Site Loader

Георг Ом. Его жизнь и его закон


Закон Ома. Как запомнить?

Закон Ома – основа электротехники. На основе этого закона действуют все электрические приборы: телевизоры, компьютеры, электрические утюги, стиральные машин.

Формулировка этого закона кажется простой и очевидной даже для троечников: сила тока, протекающего по проводнику прямо пропорциональна разности потенциалов (напряжению) на концах этого проводника и обратно пропорциональна сопротивлению, которое является характеристикой проводника. Впрочем, троечники иной раз не знали, что этот простой закон открыл реальный человек, Георг Симон Ом. В отличие от закона, названного его именем, жизнь этого человека не была простой и бесхитростной. Впрочем, если приглядеться, то окажется что и собственно закон Ома не так прост, как кажется.

Начало жизни

Георг Симон Ом родился 16 марта 1789 года в Германии, в городе Эрлангене. Ом происходил из протестантской семьи. Его отец, Иоганн Вольфганг Ом, был ремесленником, слесарем, а мать, Мария Элизабет Бек, – дочерью портного. Родив семерых детей, она умерла в родах, когда Георгу было десять лет. Это было обычно в те благословенные времена. Из семи детей Омов до совершеннолетия дожили только трое: Георг, его брата Мартин, который впоследствии стал известным математиком, и сестра Элизабет Барбара. Георг был старшим среди трёх.Отец Ома всё свободное время посвящал воспитанию своих детей. Он не жалел денег на книги, которые тогда были довольно дорогим удовольствием, и смог дать своим сыновьям прекрасное образование.

Памятник Георгу Ому возле Технического университета в Мюнхене

Образование и ранняя работа

В 1805 году Ом поступил в Эрлангенский университет. Учёба давалась Георгу легко и весело. Парень был хорошим спортсменом, лучшим бильярдистом и лихим танцором. Что ещё нужно студенту? Впрочем, и успеваемость у Ома была высокой. Можно было подумать о том, чтобы начать длинный путь к профессорскому званию.

Но всё хорошее быстро кончается. Отец уже не мог содержать семью, и Георг, как старший сын, должен был прийти ему на помощь. После третьего семестра он покинул университет, и стал учителем математики в частной школе, которая находилась в швейцарском городке Готтштадт. Самостоятельная жизнь вдали от семьи началась.

Однако с мечтой закончить университет, чтобы заниматься потом наукой, не оставила Георга. В 1811 году он возвращается в родной Эрланген.  Интенсивная учёба принесла свои плоды. Ом смог за год окончить университет, успешно защитить диссертацию и стать доктором философии. По окончании университета ему предложили должность приват-доцента на кафедре математики.

Звание приват-доцента звучит гордо. Но это – всего лишь внештатный преподаватель, которого университет привлекает к преподаванию, если в этом возникает необходимость. Поэтому, хотя Ом был замечательным преподавателем, проработав три семестра, он принялся искать более оплачиваемую должность. Материальные соображения не давали ему возможности почивать на лаврах.

16 декабря 1812 года Георга Ома принимают учителем математики и физики в реальную школу города Бамберга. Но место учителя оказалось не удачным. Жалованье было небольшим, к тому же выплачивали его нерегулярно, а работы было много. Через три с половиной года школу вообще закрыли. Ом неохотно становится учителем математики в местной подготовительной школе. Работа эта кормила плохо и в добавок была весьма тягостной для Ома. Однако весной 1817 года он публикует первую из своих печатных работ по методике преподавания геометрии. Работа эта, к слову сказать, была оценена начальством только через пять лет, автор получил денежную премию.

Поиск лучшего места работы привёл Георга Ома в Кёльн, где он становится учителем физики и математики в местной иезуитской коллегии. Здесь он проработал девять лет. У Ома, наконец, появилось свободное время, и в его распоряжении была физическая лаборатория. В 1820 году Георг Ом узнаёт о работах Ампера и об открытии им электромагнетизма. Электричество было перспективным направлением исследований, этим стоило заняться!

Многотрудное открытие закона Ома

Ом применил в своих экспериментах только что открытую термопару

Экспериментальное исследование Ома по электропроводимости были важным шагом к выработке количественных закономерностей по перемещению электрических зарядов в проводниках. Свой прибора Ом основал на конструкции крутильных весов Кулона.

Простой закон, который впоследствии назвали законом Ома оказался не так прост в исследовании, как это кажется сейчас. Результаты первой серии своих исследований Ом описал в статье «Предварительное сообщение о законе, по которому металлы проводят контактное электричество», опубликованной в 1825 году в «Журнале физики и химии». Но опубликованное Омом выражение зависимости между силой протекающего по проводнику тока и разностью потенциалов на его концах, оказалось неверным. Эта ошибка дорого стоила исследователю. Из-за неё и последующие работы считались недостоверными и в качестве серьёзного исследования не принимались.

Ом упрямо и последовательно отыскал все погрешности первого эксперимента. Главным их источником была гальваническая батарея. Её электродвижущая сила существенно изменялась в ходе эксперимента. Говоря по-нашему, батарейки у Ома были слабые и быстро садились, их заряда не хватало на время эксперимента. Поэтому в следующих опытах Ом стал использовать только что открытую Т. И. Зеебеком термопару. Термоэлемент, представляющий собой пару «медь-висмут» давал слабое, зато постоянное в течение всего времени эксперимента напряжение. Было также сомнение по поводу чистоты материала из которого были сделаны исследуемые проводники. Ом тщательно отобрал для опытов провода из более чистых металлов. Схему же измерения он оставил принципиально той же: крутильные весы измеряли угол отклонения магнита под воздействием возникавшего в цепи электрического тока.

Закон Ома на картинке

Результаты новых экспериментов Ом опубликовал в 1826 году, а в мае 1827 года вышла его монография «Теоретические исследования электрических цепей». На 245 страницах этого труда содержались теоретические рассуждения Ома по электрическим цепям. Ом построил модель проводимости по аналогии с математической моделью распространения тепла в металлических пластинах и стержнях, предложенной в 1820 году французским учёным Жаном-Батистом Фурье.

В этой же монографии Ом ввёл в научный обиход термин «сопротивление» для характеристики электрических свойства проводника. Поэтому не вызывает удивления, что его имя присвоили единице измерения сопротивления. А как же иначе?

Но наука бывает суровой к предыдущим ошибкам. Доверия к работам Ома не проявлял никто. В таких условиях непросто продолжать научную деятельность, но Ом был достаточно упрям. Ведь от признания научного мира зависело, сможет ли он достигнуть назначения на хорошую должность и, как следствие, материальное благополучие, к которому сын слесаря из Эрлангена стремился всю жизнь. В 1833 году он, наконец, становится профессором физики в политехнической школе в Нюрнберге.

Закон Ома признали сначала за пределами Германии. В 1837 году французский учёный Пулье как бы повторно открыл уже открытый закон Ома. В 1841 году в России физики Э. Х. Ленц и Б. С. Якоби подтвердили правильность закона Ома, а в 1842 году Лондонское Королевское общество наградило Ома золотой медалью Копли и избрало своим членом. В 1841 году работа Ома была переведена на английский язык, в 1847 году — на итальянский, в 1860 году — на французский. Только после этого к Ому стало приходить признание (а значит, материальное благосостояние) на родине. В 1845 году его избрали членом Баварской академии наук, а через 4 года пригласили в Мюнхен на должность экстраординарного профессора физики в той же академии. Здесь Ом продолжил читать лекции, вести научные исследования, конструировать демонстрационные приборы, а также собирать и хранить физико-математические коллекции академии

Закон Ома и его значение

Закон Ома записывается в виде уравнения I = U / R. Этот закон утверждает, что величина постоянного тока через проводник (I) прямо пропорциональна напряжению, приложенному к концам проводника (U). Коэффициент пропорциональности, проводимость, является величиной, обратной сопротивлению материала (R). Величина сопротивления определяется длиной и поперечным сечением проводника, а также материалом. из которого он сделан. На этом фундаментальном соотношении базируется анализ электрических цепей.

Ом, единица электрического сопротивления, равен сопротивлению проводника, в котором под воздействием разности потенциалов в один вольт протекает ток величиной в один ампер. В системе единиц измерения СИ единица электрического сопротивления называется Омом.

Хорошей аналогией закона Ома является протекание воды по водопроводной трубе. При этом поток воды является подобием электрического тока, а давление воды на концах участка трубы (напор) – аналогом напряжения. Сопротивление при этом аналогично силе противодействия движению воды. Именно так представлял в 1820-е годы физику электрического тока Георг Ом. Ведь до открытия электрона до открытия электрона оставалось более пятидесяти лет.


Георг Ом. Закон Ома для полной цепи

1. Георг Ом

Да, электричество – мой
задушевный друг,
Согреет, развлечет,
прибавит света.
Опыты, проведенные Омом показали, что сила
тока, напряжение и сопротивление – величины,
связанные между собой.
движущиеся
заряженные частицы
Ампер
Вольт
Электрический ток создают
Единица силы тока
Единица напряжения
Единица сопротивления
Ом
Формула Закона Ома для участка цепи
I=U/R
Сила тока измеряется по формуле
I = q/ t
Прибор для измерения силы тока
Амперметр
Прибор для измерения напряжения
Вольтметр
Прибор, сопротивление которого
можно регулировать
Реостат
последовательно
Амперметр включается в цепь
Формула нахождения сопротивления
За направление тока принято
направление движения
R=ρl/S
положительно заряженных
частиц
При последовательном соединении
проводников общее сопротивление цепи равно
При параллельном соединении проводников
сила тока в цепи…
При параллельном соединении
проводников напряжение в цепи…
С изменением напряжения или силы
тока в цепи сопротивление…
Сумме всех
сопротивлений
Равна сумме
токов
Одинаково на
каждом
проводнике
Не меняется

4.

Актуализация знаний.1. Почему раньше удлинитель исправно работал, а
Актуализация знаний.
тут вдруг загорелся?
2. Какое явление произошло?
3. Какой закон необходимо исследовать для
теоретического объяснения данного явления?

6. Вывод 1:Закон Ома для участка цепи:

сила тока в участке цепи прямо
пропорциональна напряжению
на концах этого участка и
обратно пропорциональна его
сопротивлению.

7. Вольт-амперная характеристика проводника

График, выражающий зависимость
силы тока от напряжения, называется
вольт-амперной характеристикой
проводника.

9. Вывод 2:Закон Ома для полной цепи:

• Закон Ома для участка цепи
рассматривает только данный участок
цепи, а закон Ома для полной цепи
рассматривает полное сопротивление всей
цепи.
• Оба закона Ома показывают зависимость
силы тока от сопротивления – чем больше
сопротивление, тем меньше сила тока и
наоборот.

10. Закон Ома для полной цепи

Я брал куски цилиндрической проволоки произвольной
длины из различных материалов и помещал их
поочередно в цепь…
Георг Ом
…открытие Ома было скептически воспринято в научных
кругах. Это отразилось и на развитии науки – скажем, законы
распределения токов в разветвленных цепях были выведены
Г. Кирхгофом лишь двадцать лет спустя, — и на научной
карьере Ома
Вопрос
1. Какие величины
связывает закон Ома?
2. Как формулируется
закон Ома?
3. Напишите формулу
закон Ома
4. Напишите единицы
измерения
5. Вывод
Закон Ома для
участка цепи
Закон Ома для
полной цепи
Любые неэлектростатические силы, действующие на заряженные
частицы, принято называть сторонними силами. Т.о. на заряды
внутри источника, помимо кулоновских, действуют сторонние силы
и осуществляют перенос заряженных частиц против кулоновских.


+
А


е
е

Fст

В
Силы электростатического
происхождения не могут
создать и поддерживать на
концах проводника
постоянную разность
потенциалов
(электростатические силы
– консервативные силы)
происхождения, способные поддерживать разность
потенциалов на концах проводника

14.

Характеристики источника тока

15. Роль источника тока

Чтобы электрический ток в проводнике не
прекращался, необходимо использовать
устройство, которое переносило бы заряды
от одного тела к другому в направлении,
противоположном
тому,
в
котором
переносятся заряды электрическим полем. В
качестве такого устройства используют
источник тока.

16. Источники электрического тока

Источник тока — это устройство, в котором происходит преобразование
какого-либо вида энергии в электрическую энергию.
Существуют различные виды источников тока:
Механический источник тока
— механическая энергия преобразуется в электрическую энергию.
К ним относятся : электрофорная машина (диски машины приводятся во
вращение в противоположных направлениях. В результате трения щеток
о
диски
на
кондукторах
машины
накапливаются
заряды
противоположного знака), динамо-машина, генераторы.
Тепловой источник тока
— внутренняя энергия преобразуется в электрическую энергию.
Например, термоэлемент — две проволоки из разных металлов
необходимо спаять с одного края, затем нагреть место спая, тогда
между другими концами этих проволок появится напряжение.
Применяются
в
термодатчиках
и
на
геотермальных
электростанциях.
Световой источник тока
— энергия света преобразуется в электрическую энергию.
Например, фотоэлемент — при освещении некоторых полупроводников
световая энергия превращается в электрическую. Из фотоэлементов
составлены солнечные батареи.
Применяются в солнечных батареях, световых датчиках, калькуляторах,
видеокамерах.
Химический источник тока
— в результате химических реакций внутренняя энергия преобразуется в
электрическую.
Например, гальванический элемент — в цинковый сосуд вставлен угольный
стержень. Стержень помещен в полотняный мешочек, наполненный смесью
оксида марганца с углем. В элементе используют клейстер из муки на
растворе нашатыря. При взаимодействии нашатыря с цинком, цинк
приобретает отрицательный заряд, а угольный стержень — положительный
заряд. Между заряженным стержнем и цинковым сосудом возникает
электрическое поле. В таком источнике тока уголь является положительным
электродом, а цинковый сосуд — отрицательным электродом.
Из нескольких гальванических элементов можно составить батарею.
Источники тока на основе гальванических элементов применяются в
бытовых автономных электроприборах, источниках бесперебойного
питания.
Аккумуляторы — в автомобилях, электромобилях, сотовых телефонах.

19. Закон Ома для полной цепи

Сила тока (А)
I
Сопротивление
нагрузки (Ом)
R r
Сила тока в цепи прямо
пропорциональна электродвижущей силе
источника тока и обратно
пропорциональна сумме электрических
сопротивлений внешнего и внутреннего
участков цепи.
ЭДСэлектродвижущая
сила источника тока
(В)
Внутреннее
сопротивление
источника тока
(Ом)

20. Проведите аналогию

I
R r
U
I
R

21. Если на участке цепи не действует ЭДС (нет источника тока)

U=φ1-φ2
Если концы участка, содержащего источник тока, соединить,
то их потенциал станет одинаков
U=ε
В замкнутой цепи напряжение на внешнем и внутреннем ее
участках равно ЭДС источника тока
ε=Uвнеш+Uвнутр

22.

Короткое замыканиеПри коротком замыкании R → 0,
сила тока
I
R r
I кз
r

23. Виды предохранителей


Плавкие
Автоматические
Сетевые фильтры
Щитки автоматические
Щиток автоматический

24. Вычислите токи короткого замыкания

Источник тока
Гальванический
элемент
Аккумулятор
Осветительные
сети
ε,В
r, Ом
Iк.з., А
1,5
1
1,5
6
0,01
600
100
0,001
100 000
1.
Вычислите силу тока в спирали электрической
плитки, включенной в сеть с напряжением 220В,
если сопротивление спирали равно 100 Ом.
2. Сила тока , проходящая через нить лампы 0,3 А,
напряжение лампы 6 В. Какое электрическое
сопротивление нити лампы?
3. Сила тока в цепи 2 А, сопротивление резистора 110
Ом. Чему равно напряжение в цепи?

26. Решение задач:

№1 Гальванический элемент с ЭДС E = 5,0 В и
внутренним сопротивлением r = 0,2 Ом замкнут на
проводник сопротивлением R = 40,0 Ом. Чему равно
напряжение U на этом проводнике?
№2 К аккумулятору с ЭДС 12 В
и внутренним сопротивлением r =0,5 Ом,
подключили лампочку сопротивлением R=100 Ом.
Определить силу тока в цепи.
№3 Определить ЭДС источника тока с внутренним
сопротивлением r = 0,3 Ом, если при подключении
к клеммам источника тока параллельно соединенных
резисторов R1=10 Ом и R2=6 Ом сила тока в цепи:
I=3 A.

27. Решение задач:

№1 Гальванический элемент с ЭДС E = 5,0 В и
внутренним сопротивлением r = 0,2 Ом замкнут на
проводник сопротивлением R = 40,0 Ом. Чему равно
напряжение U на этом проводнике?
Ответ: U = 4,97 В.
№2 К аккумулятору с ЭДС 12 В
и внутренним сопротивлением r =0,5 Ом,
подключили лампочку сопротивлением R=100 Ом.
Определить силу тока в цепи.
Ответ: 0,119 А
№3 Определить ЭДС источника тока с внутренним
сопротивлением r = 0,3 Ом, если при подключении
к клеммам источника тока параллельно соединенных
резисторов R1=10 Ом и R2=6 Ом сила тока в цепи:
I=3 A.
Ответ: 12,15В
• 1 Формула выражающая закон Ома для замкнутой
цепи записывается как:
а) I=U/R
б) I
в)
I
R r
R r 2
г) I
R r
2.Ток короткого
формуле:
U
Ik
R
а)
б)
Ik r
в)
Ik
г)
U
Ik
r
r
замыкания
можно
рассчитать
по

30. Тест (готовимся к ЕГЭ)

3.ЭДС аккумулятора с внутренним
сопротивлением r =0,2 Ом, при
подключении к нему сопротивления
R=5 Ом равно…
По цепи протекает ток I=1,5 A.
А) 3 В
Б) 12В
В) 7,8 В
Г) 12,2В

31. Тест (готовимся к ЕГЭ)

4.Какое внутреннее сопротивление имеет источник
тока с ЭДС 12 В, если при замыкании его
параллельно соединенными резисторами R 13
1
Ом и R 7 Ом в цепи протекает ток I=2 A.
2
А) 26 Ом
Б) 1,45 Ом
В) 12 Ом
Г) 2,45 Ом

32. Ответы на тест:

• №1
• Г
№2
В
№3
В
№4
Б

33. Рефлексия

А. Мне все понравилось. Я все понял
Б. Мне понравилось, но я не все понял
В. Все как всегда, ничего необычного
Г. Мне не понравилось

34. Домашнее задание

§ 107-108 читать,упр 19 №5,6.
Задача (на дом):
При подключении лампочки к батарее
элементов с ЭДС 4,5 В вольтметр
показал напряжение на лампочке 4 В, а
амперметр – силу тока 0,25 А. Каково
внутреннее сопротивление батареи?
Спасибо за урок!

Закон Ома

Закон Ома
Далее: Проводники Вверх: Электростатика Предыдущий: Электростатическая энергия Все мы знаем простейшую версию закона Ома:
(609)

где — падение напряжения на резисторе сопротивления при токе течет через него. Обобщим этот закон так, чтобы он выражался в терминах из и , а не и . Рассмотрим длину проводника одинакового сечения с током течет по нему. В общем, ждем электрики. сопротивление проводника пропорционально его длине и обратно пропорциональна его площади ( т.е. , электрическую тяжелее протолкнуть ток вниз длинный а не короткий провод, и легче протолкнуть ток вниз по широкому, а не чем узкий проводящий канал.) Таким образом, мы можем написать

(610)

Постоянная называется удельным сопротивлением и измеряется в единиц ом-метров. Закон Ома становится
(611)

Однако (предположим, что проводник выровнен по оси) и , поэтому приведенное выше уравнение сводится к
(612)

В -оси нет ничего особенного (в изотропной проводящей среде), поэтому предыдущая формула немедленно обобщается на
(613)

Это векторная форма закона Ома.

Заряд, проходящий через падение напряжения, получает энергию от электрическое поле. В резисторе эта энергия рассеивается в виде тепла. Этот вид отопления называется омический нагрев . Предположим, что заряды в единицу времени проходят через резистор. Ток течет, очевидно. Суммарная энергия, полученная заряды, проявляющиеся в виде тепла внутри резистора,


(614)

в единицу времени. Таким образом, мощность нагрева
(615)

Уравнения (614) и (615) обобщаются на
(616)

где теперь мощность, рассеиваемая на единицу объема в резистивной среде.

Далее: Проводники Вверх: Электростатика Предыдущий: Электростатическая энергия
Ричард Фицпатрик 2006-02-02

Закон Ома — 42 Электроника

Закон Ома — 42 Электроника

Эта запись в блоге о законе Ома является выдержкой из уровня A нашей программы «Введение в робототехнику». Уровень A охватывает создание схем с использованием Raspberry Pi и написание общих команд кода на Python. Он содержит 18 уроков, в том числе более 70 видео и 45 проектов и мероприятий. Примеры уроков, а также их полный объем и последовательность для уровня А можно найти здесь.

 

Напряжение, ток и сопротивление в цепи математически связаны. Закон Ома можно использовать для определения напряжения, сопротивления или тока любого компонента в цепи. Если у вас есть два из трех значений, вы можете рассчитать третье, используя:

В = I x R или напряжение = ток x сопротивление


Чтобы использовать формулу, убедитесь, что вы конвертируете все значения в следующие единицы измерения.

:

  • V для вольт
  • R для Ом
  • I выражается в амперах. Примечание. Это наиболее проблематичная единица измерения, так как ток часто измеряется в миллиамперах и должен быть преобразован перед использованием его в законе Ома, поэтому 10 мА станут 0,010 ампер в формуле
  • .

Что делать, если вам нужно вычислить ток или сопротивление? Формулу можно использовать для решения следующих задач:

I = V / R или R = V / I


В будущем при разработке собственных схем эта формула пригодится при выборе номинала резистора для помочь ограничить ток для электронных компонентов в вашей цепи.

 

Пример расчета по закону Ома

Предположим, у вас есть светодиод с напряжением Vf 2,8 В, ограничением тока 10 мА и напряжением питания 3 вольта. Формула, которую вы должны использовать: сопротивление равно напряжению питания минус прямое напряжение светодиода, деленное на желаемый ток в амперах.

Начните с вычитания Vf светодиода 2,8 из напряжения питания 3 и деления на 10 мА или 0,010. Это оставляет вам 0,2, деленное на 0,01, что равно 20 или 20 Ом. Это означает, что при напряжении питания 3 В и светодиоде с напряжением Vf 2,8 В вам понадобится резистор 20 Ом, чтобы ограничить ток через светодиод до 10 мА.

10 мА значительно ниже предела в 20 мА, однако для включения светодиодов требуется очень небольшой ток, поэтому лучше использовать его как можно меньше. Позже в этом курсе вы будете питать макетную плату с помощью Raspberry Pi. Поскольку Raspberry Pi — это небольшой компьютер, он может выдавать только ограниченное количество тока, поэтому хорошей идеей является сведение тока светодиода к минимуму.

Используйте закон Ома, чтобы определить, какой ток допустим для светодиода при использовании резистора 220 Ом и источника питания 3 В.

Используя эту формулу, 220 Ом ограничивают ток светодиода до 0,0009 ампер или 0,9 мА. Для сравнения, резистор на 20 Ом ограничит ток светодиода до 0,010 ампер или 10 мА.

Это означает, что если ваш источник напряжения может подавать только 10 мА тока, вы можете запитать один светодиод с помощью резистора на 20 Ом или 11 светодиодов с помощью резистора на 220 Ом.

Между ними нет большой разницы в яркости светодиодов, поэтому максимальное ограничение тока является лучшим вариантом, особенно при питании светодиодов с помощью Raspberry Pi.

Как видно из этой фотографии, резистор 20 Ом, питающий светодиод при токе 10 мА, лишь немного ярче, чем резистор 220 Ом, питающий светодиод при токе 0,9 мА. Если ваше приложение не требует очень яркого светодиода, который требует большого тока, вы обычно можете обойтись без питания светодиодов, используя очень небольшой ток.

Не волнуйтесь, если вы не совсем понимаете математику. При работе с проектами, которые вы найдете в курсе «Введение в робототехнику», или для большинства проектов, которые вы найдете в Интернете, используемый резистор уже будет указан. Скорее, цель состоит в том, чтобы вы поняли, что напряжение, ток и сопротивление связаны математически, и что это уравнение можно использовать при проектировании цепей.

 

Эта запись в блоге о законе Ома является выдержкой из уровня A нашей программы «Введение в робототехнику». Уровень A охватывает создание схем с использованием Raspberry Pi и написание общих команд кода на Python. Он содержит 18 уроков, в том числе более 70 видео и 45 проектов и мероприятий. Примеры уроков, а также их полный объем и последовательность для уровня А можно найти здесь.

Эрик Фейкерт

  • Электроника /
  • Уровень А