом включают сопротивление базы Rб30 Ом.

Полученная при этом эквивалентная схема полупроводникового диода приведена на рис. 7.12. В эквивалентной схеме характеризует сопротивление закрытого

Рис. 7.12

диода и учитывает зависимость обратного тока через диод от напряжения, так как в реальных диодах обратный ток превосходит тепловойиз-за наличия тока термогенерациии тока утечки по поверхности перехода () и определяется как.

Инженерные методы расчета базируются на кусочно-линейной аппроксимации ВАХ диода, поэтому для каждого участка ВАХ используется своя линейная модель и своя эквивалентная схема (табл. 7.2).

До сих пор рассматривались параметры, характеризующие работу диода в статическом режиме. Работа диодов в динамическом режиме характеризуется конечным временем переключения из проводящего состояния в непроводящее и обратно. Это связано с накоплением и рассасыванием неравновесного заряда в диоде. Наличие заряда позволяет говорить о емкости диода , обусловленной наличием барьерную емкости и диффузионную емкости перехода.

На схемах замещения, например на рис.7.13в, емкость диода представляют в виде суммы емкостей . В силу наличиядинамические свойства диодов и их быстродействие оцениваются временем установления прямого сопротивленияи временем восстановления обратного сопротивления(рис. 7.13б), превышающимиз-за наличия времени рассасывания заряда, накопленного в базе диода.

Таблица 7.2

Участок ВАХ

Уравнение

Эквивалентная схема

1

2

3

ВАХ стабилитрона изображена на рис. 7.14.

Рис. 7.14

Стабилитроны обеспечивают диапазон напряжений стабилизации от 3 до 200 В; их прямое напряжение составляет . Как видно из рис.7.14, обратное сопротивление диода при малых обратных напряженияхвелико. При достижении напряжения стабилизации обратный ток резко возрастает. Эффект стабилизации основан на том, что большое изменение обратного тока вызывает малое изменение напряжения. Стабилизация тем лучше, чем круче идет кривая и соответственно чем меньше дифференциальное внутреннее сопротивлениеи меньше коэффициент качества, где.

Параметры стабилитрона:

— номинальное напряжение стабилизации;

— изменение напряжения стабилизации;

— номинальный ток стабилизации; определяемый в соответствии с выражением , где— минимальный ток стабилизации;— максимальный ток стабилизации;— температурный коэффициент.

Другие из ранее перечисленных типов диодов могут характеризоваться дополнительными параметрами в соответствии с их функциональным назначением. Так, например, кроме общих для всех диодов параметров, работу импульсных диодов характеризуют также:

-импульсным прямым напряжением;

-импульсным прямым током;

-временем восстановления, определяющим инерционность процессов выключения, восстановления ;

-временем установления, определяющим инерционность процессов включения, установления .

Статические параметры диодов

Полупроводниковые диоды применяются для выпрямления переменного тока (выпрямительные диоды), детектирования напряжения высокочастотного колебания (высокочастотные диоды), стабилизации напряжения (стабилитроны), модуляции сигнала высокой частоты (варикапы), преобразования формы импульсов (импульсные диоды) и генерации колебаний (туннельные диоды).

Выпрямительные диоды характеризуются следующими основными параметрами:

–наибольшее допустимое среднее значение прямого тока, характеризующее допустимую мощность тепловых потерь в диоде и измеряемое в однополупериодной схеме выпрямления. Значение этого тока зависит от особенностей конструкции диода, температуры окружающей среды, условий и параметров системы его охлаждения;

–наибольшее допустимое значение обратного напряжения;

–среднее значение прямого падения напряжения при протекании прямого тока в однополупериодной схеме выпрямления;

–среднее значение обратного тока в однополупериодной схеме выпрямления при обратном напряжении, равном ;

–допустимая температура корпуса прибора.

Кремниевые диоды характеризуются по сравнению с германиевыми большим допустимым рабочим значением температуры (120 оС против 55 оС), большим допустимым обратным значением напряжения (1000 В против 300 В) и меньшим значением обратного тока. Однако кремниевые диоды имеют большее прямое падение напряжения (1 В против 0,3 В). Отличие параметров кремниевых диодов объясняется более широкой запрещённой зоной энергетической диаграммы полупроводника, чем у германиевых диодов.

Значения предельно допустимых параметров выпускаемых промышленностью выпрямительных диодов находятся в следующих пределах: =0,1…1000 А;=100…2000 В.

Стабилитроны изготавливают из кремния. В рабочем режиме они находятся в состоянии электрического пробоя pn-перехода, когда при изменении его обратного тока в широком диапазоне напряжениена нем изменяется незначительно. Их параметрами являются:

–напряжение стабилизации;

–относительный температурный коэффициент изменения напряжения стабилизации:

,

где – изменение напряжения стабилизации при изменении температуры напо отношению к заданной температуре;

,– минимальное и максимальное допустимое значение тока рабочего участка ВАХ стабилитрона;

–дифференциальное сопротивление стабилитрона на рабочем участке ВАХ, .

Значения предельно допустимых параметров выпускаемых промышленностью стабилитронов: = 0,01…10 А;=4…200 В.

Электрическая модель диода. Диод можно представить в виде эквивалентной электрической схемы (рис. 5), в которой pn-переход представлен в виде идеализированного диода , ВАХ которого описывается формулой Шокли.Сопротивление соответствует сопротивлению базовой области реального диода. Конденсатор является ёмкостьюpn-перехода. Ёмкость между внешними выводами диода, определяемая геометрическими параметрами элементов корпуса диода, равна . Обычно.

Рис. 5

Реакция диода на воздействие импульса прямого тока прямоугольной формы. Схема проведения исследований (рис. 6): импульсы прямого тока периодически поступают на исследуемый диод VD от генератора прямоугольных импульсов G2 через вспомогательный разделительный диод VD5 и резистор R2. Диод VD5 необходим для устранения действия на испытываемый диод VD выброса напряжения отрицательной полярности с выхода генератора импульсов G2.

Рис. 6

Пусть в момент времени на диод поступает прямоугольный импульс прямого токаi(t) с амплитудой (рис. 7). НапряжениеUБ базовой области диода в этот момент времени равно , где – сопротивление базы в момент времени. Напряжение наpn-переходе, шунтированном ёмкостью , в момент времениравно нулю.

В последующие моменты времени по мере нарастания заряда ёмкости напряжениеувеличивается. По мере накопления избыточных неосновных свободных носителей электрического заряда в базе её сопротивлениеуменьшается, что приводит к постепенному снижениюUБ.

Начальное значение сопротивления базы можно определить, измеряя начальное падение напряженияна диодеVD: .

Рис. 7

После завершения переходного процесса отпирания диода в момент времени происходит срез импульса тока (ток через диод прекращается). В этот момент времени напряжение на диоде скачком снижается до уровня. Это остаточное (послеинжекционное) напряжение обусловлено наличием в базе избыточных зарядов диффузионной составляющей емкостиpnперехода.

Значение сопротивления базы в открытом состоянии диода определяется измерением падения напряженияна диоде, возникающего в момент,.

С этого момента начинается процесс уменьшения избыточной концентрации неосновных свободных носителей электрического заряда в базе вследствие их рекомбинации (рис. 8). При этом на границе между pn-переходом и базой () градиент концентрации остается равным нулю, т.к. ток через диод равен нулю. По мере уменьшения концентрации этих зарядов происходит изменение напряжения(см. рис. 7) по закону, близкому к линейному:

.

Отсюда определяется время жизни неосновных свободных носителей электрического заряда (дырок) вn-базе диода:

,

где (рис. 7). Здесь момент времени, когда количество избыточных свободных носителей заряда в базе уменьшается практически до нуля.

Измерение начального значения остаточного напряжения на диоде при достаточно больших значениях прямого тока позволяет найти контактную разность потенциалов pnпере-хода. Это следует из соотношения для концентрации неосновных носителей заряда в n-базе на границе pn-перехода ():

,

где – равновесная концентрация дырок вpэмиттере.

Рис. 8

Рис. 8

С увеличением амплитуды импульса прямого тока значение стремится к значению, поэтому при импульсах тока достаточно большой амплитуды. Из этой формулы следует, что.

Рис. 9

Реакция открытого диода на воздействие запирающего напряжения.

Исследование переходных процессов в диоде при смене полярности напряжения проводится по схеме на рис. 9.

Прямой ток в исследуемом диоде VD создается источником G1 постоянного напряжения. Значение силы этого тока изменяется регулированием выходного напряжения источника . Импульсы напряжения отрицательной полярности подаются периодически на исследуемый диодVD от генератора G2 через резистор R1 и разделительный диод VD5.

Рис. 9

Рис. 10

0

U

t

t

t

Δtп

0

0

I

I

а

б

в

Δtс

t1

I0

Uпр

Uобр

Iпр

Iпр

Iобр.max

t2

t3

I0

Переходный процесс изменения тока исследуемого диода наблюдается с помощью осциллографа. Для этого на его вход подаётся напряжение с шунта RS.

В исходном состоянии на исследуемый диод подано прямое напряжение от источника напряженияG1. В некоторый момент времени происходит скачкообразное изменение напряжения на диоде до уровня< 0 в результате появления очередного импульса напряжения на выходе генератораG2 (рис. 10, а).

Характер переходного процесса изменения режима работы диода зависит от сопротивления токоограничивающего резистора R1.

Если это сопротивление мало, то после момента обратный ток диода быстро достигает достаточно большого уровня (рис. 10,б). В этом случае концентрация дырок в базе диода на границеpn-перехода быстро уменьшается до нуля в результате интенсивной их экстракции из этой области. В глубине базы () концентрацияостается повышенной, поэтому вблизиpnперехода создается высокий градиент концентрации дырок (рис. 11, а), что и соответствует большему значению амплитуды импульса обратного тока диода. Дальнейшее уменьшение концентрации дырок в области базы при происходит в результате процессов их экстракции (движения в сторону эмиттера) и рекомбинации в базе.

Рис. 11

Рис. 11

Если значение токоограничивающего сопротивления значительна, то при подаче импульса обратного напряженияв течение некоторого временив цепи будет протекать практически неизменный по значению обратный токpn-перехода:

(рис. 10, в). Поэтому в течение этого времени остается постоянным градиент концентрации дырок на границе базы иpn-перехода.

Процесс спада тока происходит в течение времени и сопровождается уменьшением указанного градиента концентрации дырок.

Значение градиента концентрации дырок в базе при = 0 иопределяется тангенсом угла наклонакасательной к графику распределения концентрации дырок в сечении кристалла с координатой= 0 (штриховые прямые на рис. 11,б). Наклон касательных остается постоянным до тех пор, пока концентрация дырок не равновесного значения вблизиpn-перехода. Дальнейшее уменьшение концентрации дырок в глубине базы начиная с момента ведет к уменьшению градиента концентрации и соответственно обратного тока через диод.

Среднее время жизни дырок в базе и длительность времени , в течение которого выполняется условие , связаны соотношением

.

Значения ,,определяются исходя из осциллограммы напряжения на шунтеRS.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.