Site Loader

Содержание

онлайн-калькуляторы, особенности автотрансформаторов и торов • Мир электрики


Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Как подобрать подходящий трансформатор

Выбрать подходящий трансформатор можно большим количеством способов, но львиная доля это безысходность или незнание мастера. Выделим три наиболее простых и применимых в практике метода:

  • Первый. Взять старый трансформатор, вышедший из строя. Посмотреть маркировку и найти в Интернете аналог. Если вдруг трансформатор требуется для иных целей, придется повозиться.
  • Второй способ: практический. Для этого следует замерить напряжение и силу тока в сети, а затем посмотреть требуемые параметры устройства, которое планируется подключать через трансформатор. После этого нужно посчитать коэффициент трансформации и, вооружившись этими знаниями, идти выбирать подходящую модель.
  • Третий способ: аналитический. Воспользоваться приведенным в статье расчетом или программным обеспечением, чтобы определить конкретные параметры модели. Если учесть, что в примере используются реальные сердечники и диаметры проводов, то реально найти устройство, которое будет соответствовать заявленным требованиям.

Виды сердечников

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.

Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

По конструкции сердечник разделяют на три основных вида:

  • стержневой;
  • броневой;
  • тороидальный.

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:

  • S — площадь сечения сердечника.
  • K — постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Можно ли использовать планарный трансформатор

Конечно, можно. Но, вопрос в том, нужно ли. Планарным трансформатором зовут устройство на основе распечатанной платы. Использование подобных моделей незаменимо для компактной техники, вроде телефонов, компьютеров и прочего.

Однако, если речь идет о замене или самостоятельном конструировании прибора, то столь инновационная технология не нужна в силу дороговизны и сложности монтажа.

Не нужно изобретать велосипед: есть целый ряд методик расчета, создания и монтажа традиционных трансформаторов, которые готовы выполнить для пользователя практически любую задачу. Использование планарного трансформатора оправдано только при предъявлении к устройству требования особой компактности и мобильности.

Типовой расчёт параметров

Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:

  • напряжение первичной и вторичной обмотки;
  • габаритны сердечника;
  • толщину пластины.

После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.

Стержневой тип магнитопровода

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:

  1. Рассчитывается ток нагрузки: In=Po/U2, А.
  2. Вычисляется величина тока вторичной обмотки: I2 = 1,5*In, А.
  3. Определяется мощность вторичной обмотки: P2 = U2*I2, Вт.
  4. Находится общая мощность устройства: Pт = 1,25*P2, Вт.
  5. Вычисляется сила тока первичной обмотки: I1 = Pт/U1, А.
  6. Находится необходимое сечение магнитопровода: S = 1,3*√ Pт, см².

Следует отметить, что если конструируется устройство с несколькими выводами во вторичной обмотке, то в четвёртом пункте все мощности суммируются, и их результат подставляется вместо P2.

После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:

  • U1 — напряжение первичной обмотке, В.
  • S — площадь сердечника, см².
  • K1, K2 — число витков в обмотках, шт.

Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:

  • d — диаметр провода, мм.
  • I — обмоточный ток рассчитываемой катушки, А.

При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.

Особенности автотрансформатора

Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений.

Например, мощность магнитопровода 250 Вт, на входе 220 вольт, на выходе требуется получить 240 вольт. Разница напряжений составляет 20 В, при мощности 250 Вт ток будет равен 12,5 А. Такое значение тока соответствует мощности 12,5*240=3000 Вт. Потребление сетевого тока составляет 12,5+250/220=13,64А, что как раз и соответствует 3000Вт=220В*13,64А. Трансформатор имеет одну обмотку на 240 В с отводом на 220 В, который подключён к сети. Участок между отводом и выходом мотается проводом, рассчитанным на 12,5А.

Таким образом, автотрансформатор позволяет получить на выходе мощность значительно больше, чем трансформатор на таком же сердечнике при небольшом коэффициенте передачи.

Трансформатор тороидального типа

Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются. Использование онлайн-калькулятора для расчёта тороидального трансформатора позволяет не только сократить время изготовления изделия, но и «на лету» поэкспериментировать с разными вводными данными. В качестве таких данных используются:

  • напряжение входной обмотки, В;
  • напряжение выходной обмотки, В;
  • ток выходной обмотки, А;
  • наружный диаметр тора, мм;
  • внутренний диаметр тора, мм;
  • высота тора, мм.

Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:

  1. Мощность выходной обмотки: P2=I2*U2, Вт.
  2. Габаритная мощность: Pg=P2/Q, Вт. Где Q — коэффициент, берущийся из справочника (0,76−0,96).
  3. Фактическое сечение «железа» в месте размещения катушки: Sch= ((D-d)*h)/2, мм2.
  4. Расчётное сечение «железа» в месте расположения катушки: Sw =√Pq/1.2, мм2
  5. Площадь окна тора: Sfh=d*s* π/4, мм2.
  6. Значение рабочего тока входной обмотки: I1=P2/(U1*Q*cosφ), А, где cosφ справочная величина (от 0,85 до 0,94).
  7. Сечение провода находится отдельно для каждой обмотки из выражения: Sp = I/J, мм2., где J- плотность тока, берущаяся из справочника (от 3 до 5).
  8. Число витков в обмотках рассчитывается отдельно для каждой катушки: Wn=45*Un*(1-Y/100)/Bm* Sch шт., где Y — табличное значение, которое зависит от суммарной мощности выходных обмоток.
  9. Остается найти выходную мощность и расчёт тороидального силового трансформатора считается выполненным. Pout = Bm*J*Kok*Kct* Sch* Sfh /0,901, где: Bm — магнитная индукция, Kok — коэффициент заполнения проводом, Kct —коэффициент заполнения железом.

Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.

Выбор индукции в стержне сердечника и плотности тока в проводах обмоток трансформатора

Допустимая величина индукции в стержне и ярме сердечника трансформатора определяется выбранным значением намагничивающего тока, мощностью, частотой, типом трансформатора, числом стыков в сердечнике и материалом последнего. Для трансформаторов стержневого и броневого типов мощностью несколько десятков или сотен вольампер с сердечником из листовой электротехнической стали марок Э41 и Э11 (ГОСТ 802-581) индукцию в стержне сердечника можно принять в следующих пределах:

Bс = 1,2 – 1,3 Тл.

В случае сердечника трансформатора из холоднокатаной стали марок Э310, Э320 и Э330 эту индукцию можно принять:

Bс = 1,5 – 1,6 Тл.

В трансформаторах повешенной частоты (200 – 400 Гц) величина индукции в стержне определяется величиной потерь и его нагревом. Обычно в этом случае индукция в стержне составляет не более 0,5 – 0,7 Тл.

Допускаемая величина плотности тока в проводах обмоток трансформатора в значительной мере определяет вес и стоимость последнего. Чем выше плотность тока в обмотках, тем меньше их вес меди и соответственно стоимость трансформатора. С другой стороны, с увеличением плотности тока возрастают потери в меди обмоток и нагрев трансформатора.

В трансформаторах мощностью примерно до 100 ВА допускаемая плотность тока в проводах обмоток может составлять:

j = 4,5 – 3,5 А/мм2

В трансформаторах мощностью свыше 100 ВА и до нескольких сотен вольтампер эта плотность обычно составляет:

j = 3,5 – 2,5 А/мм2

Рекомендации по сборке и намотке

При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.

Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.

По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.

Возможные схематические решения

Схем подключения вторичной обмотки трансформаторов, да и вообще всей электроники две:

  • Звезда, которая используется для повышения мощности сети.
  • Треугольник, который поддерживает постоянное напряжение в сети.

Вне зависимости от выбранной схемы, наиболее трудными считается изготовление и подключение небольших трансформаторов. Сюда относится и столь популярный в запросах поисковиков аtx. Это модель, которая устанавливается в системных блоках компьютеров, и изготовить ее самостоятельно крайне трудно.

В число трудностей при изготовлении маленьких трансформаторов стоит отнести сложность обмотки и изоляции, правильного подключения вторичной обмотки вне зависимости от выбранной схемы, а так же сложности с поиском сердечника. Короче говоря, проще и дешевле такой трансформатор купить. А вот как выбрать подходящую модель – это совсем другая история.

Литература.

  1. Косенко С. “Расчёт импульсного трансформатора двухтактного преобразователя” // Радио, №4, 2005, с. 35 — 37, 44.
  2. Эраносян С. А.Сетевые блоки питания с высокочастотными преобразователями. — Л.: Энергоатомиздат. Ленингр. отд-ние, 1991,- 176 с: ил.
  3. С. В. Котенёв, А. Н. Евсеев. Расчет и оптимизация тороидальных трансформаторов и дросселей. — М.: Горячая линия-Телеком, 2013. — 359 с.: ил.
  4. А. Петров «Индуктивности, дроссели, трансформаторы «// Радиолюбитель, №12, 1995, с.10-11.
  5. Михайлова М.М., Филиппов В.В., Муслаков В.П. Магнитомягкие ферриты для радиоэлектронной аппаратуры. Справочник. — М.: Радио и связь, 1983. — 200 с., ил.
  6. Расчетные геометрические параметры кольцевых сердечников.
  7. Б.Ю.Семенов. Силовая электроника для любителей и профессионалов. М. : Солон-Р, 2001. — 327 с. : ил

Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) – важный элемент, устанавливаемый практически во всех современных блоках питания.

Калькулятор расчета трансформатора онлайн

Входное напряжение (В):

Габаритный размер a (см):

Габаритный размер b (см):

Габаритный размер c (см):

Габаритный размер h (см):

Выходное напряжение (В):

Результаты расчета

Мощность:

Первичная обмотка

Ток (A):

Количество витков (Шт):

Диаметр провода (мм):

Вторичная обмотка

Ток (A):

Количество витков (Шт):

Диаметр провода (мм):

Трансформаторы постоянно используются в различных схемах, при устройстве освещения, питании цепей управления и прочем электронном оборудовании. Поэтому довольно часто требуется вычислить параметры прибора, в соответствии с конкретными условиями эксплуатации. Для этих целей вы можете воспользоваться специально разработанным онлайн калькулятором расчета трансформатора. Простая таблица требует заполнения исходными данными в виде значения входного напряжения, габаритных размеров, а также выходного напряжения.

В результате расчета трансформатора онлайн, на выходе получаются параметры в виде мощности, силы тока в амперах, количества витков и диаметра провода в первичной и вторичной обмотке.

Существуют формулы, позволяющие быстро выполнить расчеты трансформатора. Однако они не дают полной гарантии от ошибок при проведении вычислений. Чтобы избежать подобных неприятностей, применяется программа онлайн калькулятора. Полученные результаты позволяют выполнять конструирование трансформаторов для различных мощностей и напряжений. С помощью калькулятора осуществляются не только расчеты трансформатора. Появляется возможность для изучения его устройства и основных функций. Запрошенные данные вставляются в таблицу и остается только нажать нужную кнопку.

Благодаря онлайн калькулятору не требуется проводить каких-либо самостоятельных подсчетов. Полученные результаты позволяют выполнять перемотку трансформатора своими руками. Большинство необходимых расчетов осуществляется в соответствии с размерами сердечника. Калькулятор максимально упрощает и ускоряет все вычисления. Необходимые пояснения можно получить из инструкции и в дальнейшем четко следовать их указаниям.

Конструкция трансформаторных магнитопроводов представлена тремя основными вариантами – броневым, стержневым и тороидальным. Прочие модификации встречаются значительно реже. Для расчета каждого вида требуются исходные данные в виде частоты, входного и выходного напряжения, выходного тока и размеров каждого магнитопровода.

Мультиметр: назначение, виды, обозначение, маркировка, что можно измерить мультиметром

Как проверить электродвигатель мультиметром: проверка ротора и статора на межвитковое замыкание, прозвонка асинхронного и трехфазного двигателя

Трансформатор в электрических цепях

Токоизмерительные клещи: назначение, принцип работы, как пользоваться

Расчет трансформатора

Как определить сечение провода по диаметру: формулы и готовые таблицы

Калькулятор трансформатора с формулой и уравнением

Используйте этот бесплатный калькулятор трансформатора для мгновенной оценки напряжения, токов нагрузки, различных потерь и других связанных параметров.

Давайте перейдем к десяти вычислениям идеи; и читать; трансформатор.

Что такое трансформатор?

В области электротехники:

«Пассивным элементом, передающим электрическую энергию между различными электрическими цепями, называется трансформатор»

Символ трансформатора:


Внимательно изучите символическую схему трансформатора. Позже мы подробно разработаем его и для вас. Еще одно дополнение заключается в том, что наш лучший калькулятор трансформатора также позволит вам оценить каждый элемент, связанный с функциональностью трансформатора.

Типы трансформаторов:

Существуют различные типы трансформаторов, которые используются для определенных целей в различных областях. К ним относятся:

Повышающий трансформатор:

Этот тип трансформатора имеет вторичное напряжение выше, чем первичное напряжение.

Этот тип трансформатора используется в местах или районах, где номинальное напряжение очень низкое, и населению необходимо использовать приборы, работающие на более высоком напряжении.

Понижающий трансформатор:

В этом трансформаторе первичное напряжение выше вторичного.

Понижающие трансформаторы обычно используются в коммерческих или жилых помещениях, где потребители используют различные устройства, работающие на более низком напряжении. Этот онлайн-калькулятор понижающего трансформатора также означает работу такого рода.

Однофазный трансформатор:

Этот трансформатор работает только в однофазных энергосистемах.

Трехфазный трансформатор:

Этот трансформатор работает от трехфазной сети. Вы можете рассмотреть этот калькулятор трехфазного трансформатора, чтобы тщательно исследовать распределители трехфазного питания без каких-либо препятствий.

Трансформатор тока:

В трансформаторе тока:

  • Передается только ток
  • Вторичная обмотка ig больше, чем у первичной обмотки
  • Первичный ток меньше вторичного тока
  • Этот трансформатор всегда подключается в последовательную цепь
Трансформатор напряжения:

В трансформаторе напряжения:

  • Общее напряжение достаточно снижено для работы бытовой техники
  • Всегда следует подключать трансформатор напряжения параллельно электрической цепи

Уравнения трансформатора:

Основное уравнение трансформатора приведено ниже и также используется для начала расчетов с помощью нашего онлайн-калькулятора трансформаторов относительно передачи напряжения и тока:

$$ \frac {V_p}{V_s} = \frac {n_p}{n_s} $$

Где:

\(V_p\) = напряжение первичной обмотки

\(V_s\) = напряжение вторичной обмотки

\(n_p\) = количество витков первичной обмотки

\(n_s\) = количество витков вторичной обмотки

Размер трансформатора:

Размер трансформатора оценивается на основе его номинальной мощности, которая может либо в вольтах, киловольтах или мегавольтах. Этот бесплатный калькулятор размеров трансформатора также позволяет понять пиковую мощность, которую может передавать трансформатор.

В электрической системе трансформатор является единственным элементом, который отвечает за большинство проблем. Всякий раз, когда вы чувствуете, что какой-либо компонент ведет себя ненормально, попробуйте заменить трансформатор, и вы на 90% уверены, что проблема будет устранена в данный момент.

Ток трансформатора:

Вы можете определить переменный ток для однофазных и трехфазных трансформаторов следующим образом:

Однофазный трансформатор:

Ток полной нагрузки (А) = кВА × 1000 / В

Трехфазный трансформатор:

Ток полной нагрузки (А) = кВА × 1000 / (1,732 × В) обмотка катушки называется коэффициентом трансформации.

Несомненно, наш лучший калькулятор коэффициента трансформации трансформатора вычисляет этот конкретный анализ коэффициента за несколько секунд, но вы также можете определить это, используя следующее выражение:

$$ Коэффициент преобразования = \frac{N_1}{N_2} $$

Вы также можете определить этот конкретный элемент, воспользовавшись калькулятором соотношения витков бесплатного трансформатора.

Например:

Если имеется трансформатор 1:1, это означает, что количество витков на его первичной и вторичной обмотках одинаково.

Различные потери трансформатора:

Это факт, что каждая реальная система не всегда идеальна. То же самое и с настоящим трансформатором. Когда напряжения передаются на трансформатор и от трансформатора, подтверждается, что принимаемое напряжение никогда не будет таким же, как оно было приложено. Он всегда меньше, чем фактически примененный. Эта потеря связана с различными факторами, которые могут включать:

Потери из-за вихревых токов:

Эти потери возникают, когда в сердцевине ферромагнитного материала индуцируется ток только из-за электромагнитной индукции. Теперь, чтобы избежать такой ошибки при передаче тока, вы должны использовать железный сердечник, состоящий из тонких металлических листов. Вы должны иметь в виду, что эти листы должны иметь самое высокое удельное сопротивление.

Потери на рассеяние:

Потери из-за рассеяния потока в трансформаторе известны как потери на рассеяние. Не только это, но и эти потери вызывают возникновение вихревых токов на магнитопроводе трансформатора. Вы можете минимизировать паразитные потери только в том случае, если контролируется поток рассеяния.

Диэлектрические потери:

Возникают только в изоляционном материале электрического устройства. Когда дело доходит до трансформатора, этот материал присутствует в его масле. Основной причиной этой потери является не что иное, как потеря качества диэлектрического материала и масла.

Потери в сердечнике или потери в стали:

Вместо вихревых токов и потерь на гистерезис, которые являются причинами потерь в сердечнике, основной причиной по-прежнему является переменный магнитный поток. Эти потери зависят только от напряжения.

Потери в меди:

Эти потери возникают из-за омического сопротивления обеих обмоток трансформатора. Когда ток через обмотки изменяется, это также вызывает изменение медных потерь устройства.

Идеальный трансформатор:

Идеальный трансформатор — это тот, в котором нет потерь мощности.

Потери мощности = P = Ip * Vp = Is * Vs.

Приведенное выше уравнение показывает, что электрическая мощность в первичной и вторичной обмотках одинакова.

Напряжение идеального трансформатора:

Вы можете определить напряжение идеального трансформатора, используя следующее выражение:

Vs = Vp * Ns / Np

Ток идеального трансформатора:

Приступайте к расчету ток, рассмотрев приведенную ниже формулу трансформатора для идеального случая:

Is = Ip * Np / Ns

Таблица силы тока трансформатора:

Давайте посмотрим на пару таблиц, которые соответственно описывают размеры трансформатора:

Однофазный трансформатор:
Однофазные трансформаторы, ток полной нагрузки (FLC)
кВА 120 В 208 В 240 В 277В 480 В 600 В
. 25 2,0
1,2
1. 0,9 0,5 0,4
.50 4,2 2,4 2.1 1,8 1,0 0,8
.75 6,3 3,6 3.1 2,7 1,6 1,3
1 8,3 4,8 4,2 3,6 2.1 1,7
1,5 12,5
7,2
6,2 5,4 3.1 2,5
2 16,7 9,6 8,3 7,2 4,2 3,3
3 25 14,4 12,5 10,8 6,2 5
5 41 24 20,8 18 10,4 8,3
7,5
62
36 31 27 15,6 12,5
10 83 48 41 36 20,8 16,7
15 125 72 62 54 31 25
25 206 120 104 90 52 41
37,5 312 180 156 135 76 62
50 416 240 208 180 104 83
75 625 340 312 270 156 125
100 833 480 416 361 208 166
167 1391 803 695 603 347 278
Трехфазный трансформатор:
Трехфазный трансформатор, ток полной нагрузки (FLC)
кВА 208 В 240 В 480 В 600 В
3 8,3 7,2 3,6 2,9
6 16,6 14,4 7,2 5,8
9 25 21,6 10,8 8,6
15 41,7 36,1 18,0 14,4
30 83,4 72,3 36,1 28,9
45 124 108 54,2 43,4
75 208 180 90 72
112,5
312 270 135 108
150 416 360 180 144
225 624 541 270 216
300 832 721 360 288
500 1387 1202 601 481
750 2084 1806 903 723
1000 2779 2408 1204 963

Все вышеперечисленные диапазоны также могут быть перепроверены с помощью этого бесплатного калькулятора силы тока трансформатора за доли секунды. Как это звучит?

Как проанализировать трансформатор?

Как насчет решения примера, который прояснит ваше понимание функциональности трансформатора? Давайте двигаться вперед!

Пример № 01:

Имеется однофазный трансформатор мощностью около 56 кВА. Его первичное напряжение составляет 350 вольт, а вторичное напряжение почти 673 вольта. Считая трансформатор tpo идеальным, рассчитайте коэффициент трансформации.

Решение:

Поскольку трансформатор предполагается идеальным:

Коэффициент витков = N1 / N2 = V1 / V2 = (350 / 76) = 4,60

Пример # 0 0 02:90 002 Оцените число витков вторичной обмотки при следующих параметрах трансформатора тока: 9

\(n_p\) = 5 {V_s} = \frac {n_p}{n_s} $$

Выполнение расчетов трансформаторов тока:

$$ \frac {30}{70} = \frac {5}{n_s} $$

$$ n_s = \frac{5*70}{30} $$

$$ n_s = 11,66 $$

Как работает калькулятор трансформатора?

Этот бесплатный калькулятор обмотки трансформатора позволяет вам узнать различные характеристики работы однофазного или трехфазного трансформатора.

Давайте разберемся, как его использовать, и проанализируем это конкретное пассивное электрическое устройство.

Введите:

  • Прежде всего, нажмите на раскрывающийся список и выберите, хотите ли вы исследовать однофазный или трехфазный трансформатор
  • Теперь перейдите к следующему списку, в котором вам будут предоставлены различные доступные варианты. Выберите комбинацию параметров, в зависимости от которой вы хотите рассчитать неизвестный.
  • После этого извлеките все необходимые термины в соответствующих полях вместе с модулем
  • .
  • В конце нажмите десять кнопку расчета

Вывод:
Лучший трансформаторный калькулятор KVA выполняет следующие расчеты:

  • Оценивает первичные и вторичные напряжения и токи
  • Оценивает потери в меди и потери в железе
  • Оценивает потери на вихревые токи
  • Оценка потерь на гистерезис
  • Оценивает соотношение витков для первичной и вторичной катушек

Часто задаваемые вопросы:

Трансформаторы переменного или постоянного тока?

Практически через трансформатор нельзя пропускать постоянный ток. Но напряжение постоянного тока может быть подано через него, ползучим напряжением переменного тока. Отдых, этому бесплатному трансформаторному калькулятору требуется пара секунд, чтобы выяснить, сколько напряжений он может выдержать при минимальных потерях при передаче.

Почему постоянный ток не используется в домах?

Постоянный ток не становится равным нулю. Он остается прежним и именно поэтому его категорически запрещается использовать в бытовых целях. Для таких целей переменный ток действительно является предпочтительным выбором.

Что вы подразумеваете под коэффициентом мощности?

Коэффициент мощности фактически представляет собой отношение рабочей мощности к полной мощности.

Почему в трансформаторе используется выпрямитель?

В трансформаторе выпрямитель работает как устройство, преобразующее переменный ток в постоянный.

В чем основная разница между кВт и кВА?

Коэффициент мощности является основным отличием этих двух терминов. Если кВт — это мощность реального трансформатора, то кВА считается коэффициентом мощности кажущегося трансформатора.

Заключение:

Трансформаторы — это устройства безопасности, которые используются во всем мире для снижения или повышения напряжения в соответствии с потребностями. Кроме того, эти электрические систематические устройства используются для управления током и напряжением, которые должны передаваться на большие расстояния. Вот почему наш лучший калькулятор трансформатора разработан, чтобы помочь вам понять различные термины, связанные с функциональностью трансформатора.

Ссылки:

Из источника Википедии: Трансформатор, Принципы, Поток рассеяния, Эквивалентная схема, Полярность, Потери энергии, Конструкция, Обмотки, Параметры классификации,

Из источника Академии Хана: Трансформаторы

Из источника Обучение Lumen: трансформаторы, электробезопасность

Проверка трансформатора на обрыв цепи и короткое замыкание — векторная диаграмма

Испытания на обрыв цепи и короткое замыкание проводятся для определения таких параметров трансформатора, как эффективность, регулирование напряжения, постоянная цепи и т.

д. Эти испытания проводятся без фактической нагрузки, и по этой причине для испытания требуется очень меньшая мощность. . Тест на разомкнутую цепь и короткое замыкание дает очень точный результат по сравнению с тестом с полной нагрузкой.

Содержимое:

  • Тест на обрыв цепи
  • Расчет теста на разомкнутую цепь
  • Испытание на короткое замыкание
  • Расчет испытания на короткое замыкание

Испытание на разомкнутую цепь

Целью испытания на обрыв цепи является определение тока холостого хода и потерь трансформатора, по которым определяются их параметры холостого хода. Это испытание проводят на первичной обмотке трансформатора. Ваттметр, амперметр и вольтметр подключены к их первичной обмотке. На их первичную обмотку от источника переменного тока подается номинальное номинальное напряжение.

Схема проверки трансформатора на обрыв цепи

Вторичная обмотка трансформатора остается разомкнутой, а вольтметр подключен к их клемме. Этот вольтметр измеряет вторичное индуцированное напряжение . Поскольку вторичная обмотка трансформатора разомкнута, через первичную обмотку протекает ток холостого хода.

Значение тока холостого хода очень мало по сравнению с полным номинальным током. Потери в меди возникают только в первичной обмотке трансформатора, поскольку вторичная обмотка разомкнута. Показания ваттметра представляют только потери в сердечнике и железе. Потери в сердечнике трансформатора одинаковы для всех типов нагрузок.

Расчет теста холостого хода

Let,

  • Вт 0 – показания ваттметра
  • В 1 – показания вольтметра
  • I 0 – показания амперметра

Тогда потери в железе трансформатора P

i = Вт 0 и

33 0 из уравнения (1) в уравнение (2) вы получите значение рабочего компонента как

Компонент намагничивания

Параметры холостого хода приведены ниже:

Эквивалентное сопротивление возбуждения

Эквивалентное реактивное сопротивление возбуждения
показан ниже

Векторная диаграмма испытания на разомкнутую цепь

Потери в железе, измеренные при испытании на разомкнутую цепь, используются для расчета эффективности трансформатора.

Испытание на короткое замыкание

Испытание на короткое замыкание выполняется для определения нижеуказанного параметра трансформатора.

  • Определяет потери в меди при полной нагрузке. Потери в меди используются для нахождения КПД трансформатора.
  • Эквивалентное сопротивление, импеданс и реактивное сопротивление утечки известны при испытании на короткое замыкание.

Испытание на короткое замыкание проводят на вторичной или высоковольтной обмотке трансформатора. Измерительный прибор, такой как ваттметр, вольтметр и амперметр, подключен к обмотке высокого напряжения трансформатора. Их первичная обмотка закорочена с помощью толстой полоски или амперметра, подключенного к ее выводу.

Источник низкого напряжения подключен через вторичную обмотку, поэтому ток полной нагрузки протекает как со вторичной, так и с первичной обмотки трансформатора. Ток полной нагрузки измеряется амперметром, подключенным к их вторичной обмотке.

Принципиальная схема испытания на короткое замыкание показана ниже:

Принципиальная схема испытания на короткое замыкание трансформатора

Источник низкого напряжения подается на вторичную обмотку, что составляет приблизительно0011 от 5 до 10 % от нормального номинального напряжения. Поток создается в сердечнике трансформатора. Величина потока мала по сравнению с нормальным потоком.

Потери в железе трансформатора зависят от потока. Это меньше происходит при испытании на короткое замыкание из-за низкого значения потока. Показания ваттметра определяют только потери в меди в их обмотках. Вольтметр измеряет напряжение, подаваемое на их высоковольтную обмотку. Вторичный ток индуцируется в трансформаторе из-за приложенного напряжения.

Расчет испытания на короткое замыкание

Let,

  • Вт c – Показания ваттметра
  • В 2sc – показания вольтметра
  • I 2sc – показания амперметра

Тогда потери в меди при полной нагрузке трансформатора определяются как

Эквивалентное сопротивление вторичной обмотки равно

Векторная диаграмма испытания трансформатора на короткое замыкание показана ниже

Векторная диаграмма испытания короткого замыкания

Из векторной диаграммы

Эквивалентное сопротивление вторичной обмотки определяется как

Эквивалентное реактивное сопротивление относительно вторичной обмотки определяется как

Регулировка напряжения трансформатора может быть определена при любой нагрузке и коэффициенте мощности зная значения Z es и R es .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *