2)Электронно-дырочный p-n переход и его основные свойства.
Работа большинства полупроводниковых приборов основана на использовании p—n-перехода. Физически это приконтактный слой толщиною в несколько микрон разновесных кристаллов.
На границе раздела возникает внутреннее электрическое поле p-n перехода, которое будет тормозящим для основных носителей заряда и будет их отбрасывать от границы раздела.
Приложим внешнее напряжение плюсом к p-области. Внешнее электрическое поле направлено навстречу внутреннему полю p-n перехода, что приводит к уменьшению потенциального барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэтому через p-n переход будет протекать сравнительно большой ток, вызванный основными носителями заряда.
Такое включение p-n перехода называется прямым, и ток через p-n переход, вызванный основными носителями заряда, также называется прямым током. Считается, что при прямом включении p-n переход открыт. Если подключить внешнее напряжение минусом на p-область, а плюсом на n-область, то возникает внешнее электрическое поле, линии напряжённости которого совпадают с внутренним полем p-n перехода. В результате это приведёт к увеличению потенциального барьера и ширины p-n перехода. Основные носители заряда не смогут преодолеть p-n переход, и считается, что p-n переход закрыт. Оба поля – и внутреннее и внешнее — являются ускоряющими для неосновных носителей заряда, поэтому неосновные носители заряда будут проходить через p-n переход, образуя очень маленький ток, который называется обратным током. Такое включение p-n перехода также называется обратным.
Свойства p-n перехода.
К основным свойствам p-n перехода относятся:
— свойство односторонней проводимости;
— температурные свойства p-n перехода;
— частотные свойства p-n перехода;
— пробой p-n перехода.
Свойство односторонней проводимости p-n
Вольтамперной характеристикой (ВАХ) называется графически выраженная зависимость величины протекающего через p-n переход тока от величины приложенного напряжения. I=f(U).
Температурное свойство p-n перехода показывает, как изменяется
работа p-n перехода при изменении температуры
Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства p-n перехода определяются двумя видами ёмкости перехода:
— ёмкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной ёмкостью;
— диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.
Вывод: чем меньше величина ёмкости p-n перехода, тем на более высоких частотах он может работать.
Явление сильного увеличения обратного тока при определённом обратном напряжении называется электрическим пробоем p-n перехода.
Различают электрический (лавинный, туннельный) и тепловой пробои.
Глава 1. Образование р-n перехода и его свойства
Электронные полупроводниковые
приборы
(Конспект лекций)
2010
Электронные полупроводниковые приборы
Содержание
1. Образование p – n перехода и его свойства.
1.1. Полупроводник, виды проводимости в полупроводнике, рекомбинация в полупроводнике.
1.2.Образование p–n перехода, его свойства, вольтамперная характеристика.
1.3. Схема замещения, частотные и температурные свойства p – n перехода.
2. Полупроводниковые диоды.
2.1 Понятие, конструкции p – n перехода диодов, маркировка диодов.
2.2 Выпрямительный диод
2.3 Высокочастотный диод
2.4 Импульсный диод
2.5 Стабилитрон
2.6 Стабистор
2.7 Варикап
2.8 Тунельный диод
3. Транзисторы
3.1 Типы транзисторов, классификация, маркировка транзисторов.
3.2. Биполярные транзисторы.
3.2.1. Устройство, конструкция, принцип действия биполярного
транзистора.
3.2.2. Схемы включения биполярного транзистора.
3.2.3 Вольтамперные характеристики биполярного транзистора.
3.2.4 Динамические характеристики биполярного транзистора, включённого
по схеме с ОЭ.
3.2.5 Коэффициенты усиления биполярного транзистора.
3.2.6 Эквивалентные схемы биполярного транзистора
3.2.7 Параметры биполярного транзистора.
3.2.8 Составной биполярный транзистор.
3.3 Полевой транзистор.
3.3.1 Понятие, элементы и типы полевых транзисторов.
3.3.2 Конструкции и принцип действия полевых транзисторов.
3.3.3 Условные обозначения и схемы включения полевых транзисторов.
3.3.4 Вольтамперные характеристики полевых транзисторов.
1.1. Полупроводник, виды проводимости в полупроводнике, рекомбинация в полупроводнике
При оценке свойств любого вещества одним из основных понятий является его валентность. Она характеризуется числом свободных электронов на внешней орбите атома вещества. Основываясь на валентности, все вещества подразделяются на проводники, изоляторы и полупроводники. Вещества, обладающие свойствами
Одним из главных свойств любого вещества является его удельное электрическое сопротивление, которое для проводника, полупроводника и изолятора соответственно лежит в следующих интервалах:
ρпров.=10-6 . . . 10-4 Ом·см.
ρ
ρизол.= 1010 . . . 1015 Ом·см.
Как видно, по величине удельного электрического сопротивления полупроводники занимают среднее положение между проводниками и изоляторами.
Для изготовления современных полупроводниковых приборов применяются кремний, германий, арсенид галлия и индий.
Электропроводящие свойства проводника определяются наличием в нём заряженных частиц, передвигающихся под действием электрического поля. В проводнике такими заряженными частицами являются электроны. Иногда проводимость, создаваемая электронами, называется
В полупроводнике кроме электронной проводимости имеет место дырочная проводимость. При этом каждая из этих проводимостей может быть собственной и примесной (рис. 1.1)
Рассмотрим понятия электронной и дырочной проводимости. Электронная проводимость определяется движением электронов. Из-за отрицательного заряда электрона эта проводимость называется проводимостью типа–n от английского слова negative – отрицательный. Механизм создания дырочной проводимости состоит в следующем (рис. 1.2).
В некоторый момент времени t1 электрон под действием поля E, сходит с внешней орбиты атома и атом превращается в ион с положительным зарядом. В этом случае говорят, что появилась «дырка», (на рис. 1.2 заштриховано), имеющая положительный заряд, т. е. свободное место для электрона. Под действием электрического поля Е в момент времени t2 электрон сходит с внешней орбиты близлежащего атома и занимает место «дырки». Произошло как бы перемещение «дырки». В следующий момент времени t3 электрон с соседнего атома занимает место этой «дырки» и создаётся «дырка» в другом атоме. Перемещение «дырки» продолжается. Так как «дырка», как ион, имеет положительный заряд, то этот вид проводимости был назван
Собственная и примесная проводимость.
Если полупроводник химически чистый (без примесей), то число свободных электронов равно числу дырок. В полупроводнике тогда имеет место и электронная и дырочная проводимость. Такая проводимость называется собственной проводимостью полупроводника.
Собственная проводимость не позволяет создать полупроводниковые приборы с нужными свойствами. Необходимо, чтобы в полупроводнике преобладала электронная или дырочная проводимость. Этого можно достичь, если в полупроводник ввести примесь. В качестве примесных материалов используются мышьяк, висмут, алюминий, галий, индий. В этом случае проводимость называется примесной. Примеси, вызывающие увеличение числа электронов, а значит создающие проводимость типа–n, называются донорными. Такими примесями являются мышьяк и висмут. Примеси, вызывающие увеличение числа «дырок», а значит создающие проводимость типа–p, называются акцепторными. Таким примесями являются алюминий, галий, индий.
Основные и не основные носители.
Те носители зарядов в полупроводнике с примесью, которых больше и которые определяют тип проводимости, называются основными носителями. Тогда носители противоположных зарядов, которых значительно меньше основных носителей, называются не основными носителями. Например, в полупроводнике типа–p основными носителями являются «дырки», а не основными электроны.
В полупроводнике, как отмечалось, периодически происходит объединение электронов и «дырок». Этот процесс называется рекомбинацией. В установившемся режиме, например, когда температура окружающей среды не измена, число генерированных носителей зарядов равно числу рекомбинированных, и концентрация носителей зарядов остаётся неизменной или равновесной. При изменении условий, например, той же температуры окружающей среды, это равновесие нарушается.
1.2. Образование p–n перехода, его свойства, вольтамперная характеристика
При соприкосновении (присоединении) двух полупроводников из одного материала (кремний или германий и т. д.), но с различной проводимостью, в месте их соединения появляется участок с особыми свойствами, который называетсяp–n переходом. Итак, p–n переходом называется область, лежащая в зоне соединения двух полупроводников из одного материала, но имеющих разную проводимость. На рис. 2.1,а показана конструкция p–n перехода, типы проводимостей полупроводников и их основные носители зарядов.
Как говорилось выше, в полупроводнике типа–p высокая плотность положительно заряженных частиц, а в полупроводнике типа–n высокая плотность отрицательно заряженных частиц. При соединении этих полупроводников возникает диффузионный процесс заряженных частиц. В результате положительно заряженные частицы из полупроводника типа–p проникают в полупроводник типа–n, а отрицательные частицы из полупроводника типа–n проникают в полупроводник типа–p. В окрестности соединения полупроводников происходят рекомбинационные процессы, т. е. взаимная нейтрализация положительных и отрицательных частиц. В результате этого в этой зоне концентрация заряженных частиц становится очень низкой и по электрическим свойствам приближается к диэлектрику. На рис. 2.1,а этот участок заштрихован как диэлектрик и его принято называть запирающим слоем. Толщина запирающего слоя обозначается буквой d. Электрическое сопротивление запирающего слоя составляет около 200 Ом, а сопротивление полупроводников p и n–проводимостей составляет около 5 Ом.
Однако, не все заряженные частицы рекомбинируются. Часть из них проникает в тело полупроводника за границы запирающего слоя, скапливаются там и создают объёмный заряд. В результате по границам запирающего слоя создаются объёмные заряды в полупроводнике типа–p отрицательной полярности, а в полупроводнике типа–n положительной полярности и между ними возникает электрический потенциал, препятствующий (тормозящий) диффузионному процессу. В результате диффузионного процесса происходит нарастание объёмных зарядов, что приводит к увеличению разности потенциала между ними, а значит, к увеличению электрического поля, препятствующее диффузионному процессу. При определённом значении величин объёмных зарядов тормозящее электрическое поле становится на столько значительным, что заряженные частицы не могут преодолеть его, и диффузионный процесс останавливается. Разность между потенциалами объёмных зарядов принято называть потенциальным барьером и обозначать как Δφ. Величину потенциального барьера ещё называют контактной ЭДС и обозначают как Ек. Величина контактной ЭДС зависит от количества примесей в полупроводниках. Увеличение количества примесей увеличивает число основных носителей, а значит, увеличивает Ек. Обычно величина контактной ЭДС составляет десятые доли вольт и имеет значения:
Ек=0,3 . . . 0,7 В.
Необходимо отметить, что установившееся равновесие, отображающееся в ширине запирающего слоя и величине контактной ЭДС, носит режим динамического равновесия. Так, часть заряженных частиц, формирующих объёмный заряд, рекомбинируют, что приводит к снижению величины объёмного заряда, а значит к снижению потенциального барьера. Это снижает тормозящее действие поля, что создаёт условие для дополнительного проникновения заряженных частиц в объёмные заряды и восстановления их до прежнего уровня. Аналогичные динамические процессы имеют место и в запирающем слое.
В установившемся динамическом режиме p–n переход, как было рассмотрено, характеризуется наличием запирающего слоя с изоляционными свойствами и расположенными с обеих сторон от него объёмными зарядами с противоположными знаками. Это всё вместе свойственно и конденсатору (рис. 2.1,б), который состоит из двух пластин, между которыми находится изоляция, а на пластинах которого находятся заряды противоположной полярности. В связи с этим p–n переход характеризуется ещё определённой электрической ёмкостью, которую принято называть барьерной ёмкостью и обозначать Сб.
Итак, как следует из рассмотренного, p–n переход характеризуется наличием запирающего слоя, потенциального барьера и барьерной ёмкости.
При лабораторных условиях эксплуатации приборов температура такова, что некоторое число основных носителей зарядов в каждой из областей обладает энергией, достаточной для преодоления потенциального барьера и перехода из одного полупроводника в другой. Образуются соответственно электронная (In диф) и дырочная (Ip диф) составляющие диффузионного тока. Электрическое поле, создающее потенциальный барьер для основных носителей, является ускоряющим для неосновных носителей, которые проходят через p–n переход и создают электронную (In др) и дырочную (Ip др) составляющие дрейфового тока. Диффузионный и дрейфовый токи имеют противоположные направления. В изолированном полупроводнике (без внешней цепи) результирующий ток должен равняться нулю, т. е. устанавливается динамическое равновесие токов, чему соответствует следующее уравнение:
In – In др + Ip – Ip др = 0 (1.1)
Вольтамперная характеристика.
Электрические свойства p-n перехода определяются полярностью приложенного напряжения. Различают прямое и обратное включение p-n перехода. Под прямым включением понимается такое, при котором положительный потенциал источника подключен к полупроводнику с положительной проводимостью (типа–p), а отрицательный потенциал источника подключен к полупроводнику с отрицательной проводимостью (типа–n). Изменение полярности подключения источника к p–n переходу приводит к обратному его включению. Рассмотрим электрические процессы в p–n переходе при прямом и обратном включении.
На рис. 2.2,а показано прямое включение p–n перехода.
Рассмотрим электрические процессы при изменении приложенного прямого напряжения Unp от нулевого до некоторого значения. Прямое напряжение направлено встречно контактному Э.Д.С. Ек.
Если Unp<Ek, то величина потенциального барьера уменьшается. Это приводит к переходу через p–n переход основных носителей, что вызывает ток через p–n переход и во внешней цепи. Следовательно, увеличивается число основных носителей, проникающих через p–n переход, т. е. возрастает диффузионный ток p–n перехода и прямой ток будет равен разности диффузионного тока и дрейфового тока
Inp = Iдиф – Iдр > 0
Во внешней цепи появляется ток малой величины (рис. 2.2,б; точка а). При уменьшении потенциального барьера уменьшается ширина запирающего слоя d и уменьшается его омическое сопротивление из-за увеличения в нём числа заряженных частиц.
Дальнейшее увеличение прямого напряжения приводит к устранению потенциального барьера и вызывает заметное увеличение числа основных носителей заряда, проходящих через p–n переход, а значит, увеличивается ток во внешней цепи. Заполнение запирающего слоя основными носителями приводит к его исчезновению (рассасыванию). Теперь сопротивление p–n перехода определяется контактным сопротивлением двух полупроводников, которое равно около 0,5 Ом и омическим сопротивлением ПП (рис. 2.2,б; точка б). В этом случае сопротивление всей цепи определяется сопротивлением полупроводниковой области каждого из полупроводников и, с учётом контактного сопротивления, равно 5*2+0,5=10,5 Ом. Учитывая, что контактное сопротивление имеет малое значение, его величиной обычно пренебрегают.
Дальнейшее увеличение прямого напряжения вызывает увеличение тока в цепи, значение которого определяется по закону Ома и зависит от величины Unpи величины омического сопротивления полупроводников (рис. 2.2,б; участок б–в). График представленный на рис. 2.2,б называется вольтамперной характеристикой p–n перехода при прямом включении.
При обратном включенииp–n перехода (рис. 2.3,а) положительный потенциал источника подключается к полупроводнику с отрицательными основными носителями (проводимость типа–n), отрицательный потенциал источника подключается к полупроводнику с положительными основными носителями (проводимость типа–p). В этом случае направление контактной ЭДС (Ек) и приложенного обратного напряжения (Uобр) совпадают. Величина потенциального барьера в зоне контакта полупроводников равна сумме этих напряжений. Увеличение Uобр от нулевого значения вызывает увеличение числа не основных носителей, проходящих через p–n переход, что ведёт к некоторому увеличению обратного тока (рис. 2.3,б; участок о–а). Не останавливаясь на подробностях физических процессов, следует отметить, что при обратном напряжении увеличивается ширина запирающего слоя и его омическое сопротивление. На этом интервале большая часть не основных носителей (которых на много меньше числа основных носителей) участвует в создании обратного тока. Дальнейшее увеличение обратного напряжения незначительно увеличивает обратный ток (рис. 2.3,б; участок а–б). Последующее увеличение обратного напряжения вызывает внутреннюю электростатическую эмиссию (зенеровский пробой), т. е. срыв электронов с внешних орбит с последующей ударной ионизацией (лавинный пробой). В полупроводниках появляется большое число не основных носителей, что ведёт к возрастанию обратного тока. Следствием его может быть разогрев полупроводника и его тепловой пробой (тепловое разрушение).
На рис. 2.4 приведена вольтамперная характеристика p–n перехода при прямом и обратном напряжении. Из неё видно, что p–n переход при прямом напряжении имеет малое сопротивление. Это приводит к тому, что при малом прямом напряжении (доли и единицы вольт) через него протекает большой ток. При обратном напряжении сопротивление p–n перехода велико и при десятках вольт ток не превышает доли ампер. Это свойство p–n перехода называется свойством однонаправленности – пропускать ток в одном направлении и не пропускать ток в обратном направлении, т. е. иметь малое сопротивление при одной полярности напряжения (прямое включение) и иметь высокое сопротивление при противоположной полярности напряжения (обратное включение).
Сравнивая электрические свойства p–n перехода кремния и германия (рис. 2.5) следует отметить, что при положительном напряжении ВАХ кремния более крутая чем у германия.
Обратный ток у кремния заметно меньше обратного тока германия. Эти свойства учитываются как при построении ПП приборов, так и при применении ППП одного типа, но выполненных из разных материалов.
1.3. Схема замещения, частотные и температурные свойства p–n перехода
Каждый полупроводниковый прибор (диоды, транзисторы) содержит хотя бы один p–n переход. При расчёте электрических цепей, содержащих полупроводниковый прибор, последний должен быть представлен в виде схемы замещения, которая отображает его свойства. Основой схемы замещения полупроводникового прибора является схема замещения p–n перехода (рис. 1.7).
В схеме замещения через rp и rn обозначены сопротивления участков полупроводников до p–n перехода соответственно для полупроводников с проводимостью типа–p и типа–n. Через rд обозначается сопротивление p–n перехода, величина которого зависит от полярности приложенного напряжения, как было рассмотрено выше. Через Сб обозначается барьерная ёмкость p–n перехода.
Наличие барьерной ёмкости в p–n переходе влияет на его частотные свойства. При работе полупроводникового прибора к его p–n переходам прикладывается переменное напряжение с определенной частотой. Как известно, сопротивление конденсатора определяется по формуле:
,
где
На низких частотах при обратном напряжении rд << xc и сопротивление параллельно соединенных rд и Cб определяется сопротивлением rд (т. к. сопротивление xc → ∞). Этому случаю соответствует ВАХ p–n перехода на рис. 1.8 при f1. В этом случае p – n переход сохраняет свои однонаправленные свойства.
При увеличении частоты сигнала сопротивление барьерной емкости уменьшается, что ведет к возникновению обратного тока через нее. В результате полный обратный ток между выводами схемы замещения p–n перехода будет равен сумме токов через rд и Cб. Это ведет к увеличению обратного тока. Дальнейшее увеличение частоты ведет к еще большому увеличению обратного тока, что приводит к ухудшению однонаправленных свойств p–n перехода. В связи с этим для каждого полупроводникового прибора указывается максимально допустимая частота, при которой, входящие в него p–n переходы не теряют однонаправленные свойства, т. е. обратный ток не превышает допустимого значения.
Прямой ток, т. е. ток при прямом включении p–n перехода, практически не изменяется при увеличении частоты, так как сопротивление rд при прямом включении на много меньше сопротивления барьерной емкости.
Свойства p–n перехода существенно зависят от температуры окружающей среды, а значит и температуры p–n перехода. При увеличении температуры возрастает генерация пар носителей зарядов, т. е. увеличивается число основных носителей зарядов. Это приводит к увеличению прямого тока при неизменной величине прямого напряжения. Очевидно, что с увеличением температуры увеличивается число и не основных носителей заряда, что заметно увеличивает обратный ток p–n перехода (рис. 1.9).
Увеличение обратного тока ухудшает однопроводные свойства p–n перехода. В этом состоит основное отрицательное влияние повышения температуры на свойства p–n перехода.
Для различных полупроводниковых материалов различны пределы температуры нагрева, которые определяются допустимым значением обратного тока. Для германия он составляет +(80÷100)˚C, а для кремния +(150÷200)˚C. Видно, что кремний более стабилен к нагреву.
Максимально допустимое минусовое воздействие температуры определяется теоретически энергией ионизации донорных и акцепторных примесей и достигает -200˚C. Практически, исходя из реальных климатических условий, предельное значение отрицательной температуры для германия и кремния берется в пределах –(60÷70)˚C.
Электронно-дырочный переход и его свойства
Подавляющее большинство современных полупроводниковых приборов функционируют благодаря тем явлениям, которые происходят на самих границах материалов, имеющих различные типы электропроводности.
Полупроводники бывают двух типов – n
и p
. Отличительной особенностью полупроводниковых материалов n
-типа является то, в них в качестве носителей электрического заряда выступают отрицательно заряженные электроны. В полупроводниковых материалах p
-типа эту же роль играют так называемые дырки, которые заряжены положительно. Они появляются после того, как от атома отрывается электрон, и именно поэтому и образуются положительный заряд.
Для изготовления полупроводниковых материалов n
-типа и p
-типа используются монокристаллы кремния. Их отличительной особенностью является чрезвычайно высокая степень химической чистоты. Существенно изменить электрофизические свойства этого материала можно, внося в него совсем незначительные, на первый взгляд, примеси.
Символ «n
», используемый при обозначении полупроводников, происходит от слова «negative» («отрицательный»). Главными носителями заряда в полупроводниковых материалах n
-типа являются электроны. Для того чтобы их получить, в кремний вводятся так называемые донорные примеси: мышьяк, сурьму, фосфор.
Символ «p
», используемый при обозначении полупроводников, происходит от слова «positive» («положительный»). Главными носителями заряда в них являются дырки. Для того чтобы их получить, в кремний вводятся так называемые акцепторные примеси: бор, алюминий.
Число свободных электронов и число дырок в чистом кристалле полупроводника совершенно одинаково. Поэтому когда полупроводниковый прибор находится в равновесном состоянии, то электрически нейтральной является каждая из его областей.
Возьмем за исходное то, что n
-область тесно соединена с p
-областью. В таких случаях между ними образуется переходная зона, то есть некое пространство, которое обеднено зарядами. Его ёщё называют «запирающим слоем», где дырки и электроны, подвергаются рекомбинации. Таким образом, в месте соединения двух полупроводников, которые имеют различные типы проводимости, образуется зона, называемая p-n переходом.
В месте контакта полупроводников различных типов дырки из области p
-типа частично следуют в область n
-типа, а электроны, соответственно, – в обратном направлении. Поэтому полупроводник p
-типа заряжается отрицательно, а n
-типа – положительно. Эта диффузия, однако, длится только до тех пор, пока возникающее в зоне перехода электрическое поле не начинает ей препятствовать, в результате чего перемещение и электронов, и дырок прекращается.
В выпускаемых промышленностью полупроводниковых приборах для использования p-n перехода к нему необходимо приложить внешнее напряжение. В зависимости от того, какими будет его полярность и величина, зависит поведение перехода и проходящий непосредственно через него электрической ток. Если к p
-области подключается положительный полюс источника тока, а к n
-области – полюс отрицательный, то имеет место прямое включение p-n перехода. Если же полярность изменить, то возникнет ситуация, называемая обратным включением p-n перехода.
Прямое включение
Когда осуществляется прямое включение p-n перехода, то под воздействием внешнего напряжения в нем создается поле. Его направление по отношению к направлению внутреннего диффузионного электрического поля противоположно. В результате этого происходит падение напряженности результирующего поля, а запирающий слой сужается.
Вследствие такого процесса в соседнюю область переходит немалое количество основных носителей заряда. Это означает, что из области p
в область n
результирующий электрический ток будет протекать дырками, а в обратном направлении – электронами.
Обратное включение
Когда осуществляется обратное включение p-n перехода, то в образовавшейся цепи сила тока оказывается существенно ниже, чем при прямом включении. Дело в том, что дырки из области n
будут следовать в область p
, а электроны – из области p
в область n
. Невысокая сила тока обуславливается тем обстоятельством, что в области p мало электронов, а в области n, соответственно, – дырок.
Таким образом, при обратном включении полупроводникового прибора в цепь, переход через контакт двух областей осуществляется с помощью неосновных носителей заряда, количество которых совсем невелико. Поэтому электрическое сопротивление оказывается достаточно большим, а проводимость – незначительной. Это означает, что возникает запирающий слой.
PN-переход | Свойство PN-перехода
Из первой части статьи мы с вами узнали, что транзисторы состоят из P и N полупроводниковых материалов. В настоящее время PN-переход спаивается по специальной технологии, что конечно же, увеличивает проводимость для электрического тока. Ширина этой спайки очень мала и достигает одну тысячную миллиметра.
Свойство PN-перехода
Думаю, будет излишним рассказывать как на физическом уровне работает P-N переход. Это долго, муторно и непонятно. Да и вам это точно не пригодится). Самое главное свойство P-N перехода – это односторонняя проводимость! Односторонняя ЧТО? ОДНОСТОРОННЯЯ ПРОВОДИМОСТЬ. Но что означает это словосочетание?
Давайте представим себе воронку, наподобие этой:
С какой стороны нам будет удобней наливать жидкость? Думаю, что сверху, не так ли? Тем самым мы переливаем нашу жидкость далее в какой-либо сосуд.
Ну а что будет, если мы перевернем нашу воронку и будем наливать жидкость через узенькую трубочку таким же напором? Совсем малюсенькая часть жидкости попадет через узкую трубочку и окажется по ту сторону воронки. Остальная же часть тупо прольется мимо воронки.
А давайте теперь на секундочку представим, что вместо жидкости мы будем “наливать” электрический ток. С широкой стороны воронки ток прекрасно зайдет и потечет дальше через узенькую трубочку, а если перевернуть воронку совсем малюсенькая часть электрического тока протиснется на другой конец воронки, остальная же часть электрического тока “прольется” мимо воронки.
Так вот, дорогие мои читатели, P-N переход работает точно таким же способом, как и эта воронка! P – это широкая часть воронки, N – узкая часть воронки, ну то есть та самая тонкая трубочка.
Таким образом, подавая на “воронку” полупроводника P, плюс от источника питания (это может быть батарейка или Блок питания ) , а к N-полупроводнику, к узкой трубочке воронки, минус, то у нас ток течет как ни в чем не бывало. Но как только мы поменяем полярность, то есть подадим на P минус, а на N плюс, то у нас ток никуда не потечет. То есть цепь будет находиться в обрыве.
Диод, как простой PN-переход
А вам знаком вот такой радиоэлемент?
а вот его схематическое изображение
Да, все верно – это Полупроводниковый диод. А знаете ли вы, что диод состоит из самого обычного P-N перехода? Можем даже вот так нарисовать диод:
Проведем опыт. Возьмем простой советский диод марки Д226:
Интересно, что же внутри у него? На наждаке стачиваем одну треть корпуса диода, чтобы не повредить внутренности:
Интересно, где же этот PN-переход? С помощью цифрового микроскопа Prima Expert M100 увеличиваем наш парированный диод и видим кристалл кремния. В красном кружочке я пометил этот самый кристалл.
Судя по книге Шишкова “Первые шаги в радиоэлектронике”, PN-переход находится где-то здесь:
Хотя я увидел там только одну пластинку кремния. Видать полупроводники P и N сплавлены в один бутербродик. Короче говоря, главное работает, остальное по барабану) .
Итак, классика жанра… Как вы видите на этой картинке, диод имеет анод и катод. Анод – это P полупроводник, катод – это N полупроводник. Все элементарно и просто.
Односторонняя проводимость PN-перехода
Далее проведем классический опыт, который описывается во всех учебниках физики. Собираем цепь из Блока питания, лампочки и нашего диода вот по такой схеме (снизу перечеркнутый кружочек – это лампочка).
Теперь собираем эту схемку в реале. Красный щуп – это плюс от блока питания, черный щуп – это минус от блока питания.
Видим, что лампочка на 12 Вольт загорелась. Это означает, что электрический ток течет через диод как ни в чем не бывало.
Теперь меняем щупы местами и собираем вот по такой схеме:
Собираем схему в реале. Подаем напряжение на щупы
Лампочка не горит. Ну ладно, не переживайте, ведь мы для себя сейчас открыли важнейшее свойство диода, а следовательно и PN-перехода! В одном направлении диод пропускает электрический ток, если подать на его анод плюс, а на катод минус. А если подать на анод минус, а на катод плюс – диод не пропускает электрический ток.
Как проверить целостность PN-перехода
Как проверить целостность PN-перехода, а соответственно и диода? Для этого ставим крутилку на Мультиметр е в режим прозвонки вот на этот значок :
В этом режиме измеряется падение напряжения. Прямое падение напряжения для кремниевых диодов составляет значение от 0,5 Вольт и до 0,7 Вольт, а для германиевых 0,3-0,4 Вольта.
Цепляем анод у диода к положительному щупу мультиметра (красный Щуп), а катод цепляем к отрицательному щупу (черный щуп):
Итак, на дисплее мультика мы видим так называемое прямое падение напряжения PN-перехода. В данном случае оно равно 554 милливольта или 0,55 Вольт.
Если поменять щупы местами, то на дисплее мультиметра высветится единичка. Это значит, что падение напряжения в данном случае не влазит в диапазон измерения мультиметра в функции прозвонки. При функции “прозвонка” можно наблюдать падение напряжения только в диапазоне от 0 и до 1999 милливольт ;-). Мультиметр же выдает 2,8-3 Вольта в этом режиме.
Ну что же, диод у нас хоть и раздраконенный моими ручонками, но целый 😉 Тот же самый опыт я описывал в статье Как проверить диод мультиметром.
Зависимость падения напряжения на PN-переходе от температуры
Также у PN-перехода есть очень интересное свойство. Его прямое падение напряжения зависит от температуры.
Вот прямое падение напряжения на диоде при обычной комнатной температуре: 554 милливольта.
Начинаем жарить Паяльным феном при 200 градусах по Цельсию и смотрим на дисплей мультиметра:
Опа на 392 милливольт, а было 554 …
А давайте охладим наш диод. Для этого используем морозильную камеру холодильника:
615 милливольт…
При повышении температуры, прямое падение напряжения на PN-переходе понижается, а при понижении температуры – повышается. Из Закона Ома вы знаете, что чем меньше сопротивление (а следовательно и падение напряжение на нем), тем лучше течет электрический ток. Может быть, именно поэтому вся современная электроника очень плохо работает на холоде, но прекрасно работает в жаре, потому как почти полностью построена на полупроводниках.
Зависимость сопротивления прямого перехода от температуры, радиолюбители используют даже в своих схемах, например в схеме Умного вентилято ра.
продолжение ——->
<——– предыдущая статья
1.3. Полупроводниковый p-n–переход
Полупроводниковый p-n–переход образуется на границе раздела полупроводников p- и n–типов (рис. 1.4). Такая двухслойная p-n структура получается путем введения в один из слоев монокристалла кремния (германия) акцепторной примеси, а в другой – донорной примеси.
При этом при комнатной температуре атомы акцепторов и доноров можно считать полностью ионизированными, т.е. акцепторные атомы присоединяют к себе электроны, превращаясь в отрицательные ионы примеси, создавая при этом дырки, а донорные атомы отдают свои электроны, которые становятся свободными, превращаясь при этом в положительные ионы примеси. Кроме основных носителей зарядов в каждом из слоев имеются неосновные носители зарядов, создаваемые путем перехода электронов основного полупроводника из валентной зоны в зону проводимости. На практике распространение получили p-nструктуры с неодинаковой концентрацией внесенных акцепторнойN А и донорнойN Д примесей, т.е. неодинаковой концентрацией основных носителей заряда в слояхpp≈NAиnn≈N Д . Типичными являются структуры с
N А >>N Д (pp>>nn). На рис.1.4, б на примере германия показано распределение концентрации носителей заряда для таких структур, где принятыpp= 1018 см -3 ,nn= 1015см-3 .Концентрация собственных носителей заряда в германии при комнатной температуреni= 2,5 1013 см-3. Концентрация неосновных носителей заряда значительно меньше концентрации основных и составляетn р = 109 см-3 ,pn= 1012 см -3 .Вp-nструктуре на границе раздела слоёв из-за разности концентраций возникает диффузионное движение основных носителей заряда во встречном направлении. Дырки из р области диффундируют вn-область, электроны изn-области в р-область.
Дырки, вошедшие в n-область, рекомбинируют с электронами этой области, а электроны, вошедшие в р-область, — с дырками р-области. Вследствие диффузии и рекомбинации, в обеих приграничных областях концентрации основных носителей заряда снижаются.
Важнейшим следствием диффузионного движения носителей заряда через границу раздела полупроводников является появление в приграничных областях объемных зарядов, создаваемых ионами атомов примесей. Так в р-слое создается нескомпенсированный отрицательный объемный заряд за счет оставшихся отрицательных ионов акцепторных атомов примеси. В n-слое — нескомпенсированный положительный объемный заряд, создаваемый положительными ионами донорных атомов примеси. Толщина слоя объемного зарядаL 0 составляет доли микрометров. Этот слой ввиду отсутствия носителей заряда имеет очень высокое сопротивление (r = 10 9…1010Ом). Поэтому его еще называют запирающим слоем. Область объемного заряда называется p-n-переходом.
В виду наличия объемного заряда в p-nпереходе создаются внутреннее электрическое поле Е(x) и контактная разность потенциалов φк(x). Внутреннее электрическое поле с потенциальным барьером φ0(рис 1.4, в) создает тормозящее действие для основных носителей заряда, что приводит к снижению плотности диффузионного токаJДИФ. В тоже время оно является ускоряющим для несновных носителей, создающих встречный дрейфовый ток с плотностьюJДРчерезp-nпереход. Эти два тока уравнивают друг друга и результирующий ток черезp-nпереход равен нулю. Величина потенциального барьера (контактная разность потенциалов) составляет при комнатной температуре для германия
φ 0 = 0,3 …0,5 В, а для кремнияφ0 = 0,6 …0,8 В.
к=n-p=т,
где — тепловой (термический) потенциал: при комнатной
температуре (Т = 290 К ; т= 0,025 В;
k = 1,380662 · 10-23Дж/К — постоянная Больцмана;
е = 1,6021892 ·10-19Кл — заряд электрона;
Т — температура;
nnpp— концентрации основных носителей заряда в n- и р-областях соответственно;
ni— концентрация носителей заряда в собственном полупроводнике.
Подключение к полупроводниковой структуре внешнего напряжения UАприводит к изменению условий переноса зарядов черезp-nпереход. Внешнее напряжение может быть подключено в прямом (плюсом источника к выводу р-области и минусом кn-области) и обратном направлении (плюсом источника к выводуn-области и минусом кp-области). В случае прямого подключения источника, создаваемое им электрическое поле направлено встречно внутреннему полю в переходе, что приводит к уменьшению результирующего поля вp-nпереходе и снижению величины объемного заряда (поскольку объемному заряду вp-nпереходе будет отвечать результирующее напряжение φ0 –UA, меньшее, чем в отсутствии внешнего источника). Это приведет к увеличению диффузионного тока при неизменном дрейфовом токе. Плотность результирующего прямого тока черезp-nпереход
. (1.1)
С повышением внешнего напряжения диффузионный ток будет возрастать, так как потенциальный барьер будет уменьшаться, и все большее число основных носителей заряда будет способно преодолеть p-nпереход. Прямой токIAравен произведению плотности токаJAчерезp-nпереход на площадь его сеченияS.
При подключении к p-nпереходу источника внешнего напряжения в обратном направленииUB,создаваемое им электрическое поле будет направлено согласно с внутреннем полемp-nперехода. Это приведет к возрастанию потенциального барьера, который станет равным φ0 +UВ. Вследствие этого увеличится объемный заряд вp-nпереходе и его ширина, что затруднит прохождение основных носителей заряда. Произойдет снижение диффузионного тока при практически неизменном значении дрейфового тока. Однако теперь он будет превышать диффузионный ток. Через диод будет протекать ток в обратном направлении (обратный ток)
. (1.2)
Поведение диода описывается вольт-амперной характеристикой (ВАХ), приведенной на рис. 1.5.
Вольт-амперная характеристика может быть записана в аналитической форме :
IA = IS (e U/ φT — 1), (1.3)
где IS=SJДР — ток насыщения (тепловой ток), создаваемый неосновными носителями заряда; φт – тепловой потенциал. ПриU= 0, согласно выражения (1.3),IA= 0. При приложении прямого напряжения (U=UA> 0) единицей можно пренебречь и зависимостьIA=f(UA) будет иметь экспоненциальный характер. В случае обратного напряжения (U=UB< 0) можно не учитывать экспоненту и тогдаIA=IB= -IS.
При повышении прямого напряжения потенциальный барьер p-nперехода настолько снижается, что перестает влиять на прямой ток и ток будет линейно зависеть от напряжения. Этот участок прямой ветви ВАХ называется омическим и описывается приближенно уравнением
, (1.4)
где U0 – напряжение отсечки, равное отрезку, отсекаемому на оси напряжений линейной частью характеристики;— дифференциальное сопротивление, характеризующее наклон линейной части характеристики.
Обратная ветвь ВАХ
В кривой обратного тока на участке 0-1 возрастание IBпри увеличении обратного напряжения обусловлено эффектами генерации и лавинообразного размножения носителей заряда в объемеp-nперехода (при большом Uобрэлектроны приобретают большую скорость и выбивают из атомов кристаллической решетки новые электроны, которые также участвуют в ударной ионизации). На величину обратного тока влияет и температура окружающей среды. Для приближенных расчетов температурную зависимость обратного тока можно определить из эмпирического соотношения
IB (T) = IB (T0 ) 2 (T –T0 ) / 10 C . (1.5)
Из (1.5) следует, что обратный ток удваивается при повышении температуры на каждые 10 ○С. Следовательно, при обратном включенииp-nпереход можно использовать, например, в качестве датчика температуры.
Участок 1-2-3— участок электрического пробоя р-n-перехода. При некотором напряжении Uобрток Iобррезко возрастает и сопротивление запирающего слоя резко уменьшается.
Существуют два вида электрического пробоя р-n-перехода — лавинный и туннельный.
Лавинный пробой— размножение носителей заряда за счет ударной ионизации и вырывания электронов из атомов сильным электрическим полем. Лавинный пробой характерен для широких р-n-переходов. Вырванные электроны тоже участвуют в ударной ионизации.
Туннельный пробой, вызванный туннельным эффектом — способностью некоторых электронов проникать через тонкий р-n-переход без изменения энергии. Это возможно при напряженности поля больше 10 5В/см в сильно легированных полупроводниках (высокая концентрация примесей).
Электрический пробой на участке 1—2—3является обратимым, то есть структура р-n-перехода не нарушается. На участке2—3работают диоды, предназначенные для стабилизации напряжения —стабилитроны.
Участок 3–4— участок теплового пробоя. Тепловой пробой необратим, так как сопровождается разрушением вещества в месте р-n-перехода. Объясняется это тем, что количество теплоты, выделяющееся в переходе от нагрева обратным током, превышает количество теплоты, отводимое от р-n-перехода. Это ведет к перегреву р-n-перехода и его тепловому разрушению.
Работа полупроводниковых приборов сильно подвержена влиянию температуры. С ростом температуры увеличивается генерация носителей заряда, растет прямой и особенно обратный ток через р-n-переход. При увеличении температуры в пределах 20…70 С обратный ток увеличивается более чем в 30 раз. Поэтому полупроводниковые схемы нуждаются в термостабилизации.
1.4. Полупроводники на основе карбида кремния (SiC)
Полупроводники на основе германия и кремния обладают достаточно низким рабочим температурным диапазоном: Ge- 80-90 °С, Si – 120 °С. Карбид-кремниевые полупроводники обладают более высоким показателями. Существует около 170 политипов карбид кремния. Но только два из них сегодня доступны для изготовления п/п приборов – это 4H-SiCи 6H-SiC. Для силовых полупроводников более предпочтителен политип 4H-SiC, обладающей большей подвижностью электронов. В таблице приведены основные электронные свойства политипа 4H-SiCв сравнении с кремниевым (Si) и арсенидгалиевым (GaAs) полупроводниковым материалом.
Намименование | Si | GaAs | 4H-SiC |
Ширина запрещенной энергетической зоны, эВ | 1,12 | 1,5 | 3,26 |
Подвижность электронов, см2 /с·В | 1400 | 9200 | 800 |
Подвижность дырок, см2 /с·В | 450 | 400 | 140 |
Критическая напряженность электрического поля, МВ/cм | 0,25 | 0,3 | 2,2 |
Теплопроводность, Вт/см·К | 1,5 | 0,5 | 3,0-3,8 |
Карбид кремния обладает рядом преимуществ по сравнению с другими полупроводниками (кремний, арсенид галлия):
• Большая ширина запрещенной зоны обеспечивает работу при высоких температурах — ≥ + 600 ºС ;
• Напряженность поля электрического пробоя больше в 10 раз чем у Si и GaAs. Это приводит к значительному снижению сопротивления перехода в открытом состоянии;
• Высокая теплопроводность SiС снижает тепловое сопротивление кристалла;
• SiС крайне устойчив к воздействию радиации;
• Электрические свойства приборов на основе SiС очень стабильны во времени и слабо зависят от температуры.Все эти замечательные свойства в совокупности делают карбид кремния полупроводниковым материалом ближайшего будущего.
Т. n-p-переход — PhysBook
Электронно-дырочный переход
Электронно-дырочный переход (сокращенно n-р-переход) возникает в полупроводниковом кристалле, имеющем одновременно области с n-типа (содержит донорные примеси) и р-типа (с акцепторными примесями) прово-димостями на границе между этими областями.
Допустим, у нас есть кристалл, в котором справа находится область полупроводника с дырочной, а слева — с электронной проводимостью (рис. 1). Благодаря тепловому движению при образовании контакта электроны из полупроводника n-типа будут диффундировать в область р-типа. При этом в области n-типа останется нескомпенсированный положительный ион донора.
Рис. 1
Перейдя в область с дырочной проводимостью, электрон очень быстро рекомбинирует с дыркой, при этом в области р-типа образуется нескомпенсированный ион акцептора.
Аналогично электронам дырки из области р-типа диффундируют в электронную область, оставляя в дырочной области нескомпенсированный отрицательно заряженный ион акцептора. Перейдя в электронную область, дырка рекомбинирует с электроном. В результате этого в электронной области образуется нескомпенсированный положительный ион донора.
Диффузия основных носителей через переход создает электрический ток Iосн, направленный из р-области в n-область.
В результате диффузии на границе между этими областями образуется двойной электрический слой разноименно заряженных ионов, толщина l которого не превышает долей микрометра.
Между слоями ионов возникает электрическое поле с напряженностью \(~\vec E_i\). Это поле препятствует дальнейшей диффузии основных носителей: электронов из n-области и дырок из р-области.
Необходимо заметить, что в n-области наряду с электронами имеются неосновные носители — дырки, а в р-области — электроны. В полупроводнике непрерывно происходят процессы рождения и рекомбинации пар. Интенсивность этого процесса зависит только от температуры и одинакова во всем объеме полупроводника. Предположим, что в n-области возникла пара «электрон—дырка». Дырка будет хаотически перемещаться по η области до тех пор, пока не рекомбинирует с каким-либо электроном. Однако если пара возникает достаточно близко к переходу, то прежде, чем произойдет рекомбинация, дырка может оказаться в области, где существует электрическое поле, и под его действием она перейдет в р-область, т.е. электрическое поле перехода способствует переходу неосновных носителей в соседнюю область. Соответственно, создаваемый ими ток Iнеосн мал. так как неосновных носителей мало.
Таким образом, возникновение электрического поля \(~\vec E_i\) приводит к появлению неосновного тока Iнеосн. Накопление зарядов около перехода за счет диффузии и увеличение \(~\vec E_i\) будут продолжаться до тех пор, пока ток Iнеосн не уравновесит ток Iосн (Iнеосн = Iосн) и результирующий ток через электронно-дырочный переход станет равным нулю.
Если к n-р-переходу приложить разность потенциалов, то внешнее электрическое поле \(~\vec E_{ist}\) складывается с полем \(~\vec E_i\) . Результирующее поле, существующее в области перехода, \(~\vec E = \vec E_{ist} + \vec E_i\). Токи Iосн и Iнеосн совершенно различно ведут себя по отношению к изменению поля в переходе, Iнеосн с изменением поля очень слабо изменяется, так как он обусловлен количеством неосновных носителей, а оно в свою очередь зависит только от температуры.
Iосн (диффузия основных носителей) очень чувствителен к полю напряженностью \(~\vec E\). Iосн быстро увеличивается с ее уменьшением и быстро падает при увеличении.
Пусть клемма источника тока соединена с n-областью. а «-» — с р-областью (обратное включение (рис. 2, а)). Суммарное поле в переходе усиливается: E > Eist и основной ток уменьшается. Если \(~\vec E\) достаточно велика, то Iосн << Iнеосн и ток через переход создается неосновными носителями. Сопротивление n-р-перехода велико, ток мал.
Рис. 2
Если включить источник так, чтобы область n-типа оказалась подключена к а область р-типа к (рис. 2, б), то внешнее поле будет направлено навстречу \(~\vec E_i\), и \(~\vec E = \vec E_i + \vec E_{ist} \Rightarrow E = E_i — E_{ist} < E_i\), т.е. поле в переходе ослабляется. Поток основных носителей через переход резко увеличивается, т.е. Iосн резко возрастает.
Такое включение диода называется прямым. Таким образом, кристалл с электронно-дырочным переходом обладает односторонней проводимостью и может служить для выпрямления переменного тока. Вольт-амперная характеристика такого диода имеет вид, представленный на рисунке 3. Сплошная кривая соответствует прямому включению, а пунктирная — обратному.
Рис. 3
Для снятия этой характеристики можно воспользоваться электрической цепью, схема которой приведена на рисунке 4.
Рис. 4
Таким образом, n-р-переход по отношению к току оказывается несимметричным: в прямом направлении сопротивление перехода значительно меньше, чем в обратном.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 305-307.
Применение p-n-перехода в технике и его свойства | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко
Тема: Физика полупроводников
Полупроводниковый диод проводит ток в одном направлении. Этот ток называют прямым. На корпусах диодов он обозначается стрелочкой: диод проводит ток в направлении стрелочки.
Это свойство полупроводниковых диодов используют для выпрямления переменных токов (электротранспорт, электрометаллургия, радиоприемники, телевизоры и т. п.). Полупроводниковые диоды бывают разных типов, рассчитанные на разные напряжения и силы тока.
Диод проводит ток и в другом направлении, правда, небольшой силы. Это направление включения диода называют обратным.
Можно также заметить, что сила тока в диоде, включенном в обратном направлении, возрастает при его нагревании или освещении. Первое свойство позволяет использовать полупроводниковый диод как датчик температуры (так же, как и термистор). При освещении диода его сопротивление также уменьшается, что нашло применение в так называемых вентильных фотодиодах. Их можно использовать как датчики, реагирующие на свет. Материал с сайта http://worldofschool.ru
Рис. 8.14. Что происходит при осветлении фотодиода |
Если составить электрическую цепь, схема которой изображена на рис. 8.14, и осветить p-n-переход, то можно заметить, что в цепи возникает ток. Следовательно, p-n-переход при освещении является генератором электрического тока.
Это свойство используют для изготовления солнечных батарей, являющихся источниками питания различных установок, например, на космических кораблях, в калькуляторах и т. п.
На этой странице материал по темам:Где применяются полупроводники кратко
. применение p-n–перехода в технике.
Как по внешним признакам полупроводникового диода установить, в каком направлении он проводит ток? Как это направление называют?
Какие свойства p-n-перехода вы знаете?
Где применяются свойства p-n-перехода?
С помощью каких опытов можно установить, что полупроводниковый диод проводит ток практически лишь в одном направлении?