Site Loader

Оптосимистор и его применение. | Catcatcat electronics


Эрве Кадино “Цветомузыкальные установки”

Ответ на вопрос – управление мощным тиристором или симистором, от терморегулятора.

Статья в pdf

Оптосимистор принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из Арсенид-гелиевого инфракрасного светодиода, соединенного посредством оптического канала м двунаправленным кремневым переключателем. Последний может дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения и размещенной на том же кремниевом кристалле.

Эти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большей мощности. Подобные оптопары были задуманы для осуществления связи между логическими элементами с малым уровнем напряжения (например, вентиль TTL) и нагрузкой, питаеой сетевым напряжением (110 или 220 вольт).

Оптосимистор может размещаться в малогабаритном DIP-корпусе с шестью  выводами, его цоколевка и внутренняя структура показана на рисунках ниже.

Эти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большей мощности.


 

forum_illissi03

forum_illissi02

forum_illissi01

 

 Для решения вопроса нам подойдут любые оптроны со схемой детектора нуля. Эти оптроны позволяют избавиться от радиопомех которые присущи при работе симисторов и тиристоров.

Ниже приведена таблица, все выбранные оптроны отличаются минимальным гарантированием током управления и максимальным рабочим напряжением.

IftТипТипТипТип
20MOC3031MOC3041MOC3061MOC3081
10MOC3032MOC3042MOC3062MOC3082
05MOC3033MOC3043MOC3063MOC3083
Vdrm250 В400 В600 В800 В

Для поставленной задачи подойдет любой.

Более тонко в вникать в характеристики  нет смысла. Рассмотрим основные параметры и схемы подключения.

preview_forum_illissi05

или  

preview_forum_illissi06 

Эти схемы ничем принципиально не различаются, только где будет подключена нагрузка, но хочу обратить внимание нагрузка должна быть активного фактора. Если в нагрузке присутствует индуктивность эти необходимо использовать схемы с защитой оптосимистора и силового симистора (но здесь их рассматривать не будем).


В этой схеме есть два элемента которые надо рассчитать, но на практике такие расчеты делаются редко, “один раз рассчитал и на всю жизнь”.

Но я считаю этими приемами надо владеть.

Расчет сопротивления RD.

Расчет этого резистора зависит от минимального прямого тока инфракрасного светодиода, гарантирующего отпирание симистора.
Следовательно RD=(+VDD -1.5)/If

forum_illissi07

Например, для схемы транзисторного управления (которое используется в схемах регуляторов температуры), с напряжением питания + 12 В и напряжением на отрытом транзисторе (Uкэ нас) равном 0,3 В +VDD = 11.7 B и If должен быть находится в диапазоне 15 и 50 мА для MOC3041. Следует принять If = 20 мА с учетом снижения эффективности светодиода в течении срока службы (запас 5 мА), целиком обеспечения работу оптопары с постепенным ослаблением силы тока.

Таким образом имеем:

RD=(11.7-1.5)/0.02= 510 Ом.

Полученное значение даже вписывается в стандартный ряд сопротивлений.

Расчет сопротивления R.

Это сопротивление если работа идет на чисто активную нагрузку можно даже не ставить, но это только для лабораторных условий. Поэтому для надежной работы объясню как его рассчитать и его назначение.
Управляющий электрод оптосимистора может выдержать определенный максимальный ток. Превышение этого тока вызовет повреждение оптрона. Нам необходимо рассчитать сопротивление, чтобы при максимальном рабочем напряжении сети (например, 220 В) ток не превышал максимально допустимый.

Для выше указанных оптопар максимальной допустимый ток 1 А.

Минимальное сопротивление резистора R:

Rmin=220 В * 1,44 / 1 А = 311 

Ом.

С другой стороны слишком большое сопротивление может привести к нарушению работы схемы (будет перебои с включением силового симистора).

Поэтому принимаем сопротивление из стандартного ряда R=330 или 390 Ом.

Расчет сопротивления Rg.

Резистор Rg необходим, только в случаи высокочуствительного управляющего электрода симистора. И обычно может составлять от 100 Ом до 5 кОм. Я рекомендую ставить 1 кОм.



Это может быть интересно


  • Проект с использованием MCC часть 15Проект с использованием MCC часть 15

    EUSART – Универсальный асинхронный приёмопередатчик (УАПП, англ. Universal Asynchronous Receiver-Transmitter, UART) — узел вычислительных устройств, предназначенный для организации связи с другими цифровыми устройствами. … читать на вики. Внесем изменения в нашу схему, добавим выход …

  • Контроллер управления светодиодным освещением с дистанционным управлениемКонтроллер управления светодиодным освещением с дистанционным управлением

    Все активнее светодиоды входят в нашу жизнь. Всё эффективнее становится светодиодное освещение. Всё ниже опускаются цены. Всё больше появляется возможностей получения сочных цветов, простоты в управлении. Всё чаще можно увидеть …

  • ESP8266 применение в проектахESP8266 применение в проектах

    ESP8266 показала себя как надежное и безотказное устройство для обмена данными с применением WIFI. Я использую ESP8266 исключительно через UART, с применением AT команд. Все требования по обмену данными, между устройствами, …

  • LM317 и светодиоды
    LM317 и светодиоды

    LM317 и светодиоды статья с переработанная с сайта http://invent-systems.narod.ru/LM317.htm Долговечность светодиодов определяется качеством изготовления кристалла, а для белых светодиодов еще и качеством люминофора. В процессе эксплуатации скорость деградации кристалла зависит от …

  • ch-светомузыка от теории до реализацииch-светомузыка от теории до реализации

    Сразу оговоримся технология или теория ch-светомузыки, это постоянно развивающийся процесс и то что будет сказано сегодня завтра может быть опровергнуто и считаться ошибочным. Назовем само решение проблемы автоматического преобразования или …

  • AD9833 – Programmable Waveform Generator – part twoAD9833 – Programmable Waveform Generator – part two

    Прошло время и появилась тема, что-бы закончить проект AD9833 – Programmable Waveform Generator. Приехали печатные платы. В этот раз я печатные платы заказывал в https://jlcpcb.com/ делал это в первый раз …

  • Универсальный терморегулятор ch-c3000

    Терморегулятор ch-c3000 предназначен для управления системами регулирования температуры в пределах от – (минус) 55 до + 125 С. Регулятор может использоваться как в системах отопления, так и в системах охлаждения …

  • MCC PIC24 – модуль OUTPUT COMPARE – режиме ШИМMCC PIC24 – модуль OUTPUT COMPARE – режиме ШИМ

    Во многих системах управления, для формирования управляющих сигналов требуется модуль ШИМ, он позволяет не только формировать импульсы заданной длительности, но и с применением обычного RC фильтра строить простые ЦАП. MCC …

  • MPLAB® Harmony – или как это просто! Часть 1.MPLAB® Harmony – или как это просто! Часть 1.

    Часть первая – Установка Гармонии. Музыкальная тема к статье, слушаем: В начале запуска нового проекта и выбора микроконтроллера стоит задача правильно его сконфигурировать, прежде чем перейти к реализации самой задачи. …

  • Гаджеты для домашней автоматики – Датчик движенияГаджеты для домашней автоматики – Датчик движения

    Управление светодиодным освещением – Датчик движения. Данный гаджет предназначен для управления освещением рабочих столов (кухонных столов), освещение прихожих, освещение зеркал в прихожих, автоматическое включение света в коридорах. Датчик позволяет определить наличие …



 

Использование оптотиристоров MOC30xx — 12 Февраля 2016

    Оптосимистор принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из Арсенид-гелиевого инфракрасного светодиода, соединенного посредством оптического канала м двунаправленным кремневым переключателем. Последний может дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения и размещенной на том же кремниевом кристалле.

Эти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большей мощности. Подобные оптопары были задуманы для осуществления связи между логическими элементами с малым уровнем напряжения (например, вентиль TTL) и нагрузкой, питаемой сетевым напряжением (110 или 220 вольт).

Оптосимистор может размещаться в малогабаритном DIP-корпусе с шестью выводами.

Внутренняя структура оптосимисторов. Существует два типа оптосимистор с детектором нуля и без детектора. Оптосимистор с детектором нуля может быть использован в качестве реле для высокого напряжения. При использовании простого оптосимистора можно реализовать диммер для управления освещением.

 

 

 

 

 

 

 

 

 

     Ниже приведена таблица, все выбранные оптроны отличаются минимальным гарантированием током управления и максимальным рабочим напряжением.

IftТипТипТипТипТипТип
20MOC3010MOC3021MOC3031MOC3041MOC3061MOC3081
10MOC3011MOC3012MOC3032MOC3042MOC3062MOC3082
05MOC3012MOC3013MOC3033MOC3043MOC3063MOC3083
Напряжение питания110/120 В220/240 В110/120 В220/240 В220/240 В220/240 В
Обнаружение нуляНЕТНЕТДАДАДАДА
Vdrm250 В400 В250 В400 В600 В800 В

     В таблице приведена классификация оптосимисторов по величине прямого тока, через светодиод  IFT, открывающего прибор, и максимального прямого повторяющегося напряжения, выдерживаемого симистором на выходе ( VDRM). В таблице отмечено также и свойство симистора открываться при переходе через нуль напряжения питания. Для снижения помех предпочтительнее использовать симисторы, открывающиеся при переходе через нуль напряжения питания.

     Что касается элементов с обнаружением нуля напряжения питания, то их выходной каскад срабатывает при превышении напряжением питания некоторого порога, обычно это 5 В (максимум 20 В). Серии МОС301х и МОС302х чаще используются с резистивной нагрузкой или в случаях, когда напряжение питания нагрузки должно отключаться. Когда симистор находится в проводящем состоянии, максимальное падение напряжения на его выводах обычно равно 1,8В (максимум 3В) при токе до 100мА. Ток удержания (IH), поддерживающий проводимость выходного каскада оптосимистора, равен 100мкА, каким бы он ни был (отрицательным или положительным) за полупериод питающего напряжения.
     Ток утечки выходного каскада в закрытом состоянии (ID) варьируется в зависимости от модели оптосимистора. Для оптосимисторов с обнаружением нуля ток утечки может достигать 0,5мА, если светодиод находится под напряжением (протекает ток IF).
     У инфракрасного светодиода обратный ток утечки равен 0,05 мкА (максимум 100 мкА), и максимальное падение прямого напряжения 1,5В для всех моделей оптосимисторов. Максимально допустимое обратное напряжение светодиода 3 вольта для моделей МОС301х, МОС302х и МОС303х и 6 вольт для моделей МОС304х. МОСЗО6х и МОСЗО8х.

Предельно допустимые характеристики
Максимально допустимый ток через светодиод в непрерывном режиме — не более 60ма.
Максимальный импульсный ток в проводящем состоянии переключателя выходного каскада — не более 1 А.
     Полная рассеиваемая мощность оптосимистора не должна превышать 250 мВт (максимум 120 мВт для светодиода и 150 мВт для выходного каскада при Т — 25˚С).

Типовая схема подключения:

Даташит MOC301x и MOC304x

 

 

 

 

 

 

 

Сопротивление Rd
     Расчет сопротивления этого резистора зависит от минимального прямого тока инфракрасного светодиода, гарантирующего отпирание симистора. Следовательно, Rd = (+V — 1,5) / IF.
Например, для схемы транзисторного управления оптосимистором c напряжением питания +5 В и напряжением на открытом транзисторе (Uкэ нас), равном 0.3 В, +V будет 4,7 В, и IF должен находиться в диапазоне между 15 и 50 ма для МОС3041. Следует принять IF — 20 мА с учетом снижения эффективности светодиода в тече­ние срока службы (запас 5 мА), целиком обеспечивая работу оптопары с постепенным ослаблением силы тока. Таким образом, имеем:
Rв = (4,7 — 1,5) / 0,02 = 160 Ом.
Следует подобрать стандартное значение сопротивления, то есть 150 Ом для МОС3041 и сопротивление 100 Ом для МОС3020.

Для того чтобы переключение симистора происходило быстро, должно быть выполнено следующее условие: dV / dt = 311 / Ra х Ca.
Для МОС3020 максимальное значение dV / dt — 10 В/мкс.
Таким образом: Сa = 311 / (470 х 107) = 66 нФ.
Выбираем: Сa =  68 нФ.

 

Расчет сопротивления R.

Это сопротивление если работа идет на чисто активную нагрузку можно даже не ставить, но это только для лабораторных условий. Поэтому для надежной работы объясню как его рассчитать и его назначение.
Управляющий электрод оптосимистора может выдержать определенный максимальный ток. Превышение этого тока вызовет повреждение оптрона. Нам необходимо рассчитать сопротивление, чтобы при максимальном рабочем напряжении сети (например, 220 В) ток не превышал максимально допустимый.

Для выше указанных оптопар максимальной допустимый ток 1 А.

Минимальное сопротивление резистора R:

Rmin=220 В * 1,44 / 1 А = 311 Ом.

С другой стороны слишком большое сопротивление может привести к нарушению работы схемы (будет перебои с включением силового симистора).

Поэтому принимаем сопротивление из стандартного ряда R=330 или 390 Ом.

Расчет сопротивления Rg.

Резистор Rg необходим, только в случаи высокочуствительного управляющего электрода симистора. И обычно может составлять от 100 Ом до 5 кОм. Я рекомендую ставить 1 кОм.

 

Защита
Настоятельно рекомендуется защищать симистор и оптосимистор при работе на индуктивную нагрузку или при часто воздействующих на сеть помехах.
Для симистора искрогасящая RC-цепочка просто необходима. Для оптосимистора с обнаружением нуля, такой как МОС3041, — желательна. Сопротивление резистора R следует увеличить с 27 Ом до 330 Ом (за исключением случая, когда управляемый симистор малочувствительный).
Если используется модель без обнаружения нуля, то snubber-цепочка Ra — Сa обязательна.

Симисторные оптопары | Техника и Программы

Одна из областей применения оптронов — бесконтактное управление высоковольтными цепями, работающими на переменном или пульсирующем токе. Для этих целей изготавливаются приборы на основе фототиристора (симистор — два фототиристора в одном корпусе). Его структура и работа в схемах аналогична обычным тиристорам (может находиться в одном из двух устойчивых состояний). Кроме непосредственного управления маломощной нагрузкой, такие элементы могут использоваться для запуска (включения) более мощных тиристоров и симисторов.

Основные параметры самых распространенных оптопар этого класса приведены в табл. 8. Некоторые из них имеют встроенную схему управления для обнаружения нуля — ZCC (Zero Crossing Control), которая обеспечивает включение симистора только при переходе фазы питающего напряжения через «ноль». Это подразумевает, что включение коммутатора происходит при напряжении около 5…20 В (в силу физических принципов работы при нуле включить такие элементы невозможно, в отличие от транзисторов).

Таблица 8. Основные параметры симисторных оптопар

Примечание к таблице

UpK — максимально допустимое пиковое напряжение между входом и выходом; URMS — максимальнодопусгимое напряжение изоляции (действующее значение).

Окончаниетабл. 8

Информация по взаимозаменяемости одноканальных сими- сторных оптронов от разных фирм-производителей приведена в табл. 9.

Таблица 9. Варианты замены симисторных оптронов

Основной тип

Полные зарубежные аналоги (отечественный вариант аналога)

Корпус

Особенности выхода

МОС8Ю

TLP532, TCDT1110, CNY17F-2, PC714V

DIP-6

 

MOC811

TLP632, IL2B

DIP-6

 

MOC3020

TLP3021, K3020P, BRT12H, OPI3020, MCP3020, GE3020

DIP-6

 

MOC3021

TLP3021, GE3021, ECG3048, OPI3Q21, MCP3021, GE302t

DIP-6

 

MOC3022

TLP3022, OPI3022, MCP3022, GE3022, (АОУ163А)________

DIP-6

 

MOC3023

TLP3023, OPI3023, MCP3023, GE3023_

DIP-6

 

МОСЗОЗО

TLP3041, ОРТОбЗО

DIP-6

Есть схема ZCC

МОСЗОЭ1

TLP3041, ОРТОбЗО

DIP-6

Есть схема ZCC

МОСЗОЭ2

TLP3042, ОРТОбЗО

DIP-6

Есть схема ZCC

MOC3040

TLP3041, TLP3042, ОРТОбЗО

DIP-6

Есть схема ZCC

MOC3041

TLP3042, ОРТОбЗО

DIP-6

Есть схема ZCC

MOC3042

TLP3042, ОРТОбЗО

DIP-6

Есть схема ZCC

MOC3043

TLP3043, ОРТОбЗО

DIP-6

Есть схема ZCC

МОСЗОбО

TLP3061, ОРТОбЗО

DIP-6

Есть схема ZCC

M0c3061

TLP3061, (АОУ179А), ОРТОбЗО

DIP-6

Есть схема ZCC

MOC3062

TLP3062, ОРТОбЗО

DIP-6

Есть схема ZCC

МОСЗОбЗ

TLP3063, ОРТОбЗО

DIP-6

Есть схема ZCC

Примечание к таблице

Следует учитывать, что возможны замены аналогичных по структуре оптопар, на лучшие по параметрам, например с более высоким рабочим напряжением: МОСЗОбЗ на MOC3083 и т. п.

Когда выходной симистор оптопары находится в открытом состоянии, то максимальное напряжение, которое остается на его выводах, может быть от 1,8 до 3 В (зависит от тока в цепи). При

Рис. 5. Расположение выводов и внутренняя структура симисторных оптопар

этом кратковременный импульсный ток через нагрузку не должен превышать 1 А. Чтобы не повредить входной светодиод, постоянный ток через него не должен превышать 60 мА (падение напряжения на светодиоде не превышает 1,6 В, что справедливо для всех маломощных оптосимисторов).

Источник: Радиолюбителям: полезные схемы. Книга 6. — M / СОЛОН-Пресс, 2005. 240 с.

Оптосимисторы в схемах на микроконтроллере

Оптосимистор, как следует из названия, включается освещением полупроводникового слоя. По сути дела это комбинация оптоизлучателя и симистора, но в одном корпусе. Преимущество — простая схема управления и изоляция цепей.

Оптосимисторы могут коммутировать нагрузку сами (Рис. 2.108, а…в) или служить гальванической развязкой для MK (Рис. 2.109, а…ж).

а) прямое управление мощным оптосимистором VU1 (фирма Sharp) от MK;

б) оптосимистор VU1 (оптотриак фирмы Teledyne Technologies) управляет нагрузкой RH в сети переменного напряжения 220 В/16 А и имеет встроенный резистор Rx 440 Ом;

в) включение оптосимистора VU1 (замена S201S05V) через буферный транзистор VT1, который защищает порт MK при аварии. Мощность в нагрузке RH не более 100 Вт.

Рис. 2.109. Схемы гальванической изоляции симисторов при помощи оптосимисторов (начало):

а)         трёхступенчатая схема управления на оптосимисторе VU1 и двух триаках KS7, VS2. Для сети 220 В триаки (они же симисторы) следует выбирать на напряжение не менее 600 В;

б) маломощный оптосимистор VU1 управляет мощным симистором VS1. Сопротивления резисторов R2, R3 варьируются в разных схемах. Встречающиеся варианты: VU1 — MOC3021, MOC3052; VS1 — ТС112…ТС142сдопустимым напряжением коммутации не менее 400 В;

в) аналогично Рис. 2.109, б, но с демпфирующей цепочкой R4, C1, а также с другим расположением нагрузки относительно симистора VS1 и другой полярностью сигнала с выхода MK. Возможные замены: VS1 – BT138-600, VU1 – MOC3062, MOC3063, MOC3051…MOC3053;

г) схема включения триака VS1, рассчитанного на напряжение 600 В и ток 8 А. Конденсаторы должны выдерживать переменное напряжение не менее 275 В. Для повышения устойчивости можно установить резистор 220…470 Ом между средним и нижним выводами триака;

д)аналогично Рис.2.109, г, но с активным ВЫСОКИМ уровнем на выходе MK, напряжением сети 120 В и с другими номиналами ЭРИ. Фильтр L1, C2 снижает коммутационные помехи;

 Рис. 2.109. Схемы гальванической изоляции симисторов при помощи оптосимисторов

(окончание):

е) аналогично Рис. 2.109,6, но с дополнительной фильтрацией помех и снижением нарастания фронта управляющего сигнала при помощи конденсаторов С/, C2. Встречающиеся варианты замены элементов: VU1 — MOC3041, VS1 — BTA12-600, R2 = 470 Ом, R4 и C2 в некоторых схемах отсутствуют;

ж) оптосимистор VU1 управляет двумя относительно низковольтными симисторами VS1, VS2, включёнными последовательно (желательно подобрать пару с одинаковыми токами утечки). Резисторы RS, R6 распределяют примерно поровну сетевое напряжение в средней точке соединения VS1, VS2. Светодиоды HL1, HL2 индицируют аварийное состояние симисторов или же значительную ассиметрию их ВАХ. Вместо низковольтных симисторов КУ208Б можно поставить симисторы КУ208Г с вдвое большим допустимым напряжением. Как следствие, увеличится надёжность устройства и сохранится работоспособность при пробое одного из симисторов.

Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

Симистор (симметричный тиристор) — Меандр — занимательная электроника

Большинство полупроводниковых приборов созданы на переходах или слоях (n-p, p-n). Полупроводниковый диод имеет один переход (p-n) и два слоя. У транзистора два перехода и три слоя (n-p-n, p-n-p). А если добавить ещё один слой, то получается четырёхслойный полупроводниковый прибор — тиристор. Два тиристора включенные встречно-параллельно и есть симистор (от симметричный тиристор).

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current). Вот так симистор изображается в электронных схемах:

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate — «затвор»). Два остальных — это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах. >>>

Следует однако отметить, что симистор управляется несколько по другому нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод то электроды симистора так охарактеризовать нельзя поскольку каждый электрод является и анодом и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре так называемых сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор как электронный выключатель или реле то его достоинства неоспоримы:

  • Невысокая стоимость.
  • По сравнению с электромеханическими приборами большой срок службы.
  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.
  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.
  • Реагирует на внешние электромеханические помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400 V. Это означает,что он прекрасно может управлять нагрузкой в сети 220 V и ещё с запасом.
  • В импульсном режиме напряжение точно такое же.
  • Максимальный ток в открытом состоянии – 5 А.
  • Максимальный ток в импульсном режиме – 10 А.
  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.
  • Наименьший импульсный ток – 160 мА.
  • Открывающее напряжение при токе 300 мА – 2,5 V.
  • Открывающее напряжение при токе 160 мА – 5 V.
  • Время включения – 10 мкс.
  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор

Современная и перспективная разновидность симистора это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор MOC3033

Устройство оптосимисторов

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC не используются, и не подключаются к элементам схемы. NC — это сокращение от Not Connect, которое переводится с английского как «не подключайте».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *