Site Loader

Маркировка дросселя

Однослойную намотку высокочастотных дросселей используют при высоких частотах более 1 мГц см. При этом в области КВ и УКВ применяют катушки с неравномерным прогрессивно увеличивающимся шагом рис. Конец обмотки дросселя, имеющий больший шаг подключается к высокочастотной части схемы, поскольку собственная емкость между витками дросселя с этой стороны наименьшая. В области средних и длинных волн дроссели высокой частоты конструктивно выполняют в виде многослойных катушек с универсальной намоткой рис. Для уменьшения собственной емкости обмотку часто разделяют на секции с неравномерным числом витков рис.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Дроссель ДМ1.2-10
  • Цветовая кодировка дросселей/катушек
  • Буквенно-цифровая и цветовая маркировка индуктивностей
  • Трансформаторы и дроссели
  • Маркировка индуктивностей, шпаргалка
  • Цветовая маркировка индуктивностей
  • Цветовая маркировка дросселей
  • Обозначение дросселя на электрической схеме. Обозначение дроссель на схеме

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как работает дроссель

Дроссель ДМ1.

2-10

Катушка индуктивности inductor. При прохождении тока, вокруг скрученного проводника катушки , образуется магнитное поле она может концентрировать переменное магнитное поле , что и используется в радио- и электро- технике.

В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки. Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока.

Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками а также из альсифера, карбонильного железа, магнетита с большой магнитной проницаемостью. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость.

Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным. В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели — индуктивные сопротивления.

Перед обычными резисторами здесь у дросселей имеется серьезные преимущества — значительная экономия электроэнергии и отсутствие сильного нагрева. Устроен дроссель очень просто — это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе феррум — латинское название железа , в том или ином количестве.

Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам — индуктивности.

Это явление легче всего понять, поставив несложный опыт. Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока батарейки , маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя можно взять дроссель от лампы ДРЛ ватт.

Без дросселя, схема будет работать как обычно — цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке лампочке , картина несколько изменится.

Присмотревшись, можно заметить, что во первых, лампа загорается не сразу, а с некоторой задержкой, во вторых — при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит потому что, в момент включения ток в цепи возрастает не сразу — этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля.

Эту способность и называют — индуктивностью. Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности — 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э. Отсюда заметное искрение в месте разрыва. Это явление называется — Э. Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель — не горит вовсе.

Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения. Получается, что действующее напряжение на нагрузке падает во много раз и ток соответственно , но энергия при этом не теряется — возвращается за счет самоиндукции обратно в цепь.

Сопротивление оказываемое индуктивностью переменному току называется — реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого — магнитной проницаемостью, а так же его формы.

Магнитная проницаемость — число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него в идеале — в вакууме. В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.

В электромагнитах реле — сердечники подковоообразной и цилиндрической формы из специальных сталей. Для намотки дросселей и трансформаторов используют замкнутые сердечники — магнитопроводы Ш — образной и тороидальной формы. Материалом на частотах до гц служит специальная сталь, выше гц — различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком. У катушки, намотанной на сердечник, кроме реактивного Xl имеется и активное сопротивление R. Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно — нет. Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки назовем ее катушка номер 1 электромагнитное поле, направление которого будет также переодически меняться — перемагничивая сердечник.

Если на этот же сердечник поместить дополнительную катушку назовем ее — номер 2 , то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.

Если количество витков обеих катушек совпадает, то значение наведенной Э. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э. Получается, что на каждый виток, приходится какая-то определенная часть напряжения. Обмотку катушки на которую подается напряжение питания номер 1 называют первичной. Отношение числа витков вторичной Np и первичной Ns обмоток равно отношению соответствующих им напряжений — Up напряжение первичной обмотки и Us напряжение вторичной обмотки.

Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения — трансформации. Соответственно, оно так и называется — трансформатор.

Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток Is. Это вызовет пропорциональное увеличение тока Ip и в первичной обмотке. Будет верным соотношение:. Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов.

При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:. Максимальную мощность трансформатора — мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток. Если соединить катушку индуктивности и конденсатор — получится очень интересный элемент радиотехники — колебательный контур. Если зарядить конденсатор или навести в катушке Э.

Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э. Это будет повторяться снова и снова — в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора С , и индуктивности катушки L.

Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции выделения в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же — в различных схемах задающих генераторов.

Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, то есть допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования. Первые две цифры указывают значение в микрогенри мкГн , последняя — количество нулей.

Следующая за цифрами буква указывает на допуск. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N. Индуктивности маркируются непосредственно в микрогенри мкГн. Как измерить индуктивность катушки мультиметром? Взять мультиметр с функцией измерения индуктивности. Лодку мне. Указанные дросселя используются в понижающих DC-DC преобразователях принцип работы легко гуглится , которые преобразуют напряжение 12 вольт БП в 1.

Помимо фильтрующих свойств, основное применение связано с ее возможностью накапливать магнитную энергию, это свойство используется в различных преобразователях тока и напряжения. Катушка сохраняет направление протекающего в ней тока, при разрыве, ток направлен в ту же сторону, а ЭДС да, имеет противоположный знак. Чем больше индуктивность, тем медленнее будет в катушке возрастать ток, при подключении источника напряжения. Если вы подключаете источник напряжения переменной частоты, то при маленькой частоте, сравнимой со скоростью возрастания тока в катушке, ток не будет сильно отличаться, от случая если бы дросселя вообще бы не было.

Это называется индуктивное сопротивление:. Соответственно в схеме с индуктивностью, чем больше будет частота, либо индуктивность, тем больше будет это сопротивление, и тем меньше будет напряжение на нагрузке. Как замерить что-то, инструментом, который предназначен для измерения этого.

А у вас нет видео, как замерить маленькое расстояние линейкой? Или например, ширину трубы штангенциркулем? Мне очень надо, нигде видосов таких найти не могу.

Диаметр, блядь. Просто я не сантехник и привык общаться привычными мне терминами. Собственно, умный бы человек сразу догадался, о чем я говорю. А есть ли принципиальная разница использования магнитных сердечников разной формы. Ну то есть, предположим, мне необходимо мкГн. Я эти мкГн могу намотать на обычном стержне и на «бублике» надеюсь понятно.

Естественно есть различия по намотке, то есть, на стержне необходимо будет больше витков, чем на «бублике». Будет ли это главное отличие — в числе витков и плотности намотки? Или есть какие то другие характеристики? Вот, например, почему компьютерные дроссели, что намотаны на стержень, не намотаны на такой «бублик»?

Всегда интересовал вопрос, но в статье ответа на него не увидел: в чем принципиальное отличие дросселя от катушки индуктивности? Есть ли четкий критерий? Я правильно понимаю, или есть ещё нюансы?


Цветовая кодировка дросселей/катушек

Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, то есть допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования. Первые две цифры указывают значение в микрогенри мкГн, uН , последняя — количество нулей. Следующая за цифрами буква указывает на допуск.

Цветовая кодировка дросселей/катушек. Чтобы использовать этот калькулятор, необходимо выбрать цвет полос индуктивности и цвет толерантности.

Буквенно-цифровая и цветовая маркировка индуктивностей

Катушки индуктивности дроссели широко используются в радиоэлектронной и вычислительной аппаратуре. Их параметры определяются электромагнитными свойствами магнитопроводов, режимом их намагничивания, взаимным расположением витков катушки. Трансформатор — электромагнитное устройство, предназначенное для преобразования переменного напряжения и тока без изменения частоты. По электрической схеме трансформаторы подразделяются на однообмоточные, двухобмоточные и многообмоточные. Однообмоточный трансформатор — автотрансформатор, в котором между первичной входной и вторичной выходной обмотками кроме электромагнитной связи существует еще и электрическая связь. Такой трансформатор не имеет гальванической развязки. Двухобмоточный трансформатор имеет одну первичную и одну вторичную обмотки, а многообмоточный — несколько вторичных обмоток. Все обмотки двухобмоточных и многообмоточных трансформаторов электрически не связаны друг с другом. Конструктивные признаки.

Трансформаторы и дроссели

В электрических схемах среди других деталей используются катушки, намотанные изолированным проводом. В этой статье рассказывается, что такое дроссель, или катушка индуктивности, а также, как работает дроссель. Так называют также заслонку карбюратора автомобиля, но к электрическому дросселю она не имеет отношения. Катушка индуктивности обладает сопротивлением переменному току, причем, чем выше частота тока, тем выше сопротивление.

Толстый Техника и технологии.

Маркировка индуктивностей, шпаргалка

Катушка индуктивности inductor. При прохождении тока, вокруг скрученного проводника катушки , образуется магнитное поле она может концентрировать переменное магнитное поле , что и используется в радио- и электро- технике. В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки. Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало.

Цветовая маркировка индуктивностей

Катушка индуктивности, как следует из названия представляет из себя именно катушку, то есть имеется некоторое количество витков проводника обычно медного намотанных на каркасе. Причем наличие изоляции между витками и каркасом является важнейшим условием. Кроме того витки катушки индуктивности не должны замыкаться между собой. Чаще всего витки наматываются на тороидальный или цилиндрический каркас. Обычно они копируются номинальным значение индуктивности и допуском, то есть некоторым небольшим отклонение от указанного номинала в процентах. Номинальное значение обозначается цифрами, а допуск буквами. На типовые примеры маркировки индуктивностей буквенно-цифровым кодом вы можете посмотреть на изображении ниже. Первые две цифры обозначают значение в микрогенри мкГн , последняя — число нулей.

Маркировка на новом дросселе один в один совпадает с родным, который сейчас стоит на авто. Вопрос как такое может быть? Получается отличие.

Цветовая маркировка дросселей

Нужны еще сервисы? Архив Каталог тем Добавить статью. Как покупать?

Обозначение дросселя на электрической схеме. Обозначение дроссель на схеме

ВИДЕО ПО ТЕМЕ: Как определить емкость конденсатора по маркировке .

Информация содержит все, необходимые для подбора компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию радиоэлементов. В соответствии с Публикацией IEC 62 для индуктивностей кодируется номинальное значение индуктивности и допуск, то есть допускаемое отклонение от указанного номинала. Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри мкГн , третья метка — множитель, четвертая — допуск.

Печатные платы современного вида выглядят не так, как их предшественницы. Практически исчезли знакомые детали с ножками, вставленными в отверстия.

Как следствие, при протекании через катушку переменного электрического тока наблюдается её значительная инерционность. Применяются для подавления помех , сглаживания биений, накопления энергии, ограничения переменного тока , в резонансных колебательный контур и частотно-избирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей , датчиков перемещений и так далее. Индуктивная катушка — элемент электрической цепи, предназначенный для использования его индуктивности [1] ГОСТ , см. Катушка индуктивности — индуктивная катушка, являющаяся элементом колебательного контура и предназначенная для использования её добротности [2] ГОСТ , см. Электрический реактор — индуктивная катушка, предназначенная для использования её в силовой электрической цепи [3] ГОСТ , см. Одним из видов реактора является токоограничивающий реактор , например, для ограничения тока короткого замыкания ЛЭП. При использовании для подавления помех , сглаживания пульсаций электрического тока , изоляции развязки по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем , а иногда реактором.

Нужны еще сервисы? Архив Каталог тем Добавить статью. Как покупать? Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, то есть допускаемое отклонение от указанного номинала.


Дроссели: назначение, конструкция | Статьи ООО ГидроМаш Челябинск


30 сентября 2020

Дроссель отвечает за регулировку расхода рабочей жидкости (РЖ) локадьно или в гидросистеме и взаимосвязанный с этим контроль скорости движения выходного звена гидравлического двигателя.

Дроссели исполняются по 2-ум схемам.

Линейный дроссель

представлен корпусом 1 с винтом 2.

В линейку входят гидроаппараты, в которых потери давления соразмерны расходу жидкости.

Потери давления зависят от потерь давления по длине, т.е . изменить их и расход через дроссель можно, изменив длину канала для прохождения жидкости.

Линейный дроссель представлен гидроаппаратом с дроссельным каналом (см. фото выше). В нем РЖ проходит по прямоугольной винтовой канавке длиной, изменяемой винтом.

Площадь живого сечения и длина канала определяется созданием нужного перепада давлений с исключением засора канала примесями механического характера из рабочей жидкости. Т.о. удлинение канала ведет к увеличению площади живого сечения с исключением засора гидродросселя в рабочем процесс.

Нелинейные (квадратичные) дроссели

отличаются турбулентным движением РЖ, перепад давлений почти пропорционален квадрату расхода РЖ (отсюда и второе название).

Потери давления зависят от деформаций потока жидкости и вихреобразований, вызываемых местными сопротивлениями. Изменить перепад давления и, соответственно, расход жидкости можно увеличив/ уменьшив площадь проходного сечения или число местных сопротивлений.

Принципиальные схемы нелинейных дросселей:

а — игольчатый; б — комбинированный; в — пробковый щелевой; г — пробковый эксцентричный; д — пластинчатый пакетный; е — пластинчатый;

ж — условное обозначение регулируемого дросселя; 1 — корпус; 2 — игла; 3 — диафрагма; 4 — пробка; 5 — пластина; 6 — втулка

В регулируемых (вар. а, б, в, г) и нерегулируемых (вар. д, е) нелинейных гидродросселях длина канала для прохождения РЖ уменьшена до MIN, в итоге потери давления и расход меняются при уменьшении/увеличении площади рабочего проходного сечения, почти не завися от вязкости РЖ.

MAX-ое проходное сечение используют для пропуска определенного расхода РЖ сквозь полностью открытый дроссель, MIN-ое — для исключения засора рабочего окна.

К нелинейным относятся и комбинированные дроссели.

У них потери давления по длине и местные потери соразмерны между собой по величине и одинаково влияют на расход РЖ через дроссель (вар. б).

На работу комбинированных дросселей оказывает влияние вязкость РЖ. Т.е. они применимы в гидросистемах в незначительном температурном диапазоне РЖ.

Для дросселей характерна равномерная и устойчивая работа при малых расходах, что возможно при уменьшении сечения до определенных границ, т.к. ниже расход перестает быть стабильным из-за заращивания проходного отверстия, именуемого облитерацией.

Достичь малого расхода позволяет спец. исполнение, где рабочему органу передаются непрерывное вращательное или осциллирующее движение и не наблюдается заращение щели.

Возврат к списку

Drift Trike — Обозначение тормозов и дроссельной заслонки

Грязевик
Новый член