Site Loader

Содержание

Маркировка резисторов

Резистор (англ. resistor, от лат. resisto — сопротивляюсь), — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома: мгновенное значение напряжения на резисторе пропорционально току проходящему через него. На практике же резисторы в той или иной степени обладают также паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

 

Обозначение резисторов на схемах 
В России условные графические обозначения резисторов на схемах должны соответствовать ГОСТ 2.728-74. В соответствии с ним, постоянные резисторы обозначаются следующими образом:

Маркировка резисторов с проволочными выводами
Резисторы, в особенности малой мощности — чрезвычайно мелкие детали, резистор мощностью 0,125Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Прочитать на такой детали номинал с десятичной запятой невозможно. Поэтому, при указании номинала вместо десятичной точки пишут букву, соответствующую единицам измерения (К — для килоомов, М — для мегаомов, E или R для единиц Ом). Например 4K7 обозначает резистор, сопротивлением 4,7 кОм, 1R0 — 1 Ом, 120К — 120 кОм и т. д. Однако и в таком виде читать номиналы трудно. Поэтому, для особо мелких резисторов применяют маркировку цветными полосками.

Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на двузначное число, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая — десятичный множитель, пятая — точность.

Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы).

Следует отметить, что иногда встречаются резисторы с 5-ю полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья — множитель, четвёртая — точность, а пятая — температурный коэффициент.

Цвет Как
число
Как десятичный 
множитель
Как точность
в %
Как ТКС
в ppm/°C
Как %
отказов
серебристый   1·10-2 = 0,01 10
золотой   1·10-1 = 0,1 5
чёрный   0 1·100 = 1
коричневый   1 1·101 = 10 1 100 1%
красный   2 1·102 = 100 2 50 0,1%
оранжевый   3 1·103 = 1000 15 0,01%
жёлтый   4 1·104 = 10 000 25 0,001%
зелёный   5 1·105 = 100 000 0,5
синий   6 1·106 = 1 000 000 0,25 10
фиолетовый   7 1·107 = 10 000 000 0,1 5
серый   8 1·108 = 100 000 000
белый   9 1·109 = 1 000 000 000 1
отсутствует 20%

Пример 
Допустим на резисторе видим 4 полоски коричневую, чёрную, красную, золотую. Первые две полоски дают 1 0, третья 100, четвёртая даёт точность 5 %, итого резистор сопротивлением 10·100 Ом = 1 кОм, с точностью ±5 %. 

Запомнить цветную кодировку резисторов нетрудно: после чёрной 0 и коричневой 1 идёт последовательность цветов радуги. Так как маркировка была придумана в англоязычных странах, голубой и синий цвета не различаются.

Поскольку резистор симметричная деталь, может возникнуть вопрос: «Начиная с какой стороны читать полоски?» Для четырёхполосной маркировки обычных резисторов с точностью 5 и 10 % вопрос решается просто: золотая или серебряная полоска всегда стоит в конце. Для трёхполосочного кода первая полоска стоит ближе к краю резистора, чем последняя. Для других вариантов важно, чтобы получалось значение сопротивления из номинального ряда, если не получается, нужно читать наоборот. (Для резисторов МЛТ-0,125 производства СССР с 4-мя полосками, первой является полоска, нанесённая ближе к краю; обычно она находится на металлическом стаканчике вывода, а остальные три — на более узком керамическом теле резистора).

Особый случай использования цветовой маркировки резисторов — перемычки нулевого сопротивления. Они обозначаются одной чёрной (0) полоской по центру. (Использование таких резисторо-подобных перемычек вместо дешёвых кусков проволоки объясняется желанием производителей сократить расходы на перенастройку сборочных автоматов).

 по материалам: ru.wikipedia.org

Как выбрать подходящий резистор

Все, что вам нужно знать о том, как правильно выбрать резистор для вашего первого проекта печатной платы

Вы планируете приступить к вашему первому проекту печатной платы? Есть множество радиодеталей, которые вы в конечном итоге будете использовать. Однако нет другой такой детали, которая была бы так печально известна, как простой резистор. Если вы когда-либо видели печатную плату, то могли заметить резисторы по всей ее поверхности. Они контролируют силу тока и заставляют светиться светодиоды. Но что именно представляет собой резистор? Как он работает? Как вообще выбрать подходящий резистор для вашего первого проекта печатной платы? Не бойтесь, мы поможем вам и подскажем все необходимое, что вам нужно знать.

Итак… что такое резистор?

Резисторы – это одни из множества пассивных компонентов. Их задача относительно проста, но очень важна – создавать сопротивление току в электрической цепи. Видели, как загорается светодиод? За эту возможность необходимо поблагодарить резистор. Устанавливая в электрическую цепь резистор последовательно со светодиодом, вы получаете яркое свечение, при этом ничего не перегорает!

Основной характеристикой резистора является сопротивление, измеряемое в Омах (Ом). Если раньше вы прослушали базовый курс электроники, то, скорее всего, изучили закон Ома. При работе с резисторами вы будете вновь и вновь иметь с ними дело.

Закон Ома — это единственная формула для нахождения сопротивления

Найти обозначение резистора на схеме легко. Международное обозначение – стандартизированный прямоугольник, но в стандартах США резистор обозначается зигзагообразной линией – это сделано для простоты его нахождения. Вне зависимости от внешнего вида символа, каждый резистор на концах имеет выводы, обозначенные на схеме.

Обозначения резистора на схемах, принятое в США (слева) и соответствующее международным стандартам (справа). На схемах можно встретить оба обозначения.

Какие бывают резисторы?

Повсеместно встречаются резисторы совершенно разных конструкций. Все резисторы можно разделить на две категории по типу конструкции и по резистивному материалу. Рассмотрим обе категории.

Тип конструкции

Постоянные резисторы – как следует из названия, эти резисторы имеют постоянное сопротивление и точность, не зависящие от изменения температуры, освещенности и так далее.

Переменные резисторы – эти радиоэлементы обладают переменным сопротивлением. Потенциометр – великолепный пример такого резистора. У него есть регулятор, который можно вращать для увеличения или уменьшения сопротивления. Другие разновидности переменных резисторов – это подстроечный резистор и реостат.

Нелинейные резисторы – эти резисторы как хамелеоны, они могут изменять свое сопротивление в зависимости от той или иной физической величины, воздействующей на резистор – температуры, уровня освещенности и даже магнитного поля. Нелинейные резисторы – это термистор, фоторезистор, варистор и магниторезистор.

Резистивный материал

Все резисторы можно разбить на группы по материалам, из которых они изготовлены и которые в огромной степени влияют на их способность оказывать сопротивление электрическому току. Вот эти резисторы по используемым материалам:

  • Углеродистые композиционные резисторы;

  • Углеродистые пленочные резисторы;

  • Металлопленочные резисторы;

  • Тонко и толстопленочные резисторы;

  • Фольговые резисторы;

  • Проволочные резисторы.

Углеродистые композиционные резисторы – это резисторы, изготовленные по самой старой технологии, популярной в производстве резисторов малой точности. Их все еще можно найти в схемах, где могут быть импульсы высоких энергий.

Старый углеродистый пленочный резистор.

Такие резисторы все еще используются там, где точность не важна

Из всех вышеперечисленных типов резисторов по резистивному материалу старейшими являются проволочные резисторы.

Их все еще можно встретить на старых печатных платах устройств большой мощности, в которых необходимо сопротивление, заданное с большой точностью. Эти древние резисторы широко известны благодаря тому, что большой надежностью обладают даже резисторы с малым сопротивлением.

Проволочный резистор – старейший и наиболее точный из доступных резисторов

Сегодня наиболее широко применяются металлопленочные и металлооксидные резисторы, они лучше всего обеспечивают с неизменной точностью номинальное сопротивление, а также меньше подвержены влиянию изменения температуры.

Наиболее широко применяемый металлооксидный резистор

обеспечивает неизменную точность номинального сопротивления

Как используются резисторы?

Можно найти резисторы, используемые самыми различными способами. Они применяются не только для того, чтобы оказывать сопротивление электрическому току. Резисторы используются в делителях напряжения, для производства тепла, в цепях сопряжения и нагрузки, для управления усилением и для настройки постоянных времени.

Практическое применение резисторов можно найти в цепях питания электрических тормозов поездов, здесь они помогают высвобождению всей накопленной кинетической энергии.

Серьезное сопротивление – взгляните на тормоза у этого поезда,

которые высвобождают накопленную кинетическую энергию

Вот еще несколько замечательных устройств, в которых используются эти универсальные резисторы:

  • Измерение величины электрического тока – вы можете измерять падение напряжения на включенном в цепь прецизионном резисторе с заранее известным сопротивлением. Расчет тока производится по закону Ома;

  • Питание светодиодов – слишком большой ток, протекающий через светодиод, сожжет этот прекрасный фонарик. Соединив последовательно со светодиодом резистор, вы можете контролировать силу тока через светодиод, обеспечивая его яркое сияние.

  • Питание электромоторов вентиляторов – сердцем системы автомобильной вентиляции является электромотор вентилятора печки. Специальный датчик используется для управления скоростью вращения крыльчатки вентилятора. Резистор такого типа, используемый в датчике, называется, (кто бы мог подумать!) резистором мотора вентилятора!

Резистор мотора вентилятора в ответе за движение воздуха в машине

Как измеряется номинал резистора?

Эта характеристика, с которой вы будете сталкиваться снова и снова, называется сопротивлением. Величина сопротивления наносится на резистор различными способами. В настоящее время существуют два стандарта нанесения значения сопротивления резистора на корпус резистора – это цветовая маркировка или маркировка SMD-резисторов.

Цветовая маркировка

Возможно, вы уже сталкивались с системой цветовой маркировки, если когда-либо возились с макетом электронной схемы. Эта техника была изобретена в 20-х годах прошлого века. Значения величины сопротивления и точности резистора отображалась при помощи нескольких цветных полос, нанесенных на корпус резистора.

Обратите внимание, что цветные полосы на резисторах различаются,

обозначая их уникальные номинальные значения сопротивления и точности.

Большинство резисторов, которые могут попасть к вам в руки, будет иметь четыре цветные полосы. Вот как следует их читать:

  • Первые две полосы указывают первые цифры номинального значения сопротивления;

  • Третья полоса указывает множитель, на который следует умножить число, состоящее из двух цифр, указанных первыми двумя полосами.

  • И, наконец, четвертая полоса указывает точность резистора. Точность очень сильно влияет на стоимость используемого резистора и на цену готового изделия. Поэтому чтобы сэкономить деньги на производстве печатных плат, точность резисторов следует выбирать разумно.

Каждый цвет на резисторе соответствует определенному числу. Вы можете воспользоваться удобным калькулятором номинала резистора по его цветовому коду для быстрого определения номинала в будущем. Если вам легче запомнить наглядную информацию, то ниже мы приводим великолепное видео, в котором рассказано о принципе цветовой маркировки резисторов.

Резисторы для поверхностного монтажа – SMD-резисторы

Не у всех резисторов размеры позволяют нанести на него цветовую маркировку. Это особенно актуально, когда речь идет о радиоэлементах для поверхностного монтажа (SMD). Чтобы маркировка смогла поместиться на небольшой поверхности устройства, SMD-резисторы имеют цифровую маркировку. Если вы посмотрите на современную печатную плату, то заметите, что SMD-резисторы еще имеют одинаковые размеры. Это помогает стандартизировать процесс производства с использованием высокоскоростных автоматов размещения деталей.

Как читать номинал на верхней стороне SMD-резисторов

Как выбрать подходящий резистор

Итак, пришло время наиболее важной части нашей статьи. Давайте узнаем, как определить, какой именно резистор нам нужен для вашего первого проекта печатной платы. Мы разобьем эту задачу на следующие три шага:

  1. Расчет требуемого сопротивления;

  2. Расчет номинальной мощности;

  3. И, наконец, выбор резистора исходя из двух значений найденных ранее.

Шаг 1 – Расчет требуемого сопротивления

Именно здесь для расчета требуемого сопротивления нам понадобится закон Ома. Вы можете воспользоваться одной из стандартных формул ниже, если значения напряжения и силы тока известны.

Шаг 2 – Расчет номинальной мощности

Теперь необходимо выяснить, какое количество энергии должен будет рассеивать резистор. Эту величину можно рассчитать по следующей формуле:

В данной формуле P – мощность рассеивания в Ваттах, V – падение напряжения на резисторе в Вольтах, а R – сопротивление резистора в Омах. Ниже мы привели краткий пример использования данной формулы для расчета в конкретной цепи.

Простая цепь для демонстрации расчета номинальной мощности

Цепь выше содержит светодиод, падение напряжения на котором составляет 2 В, резистор с сопротивлением 350 Ом и источник питания 9 В. Какая мощность будет рассеиваться на искомом резисторе? Давайте посмотрим. Сначала нам необходимо найти падение напряжения на резисторе. Поскольку источник питания дает 9 В, а на светодиоде падает 2 В, то получим:

9 В – 2 В = 7 В

Эти значения можно подставить в формулу:

P = 7 В * 7 В / 350 Ом = 0,14 Ватта

Шаг 3 – Выбор резистора

Теперь, когда у нас есть величины сопротивления и мощности, пора подобрать подходящий радиоэлемент у поставщика радиодеталей. Мы всегда рекомендуем выбирать из стандартных резисторов, которые поставляются в продажу каждым продавцом. Выбирая стандартные резисторы, вы значительно упростите себе жизнь, когда дело дойдет до производства устройства. В США тремя ведущими поставщиками радиоэлементов, качество которых не вызывает сомнений – это Digikey, Mouser и Farnell/Newark.

Сопротивление сильно

Теперь мы охватили всю информацию о резисторах, которая может вам понадобиться для вашего первого проекта печатной платы. Резисторы настолько многофункциональны, что вы увидите, как раз за разом используете их россыпи в своих электронных устройствах. В следующий раз, когда вам понадобиться выбрать резистор, вспомните три простых шага – рассчитайте сопротивление, найдите мощность и выберите поставщика!

Прежде чем вы броситесь размечать обозначения резисторов и их корпусов в вашем приложении для конструирования печатных плат, не было бы проще, если бы кто-то сделал это за вас? Уже сделали! Для многих систем проектирования печатных плат существует большое количество бесплатных библиотек радиоэлементов. И резисторы там тоже есть!

Обозначение резисторов зарубежных компаний

Единая структура условных обозначений резисторов зарубежных компаний отсутствует. Она произвольно устанавливается фирмами-изготовителями.

В основу обозначения постоянных резисторов положен буквенно-цифровой (или цифровой) код, которым обозначают тип, значения основных параметров (номинальная мощность, ТКС, номинальное сопротивление, допускаемое отклонение) и вид упаковки.

Для резисторов специального назначения (изготовляемые по стандартам MIL) условное обозначение формируется следующим образом:

ПЕРВЫЙ ЭЛЕМЕНТ — обозначает серию резистора, согласно таблицы:

Серия

Наименование резисторов

N стандарта

RL

Стандартные металлопленочные резисторы (допуск ±2, ±5)

MIL-R-22684

RN

Металлопленочные прецизионные резисторы

MIL-R-10509

RE

Мощные проволочные резисторы с алюминиевым радиатором

MIL-R-18546

RNC

Металлопленочные резисторы с уровнем надежности «S»

MIL-R-55182

RLR

Металлопленочные резисторы с уровнем надежности «Р»

MIL-R-39017

RB

Проволочные прецизионные резисторы миниатюрные и субминиатюрные

MIL-R-93

RBR

Проволочные прецизионные резисторы с уровнем надежности «R»

MIL-R-39005

RW

Проволочные мощные резисторы для поверхностного монтажа

MIL-R-26

RNR
RNN

Металлопленочные прецизионные резисторы с герметичным уплотнением

MIL-R-55182

RCR

Углеродистые композиционные резисторы

MIL-R-39008

М55342

Толстопленочные кристаллы резисторов с уровнем надежности «R»

MIL-R-55342

ВТОРОЙ, ТРЕТИЙ, ЧЕТВЕРТЫЙ И ПЯТЫЙ ЭЛЕМЕНТ — цифровой код, обозначающий номинальное сопротивление

ШЕСТОЙ ЭЛЕМЕНТ — буквенный код, которым обозначается уровень надежности резисторов в течение 1000 часов-

Код

М

Р

R

S

Уровень надежности (число отказов в %)

1

0,1

0,01

0,001

Обозначение номинального сопротивления представляет собой код из четырех цифр, первые три из которых указывают величину номинала сопротивления в Омах, а последняя — число последующих нулей.

Для резисторов с допуском более 10% код состоит из трех цифр, в котором значащими являются первые две. Некоторые фирмы указывают номинальное сопротивление, закодированное в соответствии с Публикацией МЭК № 62, 63:

Сопротивление

код

Сопротивление

код

Сопротивление

код

Сопротивление

код

0,1 Ом

R10

47 Ом

47R

4,7 кОм

4К7

220 кОм

М22

0,15 Ом

R15

68 Ом

68R

6,8 кОм

6К8

330 кОм

МЗЗ

0,22 Ом

R22

100 Ом

100R

10 кОм

10К

470 кОм

М47

0,33 Ом

R33

150 Ом

150R

15 кОм

15К

680 кОм

М68

4,7 Ом

4R7

220 Ом

220R

22 кОм

22К

1,0 МОм

1МО

6,8 Ом

6R8

330 Ом

330R

33 кОм

ЗЗК

1,5 МОм

1М5

10 Ом

10R

1 кОм

1КО

47 кОм

47К

2,2 МОм

2М2

15 Ом

15R

1,5 кОм

1К5

68 кОм

68К

3,3 МОм

ЗМЗ

22 Ом

22R

2,2 кОм

2К2

100 кОм

М10

4,7 МОм

4М7

33 0м

33R

3,3 кОм

ЗКЗ

150 кОм

М15

6,8МОм

6М8

Для примера рассмотрим условное обозначение постоянных резисторов фирмы Philips :

ПЕРВЫЙ ЭЛЕМЕНТ — тип (класс) резистора:

AC, ACL (Cemented Wirewound’ Nonisolated) -мощные керамические проволочные,

CR (Carbon Resistor) -углеродистые пленочные,

EH (Power Wirewound Isolated) -мощные, опорные проволочные.

MPR (Metal film precision Resistor) -металлопленочные прецизионные,

MR (Vetal film Resistor) -металлопленочные,

NPR (Fussible) -предохранительные металлопленочные,

PR (Power metal film Resistor) -мощные металлопленочные,

RC (Chip Resistor) — бескорпусные (кристаллы),

SFR (Standart film Resistor) -стандартные пленочные,

VR (High- ohmic Voltage Resistor) -высоковольтные,

WR (Enamelled Wirewound Isolated Resistor) — мощные эмалированные пленочные;

ВТОРОЙ ЭЛЕМЕНТ — максимальный диаметр корпуса (кроме класса RC): 06 — 0,6 мм; 08 — 0,8 мм; 16—1,6 мм; 21 — 2,1 мм; 24 или 25 — 2,5 мм; 30—3 мм; 31 или 34 — 3,1 мм; 37 или 39 — 3,7 мм; 52 или 54 — 5,2 мм; 68 или 74 — 6,8 мм.

ПРИМЕЧАНИЕ: Для классов AC, ACL и ЕН цифры обозначают допустимую мощность рассеяния: 01 — 1 Вт; 02 — 2 Вт; 03-3 Вт; 04—4 Вт; 05—5 Вт; 07—7 Вт; 09-9 Вт; 10 — 10 Вт; 15 — 15 Вт; 17 — 17 Вт; 20 — 20 Вт.

ТРЕТИЙ ЭЛЕМЕНТ — кодируется буквенными символами и обозначает конструктивное исполнение контактных выводов и материал покрытия контактов.

Обозначение номинального сопротивления, в зависимости от типа резистора, может быть представлено:

— кодом из четырех (или трех) цифр, в котором первые три (или две) являются значащими, а последняя обозначает число последующих нулей;

— кодом в соответствии с Публикацией МЭК № 62;

— цветовым кодом в соответствии с Публикацией МЭК № 63.

 Цветовое различие выпускаемых корпусов резисторов.

Цвет корпуса

Тип резистора

Светло-коричневый

CR16, CR25, CR37, CR52, CR68

Светло-зеленый

SFR16, SFR25, SFR30

Серый

NFR25, NFR30

Зеленый

MR16, MR25, MR30, MR52, MR24E(C), MR34E(C), MR54E(C), MR74E(C), MPR24, MPR34, AC04, AC05, AC07, AC10, AC15, AC20, ACL01, ACL02, ACL03

Светло-голубой

VR25, VR37, VR68

Красный

PR37, PR52

Коричневый

WRO167E, WRO842E, WRO825E, WRO865E

Некоторые фирмы применяют цветовое кодирование для отличия резисторов, изготавливаемых по стандартам MIL, от резисторов промышленного и бытового назначения или обозначения ТКС для отличия проволочных резисторов от постоянных.


ЗАО «РЕОМ» производит

источники питания ПНВ27 класса DC-DC.
ИВЭП серии ПНВ27 рассчитаны на питание от сети постоянного тока напряжением в диапазоне от 22В до 34В.

Задать вопрос

<< Предыдущая  Следующая >>

Цветная маркировка резисторов по цвету, расшифровка резисторов


Маркировка резисторов по цвету была задумана для облегчения считывания номинала постоянного резистора при любом положении самого резистора.
Сопротивление измеряется в омах. Символ ома — буква омега .
1 Ом — довольно маленькая величина. Поэтому часто значение резистора задаётся в КОм и в МОм.
1 КОм = 1000 Ом. 1 МОм = 1000000 Ом.

Цвета резисторов

Цвет Значение
Чёрный 0
Коричневый 1
Красный 2
Оранжевый 3
Жёлтый 4
Зелёный 5
Голубой 6
Фиолетовый 7
Серый 8
Белый 9

Маркировка резисторов по цвету обычно обозначается четырьмя цветными полосами.

  • 1 полоса обозначает первую цифру,
  • 2 полоса обозначает вторую цифру,
  • 3 полоса обозначает число нулей,
  • 4 полоса обозначает точность значения сопротивления резистора, так называемый допуск. В большинстве случаев это значение может быть проигнорировано.

 

Раcшифровка резисторов


На этом резисторе нанесено:
Красный — 2, фиолетовый — 7, жёлтый — 4 нуля.

Итого, номинал резистора составляет: 270000 Ом — 270 КОм.

Маркировка резисторов по цвету сопротивлением менее 10 Ом

Цветная маркировка резисторов сопротивлением менее 10 Ом требует дополнительных цветов, т.к. стандартные цвета для обозначения сопротивления постоянных резисторов не могут описать номинал менее 10 Ом. Для описания таких номиналов существуют два специальных цвета для третьей полосы: золотой, что означает х 0.1 и серебряный — х 0.01. Первая и вторая полоса обозначают цифры как обычно.
Например:
Красный, фиолетовый, золотой: 27 х 0. 1 = 2.7 Ом.
Зелёный, голубой, серебряный: 56 х 0.01 = 0.56 Ом.

Точность значения сопротивления резисторов

Точность номинала постоянного резистора показывается четвёртой цветной полосой. Она обозначается в процентах. Например, резистор с указанным номиналом 390 Ом и точностью ±10% на самом деле будет иметь сопротивление между 390 — 39 = 351 Ом и 390 + 39 = 429 Ом (39 это 10% от 390).
Существуют специальные цветовые коды для четвёртой полосы:

  • серебряный — ±10%,
  • золотой — ±5%,
  • красный — ±2%,
  • коричневый — ±1%
Если четвёртая полоса отсутствует, точность номинала резистора составляет ±20%.

 

Кодовое обозначение резисторов

Номиналы резисторов обозначаются так же и буквенно-цифровым (кодовым) методом, который исключает использование десятичной запятой, потому что очень легко не заметить маленькую точку. Вместо десятичной запятой используются буквы R, K, M. При определении номинала резистора буква K означает умножение на 1000, буква M на 1000000, а буква R на 1.
Например:

  • 560R означает 560 Ом
  • 2K7 означает 2.7 КОм = 2700 Ом
  • 39K — 39 КОм
  • 1M0 — 1.0 МОм = 1000 КОм

Что такое резистор. Окончание | Компьютер и жизнь

Приветствую, друзья.

В первой части статьи мы с вами узнали о еще одном «кирпичике» электроники – резисторе.

Сегодня мы продолжим знакомство с этими штуковинами и перейдем от теории к практике.

Сразу отметим, что резистор – это пассивный элемент (в отличие от активных – диодов и транзисторов, способных генерировать сигнал).

Для начала рассмотрим

Обозначения резисторов в схемах

Постоянные резисторы в электронных схемах обозначают прямоугольниками (отечественное обозначение) или ломаной линией (зарубежное обозначение).

Если придерживаться отечественного ГОСТ, то необходимо указывать еще и мощность резистора посредством черточек внутри прямоугольника.

Переменные и подстроечные резисторы обозначаются теми же прямоугольниками или ломаными линиями и стрелкой, символизирующей подвижный контакт.

Рядом с графическим изображением указывается значение сопротивления резистора и его порядковый номер в схеме.

Иногда указывается мощность резистора и его допустимое процентное отклонение сопротивления от номинала.

Величина сопротивления указывается в Омах, килоомах (кОм), мегомах (Мом).

Иногда в зарубежных схемах для обозначения Ом используется символ Ω  (греческая буква «омега»).

Отметим, что в конструкторской документации в схемах зачастую указывают только порядковый номер резистора, а его номинал, отклонение, тип и другие данные сводят в отдельный документ.

Напомним, что о всех параметрах конкретного типа резистора можно почитать в соответствующем даташите  (data sheet).

Примеры обозначений:

— 27 Ом, 27 Ohm, 27Ω, 27R, 27 – 27 Ом,

— 1,5 кОм, 1,5 к, 1,5 kOhm, 1,5 кΩ, 1k5 – 1,5 килоом,

— 3,3 Мом, 3,3 МOhm, 3,3 MΩ, 3M3, 3,3 – 3,3 мегом (мегаом)

Обратите внимание: если в обозначении стоит маленькая буква «м» – то это будут миллиомы, а не мегомы!

Если в обозначении стоит просто цифра без букв, то это могут быть и омы, и мегомы. В этом случае, если в цифре нет запятой – это будут омы, если есть – мегомы.

Маркировка резисторов

Резисторы могут маркироваться нанесением буквенно-цифровых обозначений, наносимых на корпус резистора.

Обычно указывается номинал резистора и его процентный допуск (±5%, ±10%, ±20%). Процентный допуск указывается чаще всего латинской буквой.

Иногда указывается тип резистора и его мощность рассеяния.

Примеры обозначений:

100kΩJ 2W – 100 килоом, допуск ±5%, мощность рассеяния – 2Вт,

4К3И МЛТ-1 – 4,3 кОм, допуск ±5%, тип – МЛТ, мощность рассеяния – 1 Вт (это старый резистор времен CCCР),

560Ω 5% — 560 Ом, допуск ±5%

Однако на корпус мелких резисторов трудно нанести такие обозначения, поэтому для них применяется маркировка посредством 4-х, 5-ти или 6-ти цветных колец.

Обычно маркировка читается слева направо, при этом первое кольцо шире, или находится ближе к выводу резистора.

Мы не будем здесь приводить полных таблиц с цветовой маркировкой.

Номинал резистора можно узнать в онлайн-калькуляторах. Например, здесь. Это удобно.

Измерение сопротивления резистора

Обычно сопротивление резистора указывается на его корпусе посредством маркировки.

Но иногда возникает необходимость измерить величину сопротивления.

Обычно такое происходит при ремонте.

Маркировка может потускнеть или стереться, сам резистор может подгореть.

Измерить сопротивление резистора можно цифровым мультиметром.

Мультиметр измеряет не только сопротивление, но другие величины – ток, напряжение, емкость, температуру и т.д.

Обычно мультиметр имеет переключатель диапазонов и величин и входные гнезда для щупов.

Для измерения сопротивления надо поставить переключатель на один из диапазонов измерения сопротивления (вблизи этих диапазонов обычно расположен символ Ω).

При этом цифра, например, «200» означает диапазон от 0 до 200 Ом, обозначение «20к» – диапазон от 0 до 200 килоом, а обозначение «200М» – диапазон от нуля до 200 Мегом.

Если сопротивление резистора превышает выбранный диапазон, в крайнем левом разряде будет цифра «1».

При измерении малых величин сопротивлений (единицы Ом – доли Ом) надо учитывать сопротивление щупов мультиметра.

Для этого надо замкнуть щупы между собой, при этом мультиметр покажет некоторое сопротивление (доли Ом).

Эту величину надо потом вычесть из измеренного значения сопротивления. При измерении сопротивлений более 100 Ом погрешность измерения будет менее 1%. Этого вполне достаточно для большинства практических применений.

Сопротивление в десятые – сотые доли Ома выполняются с помощью специальных измерителей – миллиомметров и измерительных мостов.

Отметим, что иногда резисторы в изделиях (особенно миниатюрные) изменяют свое сопротивление без изменения внешнего вида – без обгорания, потемнения и т.п. Это одна из самых трудно обнаруживаемых неисправностей. «Вычислить» такой резистор можно только измерением его сопротивления и сравнением его с маркировкой.

 Схемы с резисторами

Параллельное и последовательное соединение резисторов

Еще из школьного курса физики мы помним, что резисторы могут соединяться последовательно и параллельно.

При последовательном соединении сопротивление цепочки будет равно сумме всех сопротивлений.

При параллельном сопротивлении суммируются величины, обратные сопротивлениям, поэтому сопротивление цепочки будет меньше резистора самого малого номинала.

В справедливости этих утверждений можно легко убедиться с помощью мультиметра.

Иногда не удается найти резистор нужного номинала – и в этом случае его можно получить последовательным или параллельным соединением нескольких резисторов.

Последовательное соединение резисторов используется и в том случае, если прилагаемое напряжение превышает максимально допустимое для данного типа резистора.

Так, для большинства современных SMD резисторов прилагаемое напряжение не должно превышать 200 В. Поэтому, при необходимости, например, включить SMD резистор в цепь сетевого напряжения 220 В (при этом амплитудное значение напряжения превышает 300 В) ставят цепочку из двух-трех резисторов одинакового номинала. При этом сетевое напряжение в соответствии с законом Ома поровну распределяется между ними.

Делитель напряжения

В электронных схемах часто бывает нужно получить часть от какой-то величины напряжения. Эту задачу решает делитель напряжения.

При этом входное напряжение подается на цепочку из двух последовательно соединенных резисторов, а выходное снимается с одного из них.

В соответствии с законом Ома, Iд = Uвх/(R1+R2) и Uвых = Iд*R2. Отсюда Uвых = Uвх*R2/(R1+R2). Величина R2/(R1+R2) называется коэффициентом передачи делителя (который всегда меньше единицы).

Поэтому выходное напряжение всегда меньше входного.

В первом приближении коэффициент передачи не зависит от частоты сигнала, так как сопротивление резисторов не зависит от частоты.

Кстати, переменный или подстроечный резистор можно включить по схеме 1 или 2.

В первом случае при вращении ручки резистора изменяется сопротивление, вносимое резистором в цепь сигнала.

Во втором случае резистор представляет собой управляемый делитель напряжения с переменным коэффициентом передачи.

Именно по такой схеме включен переменный резистор в регуляторе громкости акустических систем, стоящих у вас на столе.

Частотно-зависимые делители напряжения

Если в одно из плеч делителя вместо резистора установить конденсатор, получится частотно-зависимый делитель напряжения, так как сопротивление конденсаторы зависит от частоты.

В первом случае конденсатор стоит в верхнем плече делителя. При малой частоте сигнала его сопротивление очень велико, и на нем падает почти все входное напряжение.

Поэтому на выходе будет очень небольшой сигнал. При нулевой частоте (постоянном напряжении) на конденсаторе упадет все напряжение, и на выходе будет вообще 0 вольт.

По мере роста частоты сопротивление конденсатора будет уменьшаться, а коэффициент передачи делителя и, соответственно, выходное напряжение – возрастать.

Эту схему еще называют фильтром верхних частот.

В втором случае конденсатор стоит в нижнем плече.

В этом случае сигнал малой частоты пройдет без заметного ослабления, а сигнал высокой частоты будет сильно ослаблен.

Такую схему называют еще фильтром нижних частот. Он пропускает небольшие частоты и постоянную составляющую.

В заключение отметим, что, конечно же, резисторы (и другие компоненты) встречаются в самых различных комбинациях во множество других схем. И что анализ этих схем достаточно сложен, так как при этом привлекается серьезный математический аппарат.

Но на первых порах вполне достаточно простого качественного объяснения «на пальцах».

Можно еще почитать:

Что такое полевой транзистор.


Виды и маркировка резисторов содержащие золото.

Онлайн — калькулятор цветовой маркировки резисторов. Устройства с тремя полосками

Примечания

1. Общие положения. В соответствии с ГОСТ 28883-90 и международным стандартом, сопротивление резисторов маркируется в виде цветных полос. Маркировка с тремя полосками используется для резисторов с точностью 20%, с четырьмя полосками – с точностью 5% и 10%, с пятью – с точностью до 0.005%. Шестая полоска на резистора показывает температурный коэффициент сопротивления (ТКС).

2. Цветовая маркировка резисторов с 3 полосами . Цвет первых двух полос означает первые цифры сопротивления. Третья полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых двух цифр. Точность резисторов с 3-мя полосами — 20%.

Сопротивление резистора с тремя полосами можно найти по формуле:

R =(10 A + B )10 C ,

3. Цветовая маркировка резисторов с 4 полосами. Цвет первых двух полос означает первые цифры сопротивления. Третья полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых двух цифр. Четвертая полоса означает точность резистора в процентах. Она может быть серебристого или золотистого цвета, что значит допуск в 10% или 5% соответственно.

Сопротивление резистора с четырьмя полосами можно найти по формуле:

R =(10 A + B )10 C ,

где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы.

4. Цветовая маркировка резисторов с 5 полосами. Цвет первых трех полос означает цифры сопротивления. Четвертая полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых трех цифр. Пятая полоса означает точность резистора в процентах.

Сопротивление резистора с пятью полосами можно найти по формуле:

5. Цветовая маркировка резисторов с 6 полосами. Цвет первых трех полос означает цифры сопротивления. Четвертая полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых трех цифр. Пятая полоса означает точность резистора в процентах. Шестая полоса означает температурный коэффициент сопротивления.

Сопротивление резистора с шестью полосами можно найти по формуле:

R =(100 A +10 B + C )10 D ,

где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы; D – номер цвета четвертой полосы.

Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая — десятичный множитель, пятая — точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы)

Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья — множитель, четвёртая — точность, а пятая — температурный коэффициент.

Маркировка в виде 4 колец


Маркировка в виде 5 колец


Калькулятор номиналов SMD-резисторов

Кодирование 3-я цифрами

Кодирование 4-я цифрами

  • Похожие статьи

Войти с помощью:

Случайные статьи
  • 08.10.2014

    Усилитель для наушников обладает следующими характеристиками: Выходная мощность на нагрузке 8 Ом 1Вт Коэффициент гармоник 0,01% Диапазон частот 10…30000Гц Напряжение питания +/-25В Ток потребления 35мА Каскад на VT1 VT2 включенный на выходе ОУ работает в линейном режиме А. Смещение на базах VT1 VT2 обеспечивает цепь VD1 R7 R8 VD2. Усилитель …

  • 21.09.2014

    При традиционном способе печатного монтажа много времени тратится на разработку монтажных схем. При изготовлении используют дефицитные и дорогие материалы и реактивы. Предлагаемый способ монтажа обладает небольшой трудоемкостью, не требует предварительной разработки монтажной схемы, обеспечивает установку любых элементов и их замену. Из электрокартона или плотного ватмана склеивают шасси высотой 4-10 мм …

Содержание:

Естественно, что без сопротивления не обходится ни одна электронная схема. Где-то необходимо ограничение протекающего напряжения по той или иной дорожке, а иногда нужен обратный процесс — вообще, возможности подобных элементов очень велики. И если рассматривать эти компоненты, произведенные в советское время, то никаких вопросов по их характеристикам не возникало — номинал был прописан в обозначении на корпусе, все было предельно понятно.

А вот с приходом на радиорынок таких современных элементов, как резисторы, маркировка которых обозначается при помощи полосок, многие радиолюбители (даже лучше сказать основная их часть), схватились за голову — как определить сопротивление по этим цветным линиям? Ведь для того, чтобы определить номинал подобного элемента по его цветовой маркировке, необходимо пересмотреть огромное количество таблиц и прочей литературы. И это при том, что некоторые производители пытались ввести дополнительно еще и свои обозначения.

Сейчас, когда система производства и обозначений сопротивлений стандартизирована, конечно, цветная маркировка резисторов помогает определять номинал элементов, но все же без некоторых таблиц при этом не обойтись.

Нужно попробовать понять, как же определить номинал резистора, будь то элемент на 10 кОм или на 25, который находится перед глазами, без применения дополнительных устройств, обращая внимание только лишь на цветовую маркировку.

Цветовая маркировка

Если разобраться, то определение сопротивления резистора не так уж и проблематично. Согласно введенным стандартам, на подобные элементы наносится разное количество цветовых полос в зависимости от номинала. Их число может быть от четырех до шести, и каждая из них несет свою информацию.

Однако, мало знать цвета и их последовательность. Чтение обозначений тоже имеет свои нюансы. К примеру, для правильного определения номинала резистора по полоскам необходимо расположить его так, чтобы полоса с оттенком металлика, находилась по правую сторону. А при отсутствии подобной — группа полос по левую.

  • Три кольца — минимальное количество. Погрешность такого обозначения сопротивлений может составить 20 %. Первые два кольца будут означать значение, а третье — это показатель множителя маркировки резисторов.
  • Четыре кольца — расчет производится подобным предыдущему способом, только 4-е обозначит отклонение. При подобном обозначении возрастает точность определения номинала, и погрешность составит уже всего 5-10%.
  • Пять колец — здесь показателем являются уже три первых цифры, а далее, 4-е — множитель, а 5-е — отклонение. Погрешность при подобном обозначении составляет не более 0.005%.
  • Последний вариант является самым точным и маркируется шестью кольцами. Цветная маркировка читается аналогично предыдущему варианту, при этом последнее, 6-е кольцо обозначает коэффициент температуры, до которой нагревается корпус элемента.

Сложность может заключаться и в том, что некоторые таблицы для расшифровки цветовых маркировок резисторов вообще не содержат обозначений шестого кольца.

Также часто на корпус наносится и буквенная маркировка, при условии, что позволяют размеры. Тогда она может выглядеть так: 10 — 1 Ом, или 1К0 — 1 кОм.

Универсальные цвета

Существует таблица, с указанием универсальных цветов, при помощи которой читается маркировка резисторов по полоскам. Выписав отдельно числовое обозначение каждой из полос сопротивления, можно определить номинал элемента достаточно точно. Обозначения цветов выглядят следующим образом:

  • Черный — 0;
  • Коричневый — 1;
  • Красный — 2;
  • Оранжевый — 3;
  • Желтый — 4;
  • Зеленый — 5;
  • Синий — 6;
  • Фиолетовый — 7;
  • Серый — 8;
  • Белый — 9;
  • Серебристый — «-1»;
  • Золотистый — «-2».

Для того чтобы было более понятно чтение по цветовой маркировке, имеет смысл привести несколько примеров.

Примеры чтения по цветной маркировке

На данном изображении видно наличие полос зеленого, коричневого, красного и золотистого цвета. Согласно таблице и правилам, согласно которым читается маркировка сопротивлений, зеленая и коричневая полоса составляют значение 51. Далее идет красная полоса множителя, который обозначает число 2. И крайняя левая золотистая — «-2». Из всего этого делается вывод, что номинал этого сопротивления будет равен 5.1 кОм с допуском в 5%.

Также можно рассмотреть более сложный вариант цветовой маркировки с пятью цветными полосками. Для примера возьмем последовательность полос — зеленый, красный, черный, белый, серебристый. Три первых цифры, которые являются значением, это 520. Далее идет множитель 9 и отклонение «-1». Произведя несложные расчеты по цветному обозначению, получаем номинал сопротивления элемента, равный 502000 МОм, с допуском в 10%.

Конечно, намного удобнее и проще узнать размер номинального сопротивления в омах, если под рукой есть компьютер или любой гаджет, на который установлена специальная программа — калькулятор цветовых обозначений. Подобное программное обеспечение осуществляет необходимый подбор и избавляет от необходимости производить расчеты. Все, что нужно — это ввести последовательность цветов и количество полос, нанесенных на сопротивление, после чего программа сама рассчитает и выдаст на экран информацию по номиналу этого элемента.

Отклонения от стандартов в маркировках

Конечно, практически все производители наносят цветовую маркировку в соответствии с введенными стандартами. Однако есть и исключения.

К примеру, компания Phillips, которая специализируется на электронике, как бытового, так и промышленного применения, ввела отдельные нормы нанесения маркировок сопротивления по цветам. Дело в том, что полосы у данной компании обозначают не только номинал резистора, но также несут информацию и о технологии изготовления того или иного элемента, а также о некоторых свойствах компонентов. В подобных обозначениях смысл имеет не только нестандартное расположение колец, но и даже цвет резистора, а именно его корпуса.

Еще один пример изменения стандартных маркеров, обозначающих номиналы резисторов по цветам — CGW и Panasonic. Эти фирмы также наносят цветовые кольца в своей последовательности, не подчиняясь общепринятым нормам.

Конечно, для потребителя подобные изменения в нанесении маркеров очень неудобны, но фирмы, их использующие, объясняют это тем, что делается это для предотвращения подделок и установки на их оборудование неоригинальных элементов при выходе их из строя. Может быть, по-своему, они и правы.

Дополнительная информация

Как уже упоминалось, возможно нанесение информации на корпус сопротивления и в более понятном, буквенно-числовом виде. Подобное обозначение может быть лишь при условии наличия такой возможности, то есть, если корпус резистора имеет более крупный размер. Ведь довольно проблематично нанести читаемые числа на элемент размером в 2 мм. Именно по этой причине и были приняты стандарты цветовой маркировки.

Как, наверное, уже стало ясно, прочесть информацию, которую несут полоски на сопротивлении по цветам (то есть понять, как определить номинал резистора), не так уж и сложно. Главное, чтобы под рукой были необходимые таблицы. Ну а если же имеется возможность воспользоваться программой, такой как калькулятор цветовых маркировок резисторов, то тогда вообще любые вопросы, связанные с расшифровкой, отпадают.

В заключение можно добавить, что подобное обозначение имеет свои преимущества — оно никогда не стирается с корпуса, как это было в случаях с советскими резисторами, а потому эти элементы всегда подлежат идентификации.

Одними из основных элементов построения электронных схем, несмотря на развитие микропроцессорных технологий по-прежнему остаются старые проверенные резисторы

Сопротивление или резисторы во многом за последние десятилетия претерпели ряд изменений, в том числе и существенное уменьшение габаритных размеров – нынешнее поколение вдвое меньше по размерам, чем приборы, выпускаемые 30-40 лет назад, но вместе с тем, потребность в них при создании электроники не стала меньше.

Причинами введения цветной маркировки электронных элементов было несколько:

  1. Ввиду уменьшения размеров пришлось отказаться от буквенно-цифровой маркировки приборов.
  2. Цветовая система обозначения позволяет закодировать намного больше информации об элементе, чем буквенно-цифровая.
  3. Повсеместное внедрение робототехники в сборочных линиях электронных компонентов требовало изменения подходов к маркировке составляющих деталей.
  4. В связи с развитием производства радиодеталей в странах Восточной Азии, основанной на передовых технологиях, существенно оттеснили выпуск отечественных компонентов, ввиду чего производителям пришлось перейти на западные стандарты маркировки.

Кроме того, значительное количество радиоэлементов сегодня монтируются в платы, ремонт которых нецелесообразен ввиду дороговизны самого ремонта, ведь намного дешевле купить новый радиоприемник чем отремонтировать, ввиду этого, многие фирмы практически отказались от сервисных центров и как результат, не требуют значительного количества запасных частей разного номинала.

Как определить сопротивление резистора по цвету?


В основном, сегодня, практически невозможно встретить резисторы старше 15-20 лет, хотя отдельные старые раритетные «Рекорды» и «Электроны» до сих пор радуют глаз в отдельных квартирах.

Наполненные советской электроникой старые телевизоры и радиоприемники в своем составе имели, как правило, стандартные сопротивления коричневого или зеленого цветов с буквенной маркировкой.

Понять номинальное значение элемента по его буквенно-цифровой кодировке имея под рукой раритетный макулатурный справочник особого труда не составляет, тем более что в большинстве своем это были металлопленочные, лакированные приборы, обладающие свойством теплоустойчивости – МЛТ.

В Советском Союзе бытовая электроника была побочным продуктом оборонных предприятий, но при этом собиралась из тех же деталей, что и военная техника. Такие резисторы отличались друг от друга по габаритам – чем больше элемент, тем большее сопротивление.

Нынешняя маркировка компонентов во многом отличается от того тем, что существует несколько разновидностей – простые, стандартные цилиндрические сопротивления с цветной маркировкой и SMD-элементы.

4 и 5 полосная маркировка

Четырехполосная:

Пятиполосная:

Для определения номинала элемента, кроме знания основ физических процессов, необходимо знать технологию цветового обозначения номиналов электронных компонентов.

Для начала необходимо знать правильность чтения или порядок цветового кода:

  1. На резисторах, как правило, наносятся 4 или 5 цветных колец.
  2. Испытуемый элемент нужно расположить таким образом, чтобы цветовые кольца начинались с золотистого или серебристого кольца слева.
  3. В отдельных случаях, когда отсутствуют серебристая или золотистая полоска (а такой вариант вполне возможен), элемент нужно расположить таким образом, чтобы цветовые кольца оказались слева (или справа оставалось больше места).

Количество цветов в кольцах строго ограничено количеством цветов радуги, плюс серый, белый и черный.

Каждый цвет соответствует определенному значению номинала и зависит от расположения в порядке колец.

Первое и следующее за ним второе кольцо кода обозначают номинальную величину сопротивления элемента в стандартных единицах Омах, следующее кольцо множитель, на который нужно умножать величину первых единиц, четвертое означает ту величину, на которую происходит отклонение заявленного номинала в процентах.

Для SMD резисторов маркировка несколько иная – это в основном цифровое обозначение. В основном встречаются сопротивления с 3 или 4 цифрами – первые две, из которых это номинал, а третья обозначает степень числа 10. То есть резистор 4432 имеет номинал: 443*10(2 степени) или 4400 Ом или 4,4 кОм.

Стандартная и нестандартная цветовые маркировки


Нестандартная маркировка

Кроме общепринятой, стандартной цветовой маркировки обозначений сопротивлений, существуют и нестандартные виды кодирования. Чаще всего, нестандартные маркировки встречаются в виде совмещенного кода цвета и цифр у некоторых крупных производителей электроники, имеющих свои подразделения по разработке и производству электронных компонентов.

Среди таких нестандартных цветовых кодов и буквенного обозначения, чаще всего встречаются Philips и Panasonic, эти производители маркируют радиодетали, выпущенные на внутренних предприятиях отличной от общепринятой маркировкой, для которой применяются специальные справочные издания и компьютерные программы.

Пояснение и таблица


Как уже было указано, цветовые маркерные кольца нанесены слева направо.

Первое кольцо и следующее за ним второе цветное кольцо обозначают стандартную величину сопротивления в Омах. Следующее, третье кольцо обозначает множитель, на который нужно умножать числовое значение первых двух единиц обозначения, четвертое кольцо кода указывает значение, на которое отклоняется заявленный номинал в процентах.

Для точного определения величины сопротивления каждого отдельного компонента не следует запоминать весь цветовой код, достаточно иметь под рукой таблицу определения сопротивления:

Цвет знака Номинальное сопротивление, Ом Допуск, % ТКС
Первая цифра Вторая цифра Третья цифра Множитель
Серебристый 10-2 ±10
Золотистый 10-1 ±5
Черный 0 0 1
Коричневый 1 1 1 10 ±1 100
Красный 2 2 2 102 ±2 50
Оранжевый 3 3 3 103 15
Желтый 4 4 4 104 25
Зеленый 5 5 5 105 0,5
Голубой 6 6 6 106 ±0,25 10
Фиолетовый 7 7 7 107 ±0,1 5
Серый 8 8 8 108 ±0,05
Белый 9 9 9 109 1

Кроме стандартной, общепринятой маркировки, в отдельных случаях указываются и дополнительные данные в обозначениях 4 или 5 полосного, когда более широкая полоса (она, как правило, шире в 1,5 раз от остальных) указывает на более надежный, специальный вариант элемента – как правило, срок ее службы рассчитан более чем на 1000 часов непрерывной работы.

Онлайн-калькулятор


Интерфейс программы “Резистор 2.2”

Современные технологии и сегодня во многом облегчают работу как профессионалам, так и радиолюбителям. Кроме доступной измерительной аппаратуры, сегодня в интернет-ресурсах, посвященных радиотехнике, в огромном количестве находятся онлайн-калькуляторы определения сопротивления резисторов по маркировке.

Простые, и в общем-то надежные программы, позволяют с высокой точностью определить номинал практически любой радиодетали, более продвинутые и мощные инженерные программы, используемые в пакетах для инженеров-конструкторов, позволяют не только узнать значение сопротивления, но и найти соответствующую замену и определить вариант работоспособности самой схемы.

Одной из таких программ является программа Резистор 2.2 , она проста, удобна и не требует глубоких знаний компьютерной техники. Простой интерфейс и удобные рабочие органы позволяют работать как в сети, так и без неё.

Как пользоваться?

Как и большинство прикладных инженерных программ, программа Резистор 2.2 является онлайн-калькулятором, позволяющим определять номинал сопротивления по различным наиболее распространенным видам кодировки:

  1. Стандартной 4 или 5 цветной маркировке.
  2. Фирменной маркировке Philips различных видов сопротивлений.
  3. Нестандартной цветовой кодировки фирм Panasonic, Corning Glass Work.
  4. Обычной кодовой маркировке.
  5. Обычной кодировке Panasonic, Philips, Bourns.

После распаковки архива, не требующая регистрации программа сразу готова к работе. В окне, из предложенных вариантов, выбирается нужный параметр и производится дальнейшая идентификация по имеющемуся коду на корпусе элемента.

Для удобства идентификации, в верхнем окне наглядно показывается изображение определяемой кодировки. На корпусе радиодетали наносятся цветные кольца в соответствии с теми значениями, которые указываются пользователем, таким образом, появляется возможность наглядно сравнить кодировку с реальным элементом.

Внизу сразу высвечивается числовое значение номинала элемента.

С появлением радиоэлектронной и микропроцессорной техники ни одна сложная схема не обходится без участия резисторов. Резистор позволяет не только преобразовывать напряжение в силу тока и обратно, но также ограничивать последнее или поглощать. В большинстве случаев они имеют крайне миниатюрный вид. Именно поэтому принято в качестве маркера наносить на них цветные полоски, расшифровать которые поможет калькулятор резисторов по цветовой маркировке.

Так как большинство резисторов имеет довольно маленькие размеры, наносить на них цифровое обозначение нецелесообразно, ведь пользователь банально не сможет его разглядеть. Куда проще помечать подобные мини-детали цветовыми полосками, которые и были приняты в качестве стандарта.

Однако крайне сложно запомнить все условные обозначения и вариации подобного маркирования. Именно поэтому существуют таблицы и калькуляторы сопротивлений резисторов, которые избавляют электронщика от нужды запоминать множество лишней информации. Да и человеческий фактор никто не отменял, что в результате может привести к неверной расшифровке, а как последствие — можно получить нерабочую или неправильно работающую схему.

Таким образом, было решено внести цветные полосы для обозначения маркировки резисторов в стандарты, подразумевающие нанесение от трёх до шести полосок определённого цвета, каждая из которых несёт в себе заранее заложенную информацию, благодаря чему несложно подобрать необходимую деталь с требуемыми параметрами.

Стандартные цветные обозначения

Полоски или цветовые кольца, наносимые на сопротивление, могут иметь не только различный цвет, но и отличаться толщиной и количеством. Принятая маркировка резисторов выглядит так:

Из этого можно сделать вывод, что чем на резисторе колец больше, тем больше можно узнать о его характеристиках. Но на сложность расшифровки количество цветовых обозначений никоим образом не отражается.

Общая универсальная таблица значений

Конечно, все обозначения и соотношения цветов держать в голове крайне сложно. Да и особой нужды в этом нет. Зато существует универсальная таблица цветовых значений, благодаря которой цветная маркировка резисторов расшифровывается без особого труда.

Подобные обозначения приняты большинством производителей в мире, что делает её универсальной для любой страны.

Для примера можно рассмотреть 6-полосный вариант с цветовыми кольцами: красный, оранжевый, жёлтый, зелёный, синий, коричневый.

  1. Красный — числовое значение «2».
  2. Оранжевый — числовое значение «3».
  3. Жёлтый — числовое значение «4».
  4. Зелёный — четвёртая полоска обозначает множитель, для зелёного (по данным таблицы) это значение 1*10⁵. Ориентируясь на таблицу, первые три цвета дают значение «234» Проведя расчёт 234*10⁵ получается 2,34 МОм.
  5. Синий — определяет точность, которая для этого цвета 0,25%, т. е. именно таково возможное отклонение от начального значения в любую из сторон при работе резистора.
  6. Коричневый — обозначает температурный коэффициент, в этом случае значение равно 100 ppm/°C.

Таким образом, из приведённого примера видно, что никаких особых сложностей при расшифровке не возникает, даже если имеется сопротивление с шестью цветными обозначениями.

Онлайн калькуляторы

Для определения и расшифровки резистора по цветовым полосам можно пойти и другим путём. Порой далеко не всегда удобно пользоваться таблицей. Тем более что придётся ещё и проводить (пусть и минимальные) расчёты, а это современный человек не очень любит. Вот здесь на помощь может прийти интернет. Ведь расшифровку цветовой маркировки резисторов цветной онлайн-калькулятор выполнит куда более точно и быстро. А учитывая, что почти у всех сейчас в наличии смартфоны, то реализовать подобное действие можно даже «в поле».

Онлайн-калькуляторы сегодня можно найти без труда через любую поисковую систему. Несмотря на то что все они могут отличаться внешне, принцип действия всегда будет одинаков. Ну и в функционале также возможны некоторые различия. Однако получить интересующую информацию по резисторам есть возможность на любом из таких сервисов.

Как правило, в основе программы заложены все те же данные, что можно найти в таблице. Но выполняются все расчёты автоматически. Для этого в зависимости от предлагаемого сервисами калькулятора необходимо ввести, обозначить, отметить или сообщить программе иным способом количество и цвет полосок. В результате чего калькулятор в считанные доли секунд выдаст всю имеющуюся по данному полупроводнику информацию — удобно, быстро и точно. Таким образом, цветовая маркировка резисторов онлайн вычисляется куда более эффективно.

Нестандартные маркеры

Несмотря на то что цветовая маркировка резисторов признана во всём мире, некоторые особо известные производители могут наносить иные обозначения согласно своим личным стандартам. Так, цветовое обозначение резисторов у Philips, помимо основных характеристик, может нести информацию о технологии производства и применяемых компонентах.

Хорошо известная компания Panasonic также предпочитает следовать личным стандартам. В своих обозначениях они вводят информацию и о каких-либо особенных свойствах резистора.

Тем же путём пошла и фирма CGW, которая также отображает на корпусе полупроводника информацию о его дополнительных особенностях.

Но несмотря на это, любую из таких деталей можно не только расшифровать и получить исчерпывающую информацию о ней, но и прибегнуть к замене на аналог, а это говорит о том, что сами свойства прибора остаются практически неизменными.

Введение в электронику. Резисторы

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Резисторы

Резисторы делятся на постоянные, подстроечные и переменные (потенциометры).
Практически в каждой конструкции встречается постоянный резистор. Он представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода).

Резистор имеет сопротивление и используется для того, чтобы установить нужный ток в электрической цепи.

Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки) , можно получить ту или другую скорость потока води (электрический ток разной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем большее сопротивление тока. Поэтому эту деталь иногда просто называют сопротивлением.
Из постоянных ранее применялись резисторы типа МЛТ (металлизированный лакированный теплостойкий). Их корпуса были окрашены в красный или зеленый цвет. Сегодня радиомагазины чаще заполнены резисторами белового цвета с цветными полосами. И те, и другие Вы можете смело использовать в своих устройствах. Подстроечные резисторы предназначены для настройки аппаратуры, а резистор со сменным сопротивлением (переменный или потенциометр) применяют для регулировки, например, для установки громкости в усилителях.
Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах, килоомах и мегоомах, а мощность – в ваттах. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры. Внешний вид постоянных резисторов показан на Рис. 1. Там же показано условно-графическое обозначение резисторов на принципиальной схеме с указанием мощности. Чаще мощность указывают рядом с резистором или рассказывают об этом в описании схемы.

Для миниатюризации своих устройств некоторые используют ЧИП-компоненты, среди которых могут быть как резисторы, так и конденсаторы. На Рис. 1г показан внешний вид ЧИП-резистора. В зарубежной электронике он называется SMD (от Surface Mounted Device – прибор, монтируемый на поверхность). Другими словами ЧИП-компоненты – это безвыводные радиодетали для монтажа со стороны печатных проводников.
Номинальное значение сопротивления резистора указывается производителем на корпусе изделия. Там же наносится и ряд других его характеристик. Для маркировки резисторов используют специальные кодировки: буквенно-цифровую, цветовую и цифровую.
В буквенно-цифровой маркировке единицу сопротивления Ом сокращенно обозначают буквой Е или R, килоом – буквой К, мегоом – буквой М. Если номинальное сопротивление резистора выражают целым числом, то буквенное обозначение единицы измерения ставят после этого числа, например: ЗЗЕ (33 Ом), 47К (47 кОм), ЮМ (10 мОм) . Когда же сопротивление резистора выражают десятичной дробью меньшим за единицу, то буквенное обозначение единицы измерения размещают перед числом, например: К22 (220 Ом) , М47 (470 кОм) . Выражая сопротивление резистора целым числом с десятичной дробью, целое число ставят впереди буквы, а десятичная дробь – после буквы, которая символизирует единицу измерения (буква заменяет запятую после целого числа), например: 1Е5 (1,5 Ом), 2К2 (2,2 кОм), 1М5 (1,5 мОм). Кроме этого, на корпус резистора производители наносят и допустимую мощность. Например, МЛТ-1 обозначает резистор мощностью 1 Вт. Как Вы догадались, данная маркировка верна для отечественных резисторов. В зарубежной принято применять цвета и цифры.

Цветовую маркировку наносят на цилиндрическую поверхность резистора в виде  точек или колец-поясков. Маркировочные знаки располагают на резисторе слева направо в следующем порядке: первый знак – первая цифра; второй знак – вторая; третий – множитель. Эти знаки определяют номинальное сопротивление. Четвертый знак – допустимое отклонение сопротивления. Для резисторов с номинальным сопротивлением, выраженным тремя цифрами и множителем, цветовая маркировка состоит из пяти знаков (колец): первые три знака – три цифры номинала: четвертый знак – множитель, пятый – допустимое отклонение сопротивления (см. Рис. 2) . В связи с этим в Интернете появилось множество онлайн калькуляторов для определения сопротивления резисторов. Но, как по мне, проще узнать сопротивление резистора с помощью цифрового прибора – тестера. 
При цифровой маркировке величина сопротивления резистора наносится тремя цифрами, из которых две первые показывают ее мантиссу, а третья служит показателем степени 10 для дополнительного множителя. Например, 150 означает 15 Ом, 151 это 150 Ом, 152 – 1500 Ом и т.д. Соответственно, на резисторе с сопротивлением 15 МОм увидим в этом коде: 156. Цифровая маркировка применяется в основном в SMD-компонентах. В следующей таблице приведены примеры некоторых цифровых маркировок.


Ранее я упоминал о мощности резисторов. В отечественной электронике стандарты жестче не только к резисторам, но и к другим компонентам. Это явно демонстрирует Рис. 3. От сюда следует: если в описании схемы говорится об использовании, например, МЛТ-2, его необходимо заменять зарубежным резистором большей мощности. Иначе Ваше устройство долго не “протянет”.

В отличие от постоянных резисторов, которые имеют два вывода, у переменных резисторов таких выводов три. Потенциометры могут содержать и более трех выводов. Такие переменные резисторы обычно используются для компенсации частот в звуковой аппаратуре.


На схеме указывают сопротивление между крайними выводами сменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении оси резистора, которое выступает наружу. Причем, если ось возвращают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Если же ось возвращают назад, происходит обратное. Переменные резисторы, как и постоянные, могут быть разной мощности, что можно определить по их размерам. Особенно большой мощностью обладают проволочные резисторы, которые предназначены для работы в цепях постоянного и переменного токов. Внешний вид некоторых
переменных резисторов и их обозначение на принципиальной схеме представлены на Рис. 4.
Подобным образом работают и подстроечные резисторы, однако, они, как уже понятно из названия, служат для подстройки, а точнее для установки более точного сопротивления. После чего их больше не трогают. Внешний вид некоторых подстроечников и их обозначение на принципиальной схеме представлены на Рис.5.


Резисторы шумят! Различают собственные шумы и шумы скольжения. Собственные шумы резисторов складываются из тепловых и токовых шумов. Их возникновение связано с тепловым движением свободных электронов и прохождением электрического тока. Собственные шумы резисторов тем выше, чем больше температура и напряжение. Высокий уровень шумов резисторов ограничивает чувствительность электронных схем и создает помехи при воспроизведении полезного сигнала. Шумы скольжения (вращения) присущи переменным резисторам. Они возникают в динамическом режиме при движении подвижного контакта по резистивному элементу в виде напряжения помех. В приемных устройствах эти помехи приводят к различным шорохам и трескам. Поэтому в электронике стали использовать цифровую
регулировку. Теперь не часто в аппаратуре встретишь регулятор громкости, построенный на потенциометре.

Кроме указанных выше резисторов, существуют полупроводниковые нелинейные резисторы – изделия электронной техники, основное свойство которых заключается в способности изменять свое электрическое сопротивление под действием управляющих факторов: температуры, напряжения, магнитного поля и др. В зависимости от воздействующего фактора они получили название фоторезисторы, терморезисторы и варисторы. В последнее время их стали относить к управляемым полупроводниковым резисторам. Иными словами, это элементы, чувствительные к воздействию определенного управляющего фактора (см. Рис. 6).

Среди них – фоторезисторы, меняющие свое сопротивление в зависимости от степени освещенности. Чем интенсивней свет, тем больше создается свободных носителей зарядов и тем меньше становится сопротивление элемента. У фоторезисторов обязательно определен и диапазон температуры. Если использовать датчик при разных температурах, то следует обязательно ввести уточняющие преобразования , т.к. свойство сопротивления зависит от внешней температуры. В зависимости от назначения фоторезисторы имеют совершенно различное конструктивное оформление. Иногда это просто пластина полупроводника на стеклянном основании с токонесущими выводами, в других случаях фоторезистор имеет пластмассовый корпус с жесткими штырьками. Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину. Не обходятся без них и автоматические выключатели уличного освещения.
Терморезисторы, или термисторы – изменяют свое сопротивление в зависимости от температуры. Существуют терморезисторы как с отрицательным, так и с положительным температурным коэффициентом сопротивления – позисторы.
Терморезисторы используются в системах дистанционного и централизованного измерения и регулирования температур, противопожарной сигнализации, теплового контроля и защиты машин, измерения мощности, измерения вакуума, скоростей движения жидкостей и газов и др. Номинальное сопротивление RH – электрическое сопротивление, значение которого обозначено на терморезисторе или указано в нормативной документации, измеренное при определенной температуре окружающей среды (для большинства типов этих резисторов при 20 °С, а для терморезисторов с высокими рабочими температурами до 300 °С).
Отличительной особенностью варисторов является резко выраженная зависимость электрического сопротивления от приложенного к ним напряжения. Их используют
для стабилизации и защиты от перенапряжений, преобразования частоты и напряжения, а также для регулирования усиления в системах автоматики, различных измерительных устройствах, в телевизионных приемниках. Например, варистор часто используют в сетевых (на 220В) удлинителях. Подключив такую деталь параллельно розеткам удлинителя, разработчики не стесняются заявлять о множестве различных защит и фильтров.


Перейти к следующей статье: Конденсаторы



Цветовые коды резисторов

и идентификация компонентов

Полосы цветового кода резистора


и идентификация других компонентов

Цветовой код резистора Обозначение

Хотя эти коды чаще всего связаны с резисторами, они также могут применяться к конденсаторам и другие компоненты.

Стандартный метод цветового кодирования резисторов использует разные цвета для обозначения каждого числа от 0 до 9: черный, коричневый, красный, оранжевый, желтый, зеленый, синий, фиолетовый, серый, белый.На 4-полосном резисторе первые два полосы представляют собой значащие цифры. На полосах 5 и 6 первые три полосы являются значащими цифрами. Следующая полоса представляет собой множитель или «декаду». Как и в приведенном выше примере с 4 полосами, первые две полосы красные и пурпурные, обозначающие 2 и 7. Третья полоса оранжевая, обозначающая 3, что означает 10 3 или 1000. Это дает значение 27 * 1000 или 27000 Ом. Золотая и серебряная декадные полосы делятся на степень 10, что позволяет использовать значения менее 10 Ом.Резисторы 5 и 6 диапазонов работают точно так же, как резисторы 4 диапазона. Они просто добавляют еще одну значащую цифру. Полоса после декады — это толерантность. Это говорит о том, насколько точно сопротивление по сравнению с его спецификацией. 4-полосный резистор имеет допуск на золото или 5%, что означает, что истинное значение резистора может составлять 5%. более или менее 27000 Ом, допустимые значения от 25650 до 28350 Ом. Последняя полоса на 6-полосном резисторе — это температурный коэффициент резистора, измеряемый в PPM / C или частей на миллион на градус Цельсия.Коричневые (100 PPM / C) являются наиболее популярными и подходят для большинства разумный температурный режим. Остальные специально разработаны для критических температурных приложений.

Идентификационный буквенно-цифровой код

Из-за того, что размеры резисторов и других компонентов уменьшаются или меняют форму, становится все больше. сложно уместить все цветные полосы на резисторе. Следовательно, более простая буквенно-цифровая система кодирования используется. В этом методе используются три числа, иногда за которыми следует одна буква.Цифры представляют то же, что и первые три полосы на 4-полосном резисторе. В приведенной выше сети SIL 4 и 7 являются значащие цифры, а 3 — декада, что дает 47 x 1000 или 47000 Ом. Буква после цифр это терпимость. Различные представления: M = ± 20%, K = ± 10%, J = ± 5%, G = ± 2%, F = ± 1%.

Соглашение об именах

Чтобы упростить запись больших номиналов резисторов, сокращения K и M используются для одной тысячи и один миллион. Чтобы сохранить стандарт соглашения, R используется для представления 0.Из-за проблем со зрением десятичная точка в некоторых печатных текстах, 3 буквы: K M или R используются вместо десятичной точки. Таким образом, резистор 2700 Ом записан как 2K7, а резистор 6,8 Ом — как 6R8.

Серия E12

Они идентифицируют ряд резисторов, которые известны как «предпочтительные значения». В линейке E12 есть являются 12 «предпочтительными» или «основными» значениями резисторов, а все остальные — просто десятки значений этих значений:

1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8 и 8.2

В таблице ниже перечислены все номиналы резисторов из диапазона предпочтительных значений E12. Ты заметишь что есть 12 строк, содержащих основные значения резисторов, а в столбцах перечислены декады их значения. Этот диапазон обычно охватывает стандартные углеродные пленочные резисторы, которые не являются легко доступны при значениях выше 10 МОм — 10 МОм (10 миллионов Ом)

6R8
1R0 10R 100R 1K0 10K 100K 1M0 10M
1R2 12R 120R 1K2 12K 120M 1K2 12K 120M 1K2 1K2 нет данных
1R5 15R 150R 1K5 15K 150K 1M5 нет данных
1R8 18R 180R 1K8 18K 180K 1M8 нет данных
2R2 22R 220R 2K2 22K 220K 2M2 нет данных
2R7 27R 270R 2R7 27R 270R 2K7 27K 270K 2M7 нет данных
3R3 33R 330R 3K3 33K 330K 3M3 нет данных
3R9 39R 390R 3K9 39K 390K 3M9 нет
4R7 47 470R 4K7 47K 470K 4M7 нет данных
5R6 56R 560R 5K6 56K 56OK 5M6 68R 680R 6K8 68K 680K 6M8 н / п
8R2 82R 820R 8K2 82K 82OK2 / a

Серия E24

Диапазон предпочтительных значений E24 включает все значения E12 плюс еще 12 для включения подбор более точных сопротивлений.В диапазоне E24 предпочтительные значения:

1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2 и 9.1

В таблице ниже перечислены все номиналы резисторов из диапазона предпочтительных значений E24. Ты заметишь что есть 24 строки, содержащие основные значения резисторов, и столбцы в правом списке их десятилетние значения. Чаще всего в этот диапазон входят резисторы с металлической пленкой, которые не легко доступны в значениях выше 1 МОм — 1M0.

240R 300R 360R 9007
1R0 10R 100R 1K0 10K 100K 1M0
1R1 11R 110R 1K1 11K 110K n / 900 1R2 12R 120R 1K2 12K 120K нет данных
1R3 13R 130R 1K3 13K 130K нет
1R5 15R 150R 1K5 15K 150K нет данных
1R6 16R 160R 1K6 16K 160K нет
1R8 18R 180R 1K8 18K 180K нет данных
2R0 20R 2 00R 2K0 20K 200K н / д
2R2 22R 220R 2K2 22K 220K нет
2R4 24R 2K4 24K 240K н / д
2R7 27R 270R 2K7 27K 270K нет
3R0 30R 3K0 30K 300K н / д
3R3 33R 330R 3K3 33K 330K нет
3R6 36R 3K6 36K 360K нет данных
3R9 39R 390R 3K9 39K 390K нет данных
4R3 43R 430R 4K3 43K 430K нет данных
4R7 47R 470R 4K7 47K нет данных
5R1 51R 510R 5K1 51K 510K нет данных
5R6 56R 560R 5K6 56K нет данных
6R2 62R 620R 6K2 62K 620K нет данных
6R8 68R 680R 6K8 680K 900 нет данных
7R5 75R 750R 7K5 75K 750K нет данных
8R2 82R 820R 8K2 82K 82OK н / п
9R1 91R 910R 9K1 91K 910K н / п
Также существуют таблицы E48 и E96, в которых есть еще больше значений.Резисторы в этих группы менее распространены и, как правило, имеют лучший рейтинг переносимости.

В таблице ниже показаны цветовые коды для предпочтительных значений E12 и E24. Обратите внимание, как первые два цвета в каждой строке одинаковы, и последний цвет в каждом столбце одинаков. Каждый столбец — декада, и каждая строка в этом столбце представляет собой другое значение E24.

Резисторы

1. Резисторы

Резисторы наиболее часто используемый компонент в электронике, и их цель — создать заданные значения тока и напряжения в цепи.А количество различных резисторов показано на фотографиях. (Резисторы на миллиметровой бумаге с интервалом 1 см, чтобы представление о габаритах). На фото 1.1a показаны резисторы малой мощности, а на фото 1.1b — некоторые высшая сила резисторы. Резисторы с рассеиваемой мощностью менее 5 Вт (большинство обычно используемые типы) имеют цилиндрическую форму с выступающей из каждый конец для подключения в цепь (фото 1.1-а). Резисторы с рассеиваемой мощностью более 5 Вт являются показано ниже (фото 1.1-б).

Рис. 1.1a: Некоторые маломощные резисторы Рис. 1.1b: Резисторы большой мощности и реостаты

Обозначение резистора показано на следующая диаграмма (вверху: американский символ, внизу: европейский символ.)

Фиг.1.2a: Условные обозначения резисторов

Агрегат для Измерение сопротивления — Ом . (греческая буква Ω — называется Омега). Более высокие значения сопротивления обозначаются буквой «k». (килоом) и М (мегом). Для Например, 120000 Ом представлен как 120 кОм, а 1 200 000 Ом — как 1M2. Точка обычно опускается, так как его легко потерять в процессе печати. В какой-то цепи На диаграммах такое значение, как 8 или 120, представляет сопротивление в Ом.Другой распространенной практикой является использование буквы E для обозначения сопротивления в омах. В буква R. также может использоваться. Для Например, 120E (120R) обозначает 120 Ом, 1E2 обозначает 1R2 и т. д.

1.1 Маркировка резисторов

Значение сопротивления равно маркировка на корпусе резистора. Большинство резисторов имеют 4 полосы. Первые две полосы обеспечивают числа для сопротивления, а третья полоса обеспечивает количество нули. Четвертая полоса указывает на допуск.Значения допуска 5%, Чаще всего доступны 2% и 1%.

В следующей таблице показаны используемые цвета для определения номиналов резистора:

ЦВЕТ ЦИФРА МНОЖИТЕЛЬ ДОПУСК TC
Серебро х 0.01 Вт 10%
Золото x 0,1 Вт 5%
Черный 0 x 1 Вт
Коричневый 1 x 10 Вт 1% 100 * 10 -6 / K
Красный 2 x 100 Вт 2% 50 * 10 -6 / K
Оранжевый 3 x 1 кВт 15 * 10 -6 / K
Желтый 4 x 10 кВт 25 * 10 -6 / K
Зеленый 5 x 100 кВт 0.5%
Синий 6 x 1 МВт 0,25% 10 * 10 -6 / K
Фиолетовый 7 x 10 МВт 0,1% 5 * 10 -6 / K
Серый 8 x 100 МВт
Белый 9 x 1 ГВт 1 * 10 -6 / K

** TC — Темп.Коэффициент, только для SMD устройства

Рис. 1.2: б. Четырехполосный резистор, c. Пятиполосный резистор, d. Цилиндрический резистор SMD, эл. Резистор SMD плоский

Ниже показаны все резисторы от 0R1 (одна десятая ома) до 22M:

ПРИМЕЧАНИЯ:
Резисторы, указанные выше, имеют «общее значение» 5%. типы.
Четвертый диапазон называется диапазоном «допусков».Золото = 5%
(полоса допуска Серебро = 10%, но современные резисторы не 10% !!)
«общие резисторы» имеют номиналы от 10 Ом до 22 МОм.

РЕЗИСТОРЫ МЕНЬШЕ 10 ОМ
Когда третья полоса золото, это означает, что значение «цветов» необходимо разделить на 10.
золота = «разделите на 10», чтобы получить значения 1R0. по 8R2
Примеры см. в 1-м столбце выше.

Когда третий полоса серебряная, это означает, что значение «цветов» необходимо разделить на 100.
(Помните: в слове «серебро» больше букв, значит делитель «больше»)
Silver = «разделить на 100», чтобы получить значения от 0R1 (одна десятая ома) до 0R82
, например: 0R1 = 0,1 Ом 0R22 = Точка 22 Ом
См. 4-й столбец выше для Примеры.

Буквы «R, k и M» заменяют десятичную дробь. точка. Буква «Е» также используется для обозначения слова «ом».
например: 1 R 0 = 1 Ом 2 R 2 = 2 точка 2 Ом 22 R = 22 Ом
2 k 2 = 2200 Ом 100 кОм = 100000 Ом
2 M 2 = 2200000 Ом

Резисторы общие имеют 4 шт. группы.Они показаны выше. Первый две полосы указывают первые две цифры сопротивления, третья полоса — это множитель (количество нулей, которые должны быть добавлены к полученному числу от первых двух полос), а четвертая представляет собой допуск.

Маркировка сопротивления с помощью пять полос используются для резисторов с допуском 2%, 1% и др. резисторы высокой точности. Первые три полосы определяют первые три цифр, четвертая — множитель, пятая — допуск.

для поверхностного монтажа Device) на резисторе очень мало свободного места. Резисторы 5% используйте трехзначный код, в то время как 1% резисторов используют четырехзначный код.

Некоторые резисторы SMD изготавливаются в форма небольшого цилиндра, в то время как наиболее распространенный тип — плоский. Цилиндрические резисторы SMD помечены шестью полосами — первые пять «читаются» как с обычными пятиполосными резисторами, а шестая полоса определяет температурный коэффициент (TC), который дает нам значение сопротивления изменение при изменении температуры на 1 градус.

Сопротивление Плоские резисторы SMD маркируются цифрами на их верхней стороне. Первые две цифры — это значение сопротивления, а третья цифра представляет количество нулей. Например, напечатанное число 683 стоит для 68000Вт, то есть 68к.

Само собой разумеется, что массовое производство всех типы резисторов. Чаще всего используются резисторы E12. серии и имеют значение допуска 5%.Общие значения для первых двух цифры: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 и 82.
E24 серия включает все значения, указанные выше, а также: 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75 и 91. Что означают эти числа? Это означает, что резисторы со значениями для цифр «39»: 0,39 Вт, 3,9 Вт, 39 Вт, 390 Вт, 3,9 кВт, 39 кВт и т. д. (0R39, 3R9, 39R, 390R, 3к9, 39к)

Для некоторых электрических цепей, допуск резистора не важен и не указывается.В этом в корпусе можно использовать резисторы с допуском 5%. Однако устройства, которые требуется, чтобы резисторы имели определенную точность, требуется указанная толерантность.

1,2 Резистор Рассеивание

Если поток ток через резистор увеличивается, он нагревается, а если температура превышает определенное критическое значение, он может выйти из строя. В номинальная мощность резистора — это мощность, которую он может рассеивать в течение длительного времени. промежуток времени.
Номинальная мощность резисторов малой мощности не указана. На следующих диаграммах показаны размер и номинальная мощность:

Рис. 1.3: Размеры резистора

Наиболее часто используемые резисторы в электронных схемах имеют номинальную мощность 1/2 Вт или 1/4 Вт. Существуют резисторы меньшего размера (1/8 Вт и 1/16 Вт) и выше (1 Вт, 2 Вт, 5 Вт, так далее).
Вместо одиночного резистора с заданной рассеиваемой мощностью, можно использовать другой с таким же сопротивлением и более высоким рейтингом, но его большие размеры увеличивают пространство, занимаемое на печатной плате а также добавленная стоимость.

Мощность (в ваттах) может быть рассчитана по одному из следующие формулы, где U — символ напряжения на резистор (в вольтах), I — ток в амперах, а R — сопротивление в Ом:

Например, если напряжение на 820 Вт резистор 12В, мощность, рассеиваемая резисторами это:

Резистор 1/4 Вт может использоваться.

Во многих случаях это непросто определить ток или напряжение на резисторе.В этом в случае, когда мощность, рассеиваемая резистором, определяется для «худшего» дело. Мы должны принять максимально возможное напряжение на резисторе, т.е. полное напряжение источника питания (аккумулятор и т. д.).
Если мы отметим это напряжение как В B , максимальное рассеивание это:

Например, если В В = 9 В, рассеиваемая мощность 220 Вт резистор есть:

А 0.Резистор мощностью 5 Вт или выше должен использоваться

1,3 Резисторы нелинейные

Значения сопротивления указанные выше являются постоянными и не изменяются, если напряжение или ток меняется. Но есть схемы, требующие резисторов для изменить значение с изменением умеренного или светлого. Эта функция не может быть линейный, отсюда и название НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ.

Есть несколько типы нелинейных резисторов, но наиболее часто используемые включают: Резисторы NTC (рисунок a) (отрицательный температурный коэффициент) — их сопротивление снижается с повышением температуры.Резисторы PTC (рисунок б) (положительный температурный коэффициент) — их сопротивление увеличивается с повышением температуры. Резисторы LDR (рисунок в) (Light Dependent Resistors) — их сопротивление уменьшается с увеличением свет. Резисторы VDR (резисторы, зависимые от напряжения) — их сопротивление критически снижается, когда напряжение превышает определенное значение. Символы, представляющие эти резисторы, показаны ниже.

Фиг.1.4: Нелинейные резисторы — a. НТЦ, б. PTC, c. LDR

дюйм любительские условия, когда нелинейный резистор может быть недоступен, это можно заменить другими компонентами. Например, NTC резистор можно заменить на транзистор с подстроечным резистором потенциометр, для регулировки необходимого значения сопротивления. Автомобильный свет может играть роль резистора PTC , в то время как резистор LDR можно было заменить открытым транзистором.В качестве примера на рисунке справа показан 2N3055 с его верхним часть удалена, так что свет может падать на кристалл внутри.

1,4 Практическая примеры с резисторами

На рис. 1.5 показаны два практических примеры с нелинейными и обычными резисторами в качестве подстроечных потенциометров, элементы, которые будут рассмотрены в следующей главе.

Рис. 1.5a: RC-усилитель

На рисунке 1.5a представлен RC-усилитель напряжения, который можно использовать для усиления низкочастотные аудиосигналы с малой амплитудой, например сигналы микрофона. Усиливаемый сигнал передается между узлом 1. (вход усилителя) и земля, а результирующий усиленный сигнал появляется между узлом 2 (выход усилителя) и заземление. Чтобы получить оптимальную производительность (высокая усиление, низкий уровень искажений, низкий уровень шума и т. д.) необходимо «установить» рабочая точка транзистора.Подробная информация о рабочей точке будет приведено в главе 4; а пока давайте просто скажем, что напряжение постоянного тока между узел C и gnd должны составлять примерно половину батареи (источника питания) Напряжение. Поскольку напряжение аккумулятора равно 6В, необходимо установить напряжение в узле C. до 3В. Регулировка осуществляется через резистор R1.

Подключить вольтметр между узел C и земля. Если напряжение превышает 3 В, замените резистор. R1 = 1,2 МВт с меньшим резистором, скажем R1 = 1 МВт.Если напряжение по-прежнему превышает 3 В, оставьте понижая сопротивление, пока оно не достигнет примерно 3 В. Если напряжение в узле C изначально ниже 3В, увеличьте сопротивление R1.

Степень усиления каскада зависит от сопротивления R2: более высокое сопротивление — более высокое усиление , более низкое сопротивление — нижнее усиление . Если значение R2 изменяется, напряжение в узле C следует проверить и отрегулировать (через R1).

Резистор R3 и конденсатор 100Ф сформировать фильтр, чтобы предотвратить возникновение обратной связи. Эта обратная связь называется «Моторная лодка», как это звучит как шум моторной лодки. Этот шум возникает только при использовании более чем одной ступени.
По мере добавления каскадов к цепи вероятность обратной связи в форма нестабильности или катания на лодке.
Этот шум появляется на выходе усилителя даже при отсутствии сигнала доставляется к усилителю.
Нестабильность возникает следующим образом:
Даже если на вход не поступает сигнал, выходной каскад производит очень слабый фоновый шум, называемый «шипением». Это происходит из-за ток, протекающий через транзисторы и другие компоненты.
Это помещает очень маленькую форму волны на шины питания. Эта форма волны поступил на вход первого транзистора и, таким образом, мы получили петля для «генерации шума». Скорость прохождения сигнала вокруг цепи определяет частоту нестабильности.От добавление резистора и электролита к каждому каскаду, фильтр низких частот производится, и это «убивает» или снижает амплитуду нарушения сигнал. При необходимости значение R3 можно увеличить.

Практические примеры с резисторами будет рассмотрено в следующих главах, поскольку почти все схемы требуют резисторы.

Рис. 1.5b: Звуковой индикатор изменения температуры или количества света

Практическое применение нелинейных резисторов показано на простом сигнальном устройстве, показанном на фигура 1.5б. Без триммера TP и нелинейного резистора NTC это аудио осциллятор. Частоту звука можно рассчитать по следующей формуле:

В нашем случае R = 47кВт и C = 47nF, а частота равна:

Когда по рисунку обрезать горшок и резистор NTC добавляются, частота генератора увеличивается. Если горшок обрезки установлен на минимальное сопротивление, осциллятор останавливается.При желаемой температуре сопротивление обшивки Pot следует увеличивать до тех пор, пока осциллятор снова не заработает. Для Например, если эти настройки были сделаны на 2C, осциллятор остается замороженным на более высоких температур, поскольку сопротивление резистора NTC ниже, чем номинальный. Если температура падает, сопротивление увеличивается и при 2С осциллятор активирован.

Если в автомобиле установлен резистор NTC, близко к поверхности дороги, осциллятор может предупредить водителя, если дорога покрытый льдом.Естественно резистор и два соединяющих его медных провода к контуру следует беречь от грязи и воды.

Если вместо резистора NTC, резистор PTC используется, осциллятор будет активирован, когда температура поднимется выше определенный обозначенное значение. Например, резистор PTC может использоваться для индикации состояние холодильника: настроить осциллятор на работу при температурах выше 6C через подстроечный резистор TP, и цепь сообщит, если что-то не так с холодильником.

Вместо NTC мы могли бы использовать резистор LDR — осциллятор будет заблокирован, пока есть определенное количество света настоящее время. Таким образом, мы могли бы сделать простую систему сигнализации для помещений, где свет должен быть всегда включен.

LDR может быть соединен с резистором R. In в этом случае осциллятор работает, когда присутствует свет, в противном случае он заблокирован. Это может быть интересный будильник для егерей и рыбаков, которые хотели бы встать на рассвете, но только если погода ясная.Рано утром в нужный момент обрезайте горшок должен быть установлен в самое верхнее положение. Затем сопротивление следует тщательно уменьшается, пока не запустится осциллятор. Ночью осциллятор будет заблокирован, так как есть нет света и сопротивление LDR очень высокое. По мере увеличения количества света в утром сопротивление LDR падает и осциллятор активируется, когда LDR освещается необходимым количеством света.

Подрезной горшок с рисунка 1.5b используется для точной настройки. Таким образом, TP с рисунка 1.5b может использоваться для установки осциллятор для активации при разных условиях (выше или ниже температура или количество света).

1,5 Потенциометры

Потенциометры (также называемые горшками ) переменные резисторы, используемые в качестве регуляторов напряжения или тока в электронные схемы. По конструкции их можно разделить на 2 группы: мелованные и проволочные.

С потенциометрами с покрытием (рисунок 1.6a), Корпус изолятора покрыт резистивным материалом. Eсть проводящий ползунок перемещается по резистивному слою, увеличивая сопротивление между ползунком и одним концом горшка, уменьшая сопротивление между ползунком и другим концом горшка.

Рис. 1.6a: Потенциометр с покрытием

с проволочной обмоткой потенциометры изготовлены из токопроводящий провод намотан на корпус изолятора.По проводу движется ползунок, увеличивающий сопротивление. между ползунком и одним концом горшка, уменьшая сопротивление между слайдер и другой конец горшка.

Гораздо чаще встречаются горшки с покрытием. С их помощью сопротивление может быть линейным, логарифмическим, обратным логарифмическим или обратным логарифмическим. другое, в зависимости от угла или положения ползунка. Большинство распространены линейные и логарифмические потенциометры, а наиболее распространенными являются приложения — радиоприемники, усилители звука и аналогичные устройства. где горшки используются для регулировки громкости, тона, баланса, и т.п.

Потенциометры с проволочной обмоткой используются в приборах. которые требуют большей точности управления. В них есть более высокое рассеивание, чем у горшков с покрытием, и поэтому токовые цепи.

Сопротивление потенциометра обычно составляет E6 ряд, включающий значения: 1, 2.2 и 4.7. Стандартные значения допуска включают 30%, 20%, 10% (и 5% для проволочной обмотки). горшки).

Потенциометры

бывают разных формы и размеры, с мощностью от 1/4 Вт (горшки с покрытием для объема управление в амперах и т. д.) до десятков ватт (для регулирования больших токов).Несколько разных горшков показаны на фото 1.6b вместе с символом потенциометр.

Рис. 1.6b: Потенциометры

Верхняя модель представляет собой стерео потенциометр. На самом деле это две кастрюли в одном корпусе, с ползунки установлены на общей оси, поэтому они перемещаются одновременно. Эти используется в стереофонических усилителях для одновременного регулирования как левого, так и правильные каналы, и т.п.

Слева внизу находится так называемый бегунок потенциометр.

Справа внизу — горшок с проволочной обмоткой мощностью 20 Вт, обычно используется как реостат (для регулирования тока при зарядке аккумулятор и т. д.).

Для схем, требующих очень точной значения напряжения и тока, подстроечные потенциометры (или просто горшки для обрезки ). Это небольшие потенциометры с ползунком, который регулируется отверткой.

Кастрюли также бывают различных форм и размеров, с мощностью от 0,1 Вт до 0,5 Вт. Изображение 1.7 показаны несколько различных горшков для обрезки вместе с символом.

Рис. 1.7: Обрезной горшок

Корректировки сопротивления сделано отверткой. Исключение составляет обрезной горшок в правом нижнем углу, который можно отрегулировать с помощью пластикового вала. Особенно точная регулировка достигается при помощи декоративного кожуха в пластиковом прямоугольном корпусе (нижний середина).Его ползунок перемещается винтом, так что можно сделать несколько полных оборотов. требуется для перемещения ползунка из одного конца в другой.

1,6 Практический примеры с потенциометрами

Как указывалось ранее, потенциометры чаще всего используются в усилителях, радио- и ТВ-приемниках, кассетные плееры и аналогичные устройства. Они используются для регулировки громкости, тон, баланс и т. д.

В качестве примера разберем общая схема регулировки тембра в аудиоусилителе.В нем два горшка и показан на рисунке 1.8a.

Рис. 1.8 Регулировка тона цепь: а. Схема электрическая, б. Функция усиления

Потенциометр с маркировкой BASS регулирует усиление низких частот. Когда ползунок находится в самом нижнем положения, усиление сигналов очень низкой частоты (десятки Гц) примерно в десять раз больше, чем усиление сигналов средней частоты (~ кГц).Если ползунок находится в крайнем верхнем положении, усиление очень низкое. частота сигналов примерно в десять раз ниже, чем усиление средних частотные сигналы. Усиление низких частот полезно при прослушивании музыки с битом (диско, джаз, R&B …), в то время как усиление низких частот должно быть снижается при прослушивании речи или классической музыки.

Аналогично, потенциометр с маркировкой TREBLE регулирует усиление высоких частот. Усиление высоких частот полезно, когда музыка состоит из высоких тонов. например, звуковой сигнал, в то время как, например, усиление высоких частот должно быть уменьшено, когда прослушивание старой записи для уменьшения фонового шума.

На диаграмме 1.8b показана функция усиления в зависимости от частоты сигнала. Если оба ползунка в крайнем верхнем положении результат показан кривой 1-2. Если оба находятся в среднем положении, функция описывается строкой 3-4, а оба ползунка в самом нижнем положении, результат отображается с помощью кривая 5-6. Установка пары ползунков на любые другие возможные результаты приводит к кривым между кривыми 1-2 и 5-6.

Потенциометры BASS и TREBLE имеют покрытие по конструкции и линейные по сопротивлению.

Третий банк на диаграмме — регулятор громкости. Покрытый и логарифмический по сопротивлению (отсюда знак log )

Базовые резисторы для начинающих и новичков

Базовые резисторы для новичков и новичков Цветовые коды резисторов

HTML с: http://www.btinternet.com/~dtemicrosystems/beginner.htm


ЦВЕТОВЫЕ КОДЫ И ИХ ОБЩЕЕ ИСПОЛЬЗОВАНИЕ

ПРИЗНАННЫЕ СТАНДАРТЫ

Есть десять международно признанных стандартов цвета, используемые для обозначения значений ряда электронных компонентов.Каждый присвоено числовое значение от 0 (ноль) до 9 (девять) в следующем порядке; чернить, коричневый, красный, оранжевый, желтый, зеленый, синий, фиолетовый, серый, белый.

Поскольку они чаще всего используются для определения номиналов резисторов, этот диапазон цвета часто (неправильно) называют «цветовой кодировкой резистора». В На практике они могут применяться к различным другим электронным компонентам, хотя в настоящее время это было в значительной степени заменено печатными сокращениями, которые будут объяснены позже.

Два других цвета также широко используются; золото и серебро, обычно в качестве знаков допуска на резисторах (наряду с некоторыми другими цветами), но они также удваиваются как деление маркировка коэффициентов для сопротивлений ниже 10 Ом. Их присвоенные значения допусков составляют 5%. для золота и 10% для серебра. В качестве коэффициентов деления их значения равны 10 и 100. соответственно.

Это покажется немного запутанным в данный момент (мягко говоря!), Если вы не знакомы с любым из этих цветовых кодов, но, надеюсь, вскоре он станет более понятным.

ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА

ОБРАТИТЕ ВНИМАНИЕ:


Прежде всего, мы должны указать, что следующая информация не относится к современным устройство поверхностного монтажа (SMD) или чип-резисторы, которые не используют цветовую кодировку, а вместо этого проштампован код сопротивления. Мы объясним это позже, но пока сосредоточены только на стандартных типах с цветовой кодировкой, помня, что этот раздел предназначен для новички. Несмотря на то, что он достаточно прост для понимания, прежде чем читать это переход на резисторы, вы, наверное, никогда не догадались бы самого принципиального компонент в электронике может быть так задействован.

Наиболее распространенные типы резисторов с цветовой кодировкой поставляются с четырьмя или пятью цветные полосы. Вы также найдете шесть типов цветных полос, которые включают температуру диапазон коэффициентов, но, чтобы вас не запутать, мы пока будем игнорировать их быть и сконцентрироваться в основном на типе четырех диапазонов, после чего следует краткое объяснение пять полос типа, так как это просто расширение четырех полос.

КРАТКИЙ УРОК ИСТОРИИ

Раньше резисторы напоминали то, что выглядело как субминиатюрные. реостаты, что-то вроде керамической трубки, с ножками, похожими на заостренные бирки для припоя, приваренные близко к концы трубки.При пайке они стояли примерно на одну восьмую дюйма. (3,175 мм) над монтажной платой. Весь корпус резистора окунул в бирюзу. цветной краской, а ценность определялась чудесным сочетанием точек, пятен и числа, которые в половине случаев разошлись по печатной машине на мили! Как углеродная пленка и резисторы из углеродного состава стали более популярными, цветные кольца или полосы вокруг всего тело стало «нормой» для идентификации.

Вот очень специфический аспект изготовления резисторов такого типа; в свое время они у всех было только четыре цветных полосы, обычно напечатанных на корпусе бордового цвета, и физически достаточно большой, чтобы можно было легко видеть и читать все цвета.В наши дни то же самое резисторы меньше четверти размера, имеют разный цвет корпуса и содержат больше цветные кольца, чем Сатурн! Это делает практически невозможным определение некоторых значений. человеческими глазами, даже со зрением 20:20. Даже опытные дизайнеры признаются в подключив некоторые из них к мультиметру, чтобы подтвердить значение.

Люди, которые привыкли к считыванию цветовых кодов резисторов, как правило, смогут взгляните на тело и скажите вам в течение двух секунд, каково значение этого резистора, без использования каких-либо таблиц преобразования.Хотите верьте, хотите нет, но вы тоже примете это как вторая натура после некоторого опыта.

КОНВЕНЦИИ

«R» = Ом. «K» = килом. «M» = мегом.

Чтобы избежать необходимости писать или работать с большим количеством цифр, приняты определенные соглашения. применяются к тому, как записываются значения резисторов, когда они достигают различных величин. Каждый 1000 Ом называется килом (килограмм = одна тысяча) и сокращается до заглавной буквы. буква «К». Каждые 1000000 Ом называют Мегаомом (Мега = один миллион), сокращенно до заглавной буквы «М».В качестве пары примеров; 4700 Ом резистор будет записан как 4.7K или 4K7, а 5600000 Ом будет записано как 5,6М или 5М6. Для полноты таким же образом можно записать значения ниже 10 Ом; Например, 3,9 Ом можно записать как 3R9.

Не существует жесткого правила, определяющего сокращенный метод их записи. использовал. Первоначально они писались с десятичной точкой посередине, но когда схема диаграммы начали массово появляться, особенно в журналах для любителей, стало очевидно что из-за технологии печати и использования низкосортной бумаги десятичная точка была очень часто воспроизводится не очень точно.Это привело к неправильной интерпретации напечатанного ценности и конструкторы строят схемы, которые не работают. И проблема не в ограничен журналами для любителей, множеством коммерческих схем и технических руководств также были допущены те же упущения. Из-за этого многие схемы стали отключаться. изготовленные, номиналы резисторов которых были записаны буквой в середине.

ЧТО ПРОИЗОШЛО С OMEGA?

Еще одним символом, который также использовался для обозначения сопротивления, был сам знак Омега, но теперь он в значительной степени заменен заглавной буквой. «Р».Почему? Поскольку принципиальные схемы были нарисованы на бумаге рисовальщики используют трафареты, содержащие различные электронные символы и символы. С участием появление широко доступных CAD-машин для создания принципиальных схем, и текстовых процессоров, чтобы набрать письменную документацию, они внезапно поняли, что Omega символ не был стандартным типографским знаком. В «старые времена», покупая пишущую машинку *, вы указывали, какие специальные символы (если есть) должны быть включенным для обслуживания вашего конкретного направления бизнеса.Но с новым цифровым системы, вы должны были обойтись тем, что было доступно, и буква «R», казалось, наиболее логично использовать для сопротивления, поэтому R = Ом.

4-х полосный ЦВЕТОВЫЙ КОД РЕЗИСТОРА

, ОБЫЧНО ИСПОЛЬЗУЕМЫЕ ДЛЯ РЕЗИСТОРОВ УГЛЕРОДНОЙ ПЛЕНКИ
Рисунок на Слева показан резистор с четырехцветной полосой вместе с таблицей преобразования, чтобы вы могли чтобы вычислить значение любого из этого типа. Все цвета должны быть преобразованы в их присвоенные значения для расчета сопротивления, и результат всегда получается в Ом.

НЕПРАВИЛЬНЫЕ ЦВЕТА:
Обратите внимание, как некоторые цвета были опущены в первом и третьем столбцах. Это потому что первый столбец никогда не будет черным, а третий столбец никогда не будет иметь цвет с присвоенным значением выше 6, так как номиналы базового резистора колеблются от 1 Ом — коричневый, черный, золотой, до 10 МОм — коричневый, черный, синий. В нашем примере 27K сопротивление равно рассчитывается следующим образом;

ЗНАЧИМЫЕ ЦИФРЫ и МНОЖЕСТВЕННЫЕ ПОЛОСЫ:
Первые два цвета представляют два числовых значения, известных как значащие цифры, которые просто записываются по мере появления, т.е. «2» и «7».Далее полоса множителя указывает, сколько нулей нужно записать после первых двух цифр, и здесь нам нужно их три — «000». Это оно! Теперь у вас есть сопротивление значение этого резистора в Ом — 27000 Ом. Поскольку каждые 1000 Ом представляют собой килом или «1K», значение в примере составляет 27K.
ЗОЛОТАЯ или СЕРЕБРЯНАЯ ПОЛОСА МНОЖИТЕЛЯ:
Независимо от номинала, эти резисторы ДОЛЖНЫ иметь четыре цветных полосы. Однако только значения от 10 Ом и выше могут быть представлены с помощью «обычная» цветовая гамма от черного до белого, так как минимально допустимый цвет Последовательность Коричневый, Черный, Черный — 10 Ом.На рисунке справа показано, как значения ниже Представлено 10 Ом. Здесь для ленты множителя используется золото или серебро, только сейчас это означает, что рассчитанное значение сопротивления должно быть РАЗДЕЛЕННО на 10 или 100 соответственно. В в нашем примере показан резистор 5,6 Ом, но то же самое относится ко всем значениям ниже 10 Ом. Если бы полоса умножителя была серебряной, это значение было бы 0,56 Ом. Однако это очень маловероятно, что в настоящее время вы встретите такие типы резисторов с серебряным умножителем. группа.

ПОЛОСА ДОПУСКА:
Возвращаясь к нашему примеру 27K, четвертая полоса указывает допуск этого сопротивление в процентах.Если полоса допуска — золото, сопротивление будет в пределах 5% выше или ниже 27K, что соответствует допуску в 1350 Ом (5% от 27000 = 1350). Это означает, что фактическое сопротивление может составлять от 25650 Ом до 28350 Ом. Ом. Золотая полоса допуска, вероятно, является наиболее распространенной на стандартном угле. пленочные резисторы. Если полоса допуска красная, сопротивление будет в пределах 2% от 27 кОм, или в пределах 1%, если используется коричневый цвет. Если вам не удастся достать очень старые резисторы, серебро, которое представляет собой допуск 10%, редко (если вообще когда-либо) будет рассматриваться как допуск группа.Но он по-прежнему является частью стандарта цветовой кодировки, поэтому был включен в остальные из них.

5 ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА

, ОБЫЧНО ИСПОЛЬЗУЕМЫЕ НА РЕЗИСТОРАХ ИЗ МЕТАЛЛИЧЕСКОЙ ПЛЕНКИ
Рисунок на Слева показан резистор с пятицветной полосой вместе с таблицей преобразования цветов в позволяют рассчитать значение любого из этого типа. Как и в случае с 4 типами полос, все цвета должны быть преобразованы в их назначенные значения для расчета сопротивления, и опять же результат всегда выражается в Омах.

НЕПРАВИЛЬНЫЕ ЦВЕТА:
Как и в 4-полосной диаграмме выше, в этой тоже есть определенные цвета, отсутствующие в различных столбцы, опять же там, где их вряд ли можно будет найти. Первый столбец никогда не будет черным, а в четвертом столбце никогда не будет цвета с присвоенным значением выше 4 — желтый. Металл Номиналы пленочного резистора варьируются от 10 Ом — коричневый, черный, черный, золотой, до 1 МОм — коричневый, черный, черный, желтый. Расчет значения очень похож на метод, описанный для 4 типа полос.Используя наш пример 15K слева, это достигается следующим образом;

ЗНАЧИМЫЕ ЦИФРЫ и МНОЖЕСТВЕННЫЕ ПОЛОСЫ:
Первые три цвета представляют три числовых значения, известные как значащие цифры, которые просто записываются по мере появления, т.е. а «1», «5» и а «0». Затем полоса множителя указывает, сколько нулей нужно записать после первые три цифры, а здесь нам понадобятся две из них — «00». Это оно! Теперь у вас есть значение сопротивления этого резистора в Ом — 15000 Ом, а так как каждые 1000 Ом представляет килом или «1 кОм», значение в примере составляет 15 кОм.

ЗОЛОТАЯ или СЕРЕБРЯНАЯ МНОЖИТЕЛЬНАЯ ПОЛОСА:
ДОЛЖНЫ быть представлены значения этих резисторов. пятью цветными полосами. Однако только значения от 100 Ом и выше могут быть представлены с помощью «обычная» цветовая гамма от черного до белого, так как минимально допустимый цвет Последовательность Коричневый, Черный, Черный, Черный — 100 Ом. На рисунке справа показано, как представлены значения ниже 100 Ом. Используя золото в качестве полосы множителя, рассчитанное сопротивление должно быть РАЗДЕЛЕННО на 10. В этом примере показан резистор 47 Ом.Если полоса умножителя была серебряной, значение должно было стать 4,7 Ом, но это всего лишь гипотеза, поскольку резисторы этих типов обычно не имеют значений ниже 10 Ом, поэтому очень маловероятно, что вы когда-нибудь найдете такой с серебряной лентой множителя.

ПОЛОСА ДОПУСКА:
Возвращаясь к нашему примеру 15K, пятая полоса указывает допуск этого сопротивления. в процентах. Если полоса допуска красная, сопротивление будет в пределах 2% выше или ниже 15K, что соответствует допуску в 300 Ом (2% от 15000 = 300).Это означает фактическое сопротивление может составлять от 14 700 Ом до 15 300 Ом. Если полоса допуска коричневая, сопротивление будет в пределах 1%. Золотые или серебряные полосы допуска вряд ли когда-либо увидишь на этих резисторах. Но они по-прежнему являются частью цветового кода. стандартные, поэтому были включены с остальными.

6 ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА

ИСПОЛЬЗУЕТСЯ НА РЕЗИСТОРАХ ИЗ МЕТАЛЛИЧЕСКОЙ ПЛЕНКИ
Рисунок на Слева показан резистор с шестицветной полосой — в нашем примере 620 кОм.Прежде чем вы сделаете запрос сопротивление, да, это стандартное значение, доступное для данного диапазона резисторов. Эти рассчитывается точно так же, как и пять указанных выше типов с полосами. Единственная разница добавление шестой полосы, указывающей температурный коэффициент резистора, который указывается в миллионных долях на градус Цельсия — PPM /.

В большинстве случаев вы столкнетесь с коричневой шестой полосой, так как это является наиболее распространенной производимой версией, поскольку она обеспечивает достаточно стабильную работу. резистор в широких условиях эксплуатации.Однако можно получить «специальные» с температурным коэффициентом ближе, чем 100 ppm / C, они используются в более точных или более критичных к температуре приложениях, поэтому не удивляйтесь, если вы встречаются с ними время от времени.

ЧТО ОЗНАЧАЕТ ТЕРМИН «PPM / C»?

СТАБИЛЬНОСТЬ РЕЗИСТОРА В зависимости от ТЕМПЕРАТУРЫ

Определяет температурный коэффициент диапазона резистора. Не путайте это со значением резистора, это относится к составу резистора, будь то углеродная пленка, металлическая пленка, намотанная или что-то еще.Термин «ppm / C» не является специфическим для резисторы, он применяется практически ко всем электронным компонентам, когда-либо производившимся, и мера того, насколько стабильность этого компонента будет дрейфовать в ответ на изменение температура. Обычно это измеряется в миллионных долях на градус. по Цельсию — ppm / C. Значение «частей» — это единицы, из которых Компонент измеряется, вот оно Ом. Если бы мы говорили о конденсаторах, то единицы были бы быть фарадами, микрофарадами или пикофарадами и т. д. Стабильность частоты осциллятора будет выражаться в терминах компании Hertz

Интересно, что большинство типов резисторов имеют указанные характеристики вплоть до рабочая температура около 70С.При этом необходимо учитывать не только окружающую среду. температуры, но также и любые факторы нагрева, влияющие на компонент в результате работы сам контур. Это может принимать форму рассеивания мощности, что приводит к довольно нормальный самоиндуцированный нагрев или вторичный нагрев, вызванный непосредственной близостью других более горячие компоненты, такие как трансформаторы, силовые транзисторы и т. д.

Для упрощения расчетов мы будем использовать Пример углеродного пленочного резистора 1 МОм — 1000000 Ом (показан слева).Мы будем также предположим, что его температурный коэффициент указан как 400 ppm / C, что довольно общий для углеродных пленочных резисторов.

На каждое изменение температуры на 1 ° С наш резистор 1 МОм может сместиться на величину до 400 Ом выше или ниже указанного значения. Этот дрейф не зависит от других спецификации, установленные для резистора любого типа, к которому он относится. Другими словами, нет независимо от того, какой допуск или диапазон рабочих температур, пока он эксплуатируется в указанном температурном диапазоне сопротивление все еще может дрейфовать из-за любых ppm / C указано.

В нашем примере выше, за исключением допуска в 5%, что позволяет нашему 1 МОм резистор в диапазоне от 950 000 Ом до 1050 000 Ом при температуре до 70 ° C (5% от 1000000 = 50000 или 50K), его температурный коэффициент 400 ppm / C также позволяет ему дрейфовать вверх до 400 Ом на каждый 1С изменения температуры. В большинстве случаев сопротивление будет падать по мере увеличения температуры, поэтому повышение температуры на 1 ° C может означают падение сопротивления до 400 Ом. И это касается каждого увеличения 1С в температура.

Не забывайте, что все эти допуски и температурные коэффициенты допустимые пределы для любого конкретного диапазона резисторов. Это не значит, что у них будет изменить на указанные суммы, только то, что им разрешено, оставаясь в пределах их спецификации. Вы можете довольно легко подключить два, казалось бы, одинаковых резистора. через мультиметр и дает разные результаты для каждого из них. Но пока они оба находятся в этих пределах, то с ними все в порядке.

С точки зрения разработчиков, в критически важных приложениях, таких как аналогово-цифровой (A / D) преобразования и схемы измерения температуры, спецификация ppm является одним из наиболее важные факторы, определяющие тип используемых резисторов, в сочетании с Разработчики предусмотрели диапазон рабочих температур готовой схемы.

Я ПРАВИЛЬНО ЧИТАЮ РЕЗИСТОР?

ИЛИ КАК Я УЗНАЮ, ЧТО Я ЧИТАЮ ПРАВИЛЬНО?

Ответ на этот вопрос прост — опыт! Учитывая все эти типы резисторов, с их различными методами идентификации легко неверно истолковать ценность некоторых резисторы, и это довольно часто случается.Однако по мере того, как вы становитесь более знакомыми используя цветовые коды, вы начнете понимать, что только определенные последовательности и значения резисторов доступны, и скоро вы привыкнете к тому, что они находятся.

В качестве экономии вы всегда можете попытаться вычислить значение, а затем проверить свое сравните с таблицей номиналов резистора, чтобы увидеть, указан ли он там. Если это не так, попробуйте прочтите его снова, начиная с другого конца, затем проверьте еще раз. Обычно это только проблема с пяти- и шестиполосными металлопленочными резисторами, потому что стандартные четыре Типы углеродных пленок с полосами почти всегда будут иметь золотую полосу допуска на одном конце, так что вы знаете, что это нужно читать с другого конца.

ДЛЯ ЧЕГО ИСПОЛЬЗУЮТСЯ КОДЫ РЕЗИСТОРОВ?

С развитием технологий размеры резисторов значительно уменьшились по сравнению с их оригинального размера, и устройства для поверхностного монтажа (SMD) или чип-резисторы в настоящее время используются в огромных количествах. количества по производителям оборудования. Они действительно крошечные по сравнению с сегодняшними резисторы средней (скажем) ватт, что делает использование цветовой кодировки непрактичным, не только с производственной точки зрения, но также и для бедных конечных пользователей, которым нужно попробовать читай их!

БУКВЕННО-ЦИФРОВАЯ КОДИРОВКА:
Для преодоления этого вместо этого используется кодирование цифрами и буквами.Этот способ фактически уже несколько лет используется на различных компонентах. Фигура слева показывает однопроводную (SIL) резисторную сеть, подобные которой существуют уже давно. лет, и современный резистор для поверхностного монтажа. Обратите внимание, что они не показаны в масштабе, некоторые из резисторов SMD настолько малы, что могут поместиться только между двумя контактами Сеть SIL!
КАК РАБОТАЕТ ЭТО КОДИРОВКА?
В основном эта кодировка состоит из трех цифр, иногда за которыми следует одна буква.Три числа на самом деле являются прямым представлением их эквивалентной цветовой полосы. значения, т.е. 1 — коричневый, 2 — красный, 3 — оранжевый и так далее. Где буква следует за цифрами, это означает, что обычно является диапазоном допуска, которым присваиваются следующие значения; M = 20%, K = 10%, J = 5%, G = 2%, F = 1%

Изучив их, вы сможете увидеть взаимосвязь между буквенно-цифровые коды и цветные полосы. Многим людям их легче читать и понять, чем их эквиваленты с цветовой кодировкой.Это всего лишь два примера того, где вы найдете этот тип кодирования. Также регулярно используются многие другие, в частности на резисторах высокой точности и других компонентах, где объем доступного пространства (или его отсутствие) делает цветовое кодирование непрактичным.

Нажмите здесь, чтобы вернуться

ЧТО ТАКОЕ (ИЛИ БЫЛО) ПИСАТЕЛЬ?

* ПИСАТЕЛЬ: Для младших читатели, это был своего рода механический текстовый процессор / принтер, сделанный в основном из чугуна, это было изобретено до электричества, и всегда казалось, что он весит около полтонны, даже легкие модели! Чтобы использовать старую пишущую машинку в течение любого времени, требуются мускулы. как Рэмбо, пара наушников (наушников) и обычная способность тянуть машина возвращается на расстояние до клавиатуры, после вибрации в «рации» подальше от вас во время набора текста!

Один лист бумаги был вставлен за пластину и вручную повернут в нужное положение. готов к вводу прямо на.Печать на этих машинах достигалась несколько иначе. к сегодняшним принтерам, так как печатающая головка оставалась неподвижной, а каретка тянулась справа налево тканым ремнем, прикрепленным к подпружиненному барабану. Когда бумага поля выставлены правильно, предупреждающее устройство в виде одиночного «звонка» колокольчика сообщил вам, что вы достигли правого края бумаги и что вы только осталось около 10 символов, прежде чем все внезапно остановилось! Возврат каретки и перевод строки был вызван оператором вручную за одну простую, но быструю операцию, которая пришлось резко щелкнуть самым большим рычагом, за который они могли дотянуться, и скользить по каретку в крайнее правое положение, пока она не остановится резко, рычаг сломался, или вся машинка перевернулась на бок! Однако последняя особенность был доступен только в стандартной комплектации на моделях с широкой тележкой! В качестве дополнительной опции на узких кареток, это было достигнуто за счет скольжения каретки назад на гораздо более высокой скорости !.

У этих машин не было экрана дисплея, памяти, масштабируемых шрифтов или графики. Однако жирный шрифт можно было получить, просто повернув каретку до слов, которые вы нужно выделить жирным шрифтом, а затем снова набрать всю партию поверх того, что уже было напечатаны, просто молясь, чтобы вы не нажали не ту клавишу по пути! Это тоже не позировало большая проблема, поскольку исправление ошибок обычно происходило всего в нескольких дюймах в виде крошечной бутылки, содержащей что-то вроде кисточки для лака для ногтей с завинчивающейся крышкой, которая был погружен в раствор, напоминающий белую шелковую виниловую эмульсионную краску, но пахнущий как химический завод! Известная как корректирующая жидкость, ее просто закрашивали поверх неправильного символа (ов) до тех пор, пока он не станет напоминать ссылку на 3D-карту мини-кольцевой развязки или островок безопасности.Этому дали высохнуть в течение нескольких секунд, и правильные символы затем набирались поверх нарисованного «горба», что не только удаляло излишки «краски». и заменил его на требуемый символ, но также изменил появление этого символа примерно в следующие десять или около того раз, когда он был напечатан!

Для решения этой проблемы предлагается версия этого средства исправления ошибок на пленке с сухим переносом. была изобретена техника, известная как корректирующая бумага, которая значительно облегчила жизнь бедным машинистка.Все, что здесь требовалось, — это держать пленку над неправильные символы, а затем введите эти символы снова. Идея заключалась в том, чтобы применить только количество корректирующей среды, необходимое для «скрытия» неправильных символов. К сожалению, любую заданную область пленки можно было использовать только один раз, и из-за отсутствия механическая точность пишущей машинки, неправильные символы, возможно, должны были быть перепечатали несколько раз, прежде чем исходный отпечаток был стерт. После такого лечения смотреть с лицевой стороны напечатанного документа было неплохо, но, к сожалению, наоборот напоминало то, что мог прочитать слепой!

Вернемся к самой машинке.Как правило, эти машины были монохромными, хотя также был доступен полный диапазон серых шкал, основанный на износе ленты и количество силы, приложенной во время набора текста. Полноцветные черные, красные и синие версии могут быть имелся за дополнительную плату, но одновременно был доступен только один цвет. Широкие модели тележек пишущей машинки также были доступны примерно до 24 дюймов, что, откровенно говоря, было улучшение ограничений сегодняшних современных принтеров! К сожалению, размер тела машинка с широкой кареткой не соответствовала ширине каретки, а удлиненные ножки на болтах должен был быть установлен, чтобы уравновесить вес каретки, когда она была о его путешествии.

Печатать документы в этих системах требовалось отталкивать «клавиатуру» со всеми ваша сила, чтобы создать приемлемое изображение персонажа на бумаге. Это часто было проклят как причину повреждения нежных женских ногтей, которые сегодня в среднем ногти были исключительно длинными. Ущерб нанесен ногтями. ловя клавишу над клавишей, которую они пытались напечатать. Возможно, это был всего лишь один из причины, по которым машинистки, привыкшие пользоваться пишущими машинками, сказали, что близкие близость клавиш на современных компьютерных клавиатурах никогда не завоюет популярность и будет совершенно непригоден для набора текста, только на этот раз проблема будет не в повреждении ногтями, но типографских ошибок, вызванных тем, что ноготь набирает символ над тем, который должен печатать палец.Странно, как много ничего изменилось!

Нажмите здесь, чтобы вернуться

Как выбрать правильный резистор

Все, что вам нужно знать, чтобы выбрать правильный резистор для вашего первого проекта разработки печатной платы

Планируете ли вы приступить к разработке своей первой печатной платы? Существует так много типов компонентов, которые вы в конечном итоге будете использовать, но ни один из них не может превзойти печально известный из них — простой резистор. Если вы когда-нибудь смотрели на печатную плату, вы обнаружите, что резисторы повсюду, они контролируют ток и заставляют светиться светодиоды.Но что такое резистор, как он работает и как выбрать подходящий резистор для своей первой конструкции печатной платы?

Не бойтесь, мы предоставим вам все, что вам может понадобиться.

Итак… Что такое резистор? Резисторы

являются одним из нескольких пассивных электрических компонентов, и то, что они делают, относительно простое, но жизненно важное — создание сопротивления в потоке электрического тока.Вы когда-нибудь видели, как загорается светодиод? Это стало возможным благодаря надежному резистору. Поместив резистор позади светодиода в цепи, вы получите яркий свет, но ничего не перегорят!

Значение резистора — это его сопротивление, измеряемое в Ом (Ом). Если вы когда-либо проходили базовый курс электроники, то ваш инструктор, вероятно, вбил вам в голову закон Ома. При работе с резисторами вы будете снова и снова использовать закон Ома. Больше об этом:

Найти символ резистора на схеме очень просто.Международный символ имеет стандартную прямоугольную форму, но в стандарте США есть зигзагообразная линия, которая упрощает идентификацию. Независимо от формы, оба стиля имеют набор клемм, соединяющих концы.

Обозначение резистора как в американской, так и в международной версиях.

Какие бывают типы резисторов?

Вокруг плавает тонна резисторов, которые разделены на две категории — конструкционный типа и материал сопротивления .Давайте рассмотрим оба:

Конструкция Тип

  • Постоянные резисторы — Как следует из названия, эти резисторы имеют фиксированное сопротивление и допуск независимо от любых изменений внешних факторов, таких как температура, свет и т. Д.
  • Переменные резисторы — Эти детали имеют изменяемое сопротивление. Потенциометр — отличный пример, у которого есть циферблат, который можно поворачивать, чтобы увеличивать или уменьшать сопротивление. К другим переменным резисторам относятся подстроечный резистор и реостат.
  • Резисторы физического качества — Эти резисторы похожи на хамелеонов и могут изменять свое сопротивление в зависимости от множества физических свойств, включая температуру, уровень освещенности и даже магнитные поля. К резисторам физического качества относятся термистор, фоторезистор, варистор и магниторезистор.

Материал сопротивления Резисторы

также можно разделить на материал, из которого они сделаны, что оказывает огромное влияние на их сопротивление току.Эти материалы включают:

  • Состав углерода
  • Карбоновая пленка
  • Металлическая пленка
  • Толстая и тонкая пленка
  • Фольга
  • Проволочная обмотка

Углеродный состав — это более старая технология, которая существует уже некоторое время и позволяет производить резисторы с низкой степенью точности. Вы по-прежнему найдете их для использования в приложениях, где возникают импульсы высокой энергии.

Из всех типов материалов резисторов проволочные обмотки являются самыми старыми из всех, и вы все равно найдете их, когда вам потребуется точное сопротивление для приложений с большой мощностью.Эти древние резисторы широко известны своей надежностью даже при низких значениях сопротивления.

Сегодня резисторы из металлов и оксидов металлов являются наиболее широко используемыми, они лучше обеспечивают стабильные допуски и сопротивление, а также меньше подвержены влиянию изменений температуры.

Как использовать резисторы?

Вы найдете резисторы, которые используются во многих приложениях, помимо сопротивления току.Другие приложения включают разделение напряжения, генерирование тепла, согласование и нагрузку цепей, управление усилением и фиксацию временных ограничений. В более практических приложениях вы обнаружите, что большие резисторы используются для питания электрических тормозов в поездах, что помогает высвободить всю накопленную кинетическую энергию.

Вот еще несколько интересных приложений, для которых используется универсальный резистор:

  • Измерение электрического тока — Вы можете измерить падение напряжения на прецизионном резисторе с известным сопротивлением, когда он подключен к цепи.Это рассчитывается по закону Ома.
  • Питание светодиодов — Подача на светодиод слишком большого тока приведет к сгоранию этого прекрасного света. Подключив резистор за светодиодом, вы можете контролировать, какой ток получает светодиод, чтобы свет продолжал светиться.
  • Электродвигатели вентилятора — Эта система вентиляции в вашем автомобиле приводится в действие электродвигателем вентилятора, а специальный резистор используется для управления скоростью вентилятора. Этот тип резистора, что неудивительно, называется резистором двигателя вентилятора!

Как измерить резистор?

Значение, которое вы будете видеть снова и снова, — это сопротивление (R).Это значение отображается по-разному, и в настоящее время существует два стандарта для измерения того, как сопротивление отображается с помощью цветных маркеров или SMD-кодов.

Цветовое кодирование

Возможно, вы знакомы с системой цветовой кодировки, если когда-либо возились с макетной платой. Этот метод был изобретен в 1920-х годах, и значения сопротивления и допусков отображаются в виде нескольких цветных полос, нарисованных на корпусе резистора.

Большинство резисторов, которые вы видите, имеют четыре цветных полосы.Вот как они распадаются:

  • Первые две полосы определяют основные цифры значения сопротивления.
  • Третья полоса определяет коэффициент умножения, который дает значение сопротивления.
  • И, наконец, четвертая полоса предоставляет вам значение допуска.

Все разные цвета на резисторе соответствуют разным номерам. Вы можете использовать удобный калькулятор цветового кода резистора, чтобы быстро определить эти значения в будущем.Если вы в большей степени визуально обучаетесь, то вот отличное видео, которое мы нашли, показывает вам, как разобраться в цветовой кодировке:

Резисторы SMD

Не каждый резистор достаточно велик, чтобы его можно было идентифицировать по цветовой кодировке, особенно при использовании устройств поверхностного монтажа или SMD. Чтобы компенсировать меньшее пространство, резисторам SMD присваивается числовой код. Если вы посмотрите на современную печатную плату, вы заметите, что резисторы SMD также примерно одинакового размера.Это помогает стандартизировать производственный процесс с помощью этих быстрозажимных машин.

Как выбрать подходящий резистор?

Хорошо, время для самой важной части — научиться точно определять, какой резистор вам нужен для вашей первой конструкции печатной платы. Мы разбили это на три простых шага, которые включают:

  1. Расчет необходимого сопротивления
  2. Расчет номинальной мощности
  3. И, наконец, выбор резистора на основе этих двух значений.

Шаг 1. Расчет сопротивления

Здесь вы будете использовать закон Ома для расчета сопротивления. Вы можете использовать одну из стандартных формул ниже, когда известны ваше напряжение (В) и ток (I).

Шаг 2 — Расчет номинальной мощности

Затем вам нужно выяснить, сколько мощности потребуется вашему резистору для рассеивания. Это можно рассчитать по следующей формуле:

В этой формуле P, — мощность в ваттах, В, — падение напряжения на резисторе, а R — сопротивление резистора в Ом.Вот краткий пример того, как эта формула будет работать в действии:

В приведенной выше схеме у нас есть светодиод с напряжением 2 В, , резистор с сопротивлением 350 Ом (Ом) и источник питания 9 В . Итак, сколько мощности будет рассеиваться на этом резисторе? Подведем итоги. Сначала нам нужно найти падение напряжения на резисторе, которое составляет 9 В от батареи и 2 В от светодиода, поэтому:

9В — 2В = 7В

Затем вы можете вставить всю эту информацию в формулу:

P = 7V * 7V / 350 Ом = 0.14 Вт

Шаг 3 — Выбор резистора

Теперь, когда у вас есть значения сопротивления и номинальной мощности, пора выбрать настоящий резистор у поставщика компонентов. Мы всегда рекомендуем использовать стандартные резисторы, которые есть в наличии у каждого дистрибьютора. Использование стандартных типов резисторов значительно упростит вашу жизнь, когда придет время их производить. Три надежных поставщика компонентов, у которых вы можете найти качественные детали, включают Digikey, Mouser и Farnell / Newark.

Сопротивление сильно в этом

Итак, вот и все, что вам может понадобиться знать о резисторах для вашего первого проекта по разработке печатной платы. Резисторы обладают такой универсальностью, что вы будете использовать их снова и снова в каждом проекте электроники, который вы завершаете. В следующий раз, когда вам нужно будет выбрать резистор, запомните простой трехэтапный процесс: 1. рассчитайте сопротивление, 2. затем номинальную мощность, 3. а затем найдите поставщика!

Теперь, прежде чем вы начнете создавать свои собственные символы резисторов и посадочные места в программном обеспечении для проектирования печатных плат, не было бы проще, если бы они уже были сделаны для вас? Они уже есть! Ознакомьтесь с огромным количеством бесплатных библиотек деталей, доступных только в Fusion 360.Попробуйте электронику Fusion 360 бесплатно сегодня.

Резистор

— Энциклопедия Нового Света

резистор
Потенциометр
Резистор Переменный

резистор
9047
Потенциометр
Резистор Переменный
резистор
Переменный
резистор
Символы резистора резистор представляет собой электронный компонент с двумя выводами, который противодействует электрическому току, создавая падение напряжения между его выводами пропорционально току.Резисторы используются в составе электрических сетей и электронных схем.

Математическое соотношение между электрическим сопротивлением (R {\ displaystyle R}) резистора, падением напряжения (V {\ displaystyle V}) на резисторе и током (I {\ displaystyle I}), протекающим через Резистор выражается следующим уравнением, известным как закон Ома:

V = IR {\ displaystyle V = IR}.
Осевые резисторы на ленте. Лента удаляется во время сборки до того, как будут сформированы выводы и деталь вставлена ​​в плату.Три резистора из углеродного состава в ламповом радиоприемнике 1960-х годов.

Идентификация резисторов

В большинстве осевых резисторов используется узор из цветных полос для обозначения сопротивления. Резисторы для поверхностного монтажа имеют цифровую маркировку. Корпуса обычно бывают коричневыми, коричневыми, синими или зелеными, хотя иногда встречаются и другие цвета, например, темно-красный или темно-серый.

Также можно использовать мультиметр или омметр для проверки значений сопротивления резистора.

Четырехполосные осевые резисторы

Четырехполосная идентификация — это наиболее часто используемая схема цветового кодирования всех резисторов.Он состоит из четырех цветных полос, нанесенных на корпус резистора. Первые две полосы кодируют первые две значащие цифры значения сопротивления, третья — это множитель степени десяти, а четвертая — допуск или допустимая ошибка значения.

Например, зелено-сине-желто-красный составляет 56 × 10 4 Ом = 560 кОм ± 2 процента).

Каждому цвету соответствует определенное число, показанное в таблице ниже. Допуск для 4-полосного резистора составляет 1 процент, 5 процентов или 10 процентов.

Цвет 1 st band 2 nd band 3 rd band (множитель) 4 th band (допуск) Темп. Коэффициент
Черный 0 0 × 10 0
Коричневый 1 1 × 10 1 ± 1% (F) 100 ppm
Красный 2 2 × 10 2 ± 2% (G) 50 ppm
Оранжевый 3 3 × 10 3 15 ppm
Желтый 4 4 × 10 4 25 ppm
Зеленый 5 5 × 10 5 ± 0.5% (D)
Синий 6 6 × 10 6 ± 0,25% (C)
Фиолетовый 7 7 × 10 7 ± 0,1% (B)
Серый 8 8 × 10 8 ± 0,05% (A)
Белый 9 9 × 10 9
Золото × 10 -1 ± 5% (Дж)
Серебро × 10 -2 ± 10 % (K)
Нет ± 20% (M)

Предпочтительные значения

Резисторы производятся номиналом от нескольких миллиомов до гигаома; Обычно доступен только ограниченный диапазон значений из серии предпочтительных номеров IEC 60063.Эти серии называются E6, E12, E24, E96, и E192. Число указывает, сколько стандартизованных значений существует в каждом десятилетии (например, от 10 до 100 или от 100 до 1000). Таким образом, резисторы, соответствующие серии E12 , могут иметь 12 различных значений от 10 до 100, тогда как резисторы, соответствующие серии E24 , будут иметь 24 различных значений.

На практике дискретный компонент, продаваемый как «резистор», не является идеальным сопротивлением, как определено выше.(8/96) = 1,21 Ом. Каждое число, кратное 96, добавленное к остатку, дает следующее десятилетие. Таким образом, резистор на 12,1 Ом будет иметь N = 8 + 96 = 104. N также можно найти по формуле E * LOG10 (R) = N.

5-полосные осевые резисторы

5-полосная идентификация используется для резисторы с более высокой точностью (меньший допуск) (1 процент, 0,5 процента, 0,25 процента, 0,1 процента) для обозначения дополнительной цифры. Первые три полосы представляют собой значащие цифры, четвертая — множитель, а пятая — допуск.Иногда встречаются пятиполосные резисторы со стандартным допуском, как правило, на более старых или специализированных резисторах. Их можно идентифицировать, отметив стандартный цвет допуска в четвертой полосе. Пятая полоса в данном случае — температурный коэффициент.

SMT резисторы

На этом изображении показаны четыре резистора для поверхностного монтажа (компонент в верхнем левом углу — конденсатор), включая два резистора с нулевым сопротивлением. Вместо проводных перемычек часто используются перемычки с нулевым сопротивлением, поэтому их можно вставить с помощью машины для вставки резисторов.

На резисторах поверхностного монтажа напечатаны числовые значения в коде, относящемся к тому, который используется на осевых резисторах. Резисторы со стандартным допуском для поверхностного монтажа (SMT) маркируются трехзначным кодом, в котором первые две цифры представляют собой первые две значащие цифры значения, а третья цифра — это степень десяти (количество нулей). Например:

«334» = 33 × 10 000 Ом = 330 кОм
«222» = 22 × 100 Ом = 2.2 кОм
«473» = 47 × 1000 Ом = 47 кОм
«105» = 10 × 100000 Ом = 1 МОм

Сопротивления менее 100 Ом записываются: 100 , 220, 470. Последний ноль представляет десять до нуля мощности, который равен 1. Например:

«100» = 10 × 1 Ом = 10 Ом
«220» = 22 × 1 Ом = 22 Ом

Иногда эти значения помечаются как «10» или «22», чтобы избежать ошибки.

Для сопротивлений менее 10 Ом есть символ «R», обозначающий положение десятичной точки (точка счисления). Например:

«4R7» = 4,7 Ом
«0R22» = 0,22 Ом
«0R01» = 0,01 Ом

Прецизионные резисторы отмечены четырехзначный код, в котором первые три цифры являются значащими цифрами, а четвертая — степенью десяти. Например:

«1001» = 100 × 10 Ом = 1 кОм
«4992» = 499 × 100 Ом = 49.9 кОм
«1000» = 100 × 1 Ом = 100 Ом

«000» и «0000» иногда отображаются как значения на соединениях с нулевым сопротивлением поверхностного монтажа, поскольку они имеют (приблизительно) нулевое сопротивление.

Обозначение промышленного типа

Формат: [две буквы] <пробел> [значение сопротивления (три цифры)] [код допуска (числовой — одна цифра)] [1]

Номинальная мощность при 70 ° C
Тип № Мощность
рейтинг
(Вт)
MIL-R-11
Стиль
MIL-R-39008
Стиль
BB 1/8 RC05 RCR05
CB ¼ RC07 RCR07
EB ½ RC20 RCR20
GB 1 RC32 RCR32
HB RCR2
GM 3
HM 4
Код допуска
Обозначение промышленного типа72 Допуск Дизайн
5 ± 5% J
2 ± 20% M
1 ± 10% K
± 2% G
± 1% F
± 0.5% D
± 0,25% C
± 0,1% B

В диапазоне рабочих температур различают компоненты коммерческого, промышленного и военного назначения .

  • Товарный сорт: от 0 ° C до 70 ° C
  • Промышленный сорт: от -40 ° C до 85 ° C (иногда от -25 ° C до 85 ° C)
  • Военный сорт: от -55 ° C до 125 ° C (иногда от -65 ° C до 275 ° C)
  • Standard Grade от -5 ° C до 60 ° C

Стандарты резисторов

  • MIL-R-11
  • MIL-R-39008
  • MIL-R-39017
  • MIL-PRF-26
  • MIL-PRF-39007
  • MIL-PRF-55342
  • MIL-PRF-914
  • BS 1852
  • EIA-RS-279

Есть другие военные закупки США MIL -R- стандарты.{t_ {2}} v (t) i (t) \, dt.}

Если средняя рассеиваемая мощность превышает номинальную мощность резистора, резистор может отклониться от своего номинального сопротивления и может быть поврежден из-за перегрева . Чрезмерное рассеивание мощности может привести к повышению температуры резистора до точки, при которой он перегорит, что может вызвать возгорание соседних компонентов и материалов.

Последовательные и параллельные цепи

Когда резисторы находятся в параллельной конфигурации, каждый из них имеет одинаковую разность потенциалов (напряжение) на нем.Чтобы найти их полное эквивалентное сопротивление (R eq ) :

1Req = 1R1 + 1R2 + ⋯ + 1Rn {\ displaystyle {\ frac {1} {R _ {\ mathrm {eq}}}} = { \ frac {1} {R_ {1}}} + {\ frac {1} {R_ {2}}} + \ cdots + {\ frac {1} {R_ {n}}}}

Параллельное свойство может быть представлен в уравнениях двумя вертикальными линиями «||» (как в геометрии), чтобы упростить уравнения. Для двух резисторов

Req = R1‖R2 = R1R2R1 + R2 {\ displaystyle R _ {\ mathrm {eq}} = R_ {1} \ | R_ {2} = {R_ {1} R_ {2} \ over R_ {1} + R_ {2}}}

Ток через последовательно включенные резисторы остается неизменным, но напряжение на каждом резисторе может быть разным.Сумма разностей потенциалов (напряжения) равна общему напряжению. Чтобы найти их полное сопротивление:

Req = R1 + R2 + ⋯ + Rn {\ displaystyle R _ {\ mathrm {eq}} = R_ {1} + R_ {2} + \ cdots + R_ {n}}

Сеть резисторов, представляет собой комбинацию параллелей и серий, которые иногда могут быть разбиты на более мелкие части, которые являются одним или другим. Например,

Req = (R1‖R2) + R3 = R1R2R1 + R2 + R3 {\ displaystyle R _ {\ mathrm {eq}} = \ left (R_ {1} \ | R_ {2} \ right ) + R_ {3} = {R_ {1} R_ {2} \ over R_ {1} + R_ {2}} + R_ {3}}

Однако многие резистивные цепи не могут быть разделены таким образом.Рассмотрим куб, каждое ребро которого заменено резистором. Например, для определения сопротивления между двумя противоположными вершинами в общем случае требуются матричные методы. Однако, если все двенадцать резисторов равны, сопротивление между углами равно 5 6 любого из них.

Технология

Углерод

Резисторы на углеродной основе состоят из сплошного цилиндрического резистивного элемента с заделанными выводами проводов или металлическими концевыми заглушками, к которым прикреплены выводные провода, которые защищены краской или пластиком.

Резистивный элемент изготовлен из смеси мелко измельченного (порошкообразного) углерода и изоляционного материала (обычно керамики). Смесь скрепляется смолой. Сопротивление определяется соотношением материала наполнителя (порошковой керамики) и углерода. Более высокая концентрация углерода, слабый проводник, приводит к более низкому сопротивлению. Резисторы из углеродного состава обычно использовались в 1960-х годах и ранее, но сейчас они не так популярны для общего использования, поскольку другие типы имеют лучшие характеристики, такие как допуск, зависимость от напряжения и напряжение (резисторы из углеродного состава будут изменять свое значение при воздействии перенапряжения. ).

Углеродная пленка

Спираль используется для увеличения длины и уменьшения ширины пленки, что увеличивает сопротивление. Различные формы в сочетании с удельным сопротивлением углерода (от 9 до 40 мкОм) могут обеспечивать различное сопротивление. [2]

Толстая и тонкая пленка

Толстопленочные резисторы стали популярными в 1970-х годах, и сегодня большинство SMD-резисторов относятся к этому типу. Принципиальное различие между «тонкопленочными» и «толстопленочными резисторами» не обязательно в «толщине» пленки, а скорее в том, как пленка наносится на цилиндр (осевые резисторы) или на поверхность (резисторы SMD).В толстопленочных резисторах «пленка» наносится с использованием традиционной технологии трафаретной печати.

Тонкопленочные резисторы изготавливаются путем напыления резистивного материала на поверхность резистора. Распыление — это метод вакуумного напыления. Затем тонкая пленка протравливается аналогично старому (субтрактивному) процессу изготовления печатных плат: например, поверхность покрывается фоточувствительным материалом, затем покрывается пленкой, облучается ультрафиолетовым светом, а затем открытое светочувствительное покрытие и нижележащая тонкая пленка стравливаются.

Тонкопленочные резисторы, как и их толстопленочные аналоги, затем обычно подгоняются до точного значения абразивной или лазерной подгонкой.

Поскольку время, в течение которого выполняется распыление, можно контролировать, можно точно контролировать толщину пленки тонкопленочного резистора. Тип материала также обычно отличается, состоящий из одного или нескольких керамических (керметных) проводников, таких как нитрид тантала (TaN), диоксид рутения (RuO 2 ), оксид свинца (PbO), рутенат висмута (Bi 2 Ru 2 O 7 ), хром никеля (NiCr) и / или иридат висмута (Bi 2 Ir 2 O 7 ).

Напротив, толстопленочные резисторы могут использовать ту же проводящую керамику, но они смешаны со спеченным (порошкообразным) стеклом и какой-либо жидкостью, так что композит может быть нанесен трафаретной печатью. Этот композит из стекла и проводящей керамики (металлокерамики) затем плавится (запекается) в печи при температуре около 850 ° C.

Традиционно толстопленочные резисторы имели допуски 5 процентов, но за последние несколько десятилетий стандартные допуски улучшились до 2 и 1 процента. Но будьте осторожны, температурные коэффициенты толстопленочных резисторов обычно составляют ± 200 или ± 250 ppm / K, в зависимости от сопротивления.Таким образом, изменение температуры на 40 кельвинов (70 ° F) может добавить еще 1 процентное отклонение к 1 процентному сопротивлению.

Тонкопленочные резисторы обычно имеют допуски 0,1, 0,2, 0,5 и 1 процент и температурные коэффициенты от 5 до 25 ppm / K. Обычно они намного дороже своих толстопленочных собратьев. Однако обратите внимание, что тонкопленочные резисторы SMD с допуском 0,5% и температурным коэффициентом 25 ppm / K при покупке в полноразмерных катушечных количествах примерно в два раза дороже толстопленочных резисторов на 1 процент, 250 ppm / K.

Металлическая пленка

Распространенный сегодня тип осевого резистора называется металлопленочным резистором. Резисторы MELF (Metal Electrodeless Face) часто используют ту же технологию, но представляют собой резисторы цилиндрической формы, предназначенные для поверхностного монтажа. (Обратите внимание, что другие типы резисторов, например, углеродные, также доступны в упаковках «MELF».)

Металлические пленочные резисторы обычно покрыты никель-хромом (NiCr), но могут быть покрыты любым из перечисленных металлокерамических материалов. выше для тонкопленочных резисторов.В отличие от тонкопленочных резисторов, этот материал можно наносить с использованием других методов, чем распыление (хотя это один из таких методов). Кроме того, в отличие от тонкопленочных резисторов, значение сопротивления определяется путем вырезания спирали через покрытие, а не травления. (Это похоже на способ изготовления углеродных резисторов.) Результатом является разумный допуск (0,5, 1 или 2 процента) и температурный коэффициент (обычно) 25 или 50 ppm / K.

С проволочной обмоткой

Резисторы с проволочной обмоткой обычно изготавливают путем наматывания металлической проволоки на керамический, пластиковый или стекловолоконный сердечник.Концы проволоки припаивают или приваривают к двум шляпкам, прикрепленным к концам сердечника. Сборка защищена слоем краски, формованного пластика или эмалевого покрытия, запеченного при высокой температуре. Проволочные выводы обычно имеют диаметр от 0,6 до 0,8 мм и покрыты оловом для облегчения пайки. Для резисторов с проволочной обмоткой большей мощности используется либо керамический внешний корпус, либо внешний алюминиевый корпус поверх изолирующего слоя. Типы с алюминиевым корпусом предназначены для крепления к радиатору для отвода тепла; номинальная мощность зависит от использования подходящего радиатора, например, резистор номинальной мощностью 50 Вт будет перегреваться примерно на одной пятой рассеиваемой мощности, если он не используется с радиатором.

Поскольку резисторы с проволочной обмоткой представляют собой катушки, они имеют большую индуктивность, чем другие типы резисторов, хотя это свойство можно минимизировать, наматывая провод секциями с попеременно обратным направлением.

Резистор из фольги

Резисторы из фольги обладают высочайшей точностью и стабильностью с тех пор, как они были представлены в 1958 году Феликсом Зандманом. Одним из важных параметров, влияющих на стабильность, является температурный коэффициент сопротивления (TCR). Хотя TCR фольговых резисторов считается чрезвычайно низким, эта характеристика с годами совершенствовалась.

Сеточный резистор

Термин «сеточный резистор» может означать одно из двух:

В конструкции электронной схемы вакуумной лампы или клапана сеточный резистор или «ограничитель сетки» используется для ограничения тока сетки и предотвращения проникновения высоких частот. или колебания цепи. Такой резистор может быть изготовлен из любой резисторной технологии. Одним из приложений, в котором используются сеточные резисторы, является схема усилителя электрогитары. [3]

В тяжелых промышленных, сильноточных приложениях сеточный резистор представляет собой большую решетку из штампованных полос из металлического сплава, охлаждаемую конвекцией, соединенных рядами между двумя электродами.Такие резисторы промышленного класса могут быть размером с холодильник; некоторые конструкции могут выдерживать ток более 500 ампер с диапазоном сопротивлений ниже 0,04 Ом. Они используются в таких приложениях, как динамическое торможение для локомотивов и трамваев, заземление нейтрали для промышленного распределения переменного тока, управление нагрузками для кранов и тяжелого оборудования, нагрузочные испытания генераторов и фильтрация гармоник для электрических подстанций. [4]

Тензодатчики

Изобретены Эдвардом Э.Симмонс и Артур С. Руге в 1938 году, тензодатчик состоит из резистора, который изменяет значение в зависимости от приложенной деформации. Тензорезистор может применяться по отдельности, парами (полумост) или с четырьмя резисторами, соединенными по схеме моста Уитстона. Тензорезистор приклеивается клеем к объекту, который будет подвергаться действию силы деформации. С тензодатчиком и фильтром, усилителем и аналого-цифровым преобразователем можно напрямую измерить деформацию объекта.

Другие типы

  • Металлооксидный резистор
  • Кермет
  • Фенольный
  • Тантал
  • Водный резистор

Шум

В прецизионных схемах электронные помехи вызывают наибольшую озабоченность.В качестве рассеивающих элементов резисторы, естественно, создают на своих выводах колеблющееся «шумовое» напряжение. Этот шум Джонсона – Найквиста предсказывается теоремой флуктуации-диссипации и является основным источником шума, присутствующим во всех резисторах, который необходимо учитывать при создании малошумящей электроники. Например, в простом (не) инвертирующем усилителе коэффициент усиления устанавливается с помощью делителя напряжения. Из соображений шума следует использовать наименьшее практическое сопротивление, поскольку напряжение шума зависит от сопротивления, и любой шум резистора в делителе напряжения будет воздействовать на выход усилителя.

Хотя шум Джонсона – Найквиста является основным источником шума, резисторы часто демонстрируют другие, «нефундаментальные» источники шума. Шум, создаваемый этими источниками, называется «избыточным шумом». Толстопленочные резисторы и резисторы из углеродного состава печально известны избыточным шумом на низких частотах. Резисторы с проволочной обмоткой и тонкопленочные резисторы, хотя и намного дороже, часто используются из-за их лучших шумовых характеристик.

Виды отказов и подводные камни

Как и любая деталь, резисторы могут выйти из строя; обычный способ зависит от их конструкции.Резисторы из углеродного состава и резисторы с металлической пленкой обычно выходят из строя как разомкнутые цепи. Углеродистые резисторы обычно выходят из строя из-за короткого замыкания. [5] Углеродные пленочные и композиционные резисторы могут гореть, если рассеивается слишком большая мощность. Это также возможно, но менее вероятно, с резисторами с металлической пленкой и проволочной обмоткой. Резисторы с проволочной обмоткой, если они не прилагаются, могут подвергнуться коррозии. Резисторы из углеродного состава со временем подвержены дрейфу и легко повреждаются из-за чрезмерного нагрева при пайке (связующее испаряется).

Различные эффекты становятся важными в высокоточных приложениях. Небольшие перепады напряжения могут появиться на резисторах из-за термоэлектрического эффекта, если их концы не поддерживаются при одной и той же температуре. Напряжения возникают в местах соединения выводов резистора с печатной платой и с корпусом резистора. Обычные металлопленочные резисторы демонстрируют такой эффект при величине около 20 мкВ / ° C. Некоторые резисторы из углеродного состава могут достигать 400 мкВ / ° C, а резисторы специальной конструкции могут достигать нуля.05 мкВ / ° C. В приложениях, где термоэлектрические эффекты могут стать важными, необходимо позаботиться (например) о том, чтобы установить резисторы горизонтально, чтобы избежать температурных градиентов и учитывать воздушный поток над платой. [6]

См. Также

Примечания

  1. ↑ A.K. Maini, Electronics and Communications Simplified, , 9-е издание (Дели: Khanna Publications, 1997).
  2. ↑ Дана Клавански, Удельное сопротивление углерода, аморфный, Глен Элерт. Проверено 11 августа 2008 года.
  3. ↑ Aiken Усилители, сеточные резисторы — почему они используются? Проверено 11 августа 2008 г.
  4. ↑ Milwaukee Resistors, Grid Resistors: High Power / High Current. Проверено 11 августа 2008 г.
  5. ↑ Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США, Электронные компоненты — резисторы. Проверено 11 августа 2008 г.
  6. ↑ Уолт Юнг, Справочник по применению операционных усилителей (Берлингтон, Массачусетс, Ньюнс, 2006, ISBN 0750678445). Проверено 11 августа 2008 г.

Ссылки

  • Юнг, Уолт.2006. Справочник по применению операционных усилителей . Берлингтон, Массачусетс: Ньюнес. ISBN 0750678445.
  • Kaiser, Cletus J. 1998. The Resistor Handbook, 2nd edition. Лавленд, Колорадо: Saddleman Press. ISBN 0962852554.
  • Maini, A.K. 1997 г. Упрощенная электроника и связь, 9-е издание. Нью-Дели: Khanna Publishers.
  • Плонус, Мартин. 2001. Электроника и связь для ученых и инженеров. Сан-Диего: Harcourt / Academic Press.ISBN 0125330847.

Внешние ссылки

Все ссылки получены 28 июля 2019 г.

Кредиты

Энциклопедия Нового Света Писатели и редакторы переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia . Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников New World Encyclopedia, , так и на самоотверженных добровольцев Фонда Викимедиа.Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних вкладов википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в энциклопедию Нового Света :

могут применяться ограничения на использование отдельных изображений, на которые распространяется отдельная лицензия.

Цветовая кодировка резистора | Усиленные детали

Как считать резистор

Большинство резисторов имеют цветовую кодировку с несколькими полосами для обозначения значения сопротивления и допуска.Хотя на самом деле измерить сопротивление перед использованием — это хорошая идея, также неплохо знать, каким должно быть сопротивление. Фактическое сопротивление резисторов (особенно углеродных) может изменяться. Держите под рукой запас свежих резисторов. Используйте следующие стандартные таблицы цветовых кодов EIA для идентификации резисторов, или вы можете рассчитать значения на своих резисторах с помощью нашего удобного калькулятора сопротивления. Посетите наш калькулятор номиналов резисторов, чтобы рассчитать номиналы ваших 4-полосных или 5-полосных резисторов.

4-х полосный резистор

Цвет 1 st Band
(1 st Figure)
2 nd Band
(2 nd Figure)
3 rd Band
(Multiplier)
4 th Band
(допуск)
Черный 0 ~ 10 ^ {0} ~
Коричневый 1 1 ~ 10 ^ {1 } ~ ± 1%
Красный 2 2 ~ 10 ^ {2} ~ ± 2%
Оранжевый 3 3 ~ 10 ^ {3} ~
Желтый 4 4 ~ 10 ^ {4} ~
Зеленый 5 5 ~ 10 ^ {5 } ~ ± 0. {5} ~ ± 0.{-2} ~ ± 10%

Обратите внимание, что информация, представленная в этой статье, предназначена только для справки. Amplified Parts не делает никаких заявлений, обещаний или гарантий относительно точности, полноты или адекватности содержания этой статьи и прямо отказывается от ответственности за ошибки или упущения со стороны автора. В отношении содержания данной статьи не дается никаких гарантий, подразумеваемых, выраженных или установленных законом, включая, помимо прочего, гарантии ненарушения прав третьих лиц, права собственности, товарной пригодности или пригодности для определенной цели. или его ссылки на другие ресурсы.

Резистор | Инжиниринг | Fandom

Пакет резисторов

Резистор представляет собой двухконтактный электрический или электронный компонент, который сопротивляется протеканию тока, создавая падение напряжения между его выводами в соответствии с законом Ома.

Электрическое сопротивление равно падению напряжения на резисторе, деленному на ток, протекающий через резистор.

  • Резисторы применяются в составе электрических сетей и электронных схем.
  • Обычно резистор используется для создания известного отношения напряжения к току в электрической цепи. Если ток в цепи известен, то можно использовать резистор для создания известной разности потенциалов, пропорциональной этому току. И наоборот, если известна разность потенциалов между двумя точками в цепи, можно использовать резистор для создания известного тока, пропорционального этой разнице.
  • Токоограничивающий. Посредством включения резистора последовательно с другим компонентом, таким как светоизлучающий диод, ток через этот компонент уменьшается до известного безопасного значения.
  • Аттенюатор представляет собой сеть из двух или более резисторов (делитель напряжения), используемых для уменьшения напряжения сигнала.
  • Терминатор линии — это резистор на конце линии передачи или шины последовательного подключения (например, в SCSI), предназначенный для согласования импеданса и, следовательно, минимизации отражений сигнала.
  • Все резисторы рассеивают тепло. Это принцип, лежащий в основе электрических обогревателей.

В системе СИ единицей электрического сопротивления является ом.Компонент имеет сопротивление 1 Ом, если напряжение в 1 вольт на компоненте дает ток в 1 ампер или ампер, что эквивалентно потоку одного кулона электрического заряда (приблизительно 6,241506 × 10 18 электронов). в секунду. Также обычно используются значения, кратные килоомам (1000 Ом) и мегаомам (1 миллион Ом).

В идеальном резисторе сопротивление остается постоянным независимо от приложенного напряжения или тока, протекающего через устройство, или скорости изменения тока.Хотя настоящие резисторы не могут достичь этой цели, они спроектированы так, чтобы иметь небольшое изменение электрического сопротивления при воздействии этих изменений или изменения температуры и других факторов окружающей среды.

Резистор имеет максимальное рабочее напряжение и ток, при превышении которых сопротивление может измениться (в некоторых случаях резко) или резистор может быть физически поврежден (например, перегрев или возгорание). Хотя некоторые резисторы имеют указанные номинальные значения напряжения и тока, большинство из них рассчитаны на максимальную мощность, которая определяется физическими размерами.Обычные номинальные мощности для резисторов из углеродного состава и металлопленочных резисторов составляют 1/8, 1/4 и 1/2 Вт. Металлопленочные и углеродные пленочные резисторы более устойчивы, чем углеродные резисторы, к перепадам температуры и старению. Резисторы большего размера способны рассеивать больше тепла из-за большей площади поверхности. Резисторы с проволочной обмоткой и заделанные в песок (керамические) используются, когда требуется высокая номинальная мощность.

Кроме того, все настоящие резисторы также имеют некоторую индуктивность и небольшую емкость, которые изменяют динамическое поведение резистора от идеального.

Несколько типов резисторов

Постоянные резисторы [править | править источник]

Некоторые резисторы имеют цилиндрическую форму с фактическим резистивным материалом в центре (составные резисторы, в настоящее время устаревшие) или на поверхности цилиндрических (пленочных) резисторов, а проводящий металлический вывод выступает вдоль оси цилиндра на каждом конце (осевой Свинец). Бывают углеродные пленочные и металлопленочные резисторы. На фото вверху справа показан ряд обычных резисторов. Резисторы мощности поставляются в более крупных корпусах, предназначенных для эффективного отвода тепла.На высоких уровнях мощности резисторы, как правило, имеют проволочную обмотку. Резисторы, используемые в компьютерах и других устройствах, обычно намного меньше, часто в корпусах для поверхностного монтажа без проводов. Резисторы встраиваются в интегральные схемы как часть производственного процесса с использованием полупроводника в качестве резистора. Чаще всего для получения результатов в ИС используется конфигурация транзистор-транзистор или конфигурация резистор-транзистор. Резисторы, изготовленные из полупроводникового материала, труднее изготовить и занимают слишком много ценной площади кристалла.

Переменные резисторы [править | править источник]

Переменный резистор — это резистор, значение которого можно регулировать поворотом вала или перемещением регулятора. Они также называются потенциометрами или реостатами и позволяют вручную изменять сопротивление устройства. Реостаты подходят для всего, что превышает 1/2 ватта. Переменные резисторы могут быть недорогими однооборотными или многооборотными со спиральным элементом. Некоторые переменные резисторы могут быть оснащены механическим дисплеем для подсчета оборотов.

Файл: Урбинный резистор glog.jpg

. Этот реостат мощностью 2 кВт используется для динамического торможения ветряной турбины.

Переменные резисторы иногда могут быть ненадежными, потому что проволока или металл могут подвергнуться коррозии или износу. В некоторых современных переменных резисторах используются пластмассовые материалы, которые не подвержены коррозии и обладают лучшими характеристиками износа.

Вот некоторые примеры:

  • Реостат : переменный резистор с двумя выводами, фиксированным и скользящим. Используется при больших токах.
  • Потенциометр : стандартный тип переменного резистора. Одно из распространенных применений — в качестве регуляторов громкости на аудиоусилителях и других формах усилителей.

Другие типы резисторов [править | править источник]

  • Металлооксидный варистор ( MOV ) — это специальный тип резистора, который изменяет свое сопротивление при повышении напряжения: очень высокое сопротивление при низком напряжении (ниже напряжения срабатывания) и очень низкое сопротивление при высоком напряжении (выше напряжение срабатывания).Он действует как переключатель. Обычно он используется для защиты от короткого замыкания в удлинителях или «разрядниках» молний на уличных опорах или в качестве «демпфера» в индуктивных цепях.
  • Термистор — это резистор, зависящий от температуры. Есть два вида, классифицируемые по знаку их температурных коэффициентов:
    • A Резистор с положительным температурным коэффициентом ( PTC ) — это резистор с положительным температурным коэффициентом. Когда температура повышается, сопротивление PTC увеличивается.PTC часто встречаются в телевизорах последовательно с размагничивающей катушкой, где они используются для обеспечения кратковременного выброса тока через катушку при включении телевизора. Одной из специализированных версий PTC является полисыключатель, который действует как самовосстанавливающийся предохранитель.
    • A Отрицательный температурный коэффициент Резистор ( NTC ) также является резистором, зависящим от температуры, но с отрицательным температурным коэффициентом. Когда температура повышается, сопротивление NTC падает.NTC часто используются в простых датчиках температуры и измерительных приборах.
  • Датчик представляет собой полупроводниковый резистор с отрицательным температурным коэффициентом, полезный для компенсации температурных эффектов в электронных схемах.
  • Светочувствительные резисторы обсуждаются в статье фоторезистора .
  • Все провода, кроме сверхпроводников, обладают некоторым сопротивлением, зависящим от их площади поперечного сечения и проводимости материала, из которого они сделаны.

В большинстве осевых резисторов используется узор из цветных полос для обозначения сопротивления. SMT следуют числовому шаблону. Корпуса обычно коричневые, синие или зеленые, хотя иногда встречаются другие цвета, такие как темно-красный или темно-серый.

4-х полосные осевые резисторы

[редактировать | править источник]

Основная статья: Электронный цветовой код

4-полосная идентификация является наиболее часто используемой схемой цветового кодирования на всех резисторах. Он состоит из четырех цветных полос, нанесенных на корпус резистора.Схема проста: первые два числа — это первые две значащие цифры значения сопротивления, третье — множитель, а четвертое — допуск значения. Каждому цвету соответствует определенное число, показанное в таблице ниже. Допуск для 4-полосного резистора будет 2%, 5% или 10%.

Стандартная таблица цветовых кодов EIA согласно EIA-RS-279 выглядит следующим образом:

Цвет 1-й диапазон 2-й диапазон 3-я полоса (множитель) 4-я полоса (допуск) Темп.Коэффициент
Черный 0 0 × 10 0
Коричневый 1 1 × 10 1 ± 1% (F) 100 частей на миллион
Красный 2 2 × 10 2 ± 2% (г) 50 частей на миллион
Оранжевый 3 3 × 10 3 15 частей на миллион
Желтый 4 4 × 10 4 25 частей на миллион
Зеленый 5 5 × 10 5 ± 0.5% (D)
Синий 6 6 × 10 6 ± 0,25% (К)
фиолетовый 7 7 × 10 7 ± 0,1% (В)
Серый 8 8 × 10 8 ± 0,05% (А)
Белый 9 9 × 10 9
Золото × 0.1 ± 5% (Дж)
Серебро × 0,01 ± 10% (К)
Нет ± 20% (М)

Примечание : от красного до фиолетового — это цвета радуги, где красный означает низкую энергию, а фиолетовый — более высокую энергию.

Резисторы используют определенные значения, которые определяются их допуском.Эти значения повторяются для каждого показателя степени; 6.8, 68, 680 и т. Д. Это полезно, потому что цифры и, следовательно, первые две или три полосы всегда будут иметь одинаковые цвета, что облегчает их распознавание.

Предпочтительные значения [править | править источник]

Стандартные резисторы производятся номиналом от нескольких миллиомов до гигом; доступен только ограниченный диапазон значений, называемых предпочтительными значениями. На практике дискретный компонент, продаваемый как «резистор», не является идеальным сопротивлением, как определено выше.На резисторах часто указывается их допуск (максимальное ожидаемое отклонение от отмеченного сопротивления). На резисторах с цветовой кодировкой [1] цвет крайней правой полосы обозначает допуск:

серебро 10%
золото 5%
красный 2%
коричневый 1%.

Резисторы с более узким допуском, называемые прецизионными резисторами , также доступны.

5-ти полосные осевые резисторы

[редактировать | править источник]

5-полосная идентификация используется для резисторов с более высоким допуском (1%, 0.5%, 0,25%, 0,1%), чтобы обозначить лишнюю цифру. Первые три полосы представляют собой значащие цифры, четвертая — множитель, а пятая — допуск. Иногда встречаются 5-полосные резисторы со стандартным допуском, как правило, на более старых или специализированных резисторах. Их можно определить по стандартному цвету допуска в 4-й полосе. Пятая полоса в данном случае — это температурный коэффициент.

Резисторы

SMT [править | править источник]

На резисторах для поверхностного монтажа напечатаны числовые значения в коде, относящемся к тому, который используется на осевых резисторах.Резисторы SMT со стандартным допуском маркируются трехзначным кодом, в котором первые две цифры являются первыми двумя значащими цифрами значения, а третья цифра — степенью десяти. Например, «472» представляет собой «47» (первые две цифры), умноженное на десять в степени «2» (третья цифра), т.е. Прецизионные резисторы SMT маркируются четырехзначным кодом, в котором первые три цифры являются первыми тремя значащими цифрами значения, а четвертая цифра — степенью десяти.

Обозначение промышленного типа [править | править источник]

Формат: [две буквы] <пробел> [значение сопротивления (три цифры)] <пространство> [код допуска (числовой — одна цифра)]

Номинальная мощность при 70 ° C
Тип No. Мощность
, номинальная
(Вт)
MIL-R-11
Стиль
MIL-R-39008
Стиль
BB 1/8 RC05 RCR05
CB 1/4 RC07 RCR07
EB 1/2 RC20 RCR20
ГБ 1 RC32 RCR32
HB 2 RC42 RCR42
GM 3
HM 4
Код допуска
Обозначение промышленного типа Допуск MIL Обозначение
5 ± 5% Дж
2 ± 20%
1 ± 10% К
± 2% G
± 1% F
± 0.5% D
± 0,25% С
± 0,1% B

В диапазоне рабочих температур различаются компоненты коммерческого, промышленного и военного назначения.

  • Товарный: от 0 ° C до 70 ° C
  • Промышленный класс: от -25 ° C до 85 ° C
  • Военный класс: от -25 ° C до 125 ° C

Закон Ома [править | править источник]

Связь между напряжением, током и сопротивлением через объект задается простым уравнением, которое называется законом Ома:

где В — напряжение на объекте в вольтах (в Европе U ), I — ток через объект в амперах, а R — сопротивление в омах.(На самом деле это всего лишь упрощение исходного закона Ома — см. Статью об этом законе для получения дополнительных сведений.) Если V и I имеют линейную зависимость, то есть R является постоянным, в диапазоне значений, материал объекта считается омическим и в этом диапазоне. Идеальный резистор имеет фиксированное сопротивление на всех частотах и ​​амплитудах напряжения или тока.

Сверхпроводящие материалы при очень низких температурах имеют нулевое сопротивление.Изоляторы (такие как воздух, алмаз или другие непроводящие материалы) могут иметь чрезвычайно высокое (но не бесконечное) сопротивление, но выходят из строя и пропускают больший ток при достаточно высоком напряжении.

Рассеиваемая мощность [править | править источник]

Мощность, рассеиваемая резистором, равна напряжению на резисторе, умноженному на ток через резистор:

Все три уравнения эквивалентны, последние два выведены из первого по закону Ома.

Общее количество выделенной тепловой энергии является интегралом мощности с течением времени:

Если средняя рассеиваемая мощность превышает номинальную мощность резистора, то резистор сначала отклонится от своего номинального сопротивления, а затем будет разрушен из-за перегрева.

Последовательные и параллельные цепи [править | править источник]

Основная статья: Последовательные и параллельные цепи

Резисторы в параллельной конфигурации имеют одинаковую разность потенциалов (напряжение).Чтобы найти их полное эквивалентное сопротивление ( R экв. ):

Свойство параллельности можно представить в уравнениях двумя вертикальными линиями «||» (как в геометрии), чтобы упростить уравнения. Для двух резисторов

Ток через последовательно включенные резисторы остается неизменным, но напряжение на каждом резисторе может быть разным. Сумма разностей потенциалов (напряжения) равна общему напряжению.Чтобы найти их полное сопротивление:

Сеть резисторов, которая представляет собой комбинацию параллельного и последовательного подключения, иногда может быть разбита на более мелкие части, которые являются одним или другим. Например,

Однако многие резистивные сети не могут быть разделены таким образом. Рассмотрим куб, каждое ребро которого заменено резистором. Например, для определения сопротивления между двумя противоположными вершинами в общем случае требуются матричные методы.Однако, если все двенадцать резисторов равны, сопротивление между углами составляет 5/6 любого из них.

Резисторы

обычно изготавливаются путем наматывания металлической проволоки на керамический, пластиковый или стекловолоконный сердечник. Концы провода припаяны к двум заглушкам, прикрепленным к концам жилы. Сборка защищена слоем краски, формованного пластика или эмалевого покрытия, запеченного при высокой температуре. Проволочные выводы обычно имеют диаметр от 0,6 до 0,8 мм и покрыты оловом для облегчения пайки.

Резисторы из фольги

обладают высочайшей точностью и стабильностью с тех пор, как они были представлены в 1958 году Берахардом Ф. Телкампом. Одним из важных параметров, влияющих на стабильность, является температурный коэффициент сопротивления (TCR).

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *