Site Loader

Содержание

Как определить фазу и ноль — Построй свой дом

 

Любые электромонтажные работы в частном доме связаны с определением назначения жил проводки. Если сказать проще, возникает необходимость определить фазу и «ноль», а также заземляющий провод. Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. О том, как определить фазу и ноль в вашей электрической сети мы и поговорим в этой статье.

 

Устройство бытовых электрических сетей

 

В предыдущей статье мы уже говорили, что при технологическом присоединении вашего дома, вам подводится трехфазное напряжение 380 В. Разводка по дому имеет напряжение 220 В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. О том, как устроен заземляющий контур мы говорили в предыдущей статье. В домах старой застройки заземляющего проводника может и не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.

 

Правила подключения электрических приборов

 

Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого провода производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. В выключатель подключают фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения. Это обеспечит безопасность при смене ламп. Сложные бытовые приборы необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.

 

Приборы и инструменты для электромонтажных работ

 

Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:

  • Мультиметр стрелочный или цифровой;
  • Индикаторную отвертку или тестер;
  • Маркер;
  • Пассатижи;
  • Нож для зачистки изоляции.

 

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели и УЗО. Обычно их устанавливают в распределительном щитке. Все операции по подключению электроаппаратуры и зачистке проводов необходимо проводить при отключенных автоматах.

 

Правила работы с индикаторной отверткой

 

Чтобы проверить фазу с помощью индикаторной отвертки необходимо зажать отвертку между большим и средним пальцем руки, не касаясь не изолированной части. Указательным пальцем дотронуться до металлического пятачка на торце ручки. Металлическим концом отвертки прикасаются к оголенным концам проводов. Если провод фазный, загорится светодиод.

 

Визуальный метод определения фазы

 

Если проводка выполнена по всем правилам, то определить фазу, ноль и заземляющий проводник в распределительной коробке можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках. Для этого необходимо сделать следующие действия:
  • Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы может быть подключен только фазный провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
  • Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите соединения проводов. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
  • К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.

 

Определение фазы, нуля и заземляющего провода

 

Если сеть трех проводная и выполнена проводом одного цвета, либо вы не уверены в правильности подключения проводов, необходимо определять назначение проводников перед установкой каждого элемента сети.

 

 

  • Определите фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  • Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  • Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  • Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй поочередно к двум другим. Лампа загорится при касании нулевого проводника.

 

Если все указанные рекомендации, как определить фазу и ноль, не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут прозвонку всех цепей. Не забывайте, что речь идет о вашей безопасности.

 

В следующей статье я расскажу о видах ламп и цоколей.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Фаза, ноль, заземление. Как их определить и что это такое

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток, а в быту мы используем, как правило, однофазный.

Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически (На практике так делать нельзя!) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4).

Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур. Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

Где фаза, где ноль — вопрос, возникающий при подключении любого электротехнического устройства.

Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).

Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт.

Одним щупом мультиметра (каким — безразлично) касаемся участка измеряемой цепи, другим — естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).

Обращаю Ваше внимание — если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

  1. Сейчас в точке 1 фазы нет.
  2. При замыкании выключателя S она появляется.

Поэтому следует проверить все возможные варианты.

Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно.

Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Как определить фазу и ноль

При любых работах с электропроводкой, будь то установка выключателя или что-то еще, всегда возникает необходимость в определении нулевых и фазовых проводов.

Честно говоря, это достаточно легкая процедура, но лишь при условии, что вы обладаете необходимыми навыками в работе с электричеством. В статье речь пойдет о том, как решить подобные вопросы.

Вводная часть о принципах работы электроприборов

Все мы знаем, что практически для всех домашних электроприборов необходима относительно небольшое напряжение — всего 220 вольт. И для того, чтобы подвести электрику к штепселю, нужно два провода (в некоторых случаях — три). Итак, вот они:

  1. Фазный.
  2. Нулевой.
  3. Заземление (если произойдет нарушение изоляции, то оно предотвратит удар током). И для чего же, спросите вы, простому обывателю знать о том, где фаза, а где ноль?

Прежде всего, это пригодится при собственноручной замене выключателя, если его следует установить конкретно на фазный провод. Кто не знает, это позволит отремонтировать осветительный прибор, не отключая электричества во всем доме.

Но не только их, а еще и бытовые приборы, работающие с проточной водой или имеющие железные корпуса. И чтобы подключить их, нужно задействовать не только ноль и фазу, но еще и заземление.

Существует три способа того,  как определить фазу и ноль. Рассмотрим детально все их преимущества и недостатки.

Определяем фазу и ноль фазоиндикатором

В данном случае вам понадобится специальный пробник, или как его еще называют, индикатор. В целом это обычная плоская отвертка, имеющая пластиковую ручку, где и помещен визуальный датчик — неоновая или же полупроводниковая лампа.

Процедура определения фазы таким образом проста. Необходимо лишь прикоснуться концом инструмента к нужному проводу или же засунуть его в розетку. Если напряжение там будет присутствовать, то отвертка загорится слабым светом.

Стоит отметить, что это возможно при правильном применении отвертки: палец ладони, в которой находится инструмент, следует прижать к металлической части отвертки. Это замкнет цикл между землей и проводкой, но бояться при этом не стоит, поскольку металлическая часть прибора существенно снижает напряжение.

Преимущества: простота и доступность способа, отвертку можно купить в любом магазине.

Недостатки: риск поражения электрическим током, пусть преимущественно и на психологическом уровне.

Видео по определению фазы и ноля индикаторной отверткой

Определяем фазу и ноль тестером

Здесь используется более современное устройство — фазовый тестер. Он позволит владельцу качественно измерять силу переменного или же постоянного напряжения. Для настройки прибора используется специальный вращающийся переключатель.

Также есть два щупа, первый из который необходимо засунуть в розетку, а второй крепко зажать в ладони. Если мы попадем на нулевую проводку, то на дисплее отобразится незначительное напряжение или же несколько нулей. А если на фазовый — то напряжение будет существенно выше.

Преимущества: современное устройство, широкодоступное на отечественном рынке; более высокая точность измерений.

Недостатки: существенных нет.

Видео по определению фазы мультиметром

Определяем фазу и ноль по маркировке

Это, пожалуй, наиболее ненадежный способ. Суть его в следующем: на сегодняшний день все проводка современных домов обладает специальной цветовой маркировкой, смотря какое назначение определенного провода.

К примеру, к фазе подключается зачастую коричневый или черный провод, а тот, что к нулю, должен иметь голубые тона. Касательно заземляющего провода, то он выполняется в двух цветах — зеленом и желтом.

Жаль, конечно, но в нашей стране нередко халатность электриков приводит к тому, что правила игнорируются и влекут за собой самые непредсказуемые последствия. Поэтому ни в коем случае не полагайтесь на добросовестность и профессионализм рабочих, устанавливающих в вашем доме электропроводку.

Рекомендуется лучше применить один из описанных способов. Более того, еще три года назад провода маркировались совсем по-другому. К примеру, провод для заземления был тогда черного цвета.

Когда фазный провод определен, мы его отгибаем и начинаем определять нулевой. К щитку внутри квартиры они прикреплены таким образом, что исключается система заземления как таковая. И если у вас есть доступ к щитку, то следует осведомиться о цвете провода, который проходит мимо автоматов, и выявить его.

А если по причине того, что вы желаете подстраховаться, или непосредственный доступ к щитку невозможен, то в любой момент можно использовать старое доброе средство — патрон с лампочкой, к которой подключены провода. Если один из них присоединить или же просто прикоснуться им к фазному проводу, а второй провод замыкать на двух оставшихся поочередно, то вы можете также определить нужные вам категории. Если будет контакт с нулем, то лампочка загорится, а если с проводом заземления — то ничего не произойдет.

И, как бы противопоставляя этот метод более продвинутому, можно применить уже описанный нами прибор — фазометр.

В таком случае следует по очереди измерять различие напряжения (другими словами, потенциалов) между всеми проводами и уже определенными фазами. При этом категория фаза-ноль обязана существенно превышать все другие категории (земля-фаза).

Преимущества: относительная простота.

Недостатки: небезопасность.

Итак, мы вместе разобрались, как определить фазу и ноль.

[Всего:    Средний:  /5]

Как определить фазу | Практическая электроника

Как определить фазу? Чаще всего таким вопросом задаются тогда, когда надо определить фазу в домашней розетке либо в проводке. Сетевое напряжение, которое заходит в ваш дом, поступает по двум проводам, одним из которых является фаза, а другой – ноль. В этой статье вы найдете два способа, чтобы определить фазу в вашей домашней проводке либо в розетке.

С помощью индикаторной отвертки


На рынке либо в радиомагазине часто можно увидеть фазоиндикаторные отвертки. Чаще всего их называют пробниками. На вид пробник – это плоская отвертка, которая состоит из железного щупа, высокоомного резистора и неоновой лампочки. Все они подключаются последовательно.

Давайте же на практике попробуем определить фазу с помощью нашей фазоиндикаторной отвертки. Для того, чтобы это сделать, нам надо коснутся пальцем вершины отвертки, тем самым мы замкнем цепь фаза-пробник-мы-земля, если тыкнем на фазу. Через потечет ток, но он будет настолько слабым, что вы даже ничего не почувствуете. Тем временем на отвертке загорится неоновая лампочка. Значит, мы попали на фазу.

Втыкаем пробник и попадаем на “ноль”. Неоновая лампочка не горит. Значит, другой контакт розетки точно фаза.

Проверяем и убеждаемся. Неоновая лампочка горит, значит это у нас фаза.

 

С помощью мультиметра

А что, если у нас нет индикаторной отвертки? Как быть в этом случае?  Для этих целей можно использовать обыкновенный мультиметр. Ставим крутилку на измерение переменного напряжения и берем любой щуп мультиметра в руки.

Второй щуп втыкаем в розетку и смотрим, что у нас мультиметр покажет на дисплее. Если мы касаемся нуля, то на дисплее мультиметра  высветятся нули или несколько вольт. Если касаемся фазы, то на дисплее мультиметра появится приличное напряжение – это и есть фаза. Внизу на фото мы определили фазу.

Если также показывает нули, то одной рукой возьмитесь за батарею, а другой – за щуп мультиметра. Возможно, что ваш пол очень хорошо изолирован от земли. Когда будете измерять таким способом,  главное не перепутайте режим измерения напряжения и силы тока. Если вы случайно поставите крутилку мультиметра в режим измерения силы тока и коснетесь батареи, то это может привести даже к летальному исходу! Будьте очень внимательны, если будете использовать этот способ.

Все те же самые операции касаются и трехфазной сети, где у нас три фазных провода и один ноль.

Как определить фазу и ноль индикатором-пробником. Цвета фазного провода

Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют Ноль. Оставшиеся три свободных конца обмоток называются Фазами.

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Таблица цветовой маркировки проводов до и после 2011 года

В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.

Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.

Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Светодиодный индикатор-пробник

Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.

Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.

Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!

Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.

Как самому сделать индикатор-пробник


для поиска фазы и ноля на неоновой лампочке

При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.

Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.

Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.

Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.

При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.

Почему индикатор светится


при прикосновении к нулевому проводу

Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.

Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты, установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.

При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя, телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.

Как найти фазу и ноль с помощью контрольки электрика

Контролька электрика на лампочке накаливания

Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.

Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.

Контролька электрика на светодиоде

Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.

Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.

Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.

Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.

Поиск фазы при наличии нулевого и заземляющего проводников

Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.

Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.

Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.

Поиск фазы и нуля контролькой

Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.

Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.

Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.

В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.

Поиск фазы и ноля вольтметром или мультиметром

Нахождение фазы вольтметром или мультиметром проводится так же способом, как и контролькой электрика, только вместо концов контрольки подключается щупы прибора.

Для определения нуля в трехфазной сети с помощью тестера или мультиметра достаточно измерять напряжение между проводами, которое между фазами будет равно 380 В, а между нулем и любой из фаз – 220 В. То есть провод, относительно которого вольтметр будет на остальных трех показывать 220 В и есть нулевой.

Поиск фазы и ноля с помощью картошки

Если у Вас под рукой не оказалось технических средств для поиска фазы, то можно с успехом воспользоваться экзотическим или народным, иначе не назовешь, способом определения фазы, посредством картошки. Не подумайте, что это шутка. Для кого-то это может быть единственно доступный метод, который можно с успехом применить на практике.

Конец одного проводника нужно подсоединить к водопроводной трубе (если она не пластиковая) или батарее отопления. Если труба окрашена, то нужно место присоединения зачистить до металла, чтобы обеспечить электрический контакт. Противоположный его конец воткнуть в срез картошки. Другой проводник тоже втыкается одним концом на максимальном расстоянии от предыдущего в картошку, вторым концом через резистор номиналом не менее 1 Мом по очереди прикасаются к проводам электропроводки. Некоторое время нужно подождать. Если на срезе картошки реакции нет, это ноль, если есть – фаза. Я не рекомендую пользоваться этим методом, если не знаете правил безопасности работы с электрическими установками.

Как видите, на фото вокруг проводов при подсоединении к фазному проводу электропроводки на поверхности среза картошки произошли изменения. При прикосновении к нулевому проводу реакции не последует.


Андрей 19.09.2012

Здравствуйте, я в хрущевке полностью поменял проводку, протянул трехжильный кабель ВВГ 3×2,5. Можно ли на этажном распределительном щитке закрепить к корпусу желтый провод заземления? Электрик с ЖЭУ сказал сделать именно так.

Александр

В квартирах хрушевок и сталинок обычно так и делают, электрик сказал правильно.

Как найти фазу, землю и ноль в квартирной электропроводке – PROFI.RU — За профи говорят дела

Алексей Помазов
профессиональный электромонтёр, инженер промышленного оборудования, опыт работы — 18 лет

В комментариях к статье «Что нужно знать о ремонте электропроводки» был задан вопрос о том, как в электропроводке найти ноль и землю, если провода не соответствуют традиционным цветам. На вопрос отвечает специалист по электромонтажу, эксперт PROFI.RU.

Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.

  • Земля будет жёлтой, зелёной либо жёлто-зелёной.
  • Ноль будет синим или голубым.
  • Фазе досталась самая богатая палитра, она бывает серой и красной, розовой и бирюзовой, оранжевой и фиолетовой, но чаще всего — коричневой, чёрной или белой.

Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?

Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!

Ищем фазу

Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.

Отсоединив провода от розетки, обязательно разведите их в разные стороны.

После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза — тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.

В поиске земли

Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.

Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.

Как определить фазу и ноль без приборов как найти мультиметром

В состав любого кабеля в обязательном порядке входит одна нулевая жила и одна либо несколько фазных.

От правильного определения функционального назначения жил кабеля зависит простота монтажа и эксплуатации системы электроснабжения, а также безопасность лиц, обслуживающих ее и производящих какие-либо электромонтажные работы.

Основные понятия

Давайте сперва разберемся, что такое ноль и фаза в электричестве.

Итак, фаза в электричестве – это проводник, по которому электрический ток движется в направлении энергопринимающего устройства. Ноль, в свою очередь, является проводником, по которому электрический ток движется в обратном направлении.

Современные требования, предъявляемые к безопасности организации электрических сетей, предполагают также наличие еще одного проводника в составе токоведущего кабеля, который будет выполнять защитную функцию. Заземляющий проводник – это элемент, преднамеренно соединенный с заземляющим контуром и предназначенный для того, чтобы уберечь человека от поражения электрическим током.

Неправильное определение, а также соединение нулевых и фазных жил токоведущего кабеля может привести к непредвиденным ситуациям – короткому замыканию, выходу из строя дорогостоящего оборудования и поражению человека электрическим током. По этой причине чрезвычайно важно уметь отличать фазный и нулевой проводники.

Как отличить фазу от нуля

Существует целый ряд способов – как профессиональных, так и не очень – для определения функционального назначения проводников, входящих в состав кабеля.

С применением мультиметра

Как мультиметром определить фазу и ноль

Просто и надежно определить, где ноль, а где фаза в электропроводке, можно при помощи мультиметра (тестера). Прежде всего, необходимо включить мультиметр в режим измерения переменного напряжения и выбираем подходящий предел измерения (выше напряжения в электрической сети). Далее вы можете избрать один из описанных ниже способов идентификации фазного проводника.

  1. Один из щупов мультиметра зажимается пальцами, другим необходимо коснуться той или иной жилы токоведущего кабеля. В случае соприкосновения щупа с фазой на дисплее мультиметра отобразится показание, приближенное к 220 В.
  2. Если вы ни в коем случае не желаете прикасаться к щупам мультиметра руками, то один из них, как и в предыдущем случае, скоммутируйте с идентифицируемым контактом, а другим дотроньтесь до оштукатуренной стены либо заведомо заземленной металлической поверхности.
  3. Как упоминалось выше, в современных системах электроснабжения предусмотрен также заземляющий проводник. Чтобы разобраться в назначении жил трехжильного либо многожильного кабеля следует попеременно касаться пар проводов щупами мультиметра. На его дисплее при контакте с фазой и нулем, а также с фазой и заземлением будет отображаться значение напряжения, близкое к 220 В (при этом фаза и заземление дают меньшее значение, нежели фаза и ноль). При одновременном касании щупами нулевого и заземляющего проводов, как и при касании двух фаз, на дисплее мультиметра будет «0».

Важно! При идентификации проводников по первому из вышеописанных методов обязательно убедитесь в том, что мультиметр включен в режим измерения напряжения, до того, как будете касаться пальцами одного из его щупов.

Как определить ноль и фазу индикаторной отверткой или отверткой для прозвонки сети

Со специальной индикаторной отверткой работать еще проще. Этот инструмент внешне очень похож на отвертку обыкновенную, но имеет относительно непростую внутреннюю конструкцию. Такую отвертку в народе также называют «контролькой».

 

Индикаторные отвертки

Важно! Не следует применять индикаторную отвертку для осуществления манипуляций над винтовыми соединениями (откручивания винтов и их закручивания). Такие действия являются наиболее распространенной причиной выхода из строя описываемого устройства.

Для того, чтобы определить функциональное назначение кабельных жил с ее помощью, нужно просто поочередно коснуться каждой из них жалом данного инструмента, нажимая при этом специальную кнопку в торцевой его части. Если в процессе указанных манипуляций светодиодная лампочка на отвертке загорится, значит, вы касаетесь фазного проводника, в противном случае – нулевого.

Не стоит путать индикаторную отвертку с отверткой, предназначенной для прозвонки сети. Последней также можно определить функционал той или иной жилы, однако нажимать на металлическую пластину в ее верхней части не нужно – иначе отвертка будет светиться в любом случае. Отвертка для прозвонки сети предусматривает в своей конструкции наличие батареек.

Визуальное определения фазы и нуля

При отсутствии вышеупомянутого инструментария вы можете задаться вопросом, как определить фазу и ноль без приборов. Одним из таких способов является их визуальная идентификация. Дело в том, что в соответствии с требованиями к монтажу электропроводки изоляция каждой жилы кабеля должна быть окрашена в свой собственный цвет.

При этом если с заземлением и нулем все понятно – они должны иметь желто-зеленую (желтую, зеленую) и синюю (голубую) окраску соответственно, то изоляционный слой фазного провода может быть выполнен в одном из следующих цветов: коричневый, черный, серый, а также красный, фиолетовый, розовый, белый, оранжевый, бирюзовый, — в зависимости от действующих на момент прокладки кабельной трассы нормативов.

По цвету проводки

Помимо цветовой, имеет место и буквенно-цифровая маркировка кабельных жил. В соответствии с ней ноль, фаза и земля обозначаются соответственно буквами N (neutral), L (line), PE (protectearth).

Контрольная лампочка

Еще один способ решения вопроса, как найти фазу и ноль без приборов, это самостоятельная сборка так называемой контрольной лампочки. Для ее изготовления потребуется обыкновенная лампа накаливания, подходящий к ней патрон, а также два отрезка медного провода (примерно по 50 сантиметров длиной).

Лампочка вкручивается в патрон, а проводники подключаются к его контактам. Другой конец одного из проводников необходимо закрепить на зачищенном до металлического блеска радиаторе системы отопления (либо на иной заведомо заземленной поверхности), а другим концом второго следует попеременно касаться проводников неопределенного функционала. При этом во время контакта с фазным проводом лампочка должна начать светиться.

Важно! В случае планирования систематического использования контрольной лампочки целесообразно ее саму поместить в защитный кожух, а к концам подсоединенных к патрону проводников прикрепить щупы (как у мультиметра).

Контрольной лампочкой

Контрольная картофелина

Название данного подраздела звучит весьма абсурдно, но тем не менее можно определить функциональное назначение токоведущих жил электрического кабеля и при помощи обыкновенной картофелины. Как и в вышеописанном методе с использованием самодельной контрольной лампочки, нам понадобятся два пятидесятисантиметровыхпровода.

Картофель разрезается пополам и в срез овоща на довольно приличном друг от друга расстоянии вставляются подготовленные проводники. Далее конец одного размещается на отопительной батарее(либо на иной заведомо заземленной поверхности), а конец другого соединяется с идентифицируемой жилой кабеля. Чтобы получить результат, придется подождать пять-десять минут. Если по прошествии указанного времени на срезе картофелины образовалось темное пятно, значит вы проверяли фазный проводник. Если изменений не произошло – нулевой.

Важно! Последние два из вышеописанных методов идентификации функционала токоведущих проводников кабеля системы электроснабжения вы используете на свой страх и риск. При работе с такого рода конструкциями следует соблюдать предельную осторожность, чтобы не получить поражение электрическим током.

Разобравшись с тем, что такое фаза и ноль в электричестве, а также найдя для себя сразу несколько ответов на вопрос, как найти эти самые фазу и ноль в проводке, вы можете выбрать любой подходящий для вас способ. Тем не менее, для того, чтобы проверить фазу и ноль, рекомендуем вам такие методы, как проверка тестером либо специализированной отверткой.

От нулевой фазы до героя разработки продукта: практическое руководство

Блэр Эрбстойзер, руководитель проекта, Stratos Product Development

Все любят героев. В случае разработки продукта эти герои часто молчат, поскольку их проекты проходят гладко, избегая минных мин тонущих проектов, которые потеряли свой путь. Эти герои также часто могут избегать прыжков через обруч в последнюю секунду, которые регулярно требуются их командам для доставки продукта.

Итак, как вы можете стать героем в разработке продукта и спасти свою команду от реактивной драмы, которая слишком часто встречается в процессе разработки? Чтобы увеличить шансы стать героем разработки продукта в вашей организации, подход, позволяющий сэкономить время, заключается в том, чтобы определить, есть ли у вашей идеи потенциал, еще до начала проекта. Это повторяющееся предварительное упражнение часто называют нулевой фазой.

Phase Zero — это деятельность на раннем этапе планирования для оценки инновационных возможностей при построении бизнес-обоснования для поддержки инвестиционного решения.Проекты, в которых используется этот этап, выполняются эффективно и имеют более высокую вероятность достижения целевых показателей производительности, бюджета и графика. Типичные цели Phase Zero включают создание первоочередной уверенности в том, что существует реальная возможность для бизнеса, и получение уверенности в том, что для ее решения можно разработать жизнеспособный продукт.

Если у вас уже есть обнадеживающие ответы или сценарии для достижения этих целей, вы, вероятно, готовы перейти к более традиционным этапам разработки продукта и стать героем.Если нет, попробуйте применить нулевую фазу, чтобы получить ответы на эти или подобные вопросы.

Phase Zero Essentials

Хотя потратить время вперед может быть непросто, потому что люди полны энтузиазма и готовы приступить к делу, время, потраченное на то, чтобы задать важные вопросы, окупится с избытком для будущего успеха. На этом этапе важно включить кросс-функциональную команду, чтобы гарантировать, что проект с самого начала связан со всеми техническими и бизнес-дисциплинами, чтобы ответить на все вопросы.

Вот краткий обзор основных областей, по которым необходимо собрать ключевые отзывы перед запуском проекта:

  • Создание интеллектуальной собственности и владение: многие проекты начинаются только для того, чтобы потом отказаться от них из-за юридических проблем, ранее существовавших патентов и т. Д. Проведите предварительное исследование и поймите, будет ли ваша инновация свободна в использовании.
  • Оценка технологий: насколько зрелая ваша технология? Как будет выглядеть коммерческая конфигурация? Если стратегия разработки продукта рискованна, потратьте время на испытательный прототип.Вы даже можете подумать о том, чтобы пойти еще дальше и провести прикладное исследование.
  • Нормативная стратегия
  • (если требуется): Непонимание или неполное понимание требований к возмещению расходов и нормативных требований, связанных с продуктом, является обычным местом, где можно споткнуться в дальнейшем. Найдите время, чтобы определить свою стратегию.
  • Бизнес-модель
  • : определите факторы, которые понадобятся вам для последующего расчета адекватной рентабельности инвестиций (ROI). На данном этапе годятся грубые концепции, но следует учитывать ожидания прибылей и убытков, предполагаемый доход и приемлемую норму прибыли.
  • Знание клиента и компании: убедитесь, что вы понимаете главные приоритеты своего клиента и определили ключевые результаты, которые будут результатом проекта. Спросите себя: «Соответствуют ли эти результаты потребностям клиента?» Кроме того, крайне важно определить, действительно ли ваша компания или организация может взяться за проект или вам нужно сотрудничать с кем-то еще. Быть оптимистом — это здорово, но слишком многообещающие или недовольные результаты редко заканчиваются хорошо для кого-либо.
  • Первоначальный черновик: Создайте начальный план разработки продукта и определите основные этапы и первый проход ресурсов, необходимых для успешного завершения проекта. На этом этапе уместны грубые идеи, поскольку этап более подробного планирования станет одним из следующих шагов, если проект получит зеленый свет.

В Phase Zero держите свои мысли и обсуждения на высоком уровне и не увязайте в гайках и болтах. Я имею в виду буквально, потому что очень легко потратить время и перейти к стадии детализации, которая, несомненно, изменится на этой ранней стадии.Если кто-то действительно начинает говорить о том, какие гайки или болты следует использовать для чего-то, остановите их и верните разговор на соответствующий уровень.

Результатом Phase Zero является принятие решения о переходе на следующий уровень разработки продукта — ни больше, ни меньше. Начиная свой следующий проект, примите во внимание указанные выше моменты. Если ответы еще не очевидны, предложите нулевую фазу и привлеките необходимых участников для реализации стратегии.Попробуйте и не бойтесь быть героем.

Блэр Эрбстоезер (Blair Erbstoeszer) — руководитель проекта в Stratos Product Development. Он имеет 14-летний опыт разработки продуктов в качестве менеджера проектов / программ и инженера-механика, ранее работал в Guidant, Boston Scientific и Microsoft. Его внимание было сосредоточено на медицинских устройствах класса II и III, а также на передовых массовых потребительских товарах. Он имеет степень магистра среднего и среднего бизнеса Вашингтонского университета и степень бакалавра медицинских наук Калифорнийского университета в Санта-Барбаре.С ним можно связаться по адресу [электронная почта защищена].

Что такое Phase и почему нас это волнует? [Analog Devices Wiki]

Цель:

Цель этой лабораторной работы — понять, что имеется в виду под фазовым соотношением между сигналами, и увидеть, насколько хорошо теория согласуется с практикой. Второстепенным результатом будет предварительное понимание аппаратного обеспечения ADALM1000 и программного обеспечения ALICE.

Примечания:

Как и во всех лабораториях ALM, мы используем следующую терминологию при описании подключений к разъему ALM1000 и настройке оборудования. Зеленые заштрихованные прямоугольники обозначают подключения к разъему аналогового ввода-вывода M1000. Контакты аналогового канала ввода / вывода обозначаются как CA и CB. При настройке для принудительного измерения напряжения / измерения тока –V добавляется, как в CA- V , или при настройке для принудительного измерения тока / измерения напряжения –I добавляется, как в CA-I. Когда канал настроен в режиме высокого импеданса только для измерения напряжения, –H добавляется как CA-H.

Следы осциллографа аналогично обозначаются по каналу и напряжению / току. Например, CA- V , CB- V для сигналов напряжения и CA-I, CB-I для сигналов тока.

Фон:

Мы исследуем понятие фазы, рассматривая синусоидальные волны и пассивные компоненты, которые позволят нам наблюдать фазовый сдвиг реальных сигналов. Сначала мы рассмотрим синусоидальную волну и фазовый член в аргументе. Вы должны быть знакомы с уравнением:

(1)

ω устанавливает частоту синусоидальной волны по мере того, как t прогрессирует, а θ определяет смещение во времени, которое определяет фазовый сдвиг в функции.

Функция sin возвращает значение от 1 до -1. Сначала установите t равным константе, скажем, 1. Аргумент ωt больше не является функцией времени. При ω в радианах грех π / 4 составляет приблизительно 0,7071. 2π радиан равняется 360 °, поэтому π / 4 радиана соответствует 45 °. В градусах грех 45 ° также равен 0,7071.

Теперь пусть t будет меняться со временем, как обычно. Когда значение ωt изменяется линейно со временем, это дает синусоидальную волновую функцию, как показано на рисунке 1. Когда ωt изменяется от 0 до 2π, синусоидальная волна изменяется от 0 до 1, до -1 и обратно до 0.Это один цикл или один период T синусоидальной волны. По оси x отложен изменяющийся во времени аргумент / угол ωt, который изменяется от 0 до 2π.

Значение θ равно 0 в функции, представленной на рисунке 1. Поскольку sin (0) = 0, график начинается с 0. Это простая синусоида без смещения по времени, что означает отсутствие смещения фазы. Обратите внимание, что если мы используем градусы ωt, он идет от 0 до 2π или от 0 до 360 °, чтобы получить синусоидальную волну, показанную на рисунке 1.

Рисунок 1: 2 цикла SIN (t)

В качестве примечания: что происходит, когда ωt больше 2π? Введите 2.5π в калькуляторе и посмотрим. Как вы должны знать, функция синуса повторяется каждые 2π радиан или 360 °. Это похоже на вычитание 2π (I) радиан из аргумента, где I — наибольшее целое число, которое дает неотрицательный результат.

Что произойдет, когда мы построим вторую синусоидальную волновую функцию на рисунке 1 с таким же значением ω и θ равным 0? У нас есть еще одна синусоида, которая располагается поверх первой синусоидальной волны. Поскольку θ равно 0, между синусоидальными волнами нет разницы фаз, и они выглядят одинаково во времени.

Теперь измените θ на π / 2 радиан или 90 ° для второй формы сигнала. Мы видим исходную синусоидальную волну и синусоидальную волну, сдвинутую во времени влево. На рисунке 2 показаны исходная волна греха (зеленая) и вторая волна греха (оранжевый) со смещением во времени. Поскольку смещение является константой, мы видим, что исходная синусоидальная волна сдвинута во времени на значение θ, которое в этом примере составляет 1/4 периода волны.

Рисунок 2: зеленый — SIN (t) оранжевый — SIN (t + π / 2)

Тета — это временной сдвиг или фазовая часть уравнения 1.Фазовый угол определяет смещение во времени и наоборот. Уравнение 2 показывает взаимосвязь. Нам довелось выбрать наиболее распространенное смещение 90 °. Сдвиг фазы между синусоидальной и косинусоидальной волнами составляет 90 °. Угол смещения почти всегда не равен 90. На самом деле часто это функция частоты.

Когда на осциллографе, например, отображаются 2 синусоидальные волны, фазовый угол можно рассчитать путем измерения времени между двумя формами сигнала (переходы от отрицательного к положительному нулю или «нарастающие фронты» могут использоваться в качестве контрольных точек измерения времени на осциллограмме. ).Один полный период синусоидальной волны по времени равен 360 °. Взяв отношение времени между двумя формами сигнала, ∆t, и времени в одном периоде полной синусоидальной волны, T, вы можете определить угол между ними. Уравнение 2 показывает точное соотношение.

Фаза:

(2)

Где T — период синусоиды.

Естественные временные сдвиги в синусоиде.

Некоторые пассивные компоненты дают временной сдвиг между напряжением на них и током через них.В классе мы показали, что напряжение на резисторе и ток через резистор являются простой зависимостью от времени. В / I = R. где R действительное и выражено в омах. Таким образом, напряжение на резисторе и ток через резистор всегда совпадают по фазе.

Для конденсаторов и катушек индуктивности уравнение, связывающее В, и I, аналогично. В / I = Z, где Z — полное сопротивление с действительной и мнимой составляющими. В этой лаборатории мы рассмотрим только конденсаторы.

Обычно конденсаторы состоят из двух проводящих пластин, разделенных диэлектрическим материалом.Когда к пластинам прикладывается разность потенциалов, между пластинами создается электрическое поле. Диэлектрики конденсаторов могут быть изготовлены из многих материалов, включая тонкие изолирующие пленки и керамику. Отличительной характеристикой конденсатора является его емкость (C), измеряемая в фарадах (F), которая измеряет соотношение между напряжением и накоплением заряда.

Основное правило для конденсаторов заключается в том, что напряжение на конденсаторе не изменится, если в конденсатор не течет ток.Скорость изменения напряжения (dv / dt) зависит от величины тока. Для идеального конденсатора ток i (t) связан с напряжением по следующей формуле:

(3)

В настоящий момент все выводы из этого выходят за рамки данной лабораторной работы. Вы увидите это поведение в последующих лабораторных работах. Импеданс конденсатора зависит от частоты. Импеданс уменьшается с частотой, и наоборот, чем ниже частота, тем выше полное сопротивление.

(4)

Где ω определяется как угловая скорость:

Одна тонкость в уравнении 4 — это мнимый оператор j.Когда мы смотрели, например, на резистор, в уравнении импеданса не было мнимого оператора. Синусоидальный ток через резистор и напряжение на резисторе не имеют временного сдвига между ними, потому что взаимосвязь полностью реальна. Единственное отличие — амплитуда. Напряжение синусоидально и совпадает по фазе с синусоидой тока. С конденсатором дело обстоит иначе. Когда мы смотрим на форму волны синусоидального напряжения на конденсаторе, она будет сдвинута во времени по сравнению с током через конденсатор.За это отвечает воображаемый оператор j. Глядя на рисунок 3, мы видим, что форма волны тока находится на пике (максимуме), когда наклон формы волны напряжения (скорость изменения во времени dv / dt) является самым высоким.

Разница во времени может быть выражена как фазовый угол между двумя формами сигнала, как определено в уравнении 2.

Рисунок 3: Определение фазового угла между напряжением и током.

Вы, наверное, видели схемы, полностью состоящие из резисторов.Эти цепи имеют только реальный импеданс, а это означает, что все напряжения во всей цепи будут синфазными (, т.е. θ = 0 градусов), поскольку именно комплексный импеданс сдвигает ток во времени по отношению к напряжению. Обратите внимание, что сопротивление конденсатора полностью мнимое. Резисторы имеют реальные импедансы, поэтому схемы, содержащие как резисторы, так и конденсаторы, будут иметь сложные импедансы.

Чтобы вычислить теоретический фазовый угол между напряжением и током в RC-цепи:

i (t) = v (t) / Z контур

Где Z цепь — полное сопротивление цепи = I

Переставьте уравнение так, чтобы оно выглядело как I = A + jB

Где A и B — действительные числа.

Таким образом, фазовое отношение тока к напряжению будет следующим:

(5)

Материалы:

Аппаратный модуль ADALM1000
2 — резисторы 470 Ом
1 — конденсатор 1 мкФ

Осциллограф:

Вы собираетесь использовать плату ALM1000 и программное обеспечение рабочего стола ALICE для функций осциллографа. В руководстве пользователя рассказывается, как все настроить.

Генератор сигналов:

Вы также собираетесь использовать плату ALM1000 для функций генератора сигналов.В руководстве пользователя рассказывается, как настроить генератор сигналов.

Инструкционные цели:

1. Изучите соотношение фаз напряжения и тока в резистивной цепи.
2. Изучите соотношение фаз напряжения и тока в емкостной резистивной (RC) цепи.

Процедура:

Настройте быстрое измерение с помощью ALICE Desktop:

• Убедитесь, что ALM1000 подключен к порту USB и запустите приложение ALICE Desktop.
• Главный экран должен выглядеть как дисплей осциллографа с настраиваемым диапазоном, положением и параметрами измерения.
• Убедитесь, что в нижней части экрана для CA V / Div и CB V / Div установлено значение 0,5.
• Также убедитесь, что для CA V Pos и ​​CB V Pos установлено значение 2,5.
• CA I мА / Div должно быть установлено на 2,0, а CA I Pos должно быть установлено на 5,0.
• В окне управления AWG установите частоту CHA и CHB на 1000 Гц с фазой 90 °, 0 В Мин. И 5 В Макс. (5.000V Pk-Pk выход). Выберите режим SVMI и форму сигнала Sin.

• В раскрывающемся списке Meas выберите P-P для CA- V , CA-I и CB- V .
• Установите Time / Div на 0,5 мс и в раскрывающемся списке Curves выберите CA- V , CA-I и CB- V .

Обратите внимание, что выходы генератора функций CHA и CHB подключаются к входам каналов непосредственно на плате. Для подключения не нужен провод.

• На вашей беспаечной макетной плате подключите выход CHA к одному концу резистора 470 Ом.
• Подключите другой конец резистора к GND.
• Нажмите кнопку «Пуск» в области осциллографа.

Если плата была откалибрована правильно, вы должны увидеть одну синусоидальную волну поверх другой. С CHA и CHB оба равны 5,00 Vpp. Если калибровка неправильная, вы можете увидеть 2 синусоидальные волны в фазе с амплитудой CHA, отличной от CHB. Выполните повторную калибровку, если есть значительная разница напряжений.

2. Измерьте фазовый угол между двумя сгенерированными сигналами:

• Убедитесь, что CA V / Div и CB V / Div по-прежнему установлены на 0.5 и что для CA V Pos и ​​CB V Pos установлено значение 2,5.
• CA I мА / Div должно быть установлено на 2,0, а CA I Pos должно быть установлено на 5,0
• Установите частоту CHA и CHB на 1000 Гц с фазой 90 °, 0 В, Мин. И 5 В Максимальные значения (выход 5.0V Pk-Pk). Выберите режим SVMI и форму сигнала Sin.

Вы должны увидеть то, что выглядит как 1 синусоида. Есть два, только один поверх другого.

• В окне управления AWG измените фазу θ канала B на 135 ° (90 + 45).
• Какой канал выглядит так, как будто синусоидальный сигнал встречается раньше другого? _______________

Сигнал CHB должен выглядеть так, как будто он предшествует (происходит раньше) сигналу CHA. Сигнал CHB пересекает ось 2,5 V снизу вверх перед сигналом CHA. Оказывается, положительный θ называется фазовым отведением. Контрольная точка времени пересечения минимума и максимума является произвольной. Также можно использовать пересечение от максимума к минимуму.

• Измените фазовый сдвиг CHB на 45 ° (90 — 45).

Теперь похоже, что сигнал CHB отстает от сигнала CHA.

• Установите для дисплея измерений CA значение «Частота» и «Фаза A-B». Для CB дисплея B-A Delay.
• Установите время / деление на 0,2 мс.
• Нажмите красную кнопку «Стоп», чтобы приостановить программу. Используя левую кнопку мыши, мы можем добавить точку маркера на дисплей.

Если синусоида CHA пересекает «первую» и «вторую» CHB, мы можем измерить временной сдвиг между ними.

• Убедитесь, что вертикальное положение двух сигналов установлено на 2.5.
• Измерьте разницу во времени между пересечениями нуля сигналов CHA и CHB с помощью маркеров.

Что такое ∆t? __________________

• Используйте измеренное значение ∆t и уравнение 2 для расчета сдвига фазы. θ ________ °

Обратите внимание, что вы не можете измерить частоту сигнала, для которого на экране не отображается хотя бы один полный период. Обычно для получения стабильных результатов требуется более 2 циклов. Вы генерируете частоту, поэтому уже знаете, что это такое.Вам не нужно измерять его в этой части лаборатории.

3. Измерение величины с помощью реальной схемы.

Рисунок 5: Соединения на макетной плате R-R.

• Постройте схему, показанную на рисунке 4, на беспаечной макетной плате, используя два резистора 470 Ом.
• В окне управления AWG установите частоту CHA на 200 Гц с фазой 90 °, 0 В Мин. И 5 В Макс. (Выход 5,0 В, пик-пик). Выберите режим SVMI и форму сигнала Sin.
• Выберите режим Hi-Z для CHB. Остальные настройки для CHB не имеют значения, потому что теперь он используется только как вход.

• Соедините выход CHA, вход CHB и GND проводами, как показано цветными контрольными точками.
• Установите горизонтальную шкалу времени на 1,0 мСм / дел для отображения двух периодов формы сигнала.
• Нажмите кнопку «Пуск» на осциллографе, если она еще не запущена.

Форма волны напряжения, отображаемая в CHA, представляет собой напряжение на обоих резисторах ( В R1 + В R2 ).Форма волны напряжения, отображаемая в CHB, представляет собой напряжение только на R 2 ( В, R2 ). Чтобы отобразить напряжение на R 1 , мы используем параметры отображения математической формы сигнала. В раскрывающемся меню Math выберите уравнение CAV-CBV. Теперь вы должны увидеть третью форму сигнала для напряжения на R 1 ( В, R1 ). Чтобы увидеть обе кривые, вы можете отрегулировать вертикальное положение канала, чтобы разделить их. Не забудьте вернуть вертикальное положение, чтобы перестроить сигналы.

• Запись В R1 и В R2 .

В R1 _______ В PP .
V R2 _______ V PP .
V R1 + V R2 _______ V PP .

• Видите ли вы разницу между переходами через ноль V R1 и V R2 ? _________
• Можно ли вообще увидеть две отдельные синусоидальные волны? ________

Возможно нет.Не должно быть наблюдаемого временного сдвига и, следовательно, сдвига фазы.

4. Измерьте величину интересной реальной цепи.

• Замените R 2 конденсатором емкостью 1 мкФ C 1 .

Рисунок 7: Соединения на макетной плате RC.

• В окне управления AWG установите частоту CHA на 500 Гц с фазой 90 °, 0 В Мин. И 5 В Макс. (Выход 5,0 В, пик-пик). Выберите режим SVMI и форму сигнала Sin.
• Выберите режим Hi-Z для CHB.
• Установите горизонтальную шкалу времени на 0,5 мс / дел для отображения двух периодов формы сигнала.

Поскольку через конденсатор не проходит постоянный ток, нам приходится обрабатывать средние (постоянные) значения сигналов по-разному.

• В правой части главного экрана есть места для ввода смещения постоянного тока для каналов A и B. Установите значения смещения, как показано.

• Теперь, когда мы удалили смещение входных сигналов, нам нужно изменить вертикальное положение сигналов, чтобы повторно центрировать их на сетке.Установите CA V Pos и ​​CB V Pos на 0,0.

• Нажмите кнопку «Пуск» на осциллографе, если она еще не запущена.
• Измерьте CA- V , CA-I, CB- V и Math (CAV — CBV) pk-pk.

Какой сигнал представляет собой математическую форму волны? _________________

• Запись В R1 , V C1 и V R1 + V C1 .

V R1 ____________ V PP .
I R1 ____________ мА PP .
V C1 _______________ V PP .
V R1 + V C1 ____________ V PP .

Теперь что-нибудь о фазе. Надеюсь, вы увидите несколько синусоид со смещениями по времени или разностями фаз, отображаемыми на сетке. Давайте измерим временные сдвиги и вычислим разности фаз.

5.Измерьте разницу во времени между В R1 , I R1 и В C1 и вычислите сдвиги фаз.

Используйте уравнение 2 и измеренное значение ∆t, чтобы вычислить фазовый угол θ.

Маркеры полезны для определения ∆t. Вот как.

• Отобразите не менее 2 циклов синусоидальных волн.

• Установите горизонтальное время / дел. до 0,5 мкс. Обязательно нажмите красную кнопку «Стоп», прежде чем пытаться разместить маркеры на сетке.

Обратите внимание на то, что дисплей Marker Delta отслеживает знак различия.

Вы можете использовать дисплей измерений, чтобы получить частоту. Поскольку вы устанавливаете частоту источника, вам действительно не нужно зависеть от окна измерения для этого значения.

Предположим, что ∆t равно 0, если вы действительно не видите никакой разницы с 1 или 2 периодами синусоидальной волны на экране.

• Поместите первый маркер на негатив. к поз. место пересечения нуля для сигнала CA- V ( V R1 + V C1 ).Поставьте второй маркер на ближайший нег. к поз. место пересечения нуля для сигнала Math ( V R1 ). Запишите разницу во времени и вычислите фазовый угол. Обратите внимание, что ∆t может быть отрицательным числом. Означает ли это, что фазовый угол опережает или отстает?

∆t _________, θ _________

Чтобы удалить маркеры для следующего измерения, нажмите красную кнопку «Стоп».

• Поместите первый маркер на негатив. к поз. место пересечения нуля для сигнала CA- V ( V R1 + V C1 ).Поставьте второй маркер на ближайший нег. к поз. место пересечения нуля для сигнала CB- V ( V C1 ). Запишите разницу во времени и вычислите фазовый угол.

∆t _________, θ _________

• Поместите первый маркер на негатив. к поз. место пересечения нуля для сигнала Math ( V R1 ). Поставьте второй маркер на ближайший нег. к поз. место пересечения нуля для сигнала CB- V ( V C1 ).Запишите разницу во времени и вычислите фазовый угол.

∆t _________, θ _________

Есть ли какое-либо измеряемое время (фазовый сдвиг) между сигналом Math ( V R1 ) и отображаемой формой кривой тока CA-I? Поскольку это последовательная схема, ток, поступающий через канал A AWG, равен току в R 1 и C 1 .

6. Измерьте разницу во времени и вычислите сдвиг фазы θ на другой частоте.

• Установите AWG CHA на 1000 Гц и время / деление на 0,2 мсек / дел.
• Поместите первый маркер на негатив. к поз. место пересечения нуля для сигнала CA- V ( V R1 + V C1 ). Поставьте второй маркер на ближайший нег. к поз. место пересечения нуля для сигнала Math ( V R1 ). Запишите разницу во времени и вычислите фазовый угол. Обратите внимание, что ∆t может быть отрицательным числом. Означает ли это, что фазовый угол опережает или отстает?

∆t _________, θ _________

Чтобы удалить маркеры для следующего измерения, нажмите красную кнопку «Стоп».

• Поместите первый маркер на негатив. к поз. место пересечения нуля для сигнала CA- V ( V R1 + V C1 ). Поставьте второй маркер на ближайший нег. к поз. место пересечения нуля для сигнала CB- V ( V C1 ). Запишите разницу во времени и вычислите фазовый угол.

∆t _________, θ _________

• Поместите первый маркер на негатив. к поз. место пересечения нуля для сигнала Math ( V R1 ).Поставьте второй маркер на ближайший нег. к поз. место пересечения нуля для сигнала CB- V ( V C1 ). Запишите разницу во времени и вычислите фазовый угол.

∆t _________, θ _________

Вопросы после лаборатории:

Ответьте на все вопросы в разделе процедуры.

Приложение:

Расчет фазового угла, время задержки, частота, расчет фазового сдвига, временной сдвиг между разностью напряжений, время прихода, осциллограф ITD, измерение двух сигналов, формула, угол, текущее напряжение, phi, фазовый сдвиг, разница во времени

, расчет фазового угла, временная задержка, частота, вычисление фазового запаздывания, временной сдвиг между разностью напряжений, время прихода. Осциллограф ITD измеряет формулу двух сигналов, угол, текущее напряжение, фазовый сдвиг, разницу во времени — sengpielaudio Sengpiel Berlin



Вопрос: Какова формула фазы синусоидальной волны?
Нет фазы синусоиды.Синусоидальная волна не имеет фазы.
Фаза может развиваться только между двумя синусоидальными волнами.

Две синусоидальные волны взаимно сдвинуты по фазе, если моменты времени
его нулевые отрывки не совпадают.

Слово фаза имеет четкое определение для двух чистых бегущих синусоидальных волн переменного тока,
но не для музыкальных сигналов.
Все эквалайзеры сдвигают фазу вместе с частотой. Без всяких
с фиксированной точкой «смещение» (смещение) невозможно.
Особые приемы: 90 ° фильтр с двумя универсальными фильтрами. Фазы всегда равны разности фаз .

Реверс полярности (pol-rev) никогда не сдвиг фазы по оси времени t .

Синусоидальные сигналы одинаковой частоты могут иметь разность фаз.

Если есть фазовый сдвиг (разность фаз) или фазовая задержка угла фазы φ
(Греческая буква Phi) в градусах должно быть указано чистых сигналов
(синусоидальные волны).Таким образом, например, фазовый сдвиг может быть между двумя стерео
канальные сигналы слева и справа, между входным и выходным сигналом, между напряжением и
ток, или между звуковым давлением p и скоростью частиц воздуха v .

Что такое на самом деле амплитуда?


Один полный цикл волны связан с «угловым» смещением на
°. 2 π радиан.

Фаза φ — угол участка сигнала, он указывается в угловых градусах и
предоставляет ссылку на опорное значение всего сигнала. Для периодических сигналов —
общий фазовый угол 360 градусов и период, равный длительности периода.
Типичный вопрос: каковы частота и фазовый угол синусоидального сигнала?
Может ли «один» сигнал действительно иметь фазу?
Две «синфазные» волны имеют фазу (угол) φ = 0 градусов.
Если частота = 0 Гц, то переменного напряжения нет — это просто постоянный ток. Тогда не будет
фазовый угол присутствует.

Какое отношение время задержки имеет к фазовому углу?

Разница во времени (длительность) звука на метр

Влияние температуры на разницу во времени Δ t
Зависимость скорости звука только от температуры воздуха

Температура
воздуха, ° C
Скорость звука
c м / с
Время на 1 м
Δ t мс / м
+40 354.9 2,818
+35 352,0 2,840
+30 349,1 2,864
+25 346,2 2,888
+20 343,2 2,912
+15 340,3 2,937
+10 337.3 2,963
+5 334,3 2,990
± 0 331,3 3,017
−5 328,2 3,044
−10 325,2 3,073
−15 322,0 3,103
−20 318.8 3,134
−25 315,7 3,165


Звукорежиссеры обычно руководствуются практическим правилом:
Для расстояния
r = 1 м звук требует около t = 3 мс в воздухе.
Δ t = r / c и r = = 343 м / с при 20 ° C.

Для фиксированной задержки времени Δ t = 0,5 мс получаем
следующий фазовый сдвиг φ ° (град) сигнала:
Разность фаз
φ ° (град.)
Разность фаз
φ Bogen (рад)
Частота
f
Длина волны
λ = c / f
360 ° 2 π = 6.283185307 2000 Гц 0,171 м
180 ° π = 3,141592654 1000 Гц 0,343 м
90 ° π /2 = 1,5 70796327 500 Гц 0,686 м
45 ° π /4 = 0,785398163 250 Гц 1.372 м
22,5 ° π /8 = 0,392699081 125 Гц 2.744 м
11,25 ° π /16 = 0,196349540 62,5 Гц 5,488 м

Преобразование: радианы в градусы и наоборот

Фазовый угол: φ ° = 360 × f × Δ t Для стереофонии на основе времени Δ t = a × sin α / c
Частота f = φ ° / 360 × Δ t

Фазовый угол (град.) φ = временная задержка Δ t × частота f × 360
Если взять разницу во времени Δ t = длина пути a 906 / скорость звука c , тогда получаем
Разность фаз φ ° = длина пути a × частота f × 360 / скорость звука c

Введите два значения , третье значение будет вычислено

Дополнительная справка: Время, частота, фаза и задержка

Автор Lord Rayleigh (Джон Уильям Стратт, 3-й лорд Рэлей, 1907 г.) была показана дуплексная теория
.Эта теория способствует пониманию процедуры «естественного
». слух »с людьми. Это очень простое осознание того, что межуральное время прибытия
различия ITD важны на частотах ниже 800 Гц как разности фаз
с направление локализации как ушные сигналы , а на частотах выше 1600 Гц
эффективны только межзубные различия уровней ILD.
Между ушами максимальная задержка равна 0.63 мс. Фазовые различия для
индивидуальные частоты могут быть рассчитаны.

Схема фазовращателя для фазовых углов от φ = 0 до 180

Векторы напряжения фазовращателя

Для R = 0 Ом это V OUT = V IN . Выход не должен быть нагружен низким импедансом.

Вы можете сдвигать отдельные чистые частоты (синусоидальные волны),
но это невозможно с такой схемой для музыкальных программ.

Два синусоидальных напряжения со сдвигом по фазе: φ = 45 °

Условия для передачи без искажений
От Шопса — Йорг Вуттке: «Mikrofonbuch» — Глава 7


В то время как потребность в постоянной частотной характеристике очевидна, для «линейной» фазы скорее требуется
объяснение.
Есть инженеры, которые ожидают, что идеальная фаза будет такой же постоянной, как и амплитудная характеристика.
Это неправда. Первоначально фаза начинается с 0 °, потому что самая низкая частота заканчивается на 0 Гц, на
. ОКРУГ КОЛУМБИЯ. (Между напряжениями постоянного тока отсутствует фазовый угол).
В процессе на данной частоте фазовый угол не имеет значения, если фазовый угол равен
. только в два раза больше в случае двойной частоты и в три раза больше в случае трех экземпляров и т. д.

Предоставлено David Moulton Laboratories
(О гребенчатой ​​фильтрации, фазовом сдвиге и обращении полярности)


Электронный эквивалент потока сигнала и его отложенной итерации, рекомбинированный в
единый сигнал.В случае, который мы будем рассматривать, линия задержки имеет задержку в 1 миллисекунду,
уровни исходного и задержанного сигналов, поступающих в микшер, равны, а
сигнал представляет собой синусоидальную волну с частотой 1 кГц.


Синусоидальная волна 1500 Гц. частота (период T = 0,667 мс) и ее задержка
итерация с задержкой 1 мс. Результирующий смешанный сигнал будет сигналом без номера
. амплитуды, либо полное отключение сигнала.



Фазовый сдвиг для любой частоты с задержкой в ​​1 миллисекунду. Диагональная линия
представляет возрастающий фазовый сдвиг как функцию частоты. Обратите внимание, что мы можем
Считайте, что 540 — это то же самое, что 180.

Time, Phase, Frequency, Delay — Учебное пособие по теории звуковых сигналов

Реверс полярности нет Фазовый сдвиг из 180 (временная задержка)

(phi) = сдвиг фазы, сдвиг фазы, разность фаз, сдвиг фазы,
фазовая задержка, фазовый угол часто неправильно используются как: pol-rev = изменение полярности.

Полярность и фаза часто используются так, как будто они означают одно и то же. Они не.
«Кнопка реверса фазы» не меняет фазу. Это меняет полярность.

Изменение полярности без сдвига фазы.
Изменение полярности (или Pol-Rev) — это термин, который часто путают с фазой Ø (phi)
но не включает фазового сдвига или временной задержки. Смена полярности происходит всякий раз, когда мы
«изменить знак» значений амплитуды сигнала.В аналоговой сфере это
можно сделать с инвертирующим усилителем, трансформатором или в симметричной линии по
простое переключение соединений между контактами 2 и 3 (штекер XLR) на одном конце
кабель. В цифровой сфере это делается простой заменой всех плюсов на
минусы и наоборот в потоке данных аудиосигнала.

Два пилообразных колебаний

вверху: исходный сигнал a / b (зубьевидный зуб)

посередине: сигнал со сдвигом фазы 180
как T / 2 пилообразный сигнал со сдвигом во времени

снизу: сигнал b / a- с обратной (инвертированной) полярностью ,
зеркально отражено на оси времени

Очевидно, что обратная полярность не может быть такой же, как не совпадает по фазе.

Речь идет о широко обсуждаемой теме: «Фазовый сдвиг в зависимости от инвертирования сигнала» и «фаза
. сдвиг в зависимости от временного сдвига сигнала ». Термин фазовый сдвиг предположительно определен только для
монофонические синусоидальные сигналы и угол сдвига фаз явно задан только для
синусоидальные величины.

Типичная кнопка Ø (phi) предназначена только для смены полярности
Абсолютно отсутствует фазовый сдвиг



Примечание. Время, частота и фаза тесно связаны.
Высота амплитуды не влияет на эти параметры.

Угловая частота ω = 2 π × f

Дано уравнение: y = 50 sin (5000 t)
Определите частоту и амплитуду.
Ответ: Амплитуда 50 и ω = 5000.
Итак, частота f = 1/ T = ω /2 π = 795.77 Гц.

Чтобы использовать калькулятор, просто введите значение.
Калькулятор работает в обоих направлениях знака .


версия 1.0 выпущена 29.01.1999

Содержание


Введение

Сейсмические данные часто преобразуются в нулевую фазу для улучшения разрешения и облегчения интерпретации.

вернуться к содержанию


Определение терминов и допущений

В определенной степени это зависит от используемого метода, но большинство методов предполагают, что входные (обычно) перенесенные данные являются минимальной фазой.

вернуться к содержанию


Типы нулевого фазового преобразования

Обычно применяются несколько методов преобразования нулевой фазы.

  1. Самым распространенным методом является так называемый статистический подход . Здесь вокруг целевой области определяется окно входных данных. Средняя автокорреляция окна берется и используется для определения минимальной фазы и нулевой фазы вейвлета, которые имеют тот же амплитудный спектр, что и входные данные. Затем создается оператор, который преобразует вейвлет с минимальной фазой в вейвлет с нулевой фазой, и этот оператор затем применяется к сейсмическим данным.Можно выделить несколько окон и сравнить результаты с синтетическими сейсмограммами для обеспечения точности. Это простейший метод преобразования нулевой фазы, часто улучшает разрешение и привязку к скважинам и является хорошим эталонным тестом. Для разведки это может быть очень эффективным. Кроме того, этот метод может применяться большинством подрядчиков без дополнительных затрат и временных задержек.
  2. Простое чередование фаз может применяться для улучшения связи скважин. По ряду малоизученных причин современный набор 3D сейсмических данных часто ближе к нулевой фазе, чем к минимальной фазе, поэтому этот метод часто работает в пределах погрешности.
  3. Преобразование вейвлета, извлеченного вокруг морского дна. Shell UK в настоящее время использует этот метод в сочетании с фильтрацией с обратной Q-фильтрацией. Этот метод может быть высоко диагностическим для глубоководных данных или данных, полученных с короткими удалениями от трассы, в которых волновой сигнал морского дна не загрязнен преломлениями.
  4. Моделирование подписи источника. Этот метод использовался Shell в течение многих лет. Сигнатура источника была смоделирована для прохождения различных этапов обработки, конечный результат преобразован в нулевую фазу, и оператор применил к сейсмическим данным.Этот метод может привести к непредсказуемым результатам.
  5. Извлечение сейсмической волны из сейсмических данных с использованием каротажа для определения фазы. Этот тип процесса может быть выполнен с помощью программного обеспечения Geoquest, в Hampson-Russell Strata и в LogM.


Приложения после стека

Большая часть преобразования нулевой фазы выполняется после миграции, хотя некоторые люди предпочитают данные с нулевой фазой для повышения разрешения во время пикирования скорости.

вернуться к содержанию


Фаза | механика | Britannica

Phase , в механике вибраций, доля периода (то есть времени, необходимого для завершения полного цикла), который точка завершает после последнего прохождения через опорную или нулевую позицию. Например, контрольная позиция стрелок часов находится на цифре 12, а минутная стрелка имеет период в один час. В четверть часа минутная стрелка имеет фазу в одну четверть периода, пройдя фазовый угол 90 °, или π /2 радиан.В этом примере движение минутной стрелки представляет собой равномерное круговое движение, но понятие фазы также применимо к простому гармоническому движению, например, которое испытывают волны и колеблющиеся тела.

Если положение y точки или частицы изменяется в соответствии с простым гармоническим законом, то оно изменится во времени t в соответствии с произведением амплитуды или максимального смещения, r, частицы и функция синуса или косинуса, состоящая из его угловой скорости, обозначаемой греческой буквой омега ( ω ), времени t, и так называемого угла, обозначаемого греческой буквой эпсилон ( ε ): y = r sin ( ωt + ε ).Угол ( ωt + ε ) называется фазовым углом в момент времени t, , который в нулевой момент времени равен ε . Сама фаза является дробной величиной — отношение прошедшего времени t к периоду T, или t / T — и равна отношению фазового угла к углу полного цикла, 360 °, или 2 π радиан. Таким образом, фаза для равномерного кругового или гармонического движения имеет значение ( ωt + ε ) / 2 π .Применяя это выражение к приведенному выше примеру движущейся минутной стрелки, ε равно нулю (нулевой фазовый угол в нулевой момент времени), угловая скорость составляет 2 π радиан в час, а время t равно 1 / 4 час, что дает фазу 1 / 4 .

Подробнее по этой теме

Электрогенератор

: Фазы

Напряжения, наведенные в отдельных катушках распределенной обмотки на Рисунке 3, несколько смещены во времени друг от друга.В результате …

При сравнении фаз двух или более периодических движений, таких как волны, движения считаются синфазными, когда соответствующие точки одновременно достигают максимального или минимального смещения. Если гребни двух волн проходят одну и ту же точку или линию в одно и то же время, то они находятся в фазе для этого положения; однако, если гребень одного и впадина другого проходят одновременно, фазовые углы различаются на 180 °, или π радиан, и волны считаются не в фазе (в данном случае на 180 ° ).

Измерение разности фаз имеет центральное значение в технике переменного тока. На схеме две кривые представляют напряжение ( E ) и ток ( I ) в цепи переменного тока (AC) с чистой индуктивностью. Разница фазового угла между напряжением и током составляет 90 °, и считается, что ток отстает на четверть цикла по фазе. Это отставание видно на диаграмме. При передаче электроэнергии переменного тока термины многофазный и многофазный применяются к токам, которые не совпадают по фазе друг с другом.В двухфазной системе есть два тока с разностью фаз 90 °; в трехфазной системе токи различаются по фазовому углу на 120 °.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Характеристика данных фазы несущей GNSS на движущейся нулевой линии в городской и воздушной навигации

4.1. Urban Test Case

Конфигурация измерения дает возможность сравнивать качество сигнала геодезического и высокочувствительного оборудования.Следовательно, две комбинации (JVD 0081 – JVD 0082 и UBX 0867 – UBX 1771) используются для вычисления DD на основе стратегии, разработанной в разделе 3. Эти две конфигурации выбраны, чтобы указать на основные различия в уровнях шума наблюдаемых фаз несущих. для различных систем GNSS. Обратите внимание, что исправленные DD всех спутников наложены на систему на каждом рисунке. Поскольку приемники UBX способны отслеживать только одну частоту на систему, анализируются наблюдения фазы несущей на основе кода C / A на частоте L1.

показывает фазовый шум несущей L1 GPS, ГЛОНАСС и Galileo по отношению к времени GPS. DD комбинации геодезических оценок показаны в верхнем ряду, а DD комбинации высокой чувствительности показаны в нижней строке. Шум DD различных систем не сильно различается и варьируется примерно в пределах ± 2 мм (a, c). Однако есть много выбросов размером до 15 мм, что влияет на временной ряд. То же самое и с DD приемников UBX. Основное различие заключается в общей величине шума, которая увеличивается более чем вдвое и составляет примерно ± 5 мм.

DD наблюдений фазы несущей L1 со всех спутников для различных комбинаций приемников относительно времени GPS. GPS, ГЛОНАСС и Galileo DD показаны соответственно синим, зеленым и красным цветами. Черные пунктирные вертикальные линии обозначают разные точки траектории, которые объясняются в.

Разрыв данных во временном ряду ГЛОНАСС в b является результатом вычисления смещения единственной разности (см. Раздел 3). Целочисленную неоднозначность DD можно оценить, если член смещения меньше 0.1 цикл. Для того чтобы смещение составляло менее 0,1 цикла, неоднозначность единственной разности должна быть известна с точностью 285 циклов для минимальной разности длин волн между двумя спутниками. Точно так же эта неоднозначность должна быть известна с точностью до 12 циклов для максимальной разницы длин волн между двумя спутниками [37]. Это требование для определения члена смещения единичной разности не выполняется в эти эпохи, и, следовательно, дальнейший анализ DD невозможен. По этой причине они просто удаляются.

Кроме того, заметно, что меньше выбросов появляется для GPS и Galileo DD в фазе остановки транспортного средства, то есть времени до первой вертикальной линии, помеченной буквой A. Кроме того, шум ниже в статической фазе эксперимента. Однако это не относится к DD ГЛОНАСС. В течение пяти повторных обходов траектории между метками BStart и BEnd не наблюдается ни изменения уровня шума, ни появления выбросов.

Шумовые характеристики временных рядов DD анализируются с использованием отклонения Аллана (ADEV), которое представляет собой квадратный корень из дисперсии Аллана [39,40].Чтобы быть более точным, вычисляется модифицированный ADEV modσy (τ), поскольку он может различать белый фазовый шум и фликкер-фазовый шум. Поскольку ADEV вычисляется для непрерывных временных рядов, и этот набор данных включает множество пробелов в данных из-за прерываний сигнала, для этого анализа выбирается временной ряд DD от одной спутниковой пары на систему, который является почти непрерывным. Модифицированные ADEV изображены в файле. Соответствующие углы возвышения для этих спутниковых пар относительно времени GPS показаны на b.Уровень шума можно получить при τ = 1 [с]. Модифицированный ADEV поддерживает утверждение, что уровень шума временного ряда DD комбинации UBX выше по сравнению с комбинацией JVD; это относится ко всем системам. При τ = 1 [с] значения DD геодезической комбинации даже ниже 2 мм. Наклон соответствующих кривых является индикатором основного шумового процесса. Для всех комбинаций и сигналов процесс белого шума для DD фазы несущей с крутизной τ-3/2 показан на рисунке, по крайней мере, для первых 100 с.

Модифицированные отклонения Аллана DD фазы несущей L1 для одной пары спутников каждой системы GNSS с двумя различными комбинациями приемников в ( a ). Для GL1C, RL1C и EL1X используются DD PRN 29–26, PRN 15–24 и PRN 1–13 соответственно. Углы возвышения этих спутников показаны на ( b ).

Для проведения стохастического анализа DD вычисленные DD исследуются в отношении углов возвышения неопорных спутников (см.,). Явная зависимость от высоты, которую можно ожидать, по крайней мере, в статических экспериментах, не видна ни в одной из комбинаций и систем GNSS. В частности, DD Galileo приемников JVD демонстрируют свойства еще более высокого шума и большего количества выбросов для высот от 30∘ до 60∘. Это связано с тем, что этот диапазон высот особенно важен. В [41,42] показано, что большая часть отражений сигнала происходит в этих диапазонах высот из-за высоты здания в непосредственной близости от антенны.

DD наблюдений фазы несущей L1 со всех спутников для различных комбинаций приемников по отношению к углу места неопорных спутников. Уровни шума GPS, ГЛОНАСС и Galileo показаны синим, зеленым и красным цветами соответственно.

Поскольку величина шума DD не зависит от высоты, отношение C / N0 рассматривается как еще одна мера, характеризующая качество наблюдения. Результаты представлены в. Обратите внимание, что масштабирование по оси x отличается для разных комбинаций приемников.Поведение шума DD по отношению к значениям C / N0 нереференсных спутников сильно различается в зависимости от комбинации одного приемника с другим. Для комбинации геодезических оценок (см. A – c) видна высокая зависимость C / N0. Шум DD увеличивается при низких значениях C / N0 и уменьшается при увеличении C / N0. Это применимо одинаково для всех трех систем GNSS. Обратите внимание, что из-за внутренних настроек приемника запись наблюдений останавливается, когда C / N0 составляет примерно менее 20 дБ-Гц.Поведение шума DD приемников UBX относительно C / N0 показано на d – f. Обратите внимание, что разрешение C / N0 составляет всего 1 дБ-Гц. Четкой зависимости C / N0 практически не видно. Приемники известны как высокочувствительное оборудование, поскольку они способны отслеживать больше сигналов, даже если луч заблокирован для зданий. Глядя на, это подчеркнуто для кодовых диапазонов на всех частотах L1. Количество записанных кодовых наблюдений всегда больше по сравнению с приемником геодезического уровня.Изучая наблюдения фазы несущей на тех же частотах, числа в большинстве случаев показывают противоположное поведение.

DD наблюдений фазы несущей L1 со всех спутников для различных комбинаций приемников по отношению к значениям C / N0 неопорных спутников. Уровни шума GPS, ГЛОНАСС и Galileo показаны синим, зеленым и красным цветами соответственно.

Таблица 5

Количество наблюдений диапазона кода L1 (C) и фазы несущей (L) трех спутниковых систем двух приемников геодезического уровня (JVD 0081 и 0082) и двух высокочувствительных приемников (UBX 0867 и 1771) во время тест-драйв.

40000 9065 1
GPS L1 ГЛОНАСС L1 Galileo L1
C L Передаточное отношение [%] C L Передаточное отношение [%] C L Передаточное отношение [%]
0 9165 916,554 916,5540 9165 0 37,144 37,144 0 28,201 28,201 0
JVD 0082 39,795 3
28,177 0
UBX 0867 46,405 35,368 –24 45,301 33,940–25 33,884

4

4

4

0
36,201 –25 46,028 33,986 –26 34,475 28,111–18

В зависимости от анализируемой системы GNSS приемники UBX записывают на 17–26% меньше фазы несущей, чем наблюдения кода, в то время как приемники JVD записывают точно такое же количество наблюдений кода и фазы.Вычисленные DD находятся в диапазоне C / N0 от 25 до 54 дБ-Гц, что приводит к предположению, что проанализированные приемники UBX не способны непрерывно отслеживать наблюдения фазы несущей в сложных ситуациях и сценариях с низким C / N0.

изображает кумулятивные функции распределения (CDF) для DD фазы несущей на разных частотах. При исследовании DD JVD 95% значений для GPS, ГЛОНАСС и Galileo ниже 2, 2,8 и 1,7 мм соответственно. Для DD UBX 95% значений для GPS, ГЛОНАСС и Galileo ниже 4.8, 5,6 и 4,7 мм соответственно. Чтобы получить представление о качестве фаз несущих на других частотах, CDF частот L2 и частот L5 показаны на b, c. Это возможно только для анализа с помощью комбинации JVD, поскольку приемники UBX отслеживали только одну частоту. По сравнению с результатами L1 качество DD L2 и L5 относительно низкое. Для GPS и ГЛОНАСС L2 DD 95% значений меньше примерно 3,6 и 5,3 мм соответственно. Для GPS и Galileo L5 DD 95% значений ниже 4.8 и 3,8 мм соответственно. Эти результаты подчеркивают, что качество наблюдений фазы несущей GPS и Galileo схоже, тогда как качество наблюдений фазы несущей ГЛОНАСС хуже по сравнению.

Кумулятивные функции распределения (CDF) для DD фазы несущей от всех спутников на частотах L1 ( a ), L2 ( b ) и L5 ( c ) для GPS (синий), ГЛОНАСС (зеленый) и Galileo ( красный). Комбинация геодезических оценок отображается сплошными линиями, комбинация высокой чувствительности — пунктирными линиями.

4.2. Пример летных испытаний

Все последующие анализы, касающиеся летного эксперимента, были выполнены с использованием двух комбинаций приемников, работающих в режиме с нулевой базой. Первая комбинация находится между приемниками JVD 0081-0082, оба из которых связаны через внешние атомные часы, а вторая комбинация — между приемниками JVD 0993-0346, при этом приемник 0346 управляется через его внутренний TCXO. Эти две комбинации были выбраны для наблюдения каких-либо конкретных изменений уровней шума из-за различных конфигураций часов.Кроме того, оценки DD со всех спутников в созвездии накладываются на каждый подзаголовок.

изображает DD фазы несущей L1 движущейся нулевой базовой линии для GPS, ГЛОНАСС и Galileo по отношению ко времени GPS. Они вычисляются, как объяснено в разделе 3. Дисперсия шума системы GNSS (GPS и ГЛОНАСС) почти одинакова для обеих комбинаций приемников, за исключением того, что количество выбросов для первой комбинации приемников выше для наблюдений ГЛОНАСС по сравнению со вторым приемником. комбинация.Это в основном связано с большим количеством выбросов, удаленных для второй комбинации приемников во время процесса оценки DD, по сравнению с первым (см.). За исключением нескольких выбросов, отклонение фазы несущей GPS L1 составляет около 2 мм для всей траектории полета. В случае фазы несущей L1 ГЛОНАСС шум немного выше в начале летного эксперимента (сегмент: start-A) по сравнению с другими полетными сегментами первой комбинации приемников. На участке (старт-A) самолет находился в неподвижном состоянии около 6 минут, а затем двигался с небольшой скоростью в сторону взлетно-посадочной полосы.Вдоль всей траектории наблюдаемые внезапные шумные всплески соответствуют развороту полета, что привело к изменению крена полета и углов курса. В целом отклонение для ГЛОНАСС составляет около 5 мм для обеих комбинаций приемников, что в 2,5 раза выше по сравнению с GPS. Для первой комбинации приемников разброс фазового шума несущей Galileo L1 составляет около 2 мм для всей траектории полета, аналогично GPS. Также видно, что значения фазовых шумов Galileo L1 немного выше на верхней высоте (сегмент E-G) по сравнению с таковыми на меньшей высоте (сегмент A-D).Наконец, нет никаких существенных изменений, характерных для системы GNSS, которые наблюдаются в рассчитанных уровнях шума во время высокодинамичных маневров (сегменты C-D, F-G).

DD наблюдений фазы несущей L1 со всех спутников для различных комбинаций приемников относительно времени летного эксперимента. Уровни шума GPS, ГЛОНАСС и Galileo показаны синим, зеленым и красным цветами соответственно. Черные пунктирные вертикальные линии обозначают разные фазы полета, которые описаны в.

Подобно городскому случаю, основной шум процесса наблюдений фазы несущей анализируется с помощью модифицированных ADEV.Расчетные значения DD от одной пары спутников каждой системы GNSS и двух различных комбинаций приемников используются для вычисления модифицированных значений ADEV и показаны в a. Соответствующие углы возвышения разных спутников показаны на b. Видно, что шумовой процесс наблюдений фазы несущей L1 от различных систем в значительной степени напоминает белый фазовый шум (WPM) до τ = 500 [с]. Более того, комбинации приемников с разными конфигурациями часов не оказывают большого влияния на качество наблюдений.Также отчетливо виден более высокий уровень шума наблюдения ГЛОНАСС L1 по сравнению с GPS и Galileo L1.

Модифицированные ADEV DD фазы несущей L1 для одной пары спутников каждой системы GNSS с двумя различными комбинациями приемников в ( a ), соответствующие углы возвышения спутников в ( b ). Сплошные и пунктирные линии обозначают опорный и другой спутник в ( b ) соответственно.

Анализируется стохастическое поведение DD фазы несущей L1 GNSS в связи с углами возвышения спутников и принятым C / N0 соответствующих сигналов.показывает DD для фаз несущих GPS, ГЛОНАСС и Galileo L1 в отношении углов места спутника. Все внезапные всплески, наблюдаемые в рассчитанной GNSS DD при углах возвышения более примерно 10∘, связаны с записанными данными с восходящего спутника или непосредственно перед потерей видимости спутника, который уже находится в поле зрения. Для всех вычисленных DD наблюдается зависимость от высоты. Стандартное отклонение диапазона фаз, зависящее от угла места h , можно аппроксимировать с помощью следующей экспоненциальной функции [13]:

σ (h) = a0 + a1 · exp − hh0

(6)

где a0, a1 — постоянные члены; h0 представляет собой масштабный коэффициент для угла места.Значения, перечисленные в, получены эмпирически для моделирования всех оцененных DD системы фазы несущей L1 со всеми комбинациями приемников. В качестве примеров убывающие экспоненциальные функции для двух различных комбинаций приемников, оцененных с использованием параметров в, можно увидеть на всех графиках. Соответствующая возрастающая экспоненциальная функция, показанная на рисунке, эквивалентна изменению знака убывающей экспоненциальной функции. Исходя из этого, схема взвешивания, зависящая от высоты, смоделированная как экспоненциальная функция, оправдана для приложений аэронавигации, требующих более высокой точности и точности.

DD наблюдений фазы несущей L1 для различных комбинаций приемников с учетом углов места спутников. Уровни шума GPS, ГЛОНАСС и Galileo показаны синим, зеленым и красным цветами соответственно. Сплошные черные кривые представляют собой экспоненциальные функции, которые соответствуют расчетным DD.

Таблица 6

Эмпирические значения параметров экспоненциальной функции — приемники JVD Delta.

Тип наблюдения a0 [мм] a1 [мм] h0 [∘]
GL1C 1.1 3,2 15
RL1C 3,2 5,5 20
EL1X 1,2 3 15 0
для GPS-навигатора Galon 2 и 917ASS 917 фазы по отношению к C / N0 принятого сигнала от разных спутников показаны на. Замечено, что поведение DD GPS L1 одинаково для обеих комбинаций приемников. В случае ГЛОНАСС значения DD варьируются в значительной степени случайным образом в зависимости от отношения C / N0, и никакой корреляции не наблюдается для обеих комбинаций приемников.Зависимость C / N0 видна для GPS и Galileo, где большое C / N0 в большинстве случаев приводит к меньшим уровням шума и наоборот. Как объяснено в сценарии зависимости от высоты, несколько выбросов, наблюдаемых при большом C / N0, связаны с добавлением нового видимого спутника или потерей видимости спутника во время экспериментальной кампании. Основываясь на анализе, схема взвешивания, зависимая от C / N0, также подходит для GPS и фазовых наблюдений Galileo L1 в воздушных приложениях.

DD наблюдений фазы несущей L1 для различных комбинаций приемников по отношению к принятому C / N0 от всех спутников.Уровни шума GPS, ГЛОНАСС и Galileo показаны синим, зеленым и красным цветами соответственно.

Чтобы увидеть шумовое поведение наблюдений фазы несущей L2 и L5 наряду с L1, DD вычисляются и анализируются с использованием функций CDF. a – c показывает CDF для наблюдений фазы несущей L1, L2 и L5 соответственно. Для обеих комбинаций приемников 95% значений DD для GPS, ГЛОНАСС и Galileo L1 меньше примерно 1,4, 4,6 и 1,5 мм соответственно. Точно так же для GPS и ГЛОНАСС L2 95% значений DD меньше примерно 2 и 4.7 мм соответственно. Наконец, для наблюдений GPS и Galileo L5 95% оценок DD меньше примерно 2,8 и 5,4 мм соответственно. Для других комбинаций приемников уровни шума почти аналогичны в отношении наблюдений фазы несущей L1, L2 и L5. Несмотря на то, что уровень шума немного выше для DD ГЛОНАСС L1 и L2, значения приемлемы в случае кинематической обработки данных. Наблюдение Galileo L5 значительно увеличивает уровень шума по сравнению с набором данных L1.

DDs CDF для наблюдений фазы несущей L1 ( a ), L2 ( b ) и L5 ( c ) со всех спутников разных систем с двумя различными комбинациями приемников.

Типы и фазы клинических исследований

Клинические испытания — это исследования новых лекарств, уже одобренных лекарств, устройств или других форм лечения. Во многих клинических испытаниях рассматриваются новые способы обнаружения, диагностики или измерения степени заболевания. Некоторые даже ищут способы предотвратить появление болезней.Исследователи до сих пор используют добровольцев для тестирования этих методов, и применяются те же правила.

Врачи используют клинические испытания, чтобы узнать, работает ли новое лекарство, лечение или комбинация, и безопасно ли их использовать для людей. Клинические испытания важны для разработки новых методов лечения серьезных заболеваний, таких как рак. Все новые методы лечения должны пройти клинические испытания, прежде чем они будут одобрены Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA). Для завершения клинических испытаний рака могут потребоваться годы. Могут потребоваться месяцы, если не годы, чтобы увидеть, дает ли лечение рака то, для чего оно предназначено.

Зачем нужны клинические испытания?

Клинические испытания показывают нам, что работает (а что нет) в медицине и здравоохранении. Это лучший способ узнать, что работает при лечении таких заболеваний, как рак. Клинические испытания призваны ответить на некоторые важные вопросы:

  • Работает ли новое лечение у людей? Если это так, врачи также будут проверять, насколько хорошо это работает. Это лучше, чем применяемое сейчас лечение? Если не лучше, так ли он хорош и вызывает меньше побочных эффектов? Или это работает у некоторых людей, которым текущие методы лечения не помогают?
  • Безопасно ли новое лечение? Ни одно лечение или процедура, даже если они уже широко используются, не обходятся без риска.Но перевешивают ли преимущества нового лечения риски?
  • Лучше ли это лечение, чем стандартное лечение этого заболевания? Клинические испытания помогают показать, работает ли новый препарат, лечение или новая комбинация лечения лучше, чем то, что используется сейчас.

Чтобы ответить на эти вопросы, давая как можно меньше людей неизвестное лечение, часто требуется несколько клинических испытаний на разных «фазах». Каждый этап предназначен для ответа на определенные вопросы, обеспечивая при этом максимальную безопасность участников.Результаты этих фаз показывают, является ли новое лекарство или лечение достаточно безопасным и эффективным.

Доклинические (или лабораторные) исследования

Клинические испытания проводятся только после того, как доклинические данные свидетельствуют о том, что новый препарат или лечение, вероятно, будут безопасными и будут работать на людях.

Доклинические исследования, также называемые лабораторными исследованиями, включают:

  • Клеточные исследования: часто это первые тесты нового лечения. Чтобы увидеть, может ли это сработать, исследователи ищут влияние нового лечения на раковые клетки, выращенные в лабораторной посуде или пробирке.Эти исследования могут проводиться на раковых клетках человека или раковых клетках животных.
  • Исследования на животных: методы лечения, которые выглядят многообещающими в клеточных исследованиях, проверяются на раковых заболеваниях у живых животных. Это дает исследователям представление о том, насколько безопасно новое лечение для живого существа.

Доклинические исследования дают много полезной информации, но не все, что необходимо. Люди и мыши могут сильно отличаться по способам усвоения, обработки и избавления от лекарств или лечения. Лечение, которое работает против рака у мышей, может работать или не работать у людей.Также могут быть побочные эффекты и другие проблемы, которые не проявлялись при лечении мышей, но могли проявляться у людей.

Если доклинические исследования завершены и лечение все еще кажется многообещающим, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) должно дать разрешение, прежде чем лечение может быть проверено людьми.

Заявка на новый исследуемый препарат (IND)

Прежде чем можно будет начать клиническое испытание, оно должно быть одобрено. Если исследователи хотят изучить лекарство на людях, в FDA необходимо подать заявку на новый исследуемый препарат или IND.Приложение IND должно содержать определенную информацию, например:

  • Результаты исследований, чтобы FDA могло решить, безопасно ли лечение для тестирования на людях.
  • Как производится лекарство, кто его производит, что в нем содержится, насколько оно стабильно и т. Д.
  • Подробные схемы запланированных клинических исследований, называемые протоколами исследований, рассматриваются, чтобы увидеть, могут ли люди подвергаться ненужному риску.
  • Подробная информация о группе клинических испытаний, чтобы узнать, обладают ли они знаниями и навыками для проведения клинических испытаний.

Спонсор исследования должен взять на себя обязательство получить информированное согласие от всех участников клинического исследования. Они также должны взять на себя обязательство о том, чтобы исследование было рассмотрено институциональным наблюдательным советом (IRB), и следовало всем правилам, необходимым для изучения исследуемых новых лекарств

Этапы клинических исследований

Клинические испытания обычно проводятся по этапам, которые дополняют друг друга. Каждый этап предназначен для ответа на определенные вопросы. Знание фазы клинического исследования важно, потому что это может дать вам некоторое представление о том, сколько известно об изучаемом лечении.Участие в каждой фазе клинического исследования сопряжено с преимуществами и рисками.

Несмотря на то, что проводятся клинические испытания устройств, а также других заболеваний и методов лечения, лекарства для онкологических больных используются в примерах фаз клинических испытаний, описанных здесь.

Клинические испытания фазы 0: изучение того, может ли и как новый препарат работать

Несмотря на то, что исследования фазы 0 проводятся на людях, этот тип исследований не похож на другие фазы клинических испытаний. Цель этого этапа — ускорить и упростить процесс утверждения лекарств.Исследования фазы 0 могут помочь исследователям выяснить, действуют ли лекарства так, как от них ожидают. Это может помочь сэкономить время и деньги, которые были бы потрачены на более поздние испытания.

Фаза 0 исследований использует только несколько небольших доз нового препарата у нескольких человек. Они могут проверить, достигает ли лекарство опухоли, как лекарство действует в организме человека и как раковые клетки в организме человека реагируют на лекарство. Людям, участвующим в этих исследованиях, могут потребоваться дополнительные тесты, такие как биопсия, сканирование и образцы крови, как часть процесса.

В отличие от других фаз клинических испытаний, у людей, участвующих в исследованиях фазы 0, почти нет шансов на пользу. Польза будет для других людей в будущем. А поскольку дозы лекарств низкие, риски для участников исследования меньше.

Исследования

фазы 0 не получили широкого распространения, и есть некоторые препараты, для которых они не были бы полезны. Исследования фазы 0 очень малы, часто с участием менее 15 человек, и препарат назначается только на короткое время. Они не являются обязательной частью тестирования нового лекарства.

Фаза I клинических испытаний: безопасно ли лечение?

Фаза I исследования нового лекарства обычно первые, в которой участвуют люди. Исследования фазы I проводятся для определения максимальной дозы нового лечения, которую можно безопасно применять, не вызывая серьезных побочных эффектов. Хотя препарат был протестирован в лабораторных условиях и на животных, побочные эффекты у людей неизвестны. Эти исследования также помогают решить, как лучше всего назначить новое лечение.

Ключевые моменты клинических испытаний I фазы

  • Первые несколько человек в исследовании получают очень низкую дозу лечения и за ними очень внимательно наблюдают.Если есть только незначительные побочные эффекты, следующие несколько участников получают более высокую дозу. Этот процесс продолжается до тех пор, пока врачи не найдут дозу, которая с наибольшей вероятностью подействует при приемлемом уровне побочных эффектов.
  • Испытания фазы I
  • также изучают, что препарат делает с организмом и что организм делает с ним.
  • Безопасность — главная забота. Исследовательская группа внимательно следит за людьми и следит за любыми серьезными побочными эффектами. Из-за небольшого числа людей в исследованиях фазы I редкие побочные эффекты могут не проявляться до более поздних фаз испытаний, когда лечение будет получать больше людей.
  • Хотя некоторым людям может быть выгодно их принимать, реакция на болезнь не является основной целью исследования фазы I,
  • Плацебо (неактивные препараты) не используются в исследованиях фазы I.
  • Испытания фазы I
  • обычно включают небольшое количество людей (до нескольких десятков).
  • Исследования фазы I
  • чаще всего включают людей с разными типами рака.
  • Эти исследования обычно проводятся в крупных онкологических центрах.

Испытания фазы I несут наибольший потенциальный риск.Но исследования фазы I действительно помогают некоторым пациентам. Для людей с опасными для жизни заболеваниями важно тщательно взвесить потенциальные риски и преимущества. Иногда люди решают присоединиться к испытаниям фазы I, когда все другие варианты лечения уже испробованы.

Фаза II клинических испытаний: работает ли лечение?

Если новое лечение признано безопасным в ходе клинических испытаний фазы I, проводится клиническое испытание фазы II, чтобы увидеть, работает ли оно при определенных типах рака. Польза, которую ищут врачи, зависит от цели лечения.Это может означать, что рак уменьшится или исчезнет. Или это может означать, что есть долгий период времени, когда рак не становится больше, или есть больше времени, прежде чем рак вернется. Согласно некоторым исследованиям, преимуществом может быть улучшение качества жизни. Многие клинические испытания направлены на то, чтобы выяснить, живут ли люди, получающие новое лечение, дольше, чем большинство людей без лечения.

Ключевые моменты клинических испытаний II фазы

  • Группа от 25 до 100 пациентов с одним и тем же типом рака получает новое лечение в ходе исследования фазы II.Их лечат с использованием той дозы и метода, которые были признаны наиболее безопасными и эффективными в исследованиях фазы I.
  • Обычно в клинических испытаниях фазы II все получают одинаковую дозу. Но некоторые исследования фазы II случайным образом распределяют людей в разные группы лечения. Эти группы могут получать разные дозы или получать лечение по-разному, чтобы увидеть, какой из них обеспечивает наилучший баланс безопасности и ответа.
  • Плацебо (неактивные препараты) не использовались в исследованиях фазы II.
  • Фаза II исследований может проводиться в крупных онкологических центрах, общественных больницах или даже в кабинетах врачей.

Большее количество пациентов получают лечение в исследованиях фазы II, поэтому могут наблюдаться менее частые побочные эффекты. Если лечение принесло пользу достаточному количеству пациентов, а побочные эффекты не так уж и плохи, начинается III фаза клинических испытаний.

Фаза III клинических испытаний: лучше ли это того, что уже есть?

Лекарства, которые показали свою эффективность в клинических испытаниях фазы II, должны пройти еще одну фазу, прежде чем они будут одобрены для общего использования. Клинические испытания фазы III сравнивают безопасность и эффективность нового лечения с существующим стандартным лечением.

Поскольку врачи еще не знают, какое лечение лучше, участников исследования часто выбирают случайным образом (так называемый рандомизированный ) для получения либо стандартного лечения, либо нового лечения. По возможности ни врач, ни пациент не знают, какое лечение получает пациент. Этот тип исследования называется двойным слепым исследованием . Более подробно рандомизация и ослепление обсуждаются позже.

Ключевые моменты клинических исследований III фазы

  • Большинство клинических исследований III фазы включают большое количество пациентов, по крайней мере, несколько сотен.
  • Эти исследования часто проводятся одновременно во многих местах по всей стране (или даже по всему миру).
  • Клинические испытания
  • фазы III, скорее всего, будут предлагаться в местных общественных больницах и кабинетах врачей.
  • Эти исследования, как правило, длятся дольше, чем исследования фаз I и II.
  • Плацебо
  • можно использовать в некоторых исследованиях фазы III, но они никогда не используются отдельно, если есть доступное лечение, которое работает. Иногда пациенту, которому случайным образом назначается плацебо для части исследования, в какой-то момент также будет предложено стандартное лечение.

Как и в других исследованиях, в клинических исследованиях III фазы за пациентами внимательно наблюдают на предмет побочных эффектов, и лечение прекращают, если с ними слишком трудно справиться.

Подача на одобрение FDA: Заявка на новое лекарство (NDA)

В Соединенных Штатах, когда клинические испытания фазы III (или иногда испытания фазы II) показывают, что новое лекарство более эффективно или безопаснее, чем текущее лечение, в Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) подается заявка на новое лекарство (NDA). для утверждения.FDA рассматривает результаты клинических испытаний и другую важную информацию.

На основании обзора FDA решает, одобрять ли препарат для использования у пациентов с заболеванием, на котором проводилось тестирование препарата. В случае одобрения новое лечение часто становится стандартом лечения, и новые препараты могут быть протестированы с ним, прежде чем они будут одобрены.

Если FDA считает, что необходимы дополнительные доказательства, чтобы показать, что преимущества нового лечения перевешивают его риски, оно может запросить дополнительную информацию или даже потребовать проведения дополнительных исследований.

Фаза IV клинических испытаний: что еще нам нужно знать?

Лекарства, одобренные FDA, часто наблюдаются в течение длительного периода времени в исследованиях фазы IV. Даже после тестирования нового лекарства на тысячах людей все эффекты лечения могут быть неизвестны. На некоторые вопросы, возможно, еще нужно ответить. Например, лекарство может получить одобрение FDA, поскольку было показано, что оно снижает риск рецидива рака после лечения. Но означает ли это, что те, кто его получит, с большей вероятностью проживут дольше? Есть ли редкие побочные эффекты, которые еще не наблюдались, или побочные эффекты, которые проявляются только после того, как человек принимает препарат в течение длительного времени? На ответы на эти вопросы может потребоваться гораздо больше времени, и они часто рассматриваются в клинических испытаниях фазы IV.

Ключевые моменты клинических исследований фазы IV

  • В исследованиях фазы IV изучаются препараты, уже одобренные FDA. Врачи могут выписывать лекарства пациентам, но для ответа на важные вопросы все же могут потребоваться исследования фазы IV.
  • В этих исследованиях могут участвовать тысячи человек.
  • Это часто самый безопасный тип клинических испытаний, потому что лечение уже много изучено и, вероятно, было назначено многим людям.Исследования фазы IV рассматривают безопасность с течением времени.
  • Эти исследования могут также рассматривать другие аспекты лечения, такие как качество жизни или экономическая эффективность.

Вы можете получить препараты, используемые в испытании фазы IV, не участвуя в исследовании. И лечение, которое вы получите в рамках исследования фазы IV, очень похоже на лечение, на которое вы могли бы рассчитывать, если бы вы получали лечение вне исследования. Но в исследованиях фазы IV вы помогаете исследователям больше узнать о лечении и оказании услуг будущим пациентам.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *