Site Loader

Содержание

Расчёт резистора для светодиода: формулы подбора сопротивления, онлайн-калькулятор

Работа светодиода основана на излучении квантов света, возникающих при протекании по нему тока. В зависимости от этого меняется и яркость свечения элемента. При малом токе он светит тускло, а при большом — вспыхивает и сгорает. Для ограничения протекающего через него тока проще всего использовать сопротивление. Выполнить правильный расчёт резистора несложно, но при этом следует помнить, что он только ограничивает, но не стабилизирует ток.

  • Принцип работы и свойства
    • Устройство радиоэлемента
    • Характеристики светодиодов
  • Способы подключения
    • Одиночный элемент
    • Параллельная цепь
  • Пример расчёта
  • Браузерные онлайн-калькуляторы

Принцип работы и свойства

Светодиод — это прибор, обладающий способностью излучать свет. На печатных платах и схемах он обозначается латинскими буквами LED (Light Emitting Diode), что в переводе обозначает «светоизлучающий диод». Физически он представляет собой кристалл, помещённый в корпус. Классически им считается цилиндр, одна сторона которого имеет выпуклую округлую форму, являющуюся линзой-полусферой, а другая — плоское основание, и на ней располагаются выводы.

С развитием твердотельных технологий и уменьшения технологического процесса промышленность стала производить SMD-диоды, предназначенные для установки поверхностным монтажом. Несмотря на это, физический принцип работы светодиода не изменился и одинаков как для любого вида, так и для цвета устройства.

Процесс изготовления прибора излучения можно описать следующим образом. На первом этапе выращивают кристалл. Происходит это путём помещения искусственно изготовленного сапфира в заполненную газообразной смесью камеру. В состав этого газа входят легирующие добавки и полупроводник. При нагреве камеры происходит осаждение образующегося вещества на пластину, при этом толщина такого слоя не превышает нескольких микрон. После окончания процесса осаждения методом напыления формируются контактные площадки и вся эта конструкция помещается в корпус.

Из-за особенностей производства одинаковых по параметрам и характеристикам светодиодов не бывает. Поэтому хотя производители и стараются отсортировывать близкие по значениям устройства, нередко в одной партии попадаются изделия, отличающиеся по цветовой температуре и рабочему току.

Устройство радиоэлемента

Светодиод или LED-диод представляет собой полупроводниковый радиоэлемент, в основе работы которого лежат свойства электронно-дырочного перехода. При прохождении через него тока в прямом направлении на границе соприкосновения двух материалов возникают процессы рекомбинации, сопровождающиеся излучением в видимом спектре.

Очень долго промышленность не могла изготовить синий светодиод, из-за чего нельзя было получить и излучатель белого свечения. Лишь только в 1990 году исследователи японской корпорации Nichia Chemical Industries изобрели технологию получения кристалла, излучающего свет в синем спектре.

Это автоматически позволило путём смешения зелёного, красного и синего цвета получить белый.

В основе процесса излучение лежит освобождение энергии при рекомбинации зарядов в зоне электронно-дырочного перехода. Образовывается он путём контакта двух полупроводниковых материалов с разной проводимостью. В результате инжекции, перехода неосновных носителей заряда, образуется запирающий слой.

На стороне материала с n-проводимостью возникает барьер из дырок, а на стороне с p-проводимостью — из электронов. Наступает равновесие. При подаче напряжения в прямом смещении происходит массовое перемещение зарядов в запрещённую зону с обеих сторон. В результате они сталкиваются и выделяется энергия в виде излучения света.

Этот свет может быть как видимым человеческому глазу, так и нет. Зависит это от состава полупроводника, количества примесей, ширины запрещённой зоны. Поэтому видимый спектр достигается путём изготовления многослойных полупроводниковых структур.

Характеристики светодиодов

Цвет свечения зависит от типа полупроводника и степени его легирования, что определяет ширину запрещённой зоны p-n перехода. Срок службы светодиодов в первую очередь зависит от температурных режимов его работы. Чем выше нагрев прибора, тем быстрее наступает его старение. А температура, в свою очередь, связана с проходящей через светодиод силой тока. Чем меньшей мощности источник света, тем дольше его срок службы. Старение выражается в виде уменьшения яркости прибора света. Поэтому так важно правильно подобрать сопротивление для светодиода.

К основным характеристикам LED-диодов относят:

  1. Потребление тока. Однокристальные светодиоды потребляют ток, равный 0,02 А. При этом прямо пропорционально с количеством кристаллов растёт и его значение. Так, диод с четырьмя кристаллами потребляет ток 0,08 А. Именно из-за этого параметра диода и ставится ограничительный резистор, чтобы он не сгорел при высокой силе тока.
  2. Величину падения напряжения. Эта характеристика указывает, какое количество энергии выделяется на светодиоде, то есть на сколько вольт уменьшится величина напряжения при параллельном его включении в цепь. Например, если падение составляет 3 вольта, а величина разности потенциалов на входе равна 9 вольтам, то при включении параллельно к источнику питания светодиода напряжение на выходе будет равно 6 вольтам.
  3. Светоотдачу. Эта характеристика показывает количество света, излучаемое устройством при потреблении мощности равной одному ватту.
  4. Цветовую температуру. Она зависит от управляющего тока, эффективности теплоотвода и температуры окружающей среды. Интенсивный поток света, связанный с потребляемой электрической мощностью, также увеличивает температуру. При этом следует отметить, что перепады температуры значительно снижают ресурс светодиода.
  5. Типоразмер. Его значение зависит от размера излучателя. Соответственно, чем больше размер светодиода, тем больше его яркость и мощность.

Способы подключения

Для беспроблемной работы светодиода очень важно значение рабочего тока. Неверное подключение источников излучения или существенный разброс их параметров при совместной работе приведёт к превышению протекающего через них тока и дальнейшему перегоранию приборов. Связано это с увеличением температуры, из-за которой кристалл светодиода просто деформируется, а p-n переход пробьётся. Поэтому так важно ограничить подающуюся на источник света величину тока, то есть ограничить питающее напряжение.

Проще всего это выполнить, используя сопротивление, включённое последовательно в цепь излучателя. В этом качестве применяется обыкновенный резистор, но он должен иметь определённую величину. Его большое значение не сможет обеспечить нужную разность потенциалов для возникновения процесса рекомбинации, а меньшее — спалит. При этом нужно не только знать, как рассчитать сопротивление для светодиода, но и понимать, как правильно его поставить, особенно если схема насыщена радиоэлементами.

В электрической цепи может использоваться как один светодиод, так и несколько. При этом существует три схемы их включения:

  • одиночная;
  • последовательная;
  • параллельная.

Одиночный элемент

Когда в электрической цепи используется только один светодиод, то последовательно с ним ставится одни резистор. В результате такого подключения общее напряжение, приложенное к этому контуру, будет равно сумме падений разности потенциалов на каждом элементе цепи. Если обозначить эти потери на резисторе как Ur, а на светодиоде Us, то общее напряжение источника ЭДС будет равно: Uo = Ur + Us.

Перефразируя закон Ома для участка сети I = U / R, получается формула: U = I * R. Подставив полученное выражение в формулу для нахождения общего напряжения, получим:

Uo = IrRr + IsRs, где

  • Ir — ток, протекающий через резистор, А.
  • Rr — расчётное сопротивление резистора, Ом.
  • Is — ток, проходящий через светодиод, А.
  • Rs — внутренний импеданс светодиода, Ом.

Значение Rs изменяется в зависимости от условий работы источника излучения и его величина зависит от силы тока и разности потенциалов. Эту зависимость можно увидеть изучая вольт-амперную характеристику диода. На начальном этапе происходит плавное увеличение тока, а Rs имеет высокое значение. После импеданс резко падает и ток стремительно возрастает даже при незначительном росте напряжения.

Если соединить формулы, получится следующее выражение:

Rr = (Uo — Us) / Io, Ом

При этом учитывается, что сила тока, протекающего в последовательном контуре участка цепи, одинакова в любой его точке, то есть Io = Ir = Is. Это выражение подходит и для последовательного соединения светодиодов, ведь при нём для всей цепи используется также лишь один резистор.

Таким образом, для нахождения нужного сопротивления остаётся узнать величину Us. Значение падения напряжения на светодиоде является справочной величиной и для каждого радиоэлемента она своя. Для получения данных понадобится воспользоваться даташитом на устройство. Даташит — это набор информационных листов, которые содержат исчерпывающие сведения о параметрах, режимах эксплуатации, а также схемы включения радиоэлемента. Выпускает его производитель изделия.

Параллельная цепь

При параллельном соединение радиоэлементы контактируют между собой в двух точках — узлах. Для такого типа цепи справедливы два правила: сила тока, входящая в узел, равна сумме сил токов, исходящих из узла, и разность потенциалов во всех точках узлов одинакова. Исходя из этих определений, можно сделать заключение, что в случае параллельного соединения светодиодов искомый резистор, располагающийся в начале узла, находится по формуле: Rr = Uo / Is1+In, Ом, где:

  • Uo — приложенная к узлам разность потенциалов.
  • Is1 — сила тока, протекающая через первый светодиод.
  • In — ток, проходящий через n-й светодиод.

Но такая схема с общим сопротивлением, располагающимся перед параллельным соединением светодиодов, — не используется. Связанно это с тем, что в случае перегорания одного излучателя, согласно закону, сила тока, входящая в узел, останется неизменной. А это значит, она распределится между оставшимися рабочими элементами и при этом через них пойдёт больший ток. В результате возникнет цепная реакция и все полупроводниковые излучатели в конечном счёте сгорят.

Поэтому правильно будет использовать собственный резистор для каждой параллельной ветки со своим светодиодом и выполнить расчёт резистора для светодиода отдельно для каждого плеча. Такой подход ещё выгоден тем, что в схеме можно использовать радиоэлементы с разными характеристиками.

Расчёт сопротивления каждого плеча происходит аналогично одиночному включению: Rn = (Uo — Us) / In, Ом, где:

  • Rn — искомое сопротивление n -ой ветки.
  • Uo — Us — разность падений напряжений.
  • In — сила тока через n-й светодиод.

Пример расчёта

Пускай на электрическую схему поступает питание от источника постоянного напряжения, равного 32 вольтам. В этой схеме стоят два параллельно включённых друг другу светодиода марки: Cree C503B-RAS и Cree XM—L T6. Для расчёта требуемого импеданса понадобится узнать из даташита типовое значение падения напряжения на этих светодиодах. Так, для первого оно составляет 2.1 В при токе 0,2, а второго — 2,9 В при той же величине силы тока.

Подставив данные значения в формулу для последовательной цепи, получится следующий результат:

  • R1 =(U0-Us1)/ I=(32−2,1)/0,2 = 21,5 Ом.
  • R2 = (U0-Us2)/ I=(32−2,9)/0,2 = 17,5 Ом.

Из стандартного ряда подбирают ближайшие значения. Ими будут: R1 = 22 Ома и R2 = 18 Ом. При желании можно рассчитать и мощность, рассеиваемую на резисторах по формуле: P = I*I*U. Для найденных резисторов она составит P= 0,001 Вт.

Браузерные онлайн-калькуляторы

При большом количестве светодиодов в схеме рассчитывать для каждого сопротивление — процесс довольно утомительный, тем более что при этом можно допустить ошибку. Поэтому проще всего для расчётов использовать онлайн-калькуляторы.

Представляют они собой программу, написанную для работы в браузере. В интернете можно встретить много таких калькуляторов для светодиодов, но принцип работы у них одинаков. Понадобится ввести справочные данные в предложенных формах, выбрать схему подключения и нажать кнопку «Результат» или «Расчёт». После чего останется только дождаться ответа.

Пересчитав вручную, его можно проверить, но особого смысла в этом не будет, так как при вычислении программы используют аналогичные формулы.

Расчет резистора для светодиода. Онлайн калькулятор

Довольно часто у многих начинающих радиолюбителей возникает проблемы с расчетом сопротивления резистора для светодиода. И зачастую они не знают, для чего такой резистор вообще нужен. В данной статье попробуем разъяснить данный вопрос и для облегчения приведем онлайн калькулятор для расчета сопротивления резистора светодиода.

Портативный паяльник TS80P

TS80P- это обновленная версия паяльника TS80 Smart, работающий от USB…

Подробнее

Важные параметры светодиодов

С точки зрения проблемы подбора резистора для светодиода нас в первую очередь интересуют всего два параметра светодиодов:

  1. IF — прямой ток светодиода
  2. VF — прямое напряжение светодиода (рабочее напряжение)

Рассмотрим это на примере светодиода L-53IT. Вот его краткие характеристики:

  • Материал: gaasp/gap
  • Цвет свечения: красный
  • Длина волны: 625нм
  • Максимальное прямое напряжение: 2,5 В
  • Максимальное обратное напряжение: 5В
  • Максимальный прямой ток: 30мА
  • Рабочая температура: -40…85С

В datasheet светодиода L-53IT в разделе «Absolute Maximum Ratings» (значения, которые нельзя превышать) мы находим информацию о максимальном непрерывном постоянном токе, который может протекать через данный светодиод, не вызывая ее повреждения (30мА):

Затем мы проверяем по datasheet, какое типичное прямое напряжение светодиода (падение напряжения на диоде):

Паяльный фен YIHUA 8858

Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час. ..

Подробнее

и мы видим, что:

  • тестовые данные указаны для тока IF= 20мА,
  • типичное прямое напряжение составляет VF = 2В.

Ток 20мА обеспечивает нам хороший световой поток, а так как светодиоды не вечны, и со временем испускаемый поток света уменьшается, то в большинстве случаев для данного светодиода этот ток будет достаточен.

Светодиод без резистора

Для начала рассмотрим, что произойдет, если мы подключим светодиод к источнику питания без резистора ограничивающего ток. В качестве примера мы будем использовать источник питания с напряжением 5В.

В этом случае, в соответствии со вторым законом Кирхгофа:

сумма падений напряжения в замкнутом контуре равна нулю

Получается, что все напряжение питания сосредоточено на нашем светодиоде:

Что означает появление напряжения 5В на нашем светодиоде? Давайте посмотрим на график зависимости тока светодиода от напряжения в прямом направлении:

То есть, при превышении 2,05 вольт, ток будет расти очень быстро, достигнув высокого значения.

В нашем случае, питание светодиода без ограничительного резистора приведет к генерации тока большего, чем допустимо (30 мА), что в свою очередь произойдет его повреждение.

Здесь следует добавить, что причиной, разрушающим светодиод является не ток как таковой, а выделяемая мощность в виде тепла.

Ограничение тока протекающего через светодиод

Таким образом, мы должны ограничить ток светодиода. У нас есть два варианта:

  • использовать питание стабильным током (не более 30мА в соответствии с технической спецификацией светодиода)
  • ограничить ток по-другому.

В данной статье мы займемся вторым способом, а именно, мы подключим резистор последовательно со светодиодом. На этом резисторе будет происходить падение части напряжения источника питания, который обозначим как VR:

В соответствии с приведенным выше вторым законом Кирхгофа, распределение напряжений будет определяться по формуле:

VCC = VR + VF

 

В нашем случае мы знаем типовое значение напряжения нашего светодиода, которое составляет 2 вольт, а также напряжение питания 5 вольт:

Таким образом, мы можем вычислить необходимое падение напряжения на резисторе R, для того чтобы на диоде было только необходимые 2 вольта:

VR = VCC — VF

VR = 5В — 2В = 3В

то есть, мы стремимся к получению следующих напряжений в нашей схеме:

Теперь мы используем первый закон Кирхгофа:

сумма значений силы токов, входящих в узел равна сумме значений силы токов, вытекающей из этого узла

Нашим узлом является место соединения резистора и светодиода, и это означает, что через резистор будет проходить тот же ток, что и через светодиод. Поскольку мы предположили, что через светодиод может течь ток IF= 20мА, то:

Сопротивление резистора вычислим с помощью Закона Ома:

то есть в нашем случае:

и наконец, мы можем вывести общую формулу:

После расчета сопротивления, выбирается резистор из номинального ряда. В нашем случае это резистор  точно такой  же, как рассчитали, то есть, 150 Ом, который имеется в номинальных рядах E24, E12 и E6.

А что делать,  когда сопротивление резистора не соответствует ни одному значению из номинального ряда? В этом случае следует выбрать одно из двух ближайших к расчетному сопротивлению, при этом необходимо учитывать следующее:

Если сопротивление будет меньше, чем рассчитывали, то это увеличит значение тока, протекающего через светодиод.

Если сопротивление будет больше, чем рассчитывали, то это уменьшит световой поток, испускаемый светодиодом.

Калькулятор расчета резистора для светодиода

Ниже приводим калькулятор для расчета сопротивления резистора светодиода:

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров. ..

Подробнее

Калькулятор цветового кода резистора • Электрические, радиочастотные и электронные калькуляторы • Онлайн-конвертеры единиц измерения

Преобразователь случайных чисел

  • Калькуляторы
  • Электрические, радиочастотные и электронные калькуляторы

Калькулятор цветового кода резистора

Цветовые коды резисторов

Этот калькулятор цветового кода резистора преобразует значение резистора в цветовой код резистора и поддерживает 3-, 4- и 5-диапазонные резисторы. Если вы увлекаетесь электроникой и не можете вспомнить цветовую маркировку резисторов, то этот калькулятор для вас. Он выполнит простую проверку, соответствует ли расчетное сопротивление, которое вам нужно для вашей схемы, одному из стандартных значений сопротивления в диапазонах E3–E192, и покажет, как выглядит резистор с этим значением.

Пример: Рассчитайте цветовой код резистора ±20% 2,7 кОм.

Сопротивление

R Ом (Ом) килоом (кОм) мегом (МОм)

Допустимое отклонение и количество цветовых полос

E6: ±20% — 3 полосыE12: ±5sE2 — 10% % — 4 полосы E48: ±2 % — 5 полос E96: ±1 % — 5 полос E192: ±0,5 % — 5 полос E192: ±0,25 % — 5 полос E192: ±0,1 % — 5 полос E192: ±0,05 % — 5 полос

Доля

Стандартное значение {0}

Нестандартное значение {0}
Стандарт в других сериях

Ближайший меньший стандартный резистор в {0}

Ближайший более высокий стандартный резистор в {0}

Значения резисторов из цветовых кодов

Количество полос:

3 52 4

1-я цифра
нет0 черный1 коричневый2 красный3 оранжевый4 желтый5 зеленый6 синий7 фиолетовый8 серый9 белый

2-я цифра
нет0 черный1 коричневый2 красный3 оранжевый4 желтый5 зеленый6 синий7 фиолетовый8 серый9 белый

Multiplier
nonex1 blackx10 brownx100 redx10³ orangex10⁴ yellowx10⁵ greenx10⁶ bluex10⁷ violetx10⁸ greyx10⁹ whitex0. 1 goldx0.01 silverx0.001 pink

Tolerance, ±
none1% brown2% red0.05% orange0.02% yellow0.5% green0.25

Поделиться

Определения и расчеты

Резистор и сопротивление

Резистор представляет собой пассивный электрический компонент, который создает электрическое сопротивление в электронных схемах. Резисторы можно найти практически во всех электрических цепях. Они используются для различных целей, например, для ограничения электрического тока, в качестве делителей напряжения, для подачи смещения на активные элементы цепи, для согласования линий передачи, в резисторно-конденсаторных цепях в качестве времязадающей составляющей… Список можно продолжать до бесконечности.

Прецизионный декадный блок резисторов

Электрическое сопротивление резистора или электрического проводника является мерой сопротивления протеканию электрического тока. Единицей сопротивления в системе СИ является ом. Любой материал обладает некоторым сопротивлением, кроме сверхпроводников, сопротивление которых равно нулю. Более подробная информация о сопротивлении, удельном сопротивлении и проводимости.

Допуск резистора

Конечно, можно сделать резистор с очень точным сопротивлением, однако это будет безумно дорого. Кроме того, прецизионные резисторы используются относительно редко. Для измерений используются очень дорогие резисторы. Здесь речь пойдет о недорогих резисторах, применяемых в электрических цепях, не требующих высокой точности. Во многих случаях достаточно точности ±20%. Для резистора на 1 кОм это означает, что допустим любой резистор со значением в диапазоне от 800 до 1200 Ом. Для некоторых критических компонентов допуск может быть указан как ±1% или даже ±0,05%. В то же время 20-процентные резисторы сегодня трудно найти — они были распространены в начале эры транзисторного радио. Резисторы 5% и 1% сегодня очень распространены. Раньше они были относительно дорогими, но не сейчас.

Сравнение резисторов SMD 0,1 Вт в корпусах 1608 (1,6 × 0,8 мм) с керамическим резистором 10 Вт 1 Ом

Рассеиваемая мощность

Когда электрический ток проходит через резистор, он нагревается, и тепловая энергия, которую он рассеивает. Эта энергия должна рассеиваться резистором без чрезмерного повышения его температуры. И не только его температуру, но и температуру компонентов, окружающих этот резистор. Мощность, потребляемая резистором, рассчитывается как

, где В в вольтах — это напряжение на резисторе сопротивлением R в омах, а I — ток в амперах, протекающий через него. Мощность, которую резистор может безопасно рассеивать в течение неопределенного периода времени без ухудшения своих характеристик, называется номинальной мощностью резистора или номинальной мощностью резистора . Как правило, чем больше размер резистора, тем большую мощность он может рассеивать. Выпускаются резисторы различной мощности, чаще всего от 0,01 Вт до сотен Вт. Углеродные резисторы обычно производятся с номинальной мощностью от 0,125 до 2 Вт.

Резисторы мощностью 1/8 Вт, 1/4 Вт, 1/2 Вт и 1 Вт в блоке питания компьютера с цветовой маркировкой

Предпочтительные значения

сделать ограниченное количество компонентов, особенно учитывая, что любой изготовленный резистор подлежит определенному допуску. Стоимость более прецизионных резисторов намного выше, чем у их менее точных аналогов. Общая логика требует выбора логарифмической шкалы значений, чтобы все значения были равномерно распределены по логарифмической шкале и соответствовали допуску диапазона. Например, при допуске ±10% декаду (интервал от 1 до 10, от 10 до 100 и т. д.) имеет смысл охватить в 12 шагов: 1,0, 1,2, 1,5, 1,8, 2,2, 2,7, 3,3. , 3,9, 4,7, 5,6, 6,8, 8,2, затем 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. Эти значения называются предпочтительными значениями и стандартизированы как E серии предпочтительных номера, которые используются не только для резисторов, но и для конденсаторов, катушек индуктивности и стабилитронов. Каждая серия E (E3, E6, E12, E24, E48, E96 и E192) подразделяет декаду на 3, 6, 12, 24, 48, 96 и 192 шага. Обратите внимание, что серия E3 устарела и больше почти не используется.

Перечень значений серии E

Современный керамический резистор 10 Вт 8,6 Ом (вверху) и резистор ВЗР 2 Вт 3,3 кОм производства СССР в 1969 г.

Е6 значения (допуск 20%):

1,0; 1,5; 2,2; 3,3; 4,7; 6,8.

E12 значения (допуск 10%):

1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 8,2.

E24 значения (допуск 5 %):

1,0; 1,1; 1,2; 1,3; 1,5; 1,6; 1,8; 2,0; 2,2; 2,4; 2,7; 3,0; 3,3; 3,6; 3,9; 4,3; 4,7; 5,1; 5,6; 6,2; 6,8; 7,5; 8,2; 9,1.

E48 значения (допуск 2%):

1,00; 1,05; 1,10; 1,15; 1,21; 1,27; 1,33; 1,40; 1,47; 1,54; 1,62; 1,69; 1,78; 1,87; 1,96; 2,05; 2,15; 2,26; 2,37; 2,49; 2,61; 2,74; 2,87; 3,01; 3,16; 3,32; 3,48; 3,65; 3,83; 4,02; 4,22; 4,42; 4,64; 4,87; 5,11; 5,36; 5,62; 5,90; 6,19; 6,49; 6,81; 7,15; 7,50; 7,87; 8,25; 8,66; 9,09; 9,53.

E96 значения (допуск 1 %):

1,00; 1,02; 1,05; 1,07; 1,10; 1,13; 1,15; 1,18; 1,21; 1,24; 1,27; 1,30; 1,33; 1,37; 1,40; 1,43; 1,47; 1,50; 1,54; 1,58; 1,62; 1,65; 1,69; 1,74; 1,78; 1,82; 1,87; 1,91; 1,96; 2,00; 2,05; 2,10; 2,15; 2,21; 2,26; 2,32; 2,37; 2,43; 2,49; 2,55; 2,61; 2,67; 2,74; 2,80; 2,87; 2,94; 3,01; 3,09; 3,16; 3,24; 3,32; 3,40; 3,48; 3,57; 3,65; 3,74; 3,83; 3,92; 4,02; 4,12; 4,22; 4,32; 4,42; 4,53; 4,64; 4,75; 4,87; 4,99; 5,11; 5,23; 5,36; 5,49; 5,62; 5,76; 5,90; 6,04; 6,19; 6,34; 6,49; 6,65; 6,81; 6,98; 7,15; 7,32; 7,50; 7,68; 7,87; 8,06; 8,25; 8,45; 8,66; 8,87; 9,09; 9,31; 9,53; 9,76.

Значения E192 (допуск 0,5 % и ниже):

1,00; 1,01; 1,02; 1,04; 1,05; 1,06; 1,07; 1,09; 1,10; 1,11; 1,13; 1,14; 1,15; 1,17; 1,18; 1,20; 1,21; 1,23; 1,24; 1,26; 1,27; 1,29; 1,30; 1,32; 1,33; 1,35; 1,37; 1,38; 1,40; 1,42; 1,43; 1,45; 1,47; 1,49; 1,50; 1,52; 1,54; 1,56; 1,58; 1,60; 1,62; 1,64; 1,65; 1,67; 1,69; 1,72; 1,74; 1,76; 1,78; 1,80; 1,82; 1,84; 1,87; 1,89; 1,91; 1,93; 1,96; 1,98; 2,00; 2,03; 2,05; 2,08; 2,10; 2,13; 2,15; 2,18; 2,21; 2,23; 2,26; 2,29; 2,32; 2,34; 2,37; 2,40; 2,43; 2,46; 2,49; 2,52; 2,55; 2,58; 2,61; 2,64; 2,67; 2,71; 2,74; 2,77; 2,80; 2,84; 2,87; 2,91; 2,94; 2,98; 3,01; 3,05; 3,09; 3,12; 3,16; 3,20; 3,24; 3,28; 3,32; 3,36; 3,40; 3,44; 3,48; 3,52; 3,57; 3,61; 3,65; 3,70; 3,74; 3,79; 3,83; 3,88; 3,92; 3,97; 4,02; 4,07; 4,12; 4,17; 4,22; 4,27; 4,32; 4,37; 4,42; 4,48; 4,53; 4,59; 4,64; 4,70; 4,75; 4,81; 4,87; 4,93; 4,99; 5,05; 5,11; 5,17; 5,23; 5,30; 5,36; 5,42; 5,49; 5,56; 5,62; 5,69; 5,76; 5,83; 5,90; 5,97; 6,04; 6,12; 6,19; 6,26; 6,34; 6,42; 6,49; 6,57; 6,65; 6,73; 6,81; 6,90; 6,98; 7,06; 7,15; 7,23; 7,32; 7,41; 7,50; 7,59; 7,68; 7,77; 7,87; 7,96; 8,06; 8,16; 8,25; 8,35; 8,45; 8,56; 8,66; 8,76; 8,87; 8,98; 9,09; 9,20; 9,31; 9,42; 9,53; 9,65; 9,76; 9,88.

Цветовая маркировка резистора

Маркировка резистора

Большие резисторы, как показано на рисунке, обычно маркируются цифрами и буквами, и их легко прочитать. Однако значение не может быть легко напечатано даже с использованием современных технологий печати на небольших резисторах (и других электронных компонентах), особенно если они имеют цилиндрическую форму. Поэтому в течение последних 100 лет для маркировки компонентов использовались цветные полосы. Электронный цветовой код для этой цели был введен в начале 19 века.20. Цветовые коды используются не только для резисторов, но и для конденсаторов, диодов, катушек индуктивности и других электронных компонентов.

Цветовой код резистора

Для резисторов используется до шести цветовых полос. Наиболее распространенным является четырехполосный цветовой код, в котором первая и вторая полосы представляют собой первую и вторую значащие цифры значения сопротивления, третья полоса представляет собой десятичный множитель, а четвертая полоса указывает допуск. Между третьей и четвертой полосами имеется небольшой, иногда плохо различимый промежуток, помогающий различить левую и правую стороны симметричного компонента. 20% резисторы обычно маркируются только тремя полосами — у них нет полосы допуска. Их полосы означают цифру, цифру, множитель.

Для прецизионных резисторов 2 % или более используются пять или более полос, и первые три полосы представляют значение сопротивления. Последняя полоса в 6-полосной маркировке представляет собой температурный коэффициент в ppm/K (частей на миллион на кельвин). На рисунке выше показан принцип цветовой маркировки.

Полосы читаются слева направо. Обычно они сгруппированы ближе к левому концу. Если между последней цветовой полосой и другими полосами есть видимый зазор, то он показывает правую сторону резистора. Кроме того, серебряные или золотые полосы (если они есть) всегда находятся с правой стороны. Когда вы определили значение по цветным полосам, сравните его с предпочтительными таблицами значений. Если его нет, то попробуйте прочитать с другого конца. Обратите внимание , что в данном калькуляторе цветовая маркировка выполнена в соответствии с международным стандартом IEC 60062:2016 .

Нажмите или коснитесь ссылок, чтобы просмотреть примеры цветовой маркировки:

10 кОм ±20%, 12 Ом ±20%, 15 МОм ±1%, 18 МОм ±2%, 22 кОм ±10%, 27 Ом ±5 %, 33 кОм ±5%, 39 МОм ±0,5%, 0,47 Ом ±0,25%, 0,56 Ом ±0,1%, 68 Ом ±0,05%, 0,82 Ом ±20%

Цифровая маркировка

Цифровые значения напечатаны на поверхности монтажные резисторы (SMT — технология поверхностного монтажа или SMD — устройство поверхностного монтажа) больших размеров и на более крупных резисторах с осевым выводом. Поскольку место для маркировки очень мало, иногда бывает непросто прочитать и понять номинал резистора. Маркировка в основном используется для обслуживания, поскольку в процессе производства резисторы подаются в машины для поверхностного монтажа лентами с соответствующей маркировкой. Многие, особенно небольшие SMD-резисторы, вообще не маркируются, и после того, как они сняты с ленты, единственным способом найти их сопротивление является измерение.

39 × 10⁰ = 39 Ом 0,1 Вт SMD резисторы в упаковках по 1608 (1,6 × 0,8 мм)

Для маркировки используется несколько систем: три или четыре цифры, две цифры с буквой, три цифры с буквой, код РКМ , и другие системы. Если вы видите только три цифры, они представляют собой значащие цифры, а третья — множитель. Например, 103 на резисторе SMD соответствует 10 × 10³ = 10 кОм.

Четырехзначная система используется для резисторов с высоким допуском, например, для E96 или E192 последовательных резистора. Например, 2743 = 274 × 10³ = 274 кОм.

Для резисторов меньшего размера можно использовать другую систему. Например, для серии E96 используются две цифры плюс одна буква. Эта система может сохранить один символ по сравнению с четырехзначной системой. Это связано с тем, что E96 содержит менее 100 значений, которые могут быть представлены двумя числами, если они пронумерованы последовательно, то есть 01 — 100, 02 — 102, 03 — 105 и т. д. Буква представляет множитель. Обратите внимание, что производители часто используют собственные системы. Поэтому лучший способ определить сопротивление — это всегда измерение с помощью мультиметра.

В коде РКМ, также называемом «обозначением R», вместо десятичного разделителя ставится буква, обозначающая единицу сопротивления, которая может быть напечатана ненадежно или просто исчезнуть на компонентах или дублирующих документах. Кроме того, этот метод позволяет использовать меньше символов. Например, R22 или E22 означает 0,22 Ом, 2K7 означает 2,7 кОм, а 1M5 означает 1,5 МОм.

Измерение резистора 3,3 МОм 0,5 Вт с помощью осциллографа-мультиметра

Измерение сопротивления

Сопротивление можно измерить аналоговым (стрелкой) или цифровым омметром или мультиметром с функцией измерения сопротивления. Для измерения сопротивления подключите щупы к выводам резистора и считайте значение. Иногда можно измерить сопротивление, не удаляя резистор из цепи. Однако перед подключением мультиметра к измеряемой цепи необходимо отключить питание цепи и разрядить все конденсаторы.

Мультиметр можно использовать не только для измерения сопротивления резисторов, но и для измерения контактного сопротивления различных коммутационных компонентов, таких как реле или переключатели. Например, вы можете определить, нуждается ли кнопка мыши в замене, измерив ее сопротивление, предпочтительно аналоговым мультиметром или цифровым мультиметром с аналоговым индикатором. Аналоговая гистограмма полезна при диагностике или настройке. Гистограмма действует как стрелка в аналоговом счетчике и может показывать колебания сопротивления, когда цифровой дисплей с мигающими цифрами был бы совершенно бесполезен. С таким измерителем можно легко обнаружить множество непостоянных проблем, например, дребезг контактов вибрирующего реле.

В заключение несколько примеров:

Резистор 2,7 кОм ±5%: красный, фиолетовый, красный, золотой

Резистор 100 кОм ±5%: коричневый, черный, желтый, золотой.

Резистор 220 кОм ±5%: красный, красный, желтый, золотой.

Резистор 330 кОм ±5%: оранжевый, оранжевый, желтый, золотой.

Резистор 390 кОм ±5%: оранжевый, белый, желтый, золотой.

Резистор 430 кОм ±5%: желтый, оранжевый, желтый, золотой

Резистор 470 кОм ±5%: желтый, фиолетовый, желтый, золотой

Резистор 510 кОм ±5%: зеленый, коричневый, желтый, золотой

Резистор 560 кОм ±5%: зеленый, синий, желтый, золотой

Резистор 750 кОм ±5%: фиолетовый, зеленый, желтый, золотой

Резистор 910 кОм ±5%: белый, коричневый, желтый, золотой

Эта статья написана Анатолием Золотковым

Вас могут заинтересовать другие калькуляторы из группы Калькуляторы электротехники, ВЧ и электроники:

Калькулятор резисторно-конденсаторной (RC) цепи

Калькулятор параллельного сопротивления

Калькулятор параллельной индуктивности

серии калькулятор конденсатора

Калькулятор импеданса по конденсатору

Калькулятор индуктивного индуктивного калькулятора

Калькулятор взаимной индуктивности

Калькулятор индуктивного индуктивного индуктивного калькулятора.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *