СОЕДИНЕНИЕ «ЗВЕЗДА» И «ТРЕУГОЛЬНИК».
ПРИНЦИП ПОДКЛЮЧЕНИЯ. ОСОБЕННОСТИ И РАБОТА.
До сих пор мы изучали переменный ток, который создавался одной э. д. с. Такой ток называется однофазным переменным током. Система из трех однофазных токов, создаваемых тремя э. д. с. одной частоты, но сдвинутых один относительно другого на одну треть периода (120°), называется трехфазным током.
Нагрузка в трехфазной электрической цепи подразделяется на симметричную и несимметричную.
При симметричной нагрузке сопротивления фаз совпадают как по величине, так и по характеру.
Нагрузка считается несимметричной, когда сопротивление хотя бы одной из фаз не равно сопротивлениям других фаз.
Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей («звезда» и «треугольник»).
Схемы.
Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току. Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — «звезда» и «треугольник».
Схема «звезда».
Соединение различных обмоток по схеме «звезда» предполагает их подключение в одной точке, которая называется
Схема «треугольника».
При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на «треугольник», и соединение обмоток в ней идет последовательно друг с другом.
Нужно отметить отличие от схемы «звезда» в том, что в схеме «треугольник» система бывает только 3-проводной, так как общая точка отсутствует.
В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.
Фазные и линейные величины.
В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные.
Фазное напряжение – это его величина между концом и началом фазы приемника.
Фазный ток протекает в одной фазе приемника.
При применении схемы «звезда» фазными напряжениями являются Ua, Ub, Uc,
а фазными токами являются I a, I b, I c.
При применении схемы «треугольник» для обмоток нагрузки или генератора фазные напряжения — Uaв, Ubс, Ucа, фазные токи – I ac, I bс
Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.
В случае схемы «звезда» линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca.
В схеме «треугольник» получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.
Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.
Особенности схем.
Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.
Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.
Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.
Для этого можно применить некоторые методы:
Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.
В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.
В электромоторах целесообразно применение сразу двух схем — «звезда» и «треугольник». К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.
Построение векторных диаграмм ( см. видео по ссылке:
https://www.youtube.com/ ›watch?v=wcyQvK84lsU
youtube.com›watch?v=XBoF0gFU_FI)
Достоинства схем.
Соединение по схеме звезды имеются важные преимущества:
Плавный пуск электрического мотора.
Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
При эксплуатации корпус электродвигателя не перегреется.
Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.
При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.
Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.
Процессы, происходящие при изменении схемы «звезда» и «треугольник» в разных случаях.
Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.
Обмотки генератора и трансформатора.
При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.
При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.
Лампы освещения.
При переходе со «звезда» в «треугольник» лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.
Рассмотрим примеры решения задач.
Задача 1.
Освещение здания питается от четырехпроводной трехфазной сети с линейным напряжением UЛ = 380 В. Первый этаж питается от фазы «А» и потребляет мощность 1760 Вт, второй – от фазы «В» и потребляет мощность 2200 Вт, третий – от фазы «С», его мощность 2640 Вт. Составить электрическую схему цепи, рассчитать токи, потребляемые каждой фазой, и ток в нейтральном проводе, вычислить активную мощность всей нагрузки. Построить векторную диаграмму.
Анализ и решение задачи 1
Схема цепи показана на рис. 1
Лампы освещения соединяются по схеме звезда с нейтральным проводом.
Рис. 1
Расчет фазных напряжений и токов. При соединении звездой UЛ = UФ, отсюда UФ = UЛ / = 380 / = 220 В. Осветительная нагрузка имеет коэффициент мощности cos φ = 1, поэтому PФ = UФ · IФ и фазные токи будут равны:
IА = PА / UФ = 1760 / 220 = 8 А; IB = PB / UФ = 2200 / 220 = 10 А; IC = PC / UФ = 2640 / 220 = 12 А.
Построение векторной диаграммы и определение тока в нейтральном проводе.
Векторная диаграмма показана на рис. 6.27. Ее построение начинаем с равностороннего треугольника линейных напряжений ÚAB, ÚBC, ÚCA, и симметричной звезды фазных напряжений Úa, Úb, Úc. При таком построении напряжение между любыми точками схемы можно найти как вектор, соединяющий соответствующие точки диаграммы, поэтому диаграмму называют топографической.
Токи фаз ÍA, ÍB, ÍC связаны каждый со своим напряжением; в нашем случае по условию φ = 0, и токи совпадают по фазе с напряжениями. Ток в нейтральном проводе ÍN = ÍA + ÍB + ÍC. По построению (в масштабе) по величине ÍN = 2,5 А.
Вычисление активной мощности в цепи.
Активная мощность цепи равна сумме мощностей ее фаз:
P = PA + PB + PC = 1760 + 2200 + 2640 = 6600 Вт.
Домашнее задание:
1.Выучить лекцию.
2. Ответьте на вопросы для самоконтроля:
Вопросы для самоконтроля:
1. Что такое симметричная трехфазная система напряжений? Чем отличаются друг от друга системы с прямым и обратным следованием (чередованием) фаз? Показать на векторных диаграммах.
2. Как обозначаются (маркируются) начала и концы фаз трехфазных источников и потребителей? Как осуществить их соединение звездой и треугольником?
3. Дать определение фазных и линейных напряжений. Каково соотношение между линейными и фазными напряжениями на зажимах генератора, соединенного по схеме звезда?
4. Дать определение фазных и линейных токов. Каково соотношение между этими токами при соединении приемника по схеме звезда?
5. Какая нагрузка называется симметричной?
6. Как вычислить фазные токи приемника, соединенного звездой, если известны линейные напряжения источника и сопротивления фаз приемника?
7. В каких случаях применяется четырехпроводная система электроснабжения? Каково значение нейтрального провода?
8. Как вычислить ток в нейтральном проводе?
9. Каково соотношение между линейными и фазными напряжениями при соединении фаз источника или приемника треугольником?
10. Как вычислить фазные и линейные токи приемника, соединенного треугольником, если известно линейное напряжение источника и сопротивление фаз приемника?
11. Каково соотношение между линейными и фазными токами симметричного приемника, соединенного треугольником?
12. Может ли ток в нейтральном проводе быть равным нулю?
13. Как изменится режим работы цепи, если в одну из фаз вместо освещения включить двигатель?
14. Какие токи изменятся, если в одной из фаз произойдет обрыв?
15. Как изменится режим работы цепи при обрыве нейтрального провода?
На сегодняшний день данная тема особо актуальна, и в интернете можно найти массу вопросов по ней. Ответов тоже много, но некоторые из них на гранью фантастики. Поэтому мы решили пошагово и точно рассказать о соединении обмоток электродвигателя так исходя из своей практики.
Для начала вкратце вспомним действие асинхронного электродвигателя. Подключают его сети с трехфазным переменным напряжением. В статоре есть 3 обмотки, сдвинутые по отношению друг к другу на 120 электроградуса. Все это необходимо для того. Чтобы возникло вращающееся магнитное поле.
Выводы обмоток статора обозначают так:
- С1, С2, С3 – начала обмоток,
- С4, С5, С6 – конец обмоток.
Указанное обозначение является стандартным, но сегодня появились новые маркировки выводов, которые соответствуют ГОСТу 26772-85:
- U1, V1, W1 — начала обмоток,
- U2, V2, W2 – конец обмоток.
Выводы фазных обмоток асинхронного двигателя выводят на клеммник или колодку и размещают так, чтобы при подключении использовать специальные перемычки и не перекрещивать провода.
Клеммник в основном стараются прикреплять сверху или, если не получается, сбоку. Иногда если тип клеммника позволяет его можно развернуть на 180°, чтобы осуществление подводки питающих кабелей было удобней.
На клеммник можно вывести 3 или 6 выводов фазных обмоток статора.
Рассмотрим каждую ситуацию отдельно.
Например:
Если вывести в клеммник 6 выводов обмоток статора, то подключиться можно в сеть на два разноуровневых напряжения, которые могут отличаться величиной в 1,73 раза (√3). Если взять электродвигатель с напряжением 220/380 (В), а в сети уровень линейного напряжения будет составлять 380 (В), то статорные обмотки следует соединять по схеме звезда.
Соединение звездой
Концы трех обмоток соединяем в одной точке за счет специальной перемычки. На начальные концы обмоток подаем трехфазное сетевое напряжение. Напряжение фазной обмотки должно составить 220 (В), а линейное напряжение между двумя фазными обмотками — 380 (В).
Соединение треугольником
Если сеть имеет линейное напряжение уровнем 220 (В), то обмотку статора нужно соединить по схеме треугольник. Пошаговое соединение по типу треугольник фазных обмоток:
- конец обмотки фазы «А» C4 (U2) соединяем с началом обмотки фазы «В» С2 (V1)
- конец обмотки фазы «В» С5 (V2) соединяем с началом обмотки фазы «С» С3 (W1)
- конец обмотки фазы «С» С6 (W2) соединяем с началом обмотки фазы «А» С1 (U1)
Места, где произведено соединение, подключаются к соответствующим фазам питающего трехфазного напряжения.
Линейное напряжение в данном случае должно составлять 220 (В), и на трехфазной обмотке также 220 (В).
На клеммнике при подключении по схеме треугольник обмоток статора асинхронного двигателя специальные перемычки следует установить так:
В представленных примерах при подключении, что по схеме звезда, что треугольник напряжение каждой фазы обмотки асинхронного двигателя составляет 220 (В).
Частный случай
Иногда так бывает, что на клеммник асинхронного двигателя выведено не 6, а 3 вывода. В такой ситуации соединение независимо от вида схемы будет выполняться внутри двигателя с торца. В данном случае подключение к сети можно будет провести только при одном напряжении, которое указано на таблице с технической информацией.
Если обмотки асинхронного двигателя соединены звездой, то запуск будет мягким, а работа плавной. При этом допускаются кратковременные перегрузки.
При соединении треугольником обмоток асинхронного электродвигателя можно достичь его максимальной мощности. В период запуска токи будут иметь большое значение. Можно будет еще пронаблюдать, что двигатель, подключенный по данной схеме, будет сильнее нагреваться.
Исходя из полученных данных, мы должны понимать, что асинхронные двигатели средней мощности и выше следует запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника.
Также на основе собственного опыта рекомендуем для асинхронного электродвигателя использовать стеатитовые клеммные колодки, которые позволят надежно и безопасно провести подключение проводов к любой сети. Их можно использовать не только для электродвигателей, но и для оборудования и отдельных нагревательных элементов с повышенным уровнем температуры.
Клеммные колодки КМ имеют керамический корпус и расположенный внутри трубчатый латунный профиль. Наличие резьбовых отверстий позволяет устанавливать шпильки для колодки.
Выбирая клеммные колодки, в первую очередь обращайте внимание на предъявляемый уровень их сопротивления температурной нагрузке. Клеммники низкого качества приводят к плавлению изоляции, и провоцирую появление коротких замыканий в системе питания. Применение стеатитовых колодок позволяет исключить перечисленные риски, т. к. корпус из керамики выдерживает температуру вплоть до 1000 °С. А клеммные колодки керамические для для асинхронного электродвигателя работают при постоянной температурной нагрузке окружающей среды в 300°С.
Помимо стеатитовых клеммных колодок для электродвигателей «Элемаг» изготавливает еще несколько разных вариантов колодок обладающих высоким уровнем термостойкости. В разделе товаров на сайте вы можете рассмотреть:
Термостойкие колодки от «Элемаг» широко используют для подключения электротехнического оборудования, т. к. им характерно безопасное использование и удобное проведение соединений. Мы изготавливаем клеммники для температурных нагрузок свыше 100°С. Мы используем для разных типов колодок стеатит, керамику и даже фарфор. Это отличные изоляторы способные выдерживать сверхвысокие температуры, обладают устойчивостью к пробоям тока, не поддаются плавке и горению. Для увеличения защиты мы можем покрывать колодки специальной керамической глазурью.
Корпуса у колодок могут быть закрытыми или открытыми. У первых контакты располагаются внутри корпуса, а у вторых контакты размещены вверху колодки. Для фиксации колодок в корпусе могут быть выполнены специальные отверстия.
У нас в ассортименте вы сможете подобрать и открытые и закрытые колодки на 2, 3, 4, 5 контактов.
Мы советуем устанавливать лампы, чередуя в шахматном порядке. Эта схема поможет уменьшить количество необогреваемых точек.
Объединение обмоточных элементов ряда устройств (двигатели, трансформаторы и т.п.), предназначенныхдля трехфазной электрической сети, осуществляется по специализированными схемам подключения, наиболее популярными из которых являются так называемые звезда и треугольник.
Любой уважающий себя электрик должен понимать разницу между соединениями звездой и треугольником. Из нижеследующей статьи вы можете почерпнуть полезную информацию по данному вопросу.
Звезда и треугольник: принцип подключения
Рассмотрим основные принципы реализации самых популярных видов подключений обмоток устройств, работающихот трехфазной электрической сети.
Соединения типа звезда
Устройство, предназначенное для работы с трехфазной сетью, всегда имеет три независимых друг от друга рабочих обмотки. Каждая из последних, в свою очередь, имеет два вывода (своеобразные начало и конец обмотки). Подключение по типу звезды предполагает коммутацию концов всех обмоточных элементов в единый узел, именуемый нулевой точкой.
Начальные выводы каждой из обмоток соединяются с фазными проводниками электрической сети, к которой осуществляется подключение. Иными словами, начало каждой обмотки подключается к одной из фаз – A, B, C (L1, L2, L3). Между началами любой пары обмоток наличествует фазное напряжение питающей сети – 380 вольт.
Соединение типа треугольник
Суть подключения обмоточной части трехфазного устройства по принципу треугольной схемы заключается в коммутации конца одной обмотки с началом другой. Иными словами, конец первой обмотки соединяется с началом второй, конец второй – с началом третьей, конец третьей – с началом первой. Таким образом создается электрический контур и замыкается цепь.
При таком типе соединения обмоток между началами каждой пары из них наличествует линейное (однофазное) напряжение, равное 220 вольт. Обычно соединение обмоток треугольником реализуется посредством специальных металлических перемычек, как правило, входящих в комплектацию оборудования.
В чем разница подключений типа звезда и треугольник?
Принципиальная разница между звездочкой и треугольным соединением заключается в том, что при использовании одной питающей электрической сети имеется возможность создавать разные параметры напряжения на подсоединяемом устройстве.
Чаще всего применяется объединение обмоточных элементов по типу звезды. Это оправдано щадящими условиями последующей эксплуатации электрического приводного механизма либо трансформаторного устройства.Использование типа соединения по треугольному принципу оправдано в случаях включения в трехфазную сеть механизмов внушительной мощности, имеющих большие пусковые токи.
Таким образом, к основным достоинствам соединения обмоточных элементовпо типу звезды можно отнести следующие свойства данного типа коммутации:
- снижение мощностной характеристики в целях повышения надежности эксплуатируемого оборудования;
- устойчивость и стабильность режима безостановочной работы привода;
- возможность плавного запуска электрического приводного механизма;
- возможность выдерживания кратковременной перегрузки;
- отсутствие перегрева корпуса оборудования.
Важно! Некоторое электромеханическое и электротехническое оборудование имеет в своей сборке внутреннее соединение концов обмоток в звездочку. Такие устройства не предназначены для эксплуатации при иных способах соединения обмоток.
Для подключения к электрической сети у них имеется просто три вывода, представляющих собой начала обмоток. Описанное оборудование является простым в монтаже, который, в свою очередь, не требует особых электромонтажных навыков.
В то же время у соединения обмоток по типу треугольника можно выделить следующие преимущества:
- повышение мощностной характеристики;
- применение пускового реостата;
- больший вращающий момент электропривода;
- увеличенные тяговые параметры.
Переключатель звезда-треугольник
Переключатель звезда-треугольник
Для конструктивно сложных механизмов повышенной мощности может применяться электрическая схема подключения обмоток с комбинированием двух схем – треугольной и звездной. При этом в момент запуска устройства обмоточные элементы двигателя объединены в звездочку. После момента его перехода с пусковых показателей на рабочие звезда преобразуется в треугольник посредством релейно-контакторной схемы. При таком подходе к реализации коммутации обмоток достигаются одновременно максимальная надежность и продуктивность эксплуатации механизма.
Важно! Переключатель звезда-треугольник возможно использовать только для электрических приводов, имеющих на своем валу нагрузку свободного вращения. К таким устройствам относятся вентиляторы, центробежные насосы, валы центрифуг, станков и иного, схожего по своей конструкции, оборудования.
При этом даже если на валу устройства имеется свободно вращающаяся нагрузка, стартового силового момента при подключении типа звездочка может быть недостаточно для перехода к режиму треугольника по причине увеличения сопротивления среды вращения механизма. При такой ситуации переход от одного типа коммутации к другому осуществляется по установке таймера.
Такое переключение требует грамотного расчета стартового момента. Следовательно, использование переключения звезда-треугольник требует тщательного анализа своей целесообразности, основанного на технических расчетах.
Теперь вы знаете, что представляют из себя подключение обмоток по принципу звезды и треугольника, а также осведомлены о том, чем они отличаются друг от друга. Грамотный выбор в пользу того или иного соединения (либо применения их в совокупности) убережет ваше оборудование от преждевременного износа и обеспечит его стабильную работу на протяжении всего срока службы.
Подключение звезда и треугольник в чем разница
Подключение звезда и треугольник в чем разница
Произошёл тут такой случай. Принёс человек в ремонт новый двигатель, который проработал у него 10 секунд и задымил. Двигатель он подключил треугольником в обычную трехфазную сеть, а на шильдике двигателя есть схема, на которой написано: треугольник – 230 В. звезда – 400 В. В общем, подключил он неправильно, потому двигатель и сгорел.
Для тех, кто не понимает, почему нельзя делать так, как сделал сделал тот товарищ, спаливший двигатель, предназначена эта статья.
Вот всем известные схемы подключения треугольником (D) и звездой (Y):
Совершенно неважно как вы подключаете двигатель: звездой или треугольником. Важно только то, какое напряжение вы подаёте на обмотки двигателя. Будет ли это напряжение получаться как межфазное (треугольник) или как фазное (между фазой и нулевой точкой – звезда) – двигателю это совершенно неважно.
Если у вас есть двигатель с номинальным напряжением обмотки 220 В и есть две разные трёхфазные сети, у одной из которых линейное напряжение 380 В (220 В на фазу), а у другой – 220 В (127 В на фазу), то к первой вы можете подключать двигатель звездой, а ко второй – треугольником, разницы для двигателя не будет никакой, отличаться будут лишь токи, протекающие в проводниках на линии, ведущей к двигателю.
Линейное напряжение трёхфазной сети – это межфазное напряжение, именно оно обозначается на шильдиках двигателей. Фазное напряжение (между фазой и нейтралью) на шильдиках не обозначается.
Условно говоря, вы можете считать, что на шильдике обозначено фазное напряжение, но только в том случае, если собираетесь подключать двигатель только к одной фазе через конденсатор.
Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз (т.е. примерно в 1.73 раза, т.е. 220 х 1.73 = 380).
Для такого двигателя на шильдике будет написано: D/Y 220V / 380V, 4.9А / 2.8А. Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю (именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху). Следовательно, для России (линейное напряжение 400 В) для такого двигателя надо использовать схему подключения звезда.
Номинальное напряжение обмотки большинства двигателей при частоте тока 50 Гц обычно составляет либо 127 В , либо 230 В, либо 400 В, либо 690 В. Ну, или как было раньше: 220, 380, 660 В соответственно.
Теперь логичный вопрос: если двигателю нет разницы по какой схеме он будет подключен, а важно лишь напряжение на обмотках, то зачем вообще делать двигатели с разным номинальным напряжением на этих самых обмотках?
Двигатели малой мощности
D 230V / Y 400V
Для того, чтобы двигатель можно было так подключить в однофазную сеть, его номинальное напряжение каждой обмотки должно быть равно фазному напряжению сети. Это значит, что если двигатель планируется использовать в России или Европе, то номинальное напряжение обмотки должно быть равно 230 В. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением 400 В (подключение звезда), так и в однофазной сети 230 В (подключение треугольником через конденсатор). Это те самые двигатели, где на шильдике написано напряжение D 220V / Y 380V.
Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США (где линейной напряжение 240 В, а фазное – 120 В при частоте тока 60 Гц), то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится. Однако, по крайней мере, можно использовать 3-фазное подключение треугольником. Для такого подключения потребуется немного более высокое напряжение, чем 230 В (из-за частоты тока 60 Гц), но у них там как раз 240 В, что как раз подходит.
D 115V / Y 230V
Одновременно с этим, маломощные двигатели, предназначенные для стран, где стандартное напряжение ниже, чем у нас, будут подключаться как D 127V / Y 220V. Однако, двигатели с такой надписью на шильдике вы вряд ли найдёте, потому что 127 В, 50 Гц – это очень малораспространённое напряжение в мире (см. тут). Поэтому, скорее всего, вам встретится двигатель с шильдиком, где будет указано напряжение D 115V / Y 208-230V.
Насчет заморочки с 208 вольтами можно почитать в этой статье.
Подключить такой двигатель к стандартной российской трёхфазной сети (все три фазы) можно только через преобразователь частоты переменного тока, поскольку на них есть возможность переключения линейного напряжения на выходе: 230 / 400 В.
В однофазную сеть можно подключить звездой через конденсатор. Тогда напряжение, подаваемое на каждое обмотку, будет составлять половину фазного напряжения сети (230 В / 2 = 115 В). Выглядит это вот так:
Двигатели мощности более 5 кВт
D 400V / Y 690V
Для двигателей мощнее 5 кВт обычно не предусматривают возможность подключения в однофазную сеть, т.е. номинальное напряжение обмоток делают такое, которое соответствует линейному напряжению. Т.е. штатной схемой подключения таких двигателей в трёхфазную сеть является треугольник. В России и Европе это двигатели с номинальным напряжением обмоток 400В, т.е. где на шильдике написано D 400V / Y 690V.
Для определённых задач, где на валу двигателя находится свободная нагрузка (системы вентиляции, осевые насосы), ну, и вообще те задачи, где возможно регулирование скорости вращения вала только лишь напряжением (трансформатором), часто используют схему подключения “звезда” при старте с последующим переключением на “треугольник”. Т.е. при старте на обмотку подаётся заниженное напряжение 230В вместо номинальных 400В, а затем происходит переключение на штатный режим (т.е. на треугольник). Из-за свободной нагрузки на валу момент вращения при старте на низком напряжении также будет ниже, т.е. пусковой ток будет не столь высок, как при старте на номинальном напряжении. Поэтому такой пуск двигателя называют “щадящим”.
Следует помнить, что для нагрузок, требующих большого момента при запуске, подобный режим приведет напротив, к возрастанию тока в обмотках и последующим неприятным событиям.
Кроме того, надо иметь ввиду, что подключение двигателей даже со свободной нагрузкой на валу звездой для “щадящего старта” вовсе не означает, что если по такой схеме постоянно эксплуатировать двигатель (не переходя на треугольник), то такой режим станет “щадящим” для него. Низкий момент при старте ещё не означает, что заниженное напряжение годится для его нормальной работы, поскольку сам двигатель (со своими номинальными характеристиками) обычно как раз и подбирается под конкретную нагрузку. Поэтому постоянная эксплуатация двигателей на напряжении ниже номинального иногда приводит к их выходу из строя. Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом. К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом.
D 220V / Y 440V
Двигатели мощностью выше 5 кВт, изготовленные в США, будут иметь номинальное напряжение обмотки 220 В, т.е. на шильдике будет написано D 220V / Y 440V (для 60 Гц). Подключать такие двигатели к российской трёхфазной сети 400 В следует звездой, а к российской однофазной сети через конденсатор – треугольником. Касательно величин напряжения, есть двигатели, где более подробно расписано подключение для сетей 50 Гц и 60 Гц, например вот так:
Схемы электродвигателя звезда и треугольник: виды подключения, особенности и отличия
Асинхронные электрические двигатели в настоящее время используются очень активно. У них есть определенные преимущества, благодаря которым они и стали так популярны. Для подключения к электрической сети мощных двигателей используются схемы “звезда”, “треугольник”. Электродвигатели, работающие на таких схемах, обладают своими достоинствами и недостатками. Сами же они отличаются надежностью в эксплуатации, возможностью получить большой крутящий момент, а также высоким показателем производительности.
Подключение двигателя
Как показывает практика, существует две оптимальных схемы – “звезда”, “треугольник”. Электродвигатели подключаются по одной из них. Возможно также преобразование “звезды” в “треугольник”, к примеру.
Среди достоинств асинхронных двигателей выделяются следующие:
- возможность переключения обмоток во время работы;
- восстановление обмотки электрического двигателя;
- невысокая стоимость прибора по отношению к другим;
- наличие высокой стойкости к механическим повреждениям.
Основная особенность, характеризующая все асинхронные электрические двигатели, – это простота конструкции. Однако при всех своих преимуществах, есть и некоторые недостатки, возникающие во время работы:
- Отсутствует возможность контролировать частоту вращения ротора, не теряя при этом мощности.
- При увеличении нагрузки уменьшается крутящий момент.
- Высокие показатели пусковых токов.
Описание подключений
Схемы “звезда” и “треугольник” для электродвигателя имеют определенные различия в подключении. “Звезда” означает, что концы статорной обмотки оборудования собираются в одной точке. При этом напряжение сети в 380 В будет подаваться на начало каждой из обмоток. Обычно на всех схемах подключения такой способ обозначается как Y.
В случае использования схемы подключения “треугольник” статорные обмотки электродвигателя соединяются последовательно. То есть, конец первой обмотки соединяется с началом второй, она, в свою очередь, – с третьей. Последняя будет замыкать цепь, соединяясь с началом первой.
Отличия схем подключения
Схемы “звезда” и “треугольник” у электродвигателя – это единственные способы их подключения. Они отличаются между собой, обеспечивая разные режимы работы. Так, к примеру, подключение при помощи схемы Y обеспечивает более мягкую работу, если сравнивать с двигателями, соединенными в “треугольник”. Данная разница играет ключевую роль при выборе мощности электрического устройства.
Более мощные двигатели эксплуатируются только на “треугольнике”. Схема подключения электродвигателя “звезда-треугольник” отлично подходит для тех случаев, когда необходимо обеспечить плавный пуск. А в нужный момент переключиться между обмотками для получения максимальной мощности.
Здесь важно добавить: подключение Y гарантирует мягкую работу, но при этом двигатель не сможет набрать свою паспортную мощность.
С другой стороны, схема соединения электродвигателя “треугольник-звезда-звезда” обеспечит большую мощность, но вместе с этим значительно возрастет и значение пускового тока для оборудования.
Именно разница в мощности между подключением Y и треугольником является основным показателем. Электродвигатель со схемой звезды будет обладать мощностью примерно в 1,5 раза ниже, чем через треугольник, однако такое подключение поможет снизить значение пускового тока. Все соединения, которые имеют в своем составе два способа подключения, являются комбинированными. Обычно они применяются лишь в тех случаях, когда необходимо запустить в работу электрический двигатель с большой паспортной мощностью.
Схема пуска “звезда-треугольник” для электродвигателя отличается еще одним преимуществом. Включение осуществляется по схеме Y, что снижает значение пускового тока. Когда во время работы устройство набирает достаточные обороты, происходит переход на схему треугольника для достижения максимальной мощности.
Комбинированные подключения
Схема переключения “звезда-треугольник” электродвигателя достаточно часто применяется в случаях, когда нужно запустить двигатель с минимальным пусковым током. Но при этом всю работу осуществлять нужно на соединении “треугольник”. Для создания такого переключения используются специальные контакторы на три фазы. Для обеспечения автоматического переключения между схемами необходимо выполнить два условия. Во-первых, обеспечить блокировку контактов от одновременного включения. Во-вторых, все работы обязательно должны выполняться с задержкой по времени.
Второй пункт необходим, чтобы со 100% вероятностью произошло полное отключение “звезды” перед включением “треугольника”. Если этого не сделать, то во время переключения между фазами будет происходить короткое замыкание. Для выполнения нужных условий используется реле времени с задержкой от 50 до 100 миллисекунд.
Осуществление задержки времени
При использовании комбинированного метода подключения “звезда-треугольник” наличие реле времени для задержки переключения необходимо. Специалисты чаще всего выбирают один из трех способов:
- Первый вариант осуществляется при помощи нормально-разомкнутого контакта реле времени. В таком случае РВ будет отключать схему подключения треугольником во время пуска, а за переключение будет отвечать токовое реле РТ.
- Второй вариант предполагает применение современного реле времени с задержкой переключения от 6 до 10 секунд.
- Третий способ – это управление контакторами электродвигателя автоматическими приборами или вручную.
Рассмотрение способа переключения
Использование классического варианта с применением реле времени для комбинированных схем “звезда-треугольник” ранее считалось наиболее оптимальным. У него имелся лишь один недостаток, который иногда становился достаточно существенным, – габариты самого РВ. Такие типы приспособления гарантировали задержку времени переключения при помощи намагничивания сердечника. Однако на обратный процесс требовалось время.
В настоящее время такие РВ и прочие приборы были вытеснены современными приборами – частотными преобразователями. Переключение схемы электродвигателя со схемой “звезда-треугольник” при помощи ПЧ обладает большими преимуществами. Сюда относят более стабильную работу, низкие пусковые токи.
Это оборудование имеет встроенный микропроцессор, отвечающий за изменение частоты. Если рассматривать суть ПЧ для электродвигателя, то его принцип работы следующий: преобразователь вырабатывает нужную частоту переменного тока. На сегодняшний день в промышленности используются специальные или универсальные модели ПЧ для подключения асинхронных двигателей.
Специальные модели разрабатываются и используются лишь с определенными типами двигателей. Универсальные могут применяться в комплекте с любыми устройствами.
Недостатки схемы
Несмотря на то что классическая схема подключения проста и надежна, она имеет свои определенные недостатки.
Во-первых, очень важно точно определить нагрузку на вал электродвигателя. В противном случае он будет слишком долго набирать обороты, что, в свою очередь, исключит возможность быстрого переключения на схему треугольника при помощи токового реле. В этом режиме нежелательно долго эксплуатировать электрическое устройство.
Во-вторых, при такой схеме подключения возможен перегрев обмоток, из-за чего специалисты рекомендуют установить в схему дополнительное тепловое реле.
В-третьих, при использовании современных временных реле необходимо точно соблюдать паспортную нагрузку на вал электрического двигателя.
Заключение
При использовании подключения схемы “звезда-треугольник” очень важно правильно рассчитать нагрузку на вал электродвигателя. Еще один неприятный факт кроется в том, что в момент переключения с Y на треугольник, когда двигатель еще не набрал нужных оборотов, происходит самоиндукция. В этот момент в сети появляется повышенное напряжение. Это грозит выходом из строя других приборов и устройств, подключенных к этой же сети.
Подключение звезда и треугольник — в чем разница
Для работы электрического прибора, двигателя, трансформатора в трехфазной сети необходимо соединить обмотки по определенной схеме. Наиболее распространенными схемами соединения являются треугольник и звезда, хотя могут применяться и другие способы соединения.
Что представляет собой соединение обмоток звездой?
Трехфазный двигатель или трансформатор имеет 3 рабочих, независимых друг от друга обмоток. Каждая обмотка имеет два вывода — начало и конец. Соединение «звезда» подразумевает собой, что все концы трех обмоток соединяются в один узел, часто называемый нулевой точкой. Отсюда выходит и понятие — нулевая точка.
Начало каждой обмотки соединяются непосредственна с фазами питающей сети. Соответственно начало каждой обмотки соединяется с одной из фаз А, В, С. Между любыми двумя началами обмоток прилаживается фазное напряжение питающей сети, зачастую 380 или 660 В.
Что представляет собой соединение обмоток в треугольник?
Соединение обмоток в треугольник заключается в соединении конца каждой обмотки с началом следующей. Конец первой обмотки, соединяется с началом второй. Конец второй — с начало третей. Конец третей обмотки создает электрический контур, поскольку замыкает электрическую цепь.
При таком соединении к каждой обмотки прилаживается линейное напряжение, обычно равное 220 или 380 В. Такое соединение физически реализуется с помощью металлических перемычек, которые должны быть предусмотрены заводской комплектацией электрического оборудования.
Разница между соединением обмотки в треугольник и звезду
Основная разница заключается в том, что, используя одну питающую сеть, можно достигать разных параметров электрического напряжения и тока в приборе или аппарате. Конечно, данные способы соединения отличаются реализацией, но важна именно физическая составляющая отличия.
Применение способа соединения треугольник, зачастую используется в случаях мощных механизмов и больших пусковых нагрузок. Имея большие показатели тока, протекающего по обмотки, двигатель получает большие показатели ЕДС самоиндукции, что в свою очередь гарантирует больший вращающий момент. Имея большие пусковые нагрузки и одновременно используя схему соединения звезда, можно нанести урон двигателю. Это связано с тем, что двигатель имеет меньшие значение тока, что приводит к меньшим показателям величины вращающегося момента.
Момент пуска такого двигателя и выход его на номинальные параметры может быть продолжительным, что может привести к тепловому воздействию тока, которые во время коммутации может превышать номиналы тока в 7-10 раз.
Преимущества соединения обмоток в звезду
Основные преимущества соединения обмоток в звезду заключаются в следующем:
- Понижения мощности оборудования с целью повышения надежности.
- Устойчивый режим работы.
- Для электрического привода такое соединение дает возможность плавного пуска.
Преимущества соединения обмоток в треугольник
Основными преимуществами соединения обмоток в треугольник являются:
- Повышения мощности оборудования.
- Меньшие пусковые токи.
- Большой вращающийся момент.
- Увеличенные тяговые свойства.
Оборудование с возможностью переключения типа соединения со звезды на треугольник
Зачастую электрическое оборудование имеет возможность работать как на звезде, так и на треугольнике. Каждый пользователь должен самостоятельно определить необходимость соединения обмоток в звезду или треугольник.
В особо мощных и сложных механизмах, может применяться электрическая схема с комбинированием треугольника и звезды. В таком случае, в момент пуска, обмотки электрического двигателя соединяются в треугольник. После выхода двигателя на номинальные показатели, с помощью релейно-контакторной схемы треугольник переключается на звезду. Таким способом достигается максимальная надежность и продуктивность электрической машины, без риска нанести ей урон или вывести её из строя.
Посмотрите так-же интересное видео на эту тему:
{SOURCE}
Асинхронные двигатели обладают многими преимуществами в работе. Это надёжность, большая мощность, хорошая производительность. Подключение электродвигателя звездой и треугольником обеспечивают его стабильную эксплуатацию.
В основе электромотора выделяют две основные части: крутящийся ротор и статичный статор. Оба имеют в структуре набор токопроводящих обмоток. Электрообмотки неподвижного элемента, расположены в пазах магнитного провода на расстоянии 120 градусов. Все окончания обмоток выводятся в электрораспределительный блок, там фиксируются. Контакты пронумерованы.
Подключения двигателей могут быть звездой, треугольником, а также всевозможные их переключения. Каждое соединение обладает своими преимуществами и недостатками. Двигатели, соединённые по схеме звезда, имеют плавную, мягкую работу, действие электродвигателя ограничено мощностью по сравнению с треугольником, так как её значение больше в полтора раза.
Объединение в одной общей точке: подключение звезда
Концы обмоток статора соединены вместе в одном пункте. Трехфазное напряжение поступает на начало обмоток. Значение пусковых токов при соединении треугольник более мощное. Соединение звезда означает сводку концов обмотки статора. Напряжение поступает на начала каждой обмотки.
Обмотки соединяются последовательно замкнутой ячейкой, образуют треугольное соединение. Ряды контактов с клеммами расположены параллельно по отношению друг к другу. Например, начало вывода 1 находится напротив конца 1. Питание сети подаётся на статорные обмотки, создавая вращения магнитного поля, приводящее к движению ротора. Крутящийся момент, возникающий после подключения трехфазного электродвигателя, является недостаточным для пуска. Увеличение вращающего элемента достигается при помощи использования дополнительного элемента. Например, трехфазного частотника, подключенного к асинхронному двигателю на рисунке ниже.
Чертеж подсоединения классического частотного преобразователя звездой
По данной схеме подсоединяются отечественные моторы 380 вольт.
Смешанный способ
Комбинированный тип подключения применим для электромоторов мощностью от 5 кВт. Схема звезда — треугольник используется при необходимости снизить пусковые токи агрегата. Принцип действия начинается со звезды, а после набора двигателем нужных оборотов, происходит автоматическое переключение на треугольник.
Схема пуска трёхфазного электродвигателя с помощью реле
Данная схема не подходит устройствам с перегрузками, так как возникает слабый крутящийся момент, что может привести к поломке.
Принцип работы
Пуск питания происходит с помощью второго и релейного контакта. Затем на статоре срабатывает третий пускатель, тем самым размыкая цепь, образованную катушкой третьего элемента, в нем происходит замыкание. Далее первая обмотка статора начинает работать. Затем происходит замыкание в магнитном пускателе, срабатывает временное термореле, которое в третьей точке замыкает. Далее наблюдается замыкание контакта временного термореле в электроцепи второй обмотки статора. После отсоединения обмоток третьего элемента, происходит замыкание контактов в цепочке третьего элемента.
К началу обмоток проходит ток на три фазы. Он поступает через силовые контакты магнита первого элемента. Контакты третьего пускателя включают его, замыкают концы обмоток, которые соединяются звездой.
Затем включается реле времени первого пускателя, третий выключается, а второй включается. Контакты К2 замыкают, напряжение поступает на концы обмоток. Это и есть включение треугольником.
Различные производители изготавливают реле пуска, необходимое для запуска электродвигателя. Они отличаются внешне, по названию, но выполняют одинаковую функцию.
Обычно подключение к сети 220 происходит фазосдвигающим конденсатором. Питание поступает от любой электросети, вращает ротор с одинаковой частотой. Конечно, мощность от трёхфазной сети будет больше, чем от однофазной. Если трёхфазный двигатель работает от однофазной сети, теряется мощность.
Некоторые виды моторов не предназначены для работы от бытовой сети. Поэтому выбирая прибор для дома, предпочтение следует отдать двигателям с короткозамкнутыми роторами.
По номинальному питанию отечественные электродвигатели делятся на два типа: мощностью 220 — 127 вольт и 380 — 220 вольт. Первый тип электромоторов небольшой мощности применяется нечасто. Вторые устройства имеют широкое распространение.
При монтаже электродвигателя любой мощности действует определенный принцип: устройства с низкой мощностью подключается по схеме треугольник, а с высокой соединяются звездой. Электропитание 220 поступает на сводку треугольником, напряжение 380 идёт на соединение звездой. Это обеспечит долгую и качественную работу механизма.
Рекомендованная схема для подключения двигателя значится в техническом документе. Значок △ означает соединение в этой же форме. Буква Y указывает на рекомендуемую схему подключения звездой. Характеристики многочисленных элементов обозначены цветами, в связи с их маленькими габаритами. По цвету читается, например, номинал, сопротивление. Если стоят оба знака, то соединение возможно переключением △ и Y. Когда стоит одна определенная маркировка, например, Y, то доступное подключение будет только по схеме звезда.
Схема △ даёт мощность на выходе до 70 процентов, значение пусковых токов доходит до максимальной величины. А это может испортить двигатель. Данная схема является единственным вариантом для работы от российских электросетей зарубежных асинхронных двигателей с мощностью 400 — 690 вольт.
Поэтому выбирать правильное соединение или переключение, необходимо учитывая особенности электрической сети, силовой мощности электродвигателя. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.
виды подключения, особенности и отличия
Асинхронные электрические двигатели в настоящее время используются очень активно. У них есть определенные преимущества, благодаря которым они и стали так популярны. Для подключения к электрической сети мощных двигателей используются схемы «звезда», «треугольник». Электродвигатели, работающие на таких схемах, обладают своими достоинствами и недостатками. Сами же они отличаются надежностью в эксплуатации, возможностью получить большой крутящий момент, а также высоким показателем производительности.
Подключение двигателя
Как показывает практика, существует две оптимальных схемы — «звезда», «треугольник». Электродвигатели подключаются по одной из них. Возможно также преобразование «звезды» в «треугольник», к примеру.
Среди достоинств асинхронных двигателей выделяются следующие:
- возможность переключения обмоток во время работы;
- восстановление обмотки электрического двигателя;
- невысокая стоимость прибора по отношению к другим;
- наличие высокой стойкости к механическим повреждениям.
Основная особенность, характеризующая все асинхронные электрические двигатели, — это простота конструкции. Однако при всех своих преимуществах, есть и некоторые недостатки, возникающие во время работы:
- Отсутствует возможность контролировать частоту вращения ротора, не теряя при этом мощности.
- При увеличении нагрузки уменьшается крутящий момент.
- Высокие показатели пусковых токов.
Описание подключений
Схемы «звезда» и «треугольник» для электродвигателя имеют определенные различия в подключении. «Звезда» означает, что концы статорной обмотки оборудования собираются в одной точке. При этом напряжение сети в 380 В будет подаваться на начало каждой из обмоток. Обычно на всех схемах подключения такой способ обозначается как Y.
В случае использования схемы подключения «треугольник» статорные обмотки электродвигателя соединяются последовательно. То есть, конец первой обмотки соединяется с началом второй, она, в свою очередь, — с третьей. Последняя будет замыкать цепь, соединяясь с началом первой.
Отличия схем подключения
Схемы «звезда» и «треугольник» у электродвигателя — это единственные способы их подключения. Они отличаются между собой, обеспечивая разные режимы работы. Так, к примеру, подключение при помощи схемы Y обеспечивает более мягкую работу, если сравнивать с двигателями, соединенными в «треугольник». Данная разница играет ключевую роль при выборе мощности электрического устройства.
Более мощные двигатели эксплуатируются только на «треугольнике». Схема подключения электродвигателя «звезда-треугольник» отлично подходит для тех случаев, когда необходимо обеспечить плавный пуск. А в нужный момент переключиться между обмотками для получения максимальной мощности.
Здесь важно добавить: подключение Y гарантирует мягкую работу, но при этом двигатель не сможет набрать свою паспортную мощность.
С другой стороны, схема соединения электродвигателя «треугольник-звезда-звезда» обеспечит большую мощность, но вместе с этим значительно возрастет и значение пускового тока для оборудования.
Именно разница в мощности между подключением Y и треугольником является основным показателем. Электродвигатель со схемой звезды будет обладать мощностью примерно в 1,5 раза ниже, чем через треугольник, однако такое подключение поможет снизить значение пускового тока. Все соединения, которые имеют в своем составе два способа подключения, являются комбинированными. Обычно они применяются лишь в тех случаях, когда необходимо запустить в работу электрический двигатель с большой паспортной мощностью.
Схема пуска «звезда-треугольник» для электродвигателя отличается еще одним преимуществом. Включение осуществляется по схеме Y, что снижает значение пускового тока. Когда во время работы устройство набирает достаточные обороты, происходит переход на схему треугольника для достижения максимальной мощности.
Комбинированные подключения
Схема переключения «звезда-треугольник» электродвигателя достаточно часто применяется в случаях, когда нужно запустить двигатель с минимальным пусковым током. Но при этом всю работу осуществлять нужно на соединении «треугольник». Для создания такого переключения используются специальные контакторы на три фазы. Для обеспечения автоматического переключения между схемами необходимо выполнить два условия. Во-первых, обеспечить блокировку контактов от одновременного включения. Во-вторых, все работы обязательно должны выполняться с задержкой по времени.
Второй пункт необходим, чтобы со 100% вероятностью произошло полное отключение «звезды» перед включением «треугольника». Если этого не сделать, то во время переключения между фазами будет происходить короткое замыкание. Для выполнения нужных условий используется реле времени с задержкой от 50 до 100 миллисекунд.
Осуществление задержки времени
При использовании комбинированного метода подключения «звезда-треугольник» наличие реле времени для задержки переключения необходимо. Специалисты чаще всего выбирают один из трех способов:
- Первый вариант осуществляется при помощи нормально-разомкнутого контакта реле времени. В таком случае РВ будет отключать схему подключения треугольником во время пуска, а за переключение будет отвечать токовое реле РТ.
- Второй вариант предполагает применение современного реле времени с задержкой переключения от 6 до 10 секунд.
- Третий способ — это управление контакторами электродвигателя автоматическими приборами или вручную.
Рассмотрение способа переключения
Использование классического варианта с применением реле времени для комбинированных схем «звезда-треугольник» ранее считалось наиболее оптимальным. У него имелся лишь один недостаток, который иногда становился достаточно существенным, — габариты самого РВ. Такие типы приспособления гарантировали задержку времени переключения при помощи намагничивания сердечника. Однако на обратный процесс требовалось время.
В настоящее время такие РВ и прочие приборы были вытеснены современными приборами — частотными преобразователями. Переключение схемы электродвигателя со схемой «звезда-треугольник» при помощи ПЧ обладает большими преимуществами. Сюда относят более стабильную работу, низкие пусковые токи.
Это оборудование имеет встроенный микропроцессор, отвечающий за изменение частоты. Если рассматривать суть ПЧ для электродвигателя, то его принцип работы следующий: преобразователь вырабатывает нужную частоту переменного тока. На сегодняшний день в промышленности используются специальные или универсальные модели ПЧ для подключения асинхронных двигателей.
Специальные модели разрабатываются и используются лишь с определенными типами двигателей. Универсальные могут применяться в комплекте с любыми устройствами.
Недостатки схемы
Несмотря на то что классическая схема подключения проста и надежна, она имеет свои определенные недостатки.
Во-первых, очень важно точно определить нагрузку на вал электродвигателя. В противном случае он будет слишком долго набирать обороты, что, в свою очередь, исключит возможность быстрого переключения на схему треугольника при помощи токового реле. В этом режиме нежелательно долго эксплуатировать электрическое устройство.
Во-вторых, при такой схеме подключения возможен перегрев обмоток, из-за чего специалисты рекомендуют установить в схему дополнительное тепловое реле.
В-третьих, при использовании современных временных реле необходимо точно соблюдать паспортную нагрузку на вал электрического двигателя.
Заключение
При использовании подключения схемы «звезда-треугольник» очень важно правильно рассчитать нагрузку на вал электродвигателя. Еще один неприятный факт кроется в том, что в момент переключения с Y на треугольник, когда двигатель еще не набрал нужных оборотов, происходит самоиндукция. В этот момент в сети появляется повышенное напряжение. Это грозит выходом из строя других приборов и устройств, подключенных к этой же сети.
14. Преобразования треугольник-звезда и звезда-треугольник
Преобразования треугольник-звезда и звезда-треугольник
Во многих схемах можно встретить такие конфигурации компонентов, в которых невозможно выделить последовательные или параллельные цепи. К этим конфигурациям относятся соединения компонентов в виде звезды (Y) и треугольника (Δ):
Очень часто, в ходе анализа электрических цепей, оказывается полезным преобразовать треугольник в звезду или, наоборот, звезду в треугольник. Практически, чаще возникает необходимость преобразования треугольника в звезду. Если при замене одной из этих схем другой не изменяются потенциалы одноименных точек и подтекающие к ним токи, то во внешней цепи также не произойдет никаких изменений. Иными словами, эквивалентные Δ и Y цепи ведут себя одинаково.
Существует несколько уравнений, используемых для преобразования одной цепи в другую:
Δ и Y цепи очень часто встречаются в 3-фазных сетях переменного тока, но там они, как правило, сбалансированы (все резисторы равны по значению) и преобразование одной цепи в другую не требует таких сложных расчетов. Тогда возникает вопрос: где мы сможем использовать эти уравнения?
Использовать их можно в несбалансированных мостовых схемах:
Анализ данной схемы при помощи Метода Токов Ветвей или Метода Контурных Токов довольно сложен. Теорема Миллмана и Теорема Наложения здесь тоже не помощники, так как в схеме имеется только один источник питания. Можно было бы использовать теорему Тевенина или Нортона, выбрав в качестве нагрузки резистор R3, но и здесь у нас вряд ли что-нибудь получится.
Помочь в этой ситуации нам сможет преобразование треугольник — звезда. Итак, давайте выберем конфигурацию резисторов R1, R2 и R3, представляющих собой треугольник (Rab, Rac и Rbc соответственно), и преобразуем ее в звезду:
После преобразования схема примет следующий вид:
В результате преобразования у нас получилась простая последовательно-параллельная цепь. Если мы правильно выполним расчеты, то напряжения между точками А, В и С преобразованной схемы будут аналогичны напряжениям между этими же точками исходной схемы, и мы сможем вернуть их обратно.
Сопротивления резисторов R4 и R5 остаются неизменными: 18 и 12 Ом соответственно. Применив к схеме последовательно-параллельный анализ, мы получим следующие значения:
Теперь, используя значения напряжений из приведенной выше таблицы, нам нужно рассчитать напряжения между точками А, В и С. Для этого мы применим обычную математическую операцию сложения (или вычитания для напряжения между точками В и С):
Переносим эти напряжения в исходную схему (между точками А, В и С):
Напряжение на резисторах R4 и R5 останется таким же, каким оно было в преобразованной схеме.
К данному моменту у нас есть все необходимые данные для определения токов через резисторы (используем для этой цели Закон Ома I = U / R):
Моделирование при помощи программы PSPICE подтвердит наши расчеты:
Вега, Денеб, Альтаир — Руководство Созвездия
Летний треугольник — одна из самых привычных моделей северного летнего ночного неба.
Три яркие звезды, обозначающие вершины Летнего треугольника, — это Альтаир, Денеб и Вега, самые яркие звезды в созвездиях Акила, Лебедь и Лира. Шаблон звезды позволяет легко найти каждое из трех созвездий.
Летний треугольник так же заметен на летнем небе, как созвездие Ориона зимой.На самом деле астеризм настолько заметен в небе, что когда-то его использовали для навигации.
Военные штурманы США называли его «треугольником навигатора» до того, как системы GPS и другое навигационное оборудование вступили во владение.
В летние месяцы Летний Треугольник можно найти прямо над головой в средних северных широтах, но он также виден и в другие времена года. Весной он лежит на востоке в ранние утренние часы, а осенью его можно увидеть на западе вечером до ноября.В средних северных широтах астеризм можно увидеть в любое время года в какой-то момент ночью. В южных широтах летний треугольник появляется вверх ногами и зимой виден низко на небе.
Широкое полевое изображение области неба, в которой находится HD 189733b — на этом изображении мы видим астеризм «Летнего треугольника» — гигантского треугольника на небе, состоящего из трех ярких звезд Вега (вверху слева), Альтаир (внизу посередине) и Денеб (крайний слева). HD 189733b вращается вокруг звезды очень близко к центру треугольника.Изображение: НАСА, ЕКА. Предоставлено: A. Fujii
В северных широтах три звезды легко могут быть найдены на вечернем небе в июне и июле. Вегу, которая лежит на вершине Летнего треугольника, можно найти на востоке. Это самая яркая звезда на восточном небе, и ее очень легко найти. Все три звезды достаточно яркие, чтобы их можно было увидеть даже из загрязненных светом городских районов. В летние месяцы Денеб находится в нижнем левом или восточном направлении от Веги, а Альтаир — в нижнем правом углу на юге в сумерках.
Имя астеризма стало широко использоваться в 1950-х годах вместе с британским астрономом сэром Патриком Муром и американским автором Х.А. Рей отвечает за популяризацию этого термина. Летний треугольник можно найти в астрономических путеводителях 1913 года. Астрономы 19-го века Боде и Дж. Дж. Литтроу отметил астеризм, но не дал ему ярлыка.
Созвездия Акила и Лебедь связаны греческим мифом. Когда Зевс влюбился в богиню Немезиду, она не вернула его любви. Затем Зевс решил превратиться в лебедя, и он убедил Афродиту принять форму орла и сделать вид, что преследует его.Немезис увидел, как преследуют лебедя, и дал ему убежище. Говорят, что Зевс поместил созвездия Лебедь (Лебедь) и Орел (Акила) в небо, чтобы отметить успех его завоевания.
ЗВЕЗД
Звезды, которые образуют Летний треугольник, являются одними из самых ярких звезд на ночном небе. Вега, Альфа Лиры, самая яркая из трех. Денеб, Альфа Лебедь, является самым тусклым, но самым ярким и самым отдаленным. Альтаир, Альфа Аквила, является ближайшим из трех к Земле, только 16.7 световых лет. Вега не намного дальше, на расстоянии 25 световых лет.
Диаграмма, показывающая летний треугольник, треугольную конфигурацию звезд Vega (α Лиры), Altair (α Aquilae) и др. Денеб (α Cygni). Изображение: Джим Томас
Денеб, с другой стороны, расположен на расстоянии 3550 световых лет от Солнечной системы. Это самая отдаленная звезда первой величины, и ее яркость сильно уменьшается на расстоянии. Все три вершины Летнего треугольника являются голубовато-белыми звездами, принадлежащими к спектральному классу А.
Вега расположена в северо-западном углу Летнего треугольника, Денеб — в северо-восточном углу, а Альтаир — в южном.
Есть несколько заметных объектов глубокого неба, расположенных в границах астеризма. Среди них Кольцевая туманность (Мессье 57) находится к юго-востоку от Веги, а туманность Гантель (Мессье 27) находится в созвездии Лисички, на полпути между Денебом и Садром, звездой, которая отмечает центр Северного Креста в Созвездие Лебедя.
Vega
Вега — самая яркая звезда в созвездии Лиры и пятая самая яркая звезда на ночном небе. Имеет обозначение Байер Альфа Лиры. Звезды, видимые к югу от Веги, напомнили наблюдателям в древние времена о лире, струнном инструменте, так и получил свое название созвездие Лиры. Несколько звезд в окрестностях Веги являются двойными звездами и их можно увидеть в бинокль.
Положение Веги в созвездии Лиры, изображение: Роберто Мура
Vega имеет звездную классификацию A0 V.Это сине-белая звезда главной последовательности с видимой звездной величиной 0,03, всего в 25 световых годах от Земли. У него в 2,1 раза больше массы Солнца и в 2,4 раза больше солнечного радиуса. Это примерно в 40 раз ярче Солнца.
Альтаир
Альтаир, Альфа Аквила, самая яркая звезда в созвездии Аквила, Орел. Звезда отмечает голову орла. Альтаир относится к спектральному классу A7 V, что означает, что это сине-белая звезда главной последовательности. Он имеет визуальную величину 0.77 и находится на расстоянии 16.73 световых лет от Солнечной системы. Он классифицируется как переменная типа Delta Scuti. Звезда имеет 1,79 солнечных масс и в 10,6 раз ярче Солнца.
Положение Альтаира в созвездии Акилы, изображение: Торстен Бронджер
Альтаир — 12-я самая яркая звезда на небе. Это быстрый спиннер, вращающийся со скоростью 286 км / с с периодом около 9 часов. В результате он имеет сплющенную форму. Наряду со звездами Альшайн (Бета Аквила) и Таразед (Гамма Аквила), Альтаир образует Вал Акилы, линию звезд, также известную как Семейство Акилы.
Deneb
Денеб можно найти в конце линии ярких звезд, расположенных к югу от Веги. Однако найти его легче, если взглянуть на большой крест на северном небе, рисунок, слегка напоминающий воздушный змей. Денеб — самая яркая звезда Северного Креста, самая яркая звезда в созвездии Лебедя и одна из самых легко узнаваемых звезд в северных широтах, рядом с Большой Медведицей, Маленькой Медведицей и Кассиопеей ‘W’. Северный Крест значительно больше своего южного аналога, Южного Креста, расположенного в созвездии Крукс.
Положение Денеб в созвездии Лебедя, изображение: Торстен Бронджер
Денеб имеет обозначение Bayer Alpha Cygni. Это сине-белая сверхгигантская звезда со звездной классификацией A2 Ia. Кажущаяся величина составляет 1,25, что делает ее 19-й самой яркой звездой на небе и находится на расстоянии 3550 световых лет от Земли. Звезда в 19 раз массивнее Солнца, в 203 раза больше радиуса Солнца и в 196 000 раз ярче.
Денеб отмечает хвост лебедя, а яркий Альбирео, Бета Сигни, отмечает голову птицы.Вега выглядит в три раза ярче, чем Денеб, потому что она ближе к нам, но Денеб, безусловно, самая яркая из трех звезд и одна из величайших известных сверхгигантских звезд.
,
- Товары
- Клиенты
- Случаи использования
- Переполнение стека Публичные вопросы и ответы
- Команды Частные вопросы и ответы для вашей команды
- предприятие Частные вопросы и ответы для вашего предприятия
- работы Программирование и связанные с ним технические возможности карьерного роста
- Талант Нанимать технический талант
- реклама Связаться с разработчиками по всему миру
Загрузка…
,Java-программа для печати программы в форме перевернутого прямоугольного треугольника. Мы написали ниже программу печати / отрисовки перевернутого прямоугольного звездочки / звездочки четырьмя различными способами с примером и выводом образца, посмотрите его. В конце программы мы добавили компилятор, чтобы вы могли выполнять приведенные ниже коды.
- Использование для цикла
- Использование цикла while
- Использование Do While Loop
Использование для цикла
1) Считайте введенное значение n.
2) Чтобы выполнить итерацию по строкам, запустите внешний цикл от n до 1 со структурой для (int i = n; i> 0; i–).
3) Для итерации по столбцам запустите внутренний цикл со структурой для (int j = 0; j
4) Внутренний цикл печатает символ для j 1 2 3 4 5 6 7 8 9 10 11 12 13 140003 160003 14000000 18 19 20 21 22 23 импорт Ява.util.Scanner; открытый класс Itriangle { открытый статический void main (String [] args) { Scanner sc = новый сканер (System.in); System.out.println («Введите N:»); int n = sc.nextInt (); System.out.print («Введите символ:»); char c = sc.next (). CharAt (0); для (int i = n; i> 0; i—) { для (int j = 0; j { System.out.print (с); } System.out.println (); } } }
Выход:
Введите N: 5 Введите символ: * ***** **** *** ** * |
Использование цикла Loop
1) Проверяет условие i> 0, затем выполняет код.
2) Внутренний цикл while будет отображать символ, пока не будет выполнено условие j ++
3) Внешний цикл выполняет полный код до тех пор, пока условие не станет ложным.
1 2 3 4 5 6 7 8 9 10 11 12 13 140003 160003 14000000 18 19 20 21 22 23 | импорт Ява.util.Scanner; открытый класс Itriangle { открытый статический void main (String [] args) { Scanner sc = новый сканер (System.in); System.out.println («Введите N:»); int n = sc.nextInt (); System.out. |
Java-шаблонов в виде треугольника со звездами
Java-программа для печати зеркальных прямоугольных звездочек. Мы написали ниже программу печати / рисования зеркальных прямоугольных звездочек / звездочек четырьмя различными способами с примером и выводом образца, посмотрите его. В конце программы мы добавили компилятор, чтобы вы могли выполнять приведенные ниже коды.
- Принт с зеркальным прямоугольным прямоугольным узором — использование для цикла
- Print — Использование while Loop
- print — Использование Do While Loop
Использование для цикла
1) Считайте значение n.
2) Запустите внешний цикл for со структурой для (int i = 1; i <= n; i ++), чтобы перебрать строки от i = 1 до i = n.
3) Условие внешнего цикла выполняется, тогда 1-й внутренний цикл выполняется со структурой для (int j = 0; j печатает пробел, если я <= n. 4) 2-й внутренний цикл выполняется со структурой и печатает символ, если j 5) Затем курсор переходит на следующую строку и начинается вторая итерация, повторяйте до тех пор, пока i <= n. В этом примере n = 5, для i = 1 i <= n верно, поэтому в 1-м внутреннем цикле для j = 0 j * ** *** **** ***** 1 2 3 4 5 6 7 8 9 10 11 12 13 160003 140003 14000000 18 19 20 21 22 23 24 25 импорт Ява.util.Scanner; открытый класс MTangle { открытый статический void main (String [] args) { Scanner sc = новый сканер (System.in); System.out.println («Введите N:»); int n = sc.nextInt (); System.out.print («Введите символ:»); char c = sc.next (). CharAt (0); для (int i = 1; i <= n; i ++) { для (int j = 0; j { System.out.print («»); } для (int j = 0; j { System.out.print (c); } System.out.println (); } } } Выход: Введите N: 5 Введите символ: * * ** *** **** ***** Введите N: 5 Введите символ: — — — — —- —— 1) Проверяет условие во внешнем цикле while i <= n, если true j инициализировано равным 0. 2) 1-й внутренний цикл while печатает пробел, если j ++ <(n-i) имеет значение true, повторяется до тех пор, пока условие не будет выполнено. 3) Значение j инициализировано равным 0, 2-й внутренний, в то время как цикл печатает символ j 4) Курсор переходит на следующую строку, значение i увеличивается на 1 и снова проверяет внешнее условие while, повторяется до тех пор, пока условие не станет ложным во внешнем цикле. 1 2 3 4 5 6 7 8 9 10 11 12 13 140003 160003 14000000 18 19 20 21 22 23 24 25 26 27 28 29 30 импорт Ява.util.Scanner; открытый класс MTangle { открытый статический void main (String [] args) { Scanner sc = новый сканер (System.in); System.out.println («Введите N:»); int n = sc.nextInt (); System.out.print («Введите символ:»); char c = sc.next (). CharAt (0); int i = 1, j; , в то время как (i <= n) { j = 0; while (j ++ <(n-i)) { System.out.print («»); } j = 0; while (j { System.out.print (c); j ++; } System.out.println (); i ++; } } } Выход: Введите N: 5 Введите символ:, , Использование цикла while
.