23. Устройство и принцип работы однофазного асинхронного двигателя.
В быту и в технике, там, где нужны двигатели небольшой мощности, часто используются так называемые однофазные асинхронные двигатели. Однофазный двигатель отличается от трехфазного тем, что его статор имеет одну обмотку (иногда две) и питается от однофазной сети. Ротор этих двигателей ввиду их малой мощности всегда выполняется коротко-замкнутым в виде беличьего колеса и ничем не отличается от ротора трехфазного двигателя.
Если обмотку однофазного двигателя включить в сеть, то протекающий по ней переменный ток будет возбуждать в машине, пока ее ротор неподвижен, переменное магнитное поле, ось которого тоже неподвижна. Это поле будет индуцировать в обмотке ротора токи, взаимодействие которых с магнитным полем приведет к возникновению сил, противоположно направленных в правой и левой половинах ротора, вследствие чего результирующий момент, действующий на ротор, окажется равным нулю. Следовательно, при наличии одной обмотки начальный пусковой момент однофазного двигателя
равен нулю, т. е. такой двигатель самостоятельно не сможет тронуться с места. Однако, если с помощью какой-либо внешней силы сообщить ротору некоторую скорость вращения, то он начнет вращаться.
Пуск в ход однофазных двигателей осуществляется с помощью того или иного пускового устройства. Работа этих устройств основана на использовании свойства двух магнитных потоков, смещенных в пространстве на 90° и сдвинутых по фазе на пи/2, создавать вращающее магнитное поле.
8.8.1. Однофазные двигатели с пусковой обмоткой
На статоре такого двигателя кроме рабочей обмотки РО находится так называемая пусковая обмотка ПО, повернутая в пространстве относительно рабочей обмотки на 90° (рис.
8.14).
В момент пуска пусковая обмотка замыкается кнопкой К, и в результате трансформаторной связи в ней возникает ток, сдвинутый по фазе относительно питающего тока почти на пи/2. Эти токи создают вращающее магнитное поле, которое и разгоняет ротор. После разгона пусковая обмотка размыкается и в дальнейшей работе двигателя не участвует. Двигатели с таким пуском встречаются иногда в бытовых стиральных машинах.
8.8.2. Конденсаторные двигатели
В этих двигателях рабочая и пусковая обмотки статора также смещены на статоре друг относительно друга на 90°. На время пуска пусковую обмотку ПО подключают к сети с помощью кнопки К через конденсатор С (рис. 8.15), благодаря которому ток в пусковой обмотке отличается по фазе от тока в рабочей обмотке на пи/2, чем и обеспечивается разгон ротора.
В некоторых двигателях используются два параллельно включенных конденсатора
запуске, а один из них (С2) остается включенным и во время
работы двигателя, благодаря чему обе обмотки являются рабочими (рис. 8.16).
Конденсаторные двигатели имеют лучшие пусковые и рабочие характеристики по сравнению с другими однофазными двигателями, поэтому они получили наиболее широкое распространение.
8.8.3. Однофазные двигатели с расщепленными полюсами
Статор двигателей очень малой мощности часто делают с явно выраженными полюсами, причем каждый полюс разрезан, а на одну его часть надето медное кольцо, играющее роль пусковой обмотки (рис. 8.17). Под действием переменного магнитного потока, создаваемого обмоткой статора, в кольце индуцируется ЭДС, отстающая по фазе от потока на л/2. Эта ЭДС создает в кольце ток. Поскольку сопротивление кольца практически чисто активное, этот
ток совпадает по фазе с ЭДС и отстает от потока обмотки тоже на пи/2.
Этот ток в кольце создает свой магнитный поток, совпадающий с ним по фазе. Таким образом, под полюсом действуют два сдвинутых по фазе на пи/2 магнитных потока, образуя вращающееся магнитное поле. Это магнитное поле и увлекает за собой короткозамкнутый ротор.
Двигатели с расщепленными полюсами широко применяются для маломощного привода (кинопроекторы, вентиляторы и т.п.).
Включение трехфазных двигателей в однофазную сеть
г
Во многих случаях трехфазные асинхронные двигатели можно включать в однофазную сеть переменного тока.На рис. 8.18, а, б показаны схемы включения трехфазных двигателей, у которых выведены лишь по три конца обмоток. Конденсатор С создает дополнительный сдвиг по фазе
между током и напряжением, обеспечивая начальный пусковой момент. Величина этого конденсатора рассчитывается или подбирается так, чтобы обеспечить примерное равенство всех трех фазных токов. На рис. 8.18 в, г показаны схемы включения трехфазных асинхронных двигателей, у которых выведены все шесть концов статорной обмотки. Включение трехфазных двигателей в однофазную сеть позволяет получать от них лишь 40-50 % от их номинальной мощности в трехфазном режиме.
Однофазный асинхронный двигатель: принцип работы
Особенности устройства и работы
Двигатель имеет простое устройство. Статор укомплектован двумя обмотками: первая обмотка — основная, т.е. рабочая, вторая обмотка — пусковая, которая работает только во время запуска мотора.
Если сравнивать с другими двигателями, у однофазного асинхронного мотора нет момента впуска. Если присмотреться, ротор внешне напоминает клетку для грызунов. Ток одной фазы создает магнитное поле, которое состоит из двух полей. При включении двигателя ротор остается без движения.
Расчет результирующего момента при неподвижном роторе находится в основе магнитных полей, которые образуют два вращающих момента.
Расчет:
Mn = М1 — М2
М — противоположные моменты;
n — частота вращения.
Асинхронный однофазный двигатель: принцип работы
При задействовании неподвижной части наступает вращающий момент. Поскольку он возникает только после запуска, мотор укомплектован отдельным пусковым устройством.
У однофазного асинхронного мотора есть немало отличий от, к примеру, трехфазных. Если говорить об основных, стоит отметить особенности статора. На пазах предусмотрена двухфазная обмотка: основная, т.е. рабочая, и пусковая.
Магнитные оси расположены друг к другу перпендикулярно. При работе основная фаза не вызывает вращение ротора, ось магнитного поля остается неподвижной.
Для расчета обмоток статора разработаны специальные программы.
Какие бывают типы однофазных двигателей
На сегодня существуют следующие типы однофазных асинхронных моторов: с конденсаторным и бифилярным механизмом. У каждого из механизмов свои особенности, достоинства и недостатки.
Бифилярный пуск
Бифилярная обмотка в постоянном режиме не используется, поскольку при таком использовании падает значение КПД. С увеличением оборотов, она обрывается. Обмотка пуска включается на пару секунд, расчет работы по 3 сек до 30 раз в час. Если будет превышен запуск, витки перегреются.
Конденсаторный пуск
Фаза расщепленная, цепь вспомогательной обмотки начинает работать при запуске. Для того, чтобы был достигнут пусковой момент, необходимо создать круговое магнитное поле. Для наилучшего пускового момента используется конденсатор. Моторы с включенными конденсаторами в цепи называются конденсаторными и работают на основе вращения поля магнитов. У конденсаторного мотора предусмотрено две катушки, которые находятся под постоянным напряжением.
Основные принципы работы
В основе принципа работы находится короткозамкнутый ротор. Магнитное поле имеет вид двух кругов с противоположными последовательностями, они двигаются в разные стороны с одинаковой скоростью. Достаточно разогнать ротор в нужную сторону, чтобы он продолжил движение в ту же сторону.
Именно поэтому для запуска однофазного асинхронного двигателя используют кнопку пуска. С ее нажимом статор начинает работу. Токи заставляют вращаться магнитное поле, в воздушном зазоре появляется магнитная индукция. Всего спустя несколько секунд разгон ротора равняется номинальной скорости.
Если кнопку пуска отпустить, электродвигатель переходит с режима двух фаз на одну фазу. Однофазный режим поддерживается за счет переменного поля магнитов, которое из-за скольжения вращается быстрее ротора.
Схема центробежного выключателя
Для эффективной работы однофазного асинхронного двигателя принято встраивать центробежный выключатель, а также реле с замыкающими контактами. Выключатель прерывает пуск статорной обмотки при достижении номинальной скорости ротора. Тепловое реле отключает двухфазную обмотку при перегреве. Это оптимальная комплектация мотора, которая обеспечит безопасную и надежную работу оборудования на долгие годы.
Изменение направления роторного вращения происходит при перемене направления тока в любой из фаз обмотки при запуске. Для этого достаточно нажать пусковую кнопку и переустановить одну или две металлические пластины. Для образования фазового сдвига необходимо добавить в цепь конденсатор или дроссель, резистор.
При запуске двигателя работает две фазы, потом — только одна. Как видите, асинхронный однофазный двигатель принцип работы имеет достаточно простой и понятный. В отличие от других моторов, с ним просто и легко работать.
В чем достоинства однофазного асинхронного двигателя:
- доступная цена;
- простая конструкция;
- небольшой вес, компактность;
- большая двигательная способность из-за отсутствия коллектора;
- питание от синусоидальной сети.
В чем недостатки однофазного асинхронного двигателя:
- небольшой диапазон регулировки частоты вращения;
- отсутствие или небольшой пусковой момент, низкий КПД.
Асинхронный двигатель. Устройство и принцип действия однофазного и трехфазного асинхронного электродвигателя.
Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели — это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.Устройство и принцип действия асинхронных электродвигателей
1. Устройство трехфазных асинхронных двигателей
Трехфазный асинхронный двигатель (АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра — намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.
Рис. 1 Магнитопровод статора
В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).
Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник
Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.
Рис. 3. Ротор аснхронного двигателя с короткозамкнутой обмоткой
Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.
Рис. 4. Общий вид асинхронного двигателя серии 4А
Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения — это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.
2. Принцип действия трехфазных асинхронных двигателей
Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.
Рис. 5. Опыт Араго, объясняющий принцип работы асинхронного двигателя
Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом — вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.
Алиев И.И.
Однофазные двигатели ~ Электропривод — информационный ресурс по электроприводу
Однофазные асинхронные двигатели чаще всего применяются в бытовой технике. Система электроснабжения построена так, что в наш дом подводится только однофазная электрическая сеть. Поэтому в бытовых сетях широко используются однофазные асинхронные двигатели. Однофазные асинхронные электродвигателям переменного тока отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания. Промышленность выпускает однофазные двигатели на небольшие мощности (до 0,5 кВт). Их сфера применения включает в себя вентиляторы, компрессоры холодильников, приводы барабанов стиральных машин, и другая бытовая техника, где не требуется высокая скорость вращения.
Устройство однофазного асинхронного двигателя
Однофазный асинхронный двигатель, обычно имеет на статоре как минимум две обмотки. Друг от друга они сдвинуты на 90 электрических градусов по току, для получения пускового момента Одна из них выступает как рабочая, другая как пусковая. Двигатели получили название однофазных, так как они предназначены для питания от однофазной сети переменного тока.
Кроме того, существует много схем питания трехфазных двигателей от однофазной сети. Для получения вращающегося магнитного поля пусковую обмотку питают через фазосдвигающее устройство, в качестве которого используется резистор или конденсатор. В качестве резистора иногда используют пусковую обмотку, намотанную тонким проводом и большим числом витков, для увеличения сопротивления. В двигателях с пусковым резистором магнитное поле эллиптическое; в двигателях с пусковым конденсатором поле ближе к круговому. Сразу после запуска, пусковая обмотка отключается и двигатель работает как однофазный однообмоточный. Его результирующее поле резко эллиптическое.
По этой причине однофазные двигатели имеют низкие энергетические показатели и малую перегрузочную способность. В двигателях с постоянно включенным конденсатором емкость последнего выбирается, как правило, из условий обеспечения кругового поля в номинальном режиме. Для улучшения пусковых свойств параллельно рабочему конденсатору на время пуска подключается пусковой конденсатор.
В электроприводах с легкими условиями пуска часто применяются однофазные АД с экранированными полюсами. В таких двигателях роль вспомогательной фазы играют размещаемые на явно выраженных полюсах статора короткозамкнутые витки. Поскольку пространственный угол между осями главной фазы (обмотки возбуждения) и витка много меньше 90°, поле в таком двигателе резко эллиптическое. Поэтому пусковые и рабочие свойства двигателей с экранированными полюсами невысоки. Используются однофазные асинхронные двигатели с короткозамкнутым ротором: с повышенным сопротивлением пусковой фазы, с пусковым конденсатором, с рабочим конденсатором, с тем и другим, а также двигатели с экранированными полюсами. Однофазный асинхронный электродвигатель имеют тот же принцип действия, что и трёхфазный электродвигатель. Основным его недостатком является более низкий пусковой момент.
Принцип работы однофазных асинхронных электродвигателей
Однофазный асинхронных электродвигатель, как и трехфазный, работает по принципу электромагнитной индукции. Однако между ними есть и различия:
— однофазные электродвигатели, обычно работают при более низком напряжении 220 В;
— поле статора однофазного двигателя не вращается;
В каждом полупериоде синусоиды, напряжение меняет свой знак и соответственно от отрицательного к положительному меняются полюса. В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это объясняет, почему однофазный асинхронный электродвигатель не может быть пущен самостоятельно.Однако, его можно было бы запустить механически, провернув вал ротора с последующим немедленным подключением питания, как это делалось в старых проигрывателях грампластинок. Сейчас такой способ запуска не применяется, а пуск всех электродвигателей осуществляется автоматически.
Ограничения применения однофазных асинхронных двигателей
При использовании однофазных электродвигателей необходимо помнить, что существуют некоторые ограничения при их применении:
- Однофазные электродвигатели нельзя использовать в режиме холостого хода. Так как при малых нагрузках они сильно перегреваются;
- Не рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки;
- Так как у электродвигателя вращающееся магнитное поле асимметрично, то полный ток в одной или двух обмотках может превышать полный тока в сети. Такие токи приводят к перегреву обмоток и выходу их из строя;
О напряжении
Важно напомнить о том, что величина напряжения на пусковой обмотке электродвигателя может превышать значение сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы.
§82. Однофазные и двухфазные асинхронные двигатели
Однофазные и двухфазные асинхронные двигатели.
Принцип действия однофазного двигателя. В однофазном асинхронном двигателе обмотка статора расположена в пазах, занимающих примерно 2/3 окружности, соответствующей паре полюсов (рис. 270, а). По этой причине мощность однофазного двигателя также составляет около 2/3 мощности трехфазного двигателя с теми же габаритными размерами.
Однофазная обмотка статора 2 создает пульсирующее магнитное поле, которое можно представить в виде двух полей, вращающихся в разные стороны с частотой n1 (рис. 270,б). Поле 5, которое вращается в том же направлении, что и ротор 3, называется прямым полем; поле 6, вращающееся в противоположном направлении,— обратным полем. Эти поля, воздействуя на ротор, создают два противоположно направленных электромагнитных момента Мпр и Мобр. Следовательно однофазный асинхронный
Рис. 270. Разрез однофазного асинхронного двигателя (а), прямое и обратное вращающиеся магнитные поля (б)
Рис. 271. Зависимости М(s) однофазного двигателя от прямого и обратного вращающихся полей
двигатель может быть представлен в виде двух совершенно одинаковых трехфазных двигателей, роторы которых тесно связаны друг с другом, а обмотки подключены к трехфазной сети так, что их магнитные поля вращаются в противоположных направлениях.
Однако если ротор раскрутить в каком-либо направлении, то моменты Мпр и Мобр не будут равны. В этом случае на вал двигателя будет действовать некоторый результирующий момент Mрез, который обеспечит его дальнейшее вращение в заданном направлении. Объясняется это тем, что ток в обмотке ротора, созданный обратным полем, оказывает сильное размагничивающее действие и существенно ослабляет обратное поле.
Из анализа кривых М (s), показанных на рис. 271, следует, что:
однофазный двигатель не имеет начального пускового момента так как при s=1, т. е. при неподвижном роторе, результирующий момент Мрeз = 0;
частота вращения однофазного двигателя при холостом ходе меньше, чем у трехфазного двигателя, из-за наличия тормозящего момента Мобр. По этой же причине однофазный двигатель имеет худшие рабочие характеристики: меньший к. п. д., меньшую перегрузочную способность, повышенное скольжение при номинальной нагрузке.
Пусковые устройства. Чтобы получить пусковой момент, однофазные двигатели снабжают пусковой обмоткой Я, расположенной со сдвигом на 90° по отношению к основной рабочей обмотке Р (рис. 272,а и б). На период пуска пусковую обмотку присоединяют к сети через фазосдвигающие элементы — конденсатор или резистор. После окончания разгона двигателя пусковую обмотку отключают, и двигатель продолжает работать как однофазный. Поскольку пусковая обмотка работает лишь короткое время, ее изготовляют из провода меньшего сечения по сравнению с рабочей обмоткой и укладывают в меньшее число пазов.
Если использовать в качестве фазосдвигающего элемента конденсатор С (рис. 273, а), то можно получить режим работы при пуске, близкий к симметричному, т. е. получить круговое вращающееся поле.
При легких условиях пуска (небольшой нагрузочный момент в пусковой период) применяют двигатели с пусковым резистором R (рис. 273,б). Наличие резистора в цепи пусковой обмотки обеспечивает меньший сдвиг фаз ?1 между напряжением и током в этой обмотке, чем сдвиг фаз ?2 в рабочей обмотке. В связи с этим
Рис. 272. Расположение обмоток статора в двухфазной двухполюсной машине
токи в рабочей и пусковой обмотках оказываются сдвинутыми по фазе на угол ?1 – ?2 и образуют несимметричное (эллиптическое) вращающееся поле, благодаря чему и возникает пусковой момент. Однофазные двигатели с конденсаторным пуском и двигатели с пусковым резистором имеют высокую эксплуатационную надежность.
Поскольку включение второй обмотки существенно улучшает характеристики двигателя, в некоторых случаях применяют двухфазные двигатели, в которых обе обмотки включены постоянно. Если сдвиг по фазе 90° между токами в фазах А и В (рис. 274) осуществляется путем включения в одну из них конденсаторов, то такие двигатели называются конденсаторными.
В двухфазных двигателях обе обмотки А и В занимают, как правило, одинаковое число пазов и имеют равную мощность. При пуске конденсаторного двигателя рационально иметь увеличенную емкость Ср + Сп. После разгона двигателя и уменьшения тока часть конденсаторов Сп отключают, чтобы увеличить емкостное сопротивление и при номинальном режиме (когда ток двигателя становится меньшим, чем при пуске) обеспечить режим работы дви-
Рис. 273. Схемы пуска однофазного асинхронного двигателя при использовании конденсатора (а) и резистора (б)
Рис. 274. Схема конденсаторного асинхронного двигателя
Рис. 275. Устройство однофазного асинхронного двигателя с беличьей клеткой на роторе (а) и с полым немагнитным ротором (б): 1-обмотка статора; 2 – корпус; 3 – внешний статор; 4 – ротор; 5 — подшипниковый щит; 6 — вал; 7 — внутренний статор
гателя в условиях, близких условиям работы при круговом вращающемся поле.
Устройство. Однофазные и двухфазные асинхронные двигатели устроены также, как и трехфазные: в них имеются однофазные или двухфазные обмотки статора и короткозамкнутый ротор с беличьей клеткой (рис. 275, а). Широкое распространение получили однофазные двигатели с полым немагнитным ротором (рис. 275, б) и внешним статором, на котором расположены две обмотки, сдвинутые в пространстве на 90°. Ротор выполнен в виде тонкостенного полого цилиндра из алюминия. Для уменьшения магнитного сопротивления магнитопровода двигателя имеется внутренний статор, набираемый из листов электротехнической стали, так же, как и внешний статор.
Полый ротор можно представить в виде совокупности элементарных проводников. Вращающееся магнитное поле, создаваемое обмоткой статора, индуцирует в каждом элементарном проводнике полого ротора э. д. с, под действием которой по ним протекают вихревые токи. В результате взаимодействия этих токов с вращающимся полем возникают электромагнитные силы и вращающий момент.
Асинхронный двигатель — принцип работы устройства, схема частотного преобразователя
Современное промышленное производство, как постоянно динамично развивающаяся система, требует применения для решения различных задач новых и инновационных технических решений. Вместе с тем, многие производства и сейчас используют в качестве двигателей станков, машин и различных механизмов старых надежных асинхронных двигателей.
Среди применяемых в производстве электронных систем и электрических машин, особое место занимает асинхронный двигатель – электрическая с электронным блоком управления машина, использующая переменный ток для преобразования электрической энергии в механическую.
Более глубокое раскрытие этого понятия основано на принципе использования магнитного поля для создания вращательного движения – статор создает магнитное поле, несколько большее по частоте, чем частота магнитного поля вращающегося ротора.
Магнитное поле заставляет вращаться ротор, при этом, его частота вращения несколько меньше, чем изменение магнитного поля статора, он как бы пытается догнать образовываемое статором поле.
Двигатели такого принципа являются наиболее распространенными видами электрических машин – это наиболее простой и экономичный тип преобразования электрической энергии переменного тока во вращательную механическую энергию.
Как и у большинства технически сложных механизмов, у таких моторов есть масса положительных сторон, главная из которых является отсутствие электрического контакта между подвижными и неподвижными частями машины.
Это достоинство асинхронников и является основным при выборе моделей двигателей в конструкторских разработках – отсутствие коллектора и щеток, контакта между статором и ротором значительно повышают надежность и удешевляют производство таких моторов.
Однако, следует заметить, что это правило справедливо только к одному из видов (хотя и наиболее распространенному виду) – двигателям с короткозамкнутым ротором.
Описание схемы
Работу асинхронного электродвигателя, предназначенного для обычной электросети переменного электрического тока можно описать следующей схемой:
- На обмотки статора двигателя подается переменный электрический ток от каждой фазы (в случае, если двигатель трехфазный, если ток однофазный, то включение остальных обмоток происходит посредством включения в схему пусковых конденсаторов, играющих роль имитации трехфазной сети).
- В результате подачи напряжения, в каждой из имеющихся обмоток создается электрическое поле с частотой напряжения, и поскольку они имеют смещение на 120 градусов относительно друг друга, то происходит смещение подачи как во времени (даже ничтожно малого), так и в пространстве (тоже достаточно небольшого).
- Получившийся в результате вращающийся магнитный поток статора своей силой создает в роторе, вернее в его проводниках, электродвижущую силу.
- Созданный в статоре магнитный поток, взаимодействуя с магнитным полем ротора, создает пусковой момент – магнитное поле которого стремится повернуться в направлении магнитного поля статора.
- Магнитное поле постепенно нарастая и превышая так называемый тормозной момент, проворачивает ротор.
Таким образом, схемой работы асинхронного агрегата, является взаимодействие магнитного поля статора и токов, которые образуются этим самым магнитным полем в роторе двигателя.
Устройство
Устройство двигателя
Наиболее наглядно представить конструкцию агрегата можно на примере асинхронного двигателя, имеющего короткозамкнутый ротор, второй вид электромоторов имеет несколько иную конструкцию, это вызвано тем, что они используют промышленную сеть в 380 Вольт.
Основными составными частями такой электрической машины являются статор и ротор, которые не соприкасаются между собой и имеют воздушный зазор. Такая конструкция основных частей связана с тем, что в состав обеих основных частей электромотора входят так называемые активные части – состоящие из металлического проводника обмотка возбуждения.
Для каждой части имеются своя соответственно статорная и роторная обмотки и стальной сердечник – магнитопровод. Это основные части электродвигателя, принципиально необходимые для работы машины, все остальные части – корпус, подшипники качения, вал, вентилятор – это конструктивно необходимые, но абсолютно не влияющие на принцип работы прибора.
Они во многом играют важную роль, например, подшипники качения, обеспечивают возможность плавности хода, корпус защищает от механического воздействия на основные рабочие части, вентилятор обеспечивает обдув двигателя и отвод тепла, выделяемого при работе, но на принцип преобразования электрической энергии в механическую не влияют.
Итак, основными частями асинхронного электромотора, как электрической машины являются:
- Статор – основной элемент электромотора, состоящая из трехфазной (или многофазной) обмотки. Особенностью обмотки является определенный порядок расположения витков – проводники равномерно расположены в пазах, имеющих угол 120 градусов по всей окружности.
- Ротор – второй основной элемент агрегата, представляющий собой цилиндрический сердечник с залитыми алюминием пазами. Такая конструкция из-за своей особенности называется «беличья клетка» или короткозамкнутым типом ротора. В ней медные стержни замкнуты на концах кольцом с обеих сторон цилиндра.
Кроме самого простейшего вида асинхронного электромотора с простым ротором, к семейству асинхронных двигателей относятся и машины, которые имеют более сложную конструкцию, обмотки, у которых имеются как у статора, так и ротора.
Трехфазные обмотки, а конструктивно их по одной на каждую фазу, соединяются подобно обмоткам статора или «звездой» или «треугольником», и концы обмоток этих выводятся на контактные кольца, которые вращаются на валу, электрический ток на них передается через щетки из графита. Этот тип электродвигателей имеет большую мощность и применяется уже в промышленных машинах и станках.
Область применения
В виду особенности конструкции и простоты изготовления, подобные электромоторы нашли основное применение в машинах и механизмах в которых не требуется большое усилие и мощность при работе.
В основном, такие моторы устанавливаются практически на всех бытовых приборах:
- мясорубки;
- фены;
- электрические миксеры;
- бытовые вентиляторы;
- небольшие маломощные бытовые станки;
Трехфазные асинхронные моторы имеют различную мощность, от 150 Вт до нескольких киловатт, и применяются в основном в промышленности в качестве моторов для машин и механизмов.
Применение подобного типа моторов обусловлено приемлемым с точки зрения соотношения мощность/производительность, к тому же, как и их простейшие собраться такие двигатели не требуют большого внимания и кропотливого обслуживания, в особенности те типы корпуса, которые специально разработаны для работы в тяжелых условиях производства.
Виды
В виду различных конструкторских задач, стоящих перед разрабатываемыми машинами и механизмами в промышленном, серийном производстве, нашли свое применение асинхронные линейные электромоторы основных четырех видов:
Моторы для однофазной сети
С короткозамкнутым ротором.
Двигатели для двухфазной сети
С короткозамкнутым ротором.
Трехфазные асинхронные двигатели
С короткозамкнутым ротором.
Трехфазные двигатели
С фазным ротором.
Особенностью конструкции является заложенный принцип работы однофазного асинхронного двигателя – у него только одна обмотка статора рабочая. А вот для пуска используется дополнительная обмотка, ее назначение – подключение к сети посредством конденсатора. Такое подключение используется для создания начального сдвига фаз и пускового момента, проще говоря, для того, чтобы вал начал вращаться.
Второй тип электрических моторов – двухфазные двигатели, имеют две рабочие обмотки. Такое техническое решение позволяет наиболее эффективно работать от однофазной сети, используя фазосдвигающий конденсатор для получения вращающегося магнитного поля.
Трехфазные асинхронники, имеют в своем составе по одной обмотке на каждую фазу подаваемого напряжения – три рабочие обмотки с соответствующим сдвигом относительно друг друга на 120 градусов. Это позволяет при включении в трехфазную сеть, получить электрическое поле, приводящее в движение короткозамкнутый ротор.
Для четвертого трехфазного асинхронника с фазным ротором, статор устроен таким же образом – три обмотки с соединением по типу звезда.
Ротор, в отличие от беличьих колес, имеет уже полноценную обмотку с выводами на щетки. Подключение обмотки, которого производится как напрямую, так и через реостаты. Такие машины имеют наибольший пусковой момент и наибольшую развиваемую мощность.
Принцип работы частотных преобразователей
Вместе со всеми положительными качествами асинхронных двигателей, существует и неприятные моменты – слишком большой пусковой ток и невозможность регулировать скорость вращения ротора.
Решить эти проблемы можно, используя частотные преобразователи.
Принцип работы такого устройства в двух словах можно описать следующим образом: с помощью электронной схемы выпрямителя, сетевое напряжение сначала сглаживается, а после, фильтруется с помощью конденсаторов.
Использование таких частотных преобразователей при пуске, позволяет избежать обратного вращения вала двигателя, и существенно сократить (до 50%) потребляемую энергию.
Статья была полезна?
0,00 (оценок: 0)
Устройство и принцип работы однофазных электродвигателей
Однофазные асинхронные двигатели выпускают от 5 Вт до 10 кВт.
Схема устройства асинхронного двигателя.
Данные двигатели используются: в приводе стиральных машин, холодильников, центрифуг, заточных и небольших обрабатывающих станков и т.д.
Рисунок 1. Схема включения однофазного АД.
Отметим, что однофазные АД по сравнению с трехфазными двигателями обычно имеют несколько худшие технические характеристики. Мощность однофазного АД составляет не более 70% от мощности трехфазного АД в том же габарите. Однофазные АД, кроме того, имеют более низкую перегрузочную способность.
Схема включения однофазного АД представлена на рисунке 1.
Двигатель имеет на статоре две обмотки – основную (рабочую) и пусковую, которая используется для пуска АД. Ротор АД выполнен короткозамкнутым в виде беличьей клетки.
Рассмотрим принцип работы однофазного АД.
Чтобы понять, для чего нужна пусковая обмотка, рассмотрим пример, когда двигатель подключен к сети 220 В только на одну обмотку — рабочую.
Однофазный ток I1 этой обмотки создает пульсирующие магнитное поле, которое можно разложить на два поля Фа и Фв, имеющие равные амплитуды и вращающиеся в противоположные стороны с одинаковой скоростью.
При неподвижном роторе магнитные поля Фа и Фв создают одинаковые по величине, но противоположные по знаку крутящиеся моменты М1 и М2. Поэтому при пуске результирующий момент ( Мn=M1-M2 ) равен нулю, и двигатель не может прийти во вращение даже без нагрузки на вале.
Рисунок 2. Принципиальная схема однофазного асинхронного двигателя.
В связи с этим для пуска однофазного АД и используется дополнительная пусковая обмотка, которая позволяет получить вращающееся магнитное поле, за счет которого обеспечивается начальный пусковой момент, определяющий и направление вращения вала.
Принципиальная схема однофазного асинхронного двигателя представлена на рисунке 2.
Как известно из теории электрических машин, для получения вращающего магнитного поля на статоре двигателя должны быть расположены как минимум две обмотки, смещенные в пространстве на определенный угол и обтекаемые переменными токами.
В соответствии с этим пусковая обмотка укладывается на статоре двигателя со смещением ее оси на 90% по отношению к оси рабочей обмотки, а сдвиг токов обеспечивается включением в ее цепь дополнительного фазосдвигающего элемента, в качестве которого могут быть использованы: активный резистор, катушка индуктивности или конденсатор. Либо пусковая обмотка мотается с небольшим количеством витков в обратную сторону (бифиляр).
Дальше электродвигатель может работать только на рабочей обмотке, этот принцип применяется в холодильниках, где для запуска устанавливается пусковое реле, после запуска пусковая обмотка отключается (рисунок 3).
Рисунок 3. Принцип работы электродвигателя.
Есть схемы подключения, в которых пусковая обмотка остается в работе и после пуска, такой принцип применялся в стиральных машинках российского производства, и, кроме того, есть возможность работы — реверс, т.е. вращение в другую сторону.
К однофазным электродвигателям относятся и электроинструмент и бытовые электроприборы: дрели, шлифмашинки, пылесосы, триммеры (газонокосилки) и т.д., для которых необходимо вращение более 3000 об/мин, а максимальное вращение электродвигателя при частоте 50 Гц ограничено примерно 3000 об/мин.
Для эффективной работы вышеперечисленных агрегатов таких оборотов недостаточно. Поэтому были изобретены однофазные коллекторные электродвигатели с количеством оборотов в минуту более 3000.