Мощный блок питания на TL494
TL494 – это семейство интегральных схем, выполняющих функции преобразователя напряжения, работающего по принципу широтно-импульсной модуляции (ШИМ).
В качестве аналогов ИС TL494 следует рассматривать:
1.Микросхема российского производства — К1006ЕУ4;
2.Серия TL594 — имеет лучшую точность;
3.Серия TL598 — отличается наличием двухтактного повторителя.
Блок схема (основные компоненты) микросхемы TL494 выглядит следующим образом.
Рис. 1. Блок схема микросхемы TL494
В использовании чаще всего встречаются две разновидности ИС серии TL494:
1.TL494CN – выполнена в корпусе DIP16, рассчитана на работу в условиях от 0 до 70°C;
2.TL494IN – тот же корпус, но диапазон рабочих температур – от минус 25 до плюс 85°С.
Распиновка микросхемы.
Рис. 2. Распиновка микросхемы
Наиболее частым является ее применение в составе импульсных блоков питания, управляемых приводов, регуляторов напряжения и других устройств, требующих ШИМ-модуляции. Самый яркий пример – блок питания ПК формата ATX.
Нагляднее всего работу ИС TL494 показывает график входных и выходных напряжений ниже.
Рис. 3. График входных и выходных напряжений
Блок питания на TL494 своими руками
Принципиальная схема самого блока питания здесь.
Она отличается своей простотой и практичностью. Правда трансформатор придется мотать самостоятельно.
Итак, данный импульсный блок питания обеспечивает максимальную выходную мощность не более 500 Вт (номинальная – около 300 Вт), питается от сети переменного тока (выпрямление напряжения осуществляется на диодном мосту) и дает частоту преобразования в 30 Гц.
Преимущество данной схемы в том, что большая часть радиодеталей может быть взята, например, из неисправного блока питания компьютера (ATX).
Трансформатор TR1 состоит из четырех обмоток (все они имеют по 50 витков. Провод – 0,5 мм) и ферритового сердечника.
Второй трансформатор (TR2) имеет три обмотки. Первая – 110 витков, 0,8 мм, третья – 12 витков тем же проводом, а вторая определяет выходное напряжение и потому наматывается исходя из своих потребностей. Витки рассчитываются из соотношения 1 виток – 2 вольта (на выходе имеется удвоитель напряжения).
Перемотка может быть выполнена на каркасах трансформаторов, взятых из тех же блоков ATX.
Резисторы R1, R2, R4 и R5 лучше всего выбирать с мощностью рассеивания не менее 1 Вт, а транзисторы VT3 и VT4 нужно установить на радиаторы площадью не менее 50 см2.
Еще варианты схем БП на TL494
Схемы приведены здесь.
Большинство из них – это лабораторные блоки питания. Они позволяют регулировать напряжение и силу тока с высокой точностью.
При сборке особое внимание стоит уделить полевым транзисторам, они должны быть вынесены на радиатор, желательно с принудительным воздушным охлаждением (обдуваться вентилятором).
Вольтметры и амперметры по желанию можно заменить на цифровые индикаторы.
Автор: RadioRadar
Набор для сборки линейного регулируемого БП 60 Вольт 20 Ампер. Как собрать блок питания, принципиальная схема и тестирование
Тема сегодняшнего обзора по своему довольно известна радиолюбителям. Обзоров регулируемых БП, как и конструкторов для их сборки, довольно много. Я тоже выкладывал пару подобных обзоров. Но сегодня у меня несколько необычный вариант, причем как в плане мощности, так и в плане схемотехники. Конечно все эти решения уже неоднократно применялись радиолюбителями, но вот все это в виде набора я встретил впервые, о чем и планирую рассказать.Для начала наверное стоит сказать, что фактически это первый обзор из как минимум трех, но в планах продолжить эту серию и в конце собрать мощный, линейный БП с цифровым управлением. Каким он в итоге выйдет, я только предполагаю, отчасти на конечную конструкцию скорее всего окажут влияние не только мои мысли, а и предложения в комментариях.
Чтобы удобнее было разбираться что данный «конструктор» из себя представляет мне опять пришлось заняться реверсинженерингом и перечертить принципиальную схему.
Впрочем буду последователен и все покажу в своем время, а пока перейдем к товару.
Заказывался данный комплект на Таобао. Наткнулся я на него совершенно случайно и на других торговых площадках он мне не попадался.
У продавца есть разные варианты комплектации, но сегодня в обзоре комплект из трех плат сразу.
Прислали их в индивидуальных пакетиках, но в дороге эти пакетики несколько…. пострадали. Хотя самая главная плата была дополнительно упакована, но в любом случае все пришло целым.
Как я уже сказал, комплект состоит из трех плат. Все они имеют одинаковый размер — 100х71мм (без учета выступающих компонентов), но отличаются по высоте. Фактически они задуманы для сборки «бутербродом», но никто не мешает их мало того что ставить отдельно, так еще и использовать почти независимо.
И так, слева направо-
1. Плата коммутации обмоток трансформатора.
2. Силовая часть регулятора напряжения.
3. Плата управления и измерения.
Первая и третья платы имеют в комплекте стойки, но они рассчитаны только для установки на поверхность корпуса, так как имеют небольшую длину.
Так как такой набор мне попадался только на Тао, то на всякий случай взвесил, вдруг поможет при расчете цены доставки.
360 грамм, как по мне, то очень даже мало.
Кроме того в комплекте дали набор для межблочных соединений и подключения элементов индикации и регулировки.
Также в комплект входили —
1. Изолирующие прокладки из слюды — 13 штук (8 необходимо)
3. 14 винтов с шайбами (8 штук необходимо)
4. Два светодиода красного цвета.
Начну я с описания платы коммутации, так как по цепи она идет первая.
Ширина и длина платы написана выше, высота около 35мм без учета стоек, но с учетом выводов.
На странице товара плата выглядит чуть чуть по другому, но в основном из-за типа примененных компонентов.
Подключение силовых входов и выходов производится при помощи винтового клеммника.
Переключение обмоток производится при помощи четырех электромеханических реле.
А вот при дальнейшем осмотре вылезла проблема, а точнее ошибка. Попробую объяснить.
Рядом с реле имеется предохранитель, также нормальный и на вид довольно качественный, но на ток 15 Ампер, хотя место на плате промаркировано как 20 Ампер.
Для тех, кто еще не догадался, поясню. В характеристиках заявлено 20 Ампер и тут и есть главные «грабли». Наверное многие знают, что если к трансформатору подключить диодный мост, а потом поставить конденсатор, то напряжение на нем будет больше, чем на обмотке трансформатора, примерно в 1.4 раза больше.
На самом деле на выводах трансформатора мы видим действующее напряжение (допустим 10 Вольт), а на конденсатора амплитудное (примерно 14 Вольт).
Я многое упростил, но в любом случае ток до диодного моста будет выше, чем после конденсатора фильтра.
Вот теперь вернемся к нашей плате. У нее заявлено 20 Ампер, значит до выпрямителя ток будет уже до 28 Ампер, ну пусть даже немного меньше. Но в любом случае даже не 20 и тем более не 15 (как предохранитель) или 16 (как контакты реле). Потому по постоянному току максимально можно нагружать только 11-12 Ампер вместо 20.
Плата питается от своей обмотки трансформатора, соответственно на ней находится диодный мост, конденсатор фильтра и стабилизатор 12 Вольт, который установлен на радиаторе. По большому счету этот радиатор и определяет высоту платы.
Кроме того данная плата имеет стандартный трехконтактный разъем для подключения вентилятора . Обороты не регулируются, вентилятор всегда питается от 12 Вольт стабилизатора.
Рядом расположено место под еще один такой же разъем, по задумке сюда можно подключить вольтметр, так как на три контакта выведена земля, 12 Вольт и выход 0-60 Вольт. Но разъем надо ставить другого типа, так как запросто можно спалить вентилятор (на контакт тахометра выведено 0-60 Вольт). В любом случае схема довольно неплохо продумана.
И собственно то, что управляет реле, четырехканальный компаратор, а рядом четыре подстроечных резистора для регулировки порогов срабатывания.
Собственно говоря принцип предельно прост. Плата измеряет выходное напряжение БП и подключает дополнительные обмотки трансформатора при необходимости. Изначально питание идет от 12 Вольт обмотки, дополнительно можно подключить до 4 обмоток с тем же напряжением и получить от 12 до 60 Вольт с дискретностью 12. В итоге у вас даже при выходном токе в 20 Ампер на транзисторах рассеивается максимум около 300 Ватт.
Но я бы последние обмотки мотал не на 12, а скорее на 10-11 Вольт, так как на высоких напряжениях меньше влияние падения на диодном мосте.
Все силовые дорожки дополнительно пролужены большим количеством припоя, но я бы снял припой и припаял к ним медный провод, для надежности. Хотя в любом случае без замены реле выше 16 Ампер в этой цепи не будет.
Схема подключения платы.
На выходе платы имеем переменное напряжение, потому дальше должен быть диодный мост и несколько конденсаторов приличной емкости (30000-50000мкФ) на напряжение 100 Вольт.
Второй идет плата регулятора. На ней расположено восемь транзисторов, низкоомные резисторы и прочая мелочь.
Плата совпадает с фото продавца, но вот диод стоит у меня заметно менее мощный.
Собственно вся плата является одним мощным транзистором с большим коэфициентом усиления и служит только для одной цели, усилить выход платы управления рассеивая при этом все лишнее тепло.
На плате слева видно место под термостат 55 градусов в корпусе TO-220, который также должен быть прижат к радиатору. А ниже есть место под разъем вентилятора. Но термостата нет, потому кто хочет доработать плату, придется установить термостат, припаять разъем, а также подать 12 Вольт на плату (установлен укороченный разъем без этого контакта).
Термостат проще поставить обычный, в плоском корпусе, температура 55-60 градусов.
Так как транзисторы биполярные, то в цепи эмиттера каждого установлен токовыравнивающий резистор с сопротивлением 0.1 Ома. Но таких резисторов 7, а не 8, вместо восьмого стоит резистор номиналом 100 Ом.
Восьмой резистор подключен к первому транзистору, так как он управляет остальными семью. Т.е. семь транзисторов задействованы в силовой части, восьмой ими управляет повышая коэффициент усиления всего модуля.
Все транзисторы одинаковые, TIP35C, каждый имеет максимальную рассеиваемую мощность в 125 Ватт (при 25 градусах) и ток до 25 Ампер (кратковременный до 40). Т.е. получается, что теоретически модуль может выдать до 175 Ампер и рассеять до 875 Ватт. Коэфициент усиления у транзисторов не очень большой, около 50, потому для «раскачки» стоит еще один, первый. С ним соответственно этот параметр поднимается до 2500 (в теории).
Плата сделана так, что все транзисторы находятся в одной плоскости и могут быть прижаты к общему радиатору, собственно для этого в комплекте дали винты и слюдяные прокладки.
Вообще коллекторы всех транзисторов соединены друг с другом и изоляция скорее нужна для безопасности, так как на коллекторе будет до 100 Вольт. Но если сам радиатор надежно изолирован и внутрь блока питания никто не лазит, то допускается (хотя и не рекомендуется) изоляцию не ставить. Я бы поставил, здоровье дороже.
Вообще у продавца много разных силовых модулей, и как вариант предлагается такой. Насколько я понимаю, они совместимы, но из-за веса цена доставки будет приличной.
Плата управления.
Данная плата также универсальна, так как может работать с разными модулями и я скорее всего это покажу в следующем обзоре.
Здесь уже компонентов куда как больше, только одних микросхем 6 корпусов. Но все полностью аналоговое, никаких микроконтроллеров 🙂
Да и разъемов побольше, но о них позже.
На одной из коротких сторон находятся разъемы:
1. Питания платы. Две обмотки по 15 Вольт, питание платы двухполярное. В крайнем случае можно питать от одной обмотки, тогда диодный мост и конденсаторы будут работать как удвоитель, но вырастут пульсации 100 Гц.
2. Вход 0-60 Вольт, он же выход на плату реле, так как два разъема соединены параллельно. Плата поддерживает четырехпроводное подключение выхода. В полном варианте к одному клеммнику подключаем провода от выхода БП, лучше поближе к нагрузке. Со второго клеммника берем сигнал для управления переключением обмоток.
По выходу БП стоит конденсатор 100мкФ 100 Вольт + 0.1мкФ.
Как я уже сказал, питание платы двухполярное, стабилизированное, потому можно увидеть пару 12 Вольт стабилизаторов на радиаторах.
Управляющая и измерительная часть, что любопытно, применены самые разнообразные ОУ, а не все одного типа — TL072, TL082, OP07, LM258.
Но предположу, что «зоопарк» с ОУ задуман не просто так, так как на плате имеется и прецизионный ИОН AD586L. По виду он очень похож на БУ, но по характеристикам довольно неплох, 5ppm в диапазоне температур от -40 до +85, при этом еще и малошумящий. Рядом с ним расположен специальный конденсатор, который требуется ставить по даташиту.
Выходной каскад, эта часть управляет силовой платой, здесь же есть название платы управления, но я не нашел по нему никакой информации.
Разъемы с другого края платы.
1. Светодиод индикации CCCV. В комплекте было два светодиода, они включаются встречно-паралельно. Либо можно применить двухцветный двухвыводный.
2. Переменный резистор регулировки тока
3. Переменный резистор регулировки напряжения. Оба резистора 10кОм, номинал написан на плате.
4. Выход на силовую плату. Часть контактов не распаяна, но с их назначением я уже не разбирался.
Слева от разъемов установлен резистор с номиналом 2.7 кОм, включенный между землей платы управления и землей выхода БП (они разные).
Пайка и монтаж в общих чертах неплохой. Единственно что раздражало, компоненты на плате не имеют порядковых номеров.
Принципиальная схема. Понимаю, выглядит жутко, но старался перечертить максимально близко к оригиналу, но плата разведена так, что процесс временами превращался в ад, хотя сама схема по сути не очень сложная.
Я немного ее упростил, выкинув стабилизаторы напряжения +/-12 Вольт и их диодный мост с конденсаторами.
Как можно понять, применено «плавающее» управление силовым модулем, потому и нужна отдельная обмотка на трансформаторе для питания платы управления. Земля платы связана с выходом блока питания.
Блок схема соединения модулей. В общем-то все предельно просто и собирается как конструктор.
Наверняка вы заметили на схеме непонятный переключатель. Я сначала не совсем понял его назначение, но когда понял, то был приятно удивлен.
Дело в том, что данный БП умеет работать как электронная нагрузка. На блок схеме зелеными стрелками обозначено прохождение тока в нормальном режиме работы, как БП, а красными в режиме работы как электронная нагрузка.
В этом случае плата задает ток нагрузки до тех же 20 Ампер и той мощностью, на которую рассчитан силовой узел, а точнее его охлаждение. А так как для данного БП необходимо охлаждение с примерно 200-300 Ватт мощностью рассеивания, то мы имеем нагрузку с такими же параметрами. При этом амперметр будет работать в штатном режиме и отображать ток нагрузки.
В общем решение простое, красивое и функциональное. Единственный минус — отдельные клеммы на передней панели. При этом клемма положительного выхода БП является минусом входа электронной нагрузки.
Хот я и не планирую сейчас ничего собирать, но небольшой тест я все таки проведу. Хотя в данном случае у меня скорее цель сделать некую инструкцию по сборке.
Сначала я взял все, что может мне пригодиться.
1. Трансформатор. В данном случае их три, но все равно они не могут обеспечить весь диапазон как по току, так и по напряжению.
Я рекомендую два трансформатора — основной с пятью обмотками по 12 Вольт /10-20 Ампер и вспомогательный, с тремя обмотками по 15 Вольт, а лучше с четырьмя, чтобы было от чего запитать и амперметр.
2. Диодный мост, его я покажу позже.
3. Конденсатор фильтра. Я для эксперимента взял 2200мкФ х 50 Вольт, правда потом добавил к нему еще 1000мкФ. Но этого катастрофически мало. Как минимум рассчитывайте на 20000мкф, продавец же рекомендует более 40000мкФ.
4. Переменные резисторы. Я использовал обычные, но конечно лучше многообортные, а еще лучше цифровое управление, но об этом в другой раз.
Диодный мост KBPC3510 я купил на Алиэкспресс в «довесок» к какому-то товару, да и просто для проверки данной платы.
Резисторы и светодиод припаял временно, светодиод надо заменить, а с резисторами разобраться отдельно.
Вообще продавец мне даже понравился, так как продает не только платы и комплекты, а и более правильный вариант диодного моста и плату для переменных резисторов (резисторы продаются отдельно). Со всем этом сборка действительно начинает напоминать конструктор.
Сначала подключаем силовую часть и выпрямитель. Так как у меня в сумме получилось только 3 обмотки по 12 Вольт вместо пяти, то две клеммы остались свободны.
Силовой модуль я установил на «игрушечный» радиатор 🙂 Вообще радиатор нужен довольно приличный, так как рассеиваться на нем будет до 100-200 Ватт в зависимости от режима работы. А если вы планируете этот БП использовать как электронную нагрузку, то ее мощность и будет определяться размерами радиатора.
Подключаем все силовые соединения, здесь думаю и так все понятно. Главное внимательно отнестись с земляной клемме платы управления, если пропадет контакт в этом месте, то на выход скорее всего пойдет полное напряжение.
Затем надо соединить все три платы вместе чтобы они работали совместно. При этом с платы управления трехжильный кабель идет к силовой плате регулятора, а двухжильный к плате реле. На самом деле у обоих кабелей используется только два провода, у трехжильного средний откушен около одного из разъемов. Так как все кабели имеют разъемы, то подключение совсем упрощено.
В конце у вас должно остаться три кабеля с одним разъемом на каждом.
На всякий случай поближе.
Подключаем вспомогательный трансформатор. Самый подходящий, который я нашел, выдавал 15, 9.5 и 19 Вольт. Для питания платы управления я использовал обмотку 15 Вольт, а для платы реле — 9.5 Вольта. Да, получилось несколько криво, так как для платы управления все таки лучше две обмотки по 15, а для платы реле 9.5 Вольта маловато и я не получил стабилизированные 12, но для проверки этого более чем достаточно.
Напоминаю, плата управления — две обмотки 15+15 Вольт соединенные последовательно, для плату реле одна обмотка 15 Вольт, при этом платы должны питаться именно от независимых обмоток!
В принципе можно все обмотки разместить на одном трансформаторе, но если планируется использование функции электронной нагрузки, то я бы использовал два трансформатора и мощный включал только в режиме работы как блок питания. Можно совместить управление питанием и режимом работы в одном переключателе.
Вот собственно и все, питание подано, светодиод светит. Я случайно включил его так, что он отображает режим CV, хотя логичнее красный ставить на режим СС.
Попутно подключил вентилятор к штатному разъему, но в таком режиме он всегда включен, что раздражает.
В итоге у вас останется один провод, который нужен при четырехпроводном подключении нагрузки. Работать все будет и без него, но если вы хотите увеличить точность поддержания выходного напряжения, то лучше его использовать.
Небольшой совет. Провода от выпрямителя лучше делать как можно короче. Я на начальном этапе вместо выпрямителя подключил свой регулируемый БП с длинным проводом и получил генерацию в небольшом диапазоне выходного напряжения (если не путаю 20-23 Вольта). Подключение даже конденсатора с емкостью 1000мкФ к входным клеммам платы управления полностью устранило проблему.
В качестве первого теста я просто подключил автомобильную лампу к выходу БП и сходу получил небольшую проблему.
Дело в том, что плата реле приходит не настроенной, потому у меня мой блок питания не переключал обмотки.
При помощи подстроечных резисторов настраиваем пороги переключения. Для этого выставляем резистором определенное напряжение и вращением подстроечного резистора добиваемся переключения реле. Настраиваем снизу вверх, т.е. сначала реле 1, резистор 1, минимальное напряжение, затем реле 2, резистор 2. Вращение вправо — увеличение напряжение.
На странице товара есть рекомендуемые пороги —
8В первый этап, второй этап 21V, 35V третий этап, четвертый этап 48v
Еще немножко тестов. Если интересны другие тесты, то пишите. Так как планируется еще как минимум два обзора с этими платами, то в следующем обзоре дам результаты теста.
1. С тремя обмотками по 12 Вольт я получил максимум 46 Вольт. Но это на холостом ходу.
2. Ток при КЗ выходных клемм максимум был 17 Ампер. Трансформатор у меня совсем слабый, да и конденсатор фильтра ыл 3200мкФ (2200+1000).
Зато стабильность выходного напряжения просто на высшем уровне, но по крайней мере для этой цены 🙂
3. Выставляем без нагрузки 10.747 Вольта
4. Нагружаем током около 4 Ампер, и получаем те же 10.747 Вольта. Иногда плавал последний знак +/-1, но я не думаю что это существенно.
При этом помним что:
1. Конденсатор фильтра всего 3200мкФ
2. Плата управления питается не от двух обмоток, а от одной.
Видеоверсия обзора
Теперь можно подвести небольшие, предварительные итоги. Из преимуществ отмечу:
1. Неплохая конструкция и схемотехника
2. В комплекте есть почти все необходимое. Вернее все кроме трансформатора, радиаторов, конденсаторов фильтра, но их дешевле купить на месте.
3. Высокая точность поддержания напряжения.
4. Четырехпроводное подключение
5. Плата реле, позволяющая существенно снизить нагрев силового модуля.
6. Возможность использования в качестве электронной нагрузки.
Есть и недостатки.
1. Если с напряжением все нормально, то вот чтобы получить заявленные 20 Ампер придется заменить реле и предохранитель.
2. Переключение обмоток снижает нагрев, но могут быть небольшие выбросы в момент переключения.
3. Необходимость большого количества обмоток трансформатора, в сумме не менее 8, в идеале 9.
Иногда наблюдалось не очень четкое переключение обмоток под нагрузкой, вызванное очень малой емкостью фильтрующего конденсатора, пришлось немного снизить пороги переключения.
Даже с учетом недостатков могу сказать, что комплект весьма интересный. Возможно не очень дешевый, но собирать такое самому с нуля также выходит дорого, даже просто по компонентам. Очень понравилось то, что собирается все очень легко, фактически ничего особо и паять не надо. При этом в плане стабильности БП показал хороший результат. Кстати продавец рекомендует использовать проволочные резисторы для регулировки, так как обычные имеют хуже временную стабильность.
В следующей части расскажу об альтернативном варианте силового модуля, ну а дальше буду готовить обзор модуля для цифрового управления. А на сегодня у меня все, как обычно жду вопросов и комментариев.
Заказ делался через посредника yoybuy.com, ссылка реферальная, вам дает купон 10 от 50, я с нее ничего не имею.
Стоимость комплекта вместе с доставкой ориентировочно выходит 40-45 долларов.
Основа современного бизнеса – получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, – просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно – различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат – импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку. Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все – «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование. Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак – несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель – не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В. Часть 1. Так себе. Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает – можно делать пробный пуск и измерить все напряжения. +3,3 В – оранжевый По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D. Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть – блок включится и вентилятор – индикатор включения – начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится. Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания. Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт. Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения. Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В. Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра. Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В. Замеряем все напряжения по шинам Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины – 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод – вполне. Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром – вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток. Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке – типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0. Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель. Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ. Часть 2. Более-менее. Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения – достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются. Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор – для подбора срабатываний по току. Но получилось неважно – нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор. Измерение параметров дало следующие результаты: C ежегодным апгрейдом процессора, материнки, памяти, видео, я давно смирился, как с неизбежным. Но апгрейд блока питания меня почему-то здорово нервирует. Если железо прогрессирует кардинально, то в схемотехнике блока питания таких принципиальных изменений практически нет. Ну, транс побольше, провода на дросселях потолще, диодные сборки помощнее, конденсаторы. Неужели нельзя купить блок питания помощнее, так сказать на вырост, и жить хотя бы пару лет спокойно. Не задумываясь о такой относительно простой вещи, как качественное электропитание. Казалось чего бы проще, купи блок питания самой большой мощности, какую найдешь, и наслаждайся спокойной жизнью. Но не тут то было. Почему-то все работники компьютерных фирм уверены, что 250-ти ваттного блока питания хватит вам с избытком. И, что бесит больше всего, начинают безапелляционно поучать и безосновательно доказывать свою правоту. Тогда на это резонно замечаешь, что знаешь, чего хочешь и готов за это платить и надо побыстрее достать то, чего спрашивают и заработать законную прибыль, а не злить незнакомого человека своими бессмысленными, ничем не подкрепленными уговорами. Но это только первое препятствие. Идем дальше. Допустим, вы все же нашли мощный блок питания, и тут вы видите, например, такую запись в прайсе
При разнице в 100 ватт цена выросла вдвое. А уж если брать с запасом, то нужно 650 или больше. Сколько это будет стоить? И это еще не все! В подавляющем большинстве современных блоков питания используется микросхема SG6105. А схема включения ее, имеет одну очень неприятную особенность – она не стабилизирует напряжения 5 и 12 вольт, а на ее вход подается среднее значение этих двух напряжений, полученное с резисторного делителя. И стабилизирует она это среднее значение. Из-за этой особенности часто происходит такое явление, как «перекос напряжений». Ранее использовали микросхемыTL494, MB3759, KA7500. Они имеют ту же особенность. Приведу цитату из статьи господина Коробейникова. «. Перекос напряжений возникает из-за неравномерного распределения нагрузки по шинам +12 и +5 Вольт. Например, процессор запитан от шины +5В, а на шине +12 висит жёсткий диск и CD привод. Нагрузка на +5В во много раз превышает нагрузку на +12В. 5 вольт проваливается. Микросхема увеличивает duty cycle и +5В приподнимается, но ещё сильнее увеличивается +12 – там меньше нагрузка. Мы получаем типичный перекос напряжений. « На многих современных материнских платах процессор питается от 12 вольт, тогда происходит перекос наоборот, 12 вольт понижается, а 5 повышается. И если в номинальном режиме компьютер нормально работает, то при разгоне потребляемая процессором мощность увеличивается, перекос усиливается, напряжение уменьшается, срабатывает защита блока питания от понижения напряжения и компьютер отключается. Если не происходит отключения, то все равно пониженное напряжение не способствует хорошему разгону. Так, например, было у меня. Даже написал на эту тему заметку – «Лампочка оверклокера» Тогда у меня в системнике работали два блока питания – Samsung 250 W, Power Master 350 W. И я наивно верил, то 600 ватт более чем достаточно. Достаточно может и достаточно, но из-за перекоса все эти ватты бесполезны. Этот эффект я по незнанию усилил тем, что от Power Master подключил материнку, а от Samsung винт, дисководы и т.д. То есть вышло – с одного блока питания берется, в основном 5 вольт, с другого 12. А другие линии «в воздухе», что и усилило эффект «перекоса». После этого я приобрел 480 ваттный блок питания Euro case. Из-за своего пристрастия к тишине, переделал его в безвентиляторный, о чем тоже писал на страницах сайта. Но и в этом блоке стояла SG6105. При его тестировании я тоже столкнулся с явлением «перекоса напряжений». Только что приобретенный блок питания непригоден для разгона! И это еще не все! Мне все хотелось приобрести второй компьютер, а старый оставить «для опытов», но элементарно «давила жаба». Недавно я эту зверюгу все же уговорил и приобрел железо для второго компа. Это конечно отдельная тема, но я для него купил блок питания – PowerMan Pro 420 W. Решил проверить его на предмет «перекоса». А так как новая мать питает процессор по шине 12 вольт, то по ней я и проверил. Как? Узнаете, если дочитаете статью до конца. А пока скажу, что при нагрузке 10 ампер, двенадцать вольт провалилось до 11.55. Стандарт допускает отклонение напряжений плюс-минус 5 процентов. Пять процентов от 12 это 0.6 вольта. Иными словами при токе 10 ампер напряжение упало почти до предельно допустимой отметки! А 10 ампер соответствует 120-ти ваттам потребления процессора, что при разгоне вполне реально. В паспорте к этому блоку по шине 12 вольт заявлен ток 18 ампер. Я думаю, не видать мне этих ампер, так как от «перекоса» блок питания выключится гораздо раньше. Итого – четыре блока питания за два года. И надо брать пятый, шестой, седьмой? Нет, хватит. Надоело платить за то, что заранее не нравится. Что мне мешает самому сделать киловаттный блок питания и пожить спокойно пару лет, с уверенностью в качестве и количестве питания своего любимца. К тому же я затеял изготовление нового корпуса. Корпус я начал делать преогромный и блок питания, нестандартного размера, должен поместиться там без проблем. Но и обладателям стандартных корпусов может пригодиться такое решение. Всегда можно сделать внешний блок питания, тем более прецеденты уже есть. Кажется, Zalman выпустил внешний блок питания. Конечно, делать блок питания такой мощности «с нуля» – сложно, долго, да и хлопотно. Поэтому и появилась идея собрать один блок из двух фабричных. Тем более они уже есть и, как выяснилось, в теперешнем виде непригодны для разгона. На эту мысль меня натолкнула все та же статья господина Коробейникова. «. Для введения раздельной стабилизации нужен второй трансформатор и вторая микросхема ШИМ, так и делается в серьёзных и дорогих серверных блоках. « В компьютерном блоке питания существует три сильноточные линии с напряжением 5, 12 и 3.3 вольта. У меня есть два стандартных блока питания, пусть один из них вырабатывает 5 вольт, а другой, помощнее, 12 и все остальные. Напряжение 3.3 вольта стабилизируется отдельно и явления перекоса не вызывает. Линии вырабатывающие -5, -12 и т.д. – маломощны и эти напряжения можно взять с любого блока. А для осуществления этого мероприятия, использовать принцип, изложенный в той же статье г. Коробейникова – отключать ненужное напряжение от микросхемы, а нужное подрегулировать. То есть, теперь SG6105 будет стабилизировать только одно напряжение и, следовательно, явление «перекоса напряжений» не будет. Так же облегчается режим работы каждого блока питания. Если посмотреть силовую часть, типовой схемы блоков питания (Рис.2), то видно, что обмотки 12, 5 и 3.3 вольта представляют собой одну общую обмотку с отводами. И если с такого транса брать не сразу все три, а только одно напряжение, то мощность трансформатора останется прежней, но на одно напряжение, а не на три. К примеру, блок по линиям 12, 5, 3.3 вольта выдавал 250 ватт, то теперь практически эти же 250 ватт мы получим по линии, например, 5 вольт. Если раньше общая мощность делилась между тремя линиями, то теперь всю мощность можно получить на одной линии. Но на практике для этого нужно заменить диодные сборки на используемой линии на более мощные. Или включить параллельно дополнительные сборки, взятые с другого блока, на котором эта линия использоваться не будет. Так же максимальный ток будет ограничивать сечение провода дросселя. Может сработать и защита блока питания от перегрузки по мощности (хотя этот параметр можно подрегулировать). Так что полностью утроенную мощность мы не получим, но прибавка будет, да и греться блоки будут гораздо меньше. Можно, конечно, перемотать дроссель проводом большего сечения. Но об этом позже. Перед тем, как приступить к описанию модификации, нужно сказать несколько слов. Очень непросто писать о переделках электронного оборудования. Не все читатели разбираются в электронике, не каждый читает принципиальные схемы. Но в то же время есть читатели, занимающиеся электроникой профессионально. Как ни напишешь – окажется, что для кого-то непонятно, а для кого-то раздражающе примитивно. Я все же попытаюсь написать так, что бы было понятно подавляющему большинству. А специалисты, думаю, меня простят. Так же необходимо сказать, что все переделки оборудования вы производите на свой страх и риск. Любые модификации лишают вас гарантии. И естественно, автор, за любые последствия ответственности не несет. Не лишним будет сказать, что человек, берущийся за такую модификацию, должен быть уверен в своих силах, и иметь соответствующий инструмент. Данная модификация выполнима на блоках питания собранных на основе микросхемы SG6105 и немного устаревших TL494, MB3759, KA7500. Для начала пришлось поискать datasheet на микросхему SG6105 – это оказалось не так уж сложно. Привожу из datasheet нумерацию ног микросхемы и типовую схему включения. Рис 1. SG6105 Рис. 2. Типовая схема включения. Рис. 3. Схема включения SG6105 Опишу сначала общий принцип модернизации. Сначала модернизация блоков на SG6105. Нас интересуют выводы 17(IN) и 16(COMP). К этим выводам микросхемы и подключен резисторный делитель R91, R94, R97 и подстроечный резистор VR3. На одном блоке отключаем напряжение 5 вольт, для этого выпаиваем резистор R91. Теперь подстраиваем величину напряжения 12 вольт резистором R94 грубо, а переменным резистором VR3 точно. На другом блоке наоборот, отключаем 12 вольт, для этого выпаиваем резистор R94. И подстраиваем величину напряжения 5 вольт резистором R91 грубо, а переменным резистором VR3 точно. Провода PC – ON всех блоков питания соединяются между собой и подпаиваются к 20-ти контактному разъему, который потом подключаем к материнке. С проводом PG сложнее. Я взял этот сигнал с более мощного блока питания. В дальнейшем можно реализовать несколько более сложных вариантов. Рис. 4. Схема распайки разъема Теперь об особенностях модернизации блоков на основе микросхемы TL494, MB3759, KA7500. В этом случае сигнал обратной связи с выходных выпрямителей напряжений 5 и 12 вольт подается на вывод 1 микросхемы. Поступаем немного по-другому – перерезаем дорожку печатной платы около вывода 1. Другими словами отключаем вывод 1 от остальной схемы. И на этот вывод подаем нужное нам напряжение через резисторный делитель. Рис 5. Схема для микросхем TL494, MB3759, KA7500 В этом случае номиналы резисторов одинаковы и для стабилизации 5 вольт и для 12. Если вы решили использовать блок питания для получения 5-ти вольт, то резисторный делитель подключаете к выходу 5В. Если для 12, то к 12. Наверно хватит теории и пора приступать к делу. Сначала надо определиться с измерительными приборами. Для измерения напряжений я применю одни из самых дешевых мультиметров DT838. Точность измерения напряжения у них 0.5 процента, что вполне приемлемо. Для измерения тока использую стрелочный амперметр. Токи нужно мерить большие, поэтому придется самому изготовить амперметр из стрелочной измерительной головки и самодельного шунта. Готовый амперметр с фабричным шунтом приемлемого размера я найти не смог. Нашел амперметр на 3 ампера, разобрал его. Вытащил из него шунт. Получился микроамперметр. Дальше была небольшая сложность. Для изготовления шунта и калибровки амперметра, сделанного из микроамперметра, был нужен образцовый амперметр, способный мерить ток в пределах 15-20 ампер. Для этих целей можно было бы применить токовые клещи, но у меня таковых не оказалось. Пришлось искать выход. Выход я нашел самый простой, конечно, не очень точный, но вполне. Шунт я вырезал из стального листа толщиной 1мм, шириной 4мм и длиной 150 мм. К блоку питания через этот шунт подключил 6 лампочек 12V, 20W. По закону Ома через них потек ток равный 10 амперам. Один провод от микроамперметра соединил с концом шунта, а второй двигал по шунту, пока стрелка прибора не показала 7 делений. До 10 делений не хватило длины шунта. Можно было подрезать шунт потоньше, но из-за нехватки времени решил оставить, как есть. Теперь 7 делений этой шкалы соответствуют 10 амперам. Фото 1 Бюджетный стенд для подбора шунта. Фото 2. Стенд с включенными 6-ю лампочками 12вольт 20 ватт. На последней фотографии видно, как просело напряжение 12 вольт при токе 10 ампер. Блок питания PowerMan Pro 420 W. Минус 11.55 показывает из-за того, что я перепутал полярность щупов. На самом деле конечно плюс 11.55. Этот же стенд я буду использовать как нагрузку для регулировки готового блока питания. Новый блок питания я буду делать на основе PowerMaster 350 W, он будет вырабатывать 5 вольт. Согласно наклейке на нем, он по этой линии должен давать 35 ампер. И PowerMan Pro 420 W. С него я буду брать все остальные напряжения. В этой статье я покажу общий принцип модернизации. В дальнейшем я планирую переделать полученный блок питания в пассивный. Возможно, перемотаю дроссели проводом большего сечения. Доработаю соединительные кабели на предмет уменьшения наводок и пульсаций. Сделаю мониторинг токов и напряжений. И возможно многое другое. Но это в будущем. Все это описывать в данной статье я не буду. Цель статьи – доказать возможность получения мощного блока питания, путем модернизации двух-трех блоков меньшей мощности. Немного о технике безопасности. Все перепайки производятся, естественно, при выключенном блоке. После каждого выключения блока, перед дальнейшими работами, разряжайте большие конденсаторы. На них присутствует напряжение 220 вольт, и заряд они накапливают очень приличный. Не смертельный, но крайне неприятный. Электрический ожог заживает долго. Начну с PowerMaster. Разбираю блок, вынимаю плату, отрезаю лишние провода. Фото 3. Блок PowerMaster 350 W Нахожу микросхему ШИМ, она оказалась TL494. Нахожу вывод 1, осторожно перерезаю печатный проводник и подпаиваю к выводу 1 новый резисторный делитель (см. Рис5). Подпаиваю вход резисторного делителя к пятивольтовому выходу блока питания (обычно это красные провода). Еще раз проверяю правильность монтажа, это никогда не бывает лишним. Подключаю модернизированный блок к своему бюджетному стенду. На всякий случай, спрятавшись за стул, включаю. Взрыва не произошло и это даже вызвало легкое разочарование. Для запуска блока соединяю провод PS ON с общим проводом. Блок включается, лампочки загораются. Первая победа. Переменным резистором R1 на малой нагрузке блока питания (две лампочки по 12V, 20W и спот 35W) выставляю выходное напряжение 5 вольт. Напряжение замеряю непосредственно на выходном разъеме. Фотоаппарат у меня не самый лучший, мелкие детали не видит, поэтому прошу прощения за качество снимков. Блок питания на непродолжительное время можно включать без вентилятора. Но нужно следить за температурой радиаторов. Будьте осторожны, на радиаторах некоторых моделей блоков питания присутствует напряжение, иногда высокое. Не выключая блок, начинаю подключать дополнительную нагрузку – лампочки. Напряжение не меняется. Блок стабилизирует хорошо. На этой фотографии я подключил к блоку все лампочки, какие были в наличии – 6 ламп по 20w, две по 75 w, и спот 35w. Ток, текущий через них по показаниям амперметра в пределах 20 ампер. Никакого «проседания», никаких «перекосов»! Полдела сделано. Теперь берусь за PowerMan Pro 420 W. Так же разбираю его. Нахожу на плате микросхему SG6105. За тем отыскиваю нужные выводы. Принципиальная схема, приведенная в статье г. Коробейникова, соответствует моему блоку, нумерация и номиналы резисторов те же. Для отключения 5-ти вольт выпаиваю резистор R40 и R41. Вместо R41 впаиваю два переменных резистора соединенных последовательно. Номинал 47 кОм. Это для грубой регулировки напряжения 12 вольт. Для точной регулировки используется резистор VR1 на плате блока питания Рис 6. Фрагмент схемы блока питания PowerMan Опять достаю свой примитивный стенд и подключаю к нему блок питания. Сначала подключаю минимальную нагрузку – спот 35W. Включаю, подстраиваю напряжение. Затем, не выключая блок питания, подключаю дополнительные лампочки. Напряжение не меняется. Блок прекрасно работает. По показаниям амперметра ток достигает 18 ампер и никакого «проседания» напряжения. Второй этап закончен. Теперь осталось проверить, как будут работать блоки в паре. Перекусываю провода красного цвета идущие от PowerMan к разъему и молексам, изолирую их. А к разъему и молексам подпаиваю пятивольтовый провод от PowerMaster 350 W, так же соединяю общие провода обоих блоков. Провода Power On блоков питания объединяю. PG беру с PowerMan. И подключаю этот гибрид к своему системному блоку. На вид он несколько странен и если кому-то захочется узнать о нем поподробнее, прошу на ПС. Конфигурация такая:
Включаю, все прекрасно работает. Опыт удался. Теперь можно приступать к дальнейшей модернизации «объединенного блока питания». Перевод его на пассивное охлаждение. На фотографии видна панель с приборами – это все будет подключено к данному блоку. Стрелочные приборы – мониторинг токов, цифровые приборы в круглых отверстиях под стрелочными – мониторинг напряжений. Ну и тахометр, и все такое, об этом я уже писал на своей персоналке. Но это в дальнейшем. Влияние «объединенного блока питания» на дальнейший разгон я не проверял. Доделаю, тогда и проверю. Процессор уже разогнан до 2.6 гигагерц по шине, при напряжении на проце 1.7 вольта. Гнал я его на безвентиляторном блоке питания, но при таком разгоне 12 вольт на нем проседали до 11.6 вольта. А гибрид выдает ровно 12. Так что, возможно, еще немного мегагерц я из него выжму. Но это будет другая история. Перечень используемой литературы:
Ждём Ваших комментариев в специально созданной ветке конференции. |
ПРЕОБРАЗОВАТЕЛЬ 12-220 |
ПРЕОБРАЗОВАТЕЛЬ 12-220 |
ЛАБОРАТОРНЫЙ БП СВОИМИ РУКАМИ ПО КАРТИНКАМ.
Эта статья предназначена для людей, которые быстро могут отличить транзистор от диода, знают для чего нужен паяльник и за какую сторону его держать, ну и наконец дошли до понимания, что без лабораторного блока питания их жизнь больше не имеет смысла…
Данную схему нам прислал человек под ником: Loogin.
Все изображения уменьшены в размере, для просмотра в полном размере кликните левой клавишей мышки на изображение
Здесь я постараюсь максимально подробно — шаг за шагом рассказать как это сделать с минимальными затратами. Наверняка у каждого после апгрейдов домашнего железа валяется под ногами как минимум один БП. Конечно кое-что придётся докупить, но эти жертвы будут небольшими и скорее всего оправданы конечным результатом – это, как правило около 22В и 14А потолочных. Лично я вложился в $10. Конечно, если собирать всё с «нулевой» позиции, то надо быть готовым выложить ещё около $10-15 для покупки самого БП, проводов, потенциометров, ручек и прочей рассыпухи. Но, обычно – такого хлама у всех навалом. Есть ещё нюанс – немного придётся потрудиться руками, поэтому они должны быть «без смещения» J и нечто подобное может и у Вас получиться:
Для начала нужно любыми способами раздобыть ненужный но исправный БП АТХ мощностью >250W. Одна из наиболее популярных схем – это Power Master FA-5-2:
Подробную последовательность действий я опишу именно для этой схемы, но все они справедливы и для других вариантов.
Итак, на первом этапе нужно подготовить БП-донор:
- Удаляем диод D29 (можно просто одну ногу поднять)
- Удаляем перемычку J13, находим в схеме и на плате (можно кусачками)
- Перемычка PS ON на землю должна стоять.
- Включаем ПБ только на короткое время, так как напряжение на входах будет максимальное (примерно 20-24В) Собственно это и хотим увидеть…
Не забываем про выходные электролиты, рассчитанные на 16В. Возможно они немного нагреются. Учитывая, что они скорее всего «набухшие», их все равно придется отправить в болото, не жалко. Провода уберите, они мешают, а использоваться будут только GND и +12В их потом назад припаяете.
5. Удаляем 3.3х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21:
6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и «типа дроссель» L5
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29
8. Меняем плохие : заменить С11, С12 (желательно на большую ёмкость С11 — 1000uF, C12 — 470uF)
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно! ) и резистор R27 советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом.
Смотрим на мою плату и повторяем:
10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1ю ногу), R52-54 (… 2ю ногу), С26, J11 (…3ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем то J рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му. Собственно R37 тоже можно перерубить.
12. отделяем 15ю и 16ю ноги микросхемы от «всех остальных»: для этого делаем 3 прореза существующих дорожек а к 14й ноге восстанавливаем связь чёрной перемычкой, как показано на моем фото.
13. Теперь подпаиваем шлейф для платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14й и 15й пришлось содрать лак и просверлить отверстия, на фото вверху.
14. Жила шлайфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10. Просверлить отверстие в дорожку, расчистить лак и туда! Сверлить лучше со стороны печати.
Это всё было, как говорится: «минимальная доработка», чтобы сэкономить время. Если время не критично, то можно просто привести схему в следующее состояние:
Ещё я посоветовал бы поменять кондёры высоковольтные на входе (С1, С2) Они маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Плюс неплохо дроссель групповой стабилизации L3 немного переделать, либо использовать 5ти вольтные обмотки, соединив их последовательно, либо вообще убрать всё и намотать около 30ти витков новым эмальпроводом общим сечением 3-4мм2.
Для питания вентилятора нужно «подготовить» ему 12В. Я выкрутился таким образом: Там где раньше стоял полевой транзистор для формирования 3,3В можно «поселить» 12ти вольтную КРЕН-ку (КРЕН8Б или 7812 импортный аналог). Конечно там без резки дорожек и добавки проводов не обойтись. В конечном итоге получилось в общем даже и «ничего»:
На фото видно, как всё гармонично ужилось в новом качестве, даже разъём вентилятора недурно уместился и перемотанный дроссель получился весьма неплох.
Теперь регулятор. Чтобы упростить задачу с разными там шунтами, поступаем так: покупаем готовые амперметр и вольтметр в Китае, либо на местном рынке (наверняка там их можно найти у перекупщиков). Можно купить совмещённый. Но, надо не забывать, что потолок по току у них 10A! Поэтому в схеме регулятора придется ограничивать предельный ток на этой отметке. Здесь я опишу вариант для отдельных приборов без регулировки тока с ограничением по максимуму 10A. Схема регулятора:
Чтобы сделать регулировку ограничения тока, надо вместо R7 и R8 поставить переменный резистор 10кОм, также как R9. Тогда можно будет использовать всемерялку. Также стоит обратить внимание на R5. В данном случае его сопротивление 5,6кОм, потому что у нашего амперметра шунт 50mΩ. Для других вариантов R5=280/Rшунта. Поскольку мы взяли вольтметр один из самых дешевых, поэтому его немного надо доработать, чтобы он мог измерять напряжения от 0В, а не от 4,5В как это сделал производитель. Вся переделка заключается в разделении цепей питания и измерения посредствам удаления диода D1. Туда впаиваем провод – это и есть +V питания. Измеряемая часть осталась без изменений.
Плата регулятора с расположением элементов показана ниже. Изображение для лазерно-утюжного метода изготовления идёт отдельным файлом Regulator.bmp с разрешением 300dpi. Также в архиве есть и файлы для редактирования в EAGLE. Последнюю офф. версию можно скачать тут: www.cadsoftusa.com. В интернете имеется много информации о этом редакторе.
Красным показаны перемычки. Дальше берём в руки бумагу, лазерный принтер, утюг, фольгированный текстолит, хлорное железо (его не в руки), паяльник, кучу элементов и приводим это всё вот в такое состояние:
Потом прикручиваем готовую плату у потолку корпуса через изолирующие проставки, например нарезанные из отработанной палочки чупа-чупса высотой по 5-6 мм. Ну и не забыть проделать предварительно все необходимые вырезы для измерительных и прочих приборов.
Предварительно собираем и тестируем под нагрузкой:
Как раз и смотрим на соответствие показаний различных китайских девайсов. А ниже уже с «нормальной» нагрузкой. Это автомобильная лампа главного света. Как видно — без малого 75Вт имеется. При этом не забываем засунуть туда осциллограф, и увидеть пульсации около 50мВ. Если будет больше, то вспоминаем про «большие» электролиты по высокой стороне ёмкостью по 220uF и тут же забываем после замены на нормальные ёмкостью 680uF например.
В принципе на этом можно и остановиться, но чтобы придать более приятный вид прибору, ну чтобы он не выглядел самоделкой на 100%, мы делаем следующее: выходим из своей берлоги, поднимаемся на этаж выше и с первой попавшейся двери снимаем бесполезную табличку.
Как видим, до нас тут кто-то уже побывал
В общем по тихому делаем это грязное дело и начинаем работать напильниками разных фасонов и параллельно осваивать AutoCad.
Потом на наждаке затачиваем кусок трёхчетвертной трубы и из достаточно мягкой резины нужной толщины вырубываем и суперклеем лепим ножки.
В итоге получаем достаточно приличный прибор:
Следует отметить несколько моментов. Самое главное – это не забывать, что GND блока питания и выходной цепи не должны быть связаны, поэтому нужно исключить связь между корпусом и GND БП. Для удобства желательно вынести предохранитель, как на моём фото. Ну и постараться максимально восстановить недостающие элементы входного фильтра, их скорее всего нет вообще у исходника.
Вот ещё пара вариантов подобных приборов:
Слева 2х этажный корпус ATX с всемерялкой, а справа сильно переделанный старый AT корпус от компьютера.
С Уважением, Loogin.
Обсудить на форуме
Скачать архив с материалом
Блок питания без трансформатора | Все своими руками
Бывает такое что нужно запитать какое-то устройство от 220В и нет желания использовать трансформатор из-за громоздкости, или же просто нет трансформатора подходящего, тогда пригодится бестрансформаторный источник питания.
Этот тип питальника отлично подходит в том случае, если нет постоянного контакта с человеком, допустим какой то блок автоматизации, к примеру датчик для автоматического управления освещением.
Вот схема блока питания без трансформатора от 220В
Представленная схема способна питать устройство способно питать устройство стабилизированным напряжением 12В до 60мА.
Рассмотрим конкретно все присутствующие детали: R1 разряжающий конденсатор, R2 резистор ограничивающий пусковый ток, C1 гасящий конденсатор, Диоды D1D2D4D5 выпрямитель, С2 выравнивающий конденсатор, D3 стабилитрон 24В, R3 балластный резистор, U1 регулируемый стабилитрон, R4R5 делитель, C4C5 фильтрующие конденсаторы, C3 фильтр от ВЧ помех.
Для правильной работы схемы нужно рассчитывать только некоторые элементы. Емкость C1 зависит от потребляемого тока рассчитывается по формуле
где С (Ф) — емкость конденсатора, Iэфф (А)— эффективный ток нагрузки, f (ГЦ)— частота входного напряжения, Uc, Uс (В)— входное напряжение и Uн (В)— напряжение нагрузки
R3 рассчитывается по формуле (Uвх-Uвых)/Iнаг, где Uвх( В) напряжение до R3 в данном случае 24В, Uвых ( В) напряжение после R3, а Iнаг (А)ток нагрузки. В данном случае (24В-12В)/0,06А=12В/0,06А=200Ом
Делитель на резисторах R4R5 рассчитывается на напряжение срабатывания TL431 2,55В, R5 выбирается произвольно, а R4 рассчитывается по формуле R4=Uвх*R5/Uвых-R5, R5=10K R4=12В*10000Ом/2,5В — 10000Ом=48000Ом-10000Ом=38000Ом=38кОм, ближайший номинал 39кОм.
Данный тип стабилизатора на TL431 можно заменить и на простую кренку типа 7812, но если надо четкое напряжение то лучше TL431
Данный блок питания идеальный вариант для всяких подделок, где нет связи с человеком, так как имеется гальваническая связь с сетью 220В и можно получить разряд, поэтому будьте осторожны
С ув. Эдуард
Похожие материалы: Загрузка…построить трансформатор | Схемы переменного тока
ДЕТАЛИ И МАТЕРИАЛЫ
- Полоса стальная, 4 штуки
- Болты, гайки, шайбы разное
- Провод «магнит» 28 калибра
- Блок питания переменного тока низкого напряжения
«Магнитопровод» — провод малогабаритный, изолированный с тонким эмалевым покрытием. Он предназначен для изготовления электромагнитов, поскольку многие «витки» провода могут быть намотаны в катушку относительно небольшого диаметра. Подойдет любой калибр проволоки, но рекомендуется калибр 28, чтобы сделать катушку с как можно большим количеством витков при небольшом диаметре.
ССЫЛКИ
Уроки электрических цепей , том 2, глава 9: «Трансформаторы»
ЦЕЛИ ОБУЧЕНИЯ
- Для определения эффектов электромагнетизма.
- Для определения эффектов электромагнитной индукции.
- Для определения влияния магнитной связи на регулирование напряжения.
- Для определения влияния поворота обмотки на коэффициент «шага».
СХЕМА
ИЛЛЮСТРАЦИЯ
ИНСТРУКЦИЯ
Оберните два стальных стержня одинаковой длины тонким слоем электроизоляционной ленты.Оберните несколько сотен витков магнитной проволоки вокруг этих двух стержней. Вы можете сделать эти обмотки с равным или неравным числом витков, в зависимости от того, хотите ли вы, чтобы трансформатор мог «пошагово» повышать или понижать напряжение. Я рекомендую для начала равные витки, а потом поэкспериментируйте с катушками с неравным числом витков.
Соедините эти стержни в прямоугольник с двумя другими, более короткими стальными стержнями. Используйте болты, чтобы скрепить стержни вместе (рекомендуется просверлить отверстия под болты в стержнях , прежде чем вы обернете вокруг них проволоку).
Проверьте, нет ли короткого замыкания обмоток (показания омметра между концами провода и стальным стержнем) после того, как вы закончите наматывать обмотки. Между обмоткой и стальным стержнем не должно быть непрерывности (бесконечного сопротивления). Проверьте целостность цепи между концами обмотки, чтобы убедиться, что провод не порван где-то внутри катушки. Если какое-либо из измерений сопротивления указывает на проблему, обмотку необходимо заменить.
Подайте питание на трансформатор с помощью низковольтного выхода «источника питания», описанного в начале этой главы. Не подключайте трансформатор напрямую к сетевой розетке (120 вольт), так как ваши самодельные обмотки не рассчитаны на какое-либо значительное напряжение!
Измерьте выходное напряжение (вторичная обмотка) трансформатора с помощью вольтметра переменного тока. Подключите какую-нибудь нагрузку (лампочки хороши!) Ко вторичной обмотке и повторно измерьте напряжение. Обратите внимание на степень «проседания» напряжения на вторичной обмотке при увеличении тока нагрузки.
Ослабьте или снимите соединительные болты с одной из частей короткого стержня, тем самым увеличив сопротивление (аналогично сопротивлению ) магнитной «цепи», соединяющей две обмотки вместе.Обратите внимание на эффект «проседания» выходного напряжения и напряжения под нагрузкой.
Если вы сделали трансформатор с неодинаковыми обмотками. попробуйте его в повышающем или понижающем режиме, запитывая разные нагрузки переменного тока.
СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:
Как построить катушку Тесла на 1,35 миллиона вольт
Я построил катушку Тесла на 1,35 миллиона вольт у себя на заднем дворе, не убив себя.
Примечание автора: это очень устаревшая статья, написанная в средней школе.
Катушка Тесла, изобретенная гениальным ученым Никой Тесла (1856-1943), представляет собой высоковольтный высокочастотный генератор энергии. Тесла разработал его для беспроводной передачи электроэнергии, но из-за его низкой эффективности сейчас они просто выглядят круто.
С помощью этого устройства Тесла мог генерировать напряжения такой величины, что они вылетали из устройства, как молнии! Зрелище извивающихся электрических струй, прыгающих по воздуху, просто захватывает.Сегодня катушки Тесла строятся любителями по всему миру только по одной причине — острые ощущения от создания собственной молнии!
Катушки Теслатакже были популяризированы в 90-х годах популярной видеоигрой Red Alert. В игре катушки Тесла использовались Советским Союзом в качестве оружия для создания чрезвычайно высоких и смертельных напряжений.
Следуй за мной
Следи за моими последними приключениями
Материалы
Много конденсаторов | Алюминиевый воздуховод |
Трансформатор неоновых вывесок | Медная труба |
Медные провода высокого напряжения | Трубки для аквариума |
Листы акрила | Гибкие медные трубки |
Алюминиевый U-образный профиль | много болтов / гаек / наконечников для проводов и т. Д. |
Набор резисторов | Лента электрическая |
Пироги | Лента из алюминиевой фольги |
Трубки ПВХ | Заглушки из ПВХ |
Лак полиуретановый | AWG24 Провод |
Сверло | Набор для пайки |
Молот | Стержни с резьбой |
Металлические детали L-образной формы | Линейки |
Полиэтилен высокой плотности (разделочная доска) | Вентилятор охлаждения |
Пила | Патрон предохранителя |
Деревянные блоки | Краска-спрей |
Доски деревянные | Слишком много свободного времени |
Мотивационные плакаты | Деньги |
Семейное положение |
Строительство
В качестве оговорки скажу, что конструкция катушки Тесла сложна и сложна.Это дорого, отнимает много времени, опасно и требует огромной мотивации. Здесь требуются технические навыки, и необходимы хорошие знания физики и математики. Лучше всего разбить конструкцию на отдельные компоненты.
Источник питания / трансформатор
Пожалуй, самый важный компонент катушки Тесла — это блок питания, и его, вероятно, труднее всего достать. Характеристики источника питания влияют на все остальные компоненты и общий размер катушки Тесла.
Источник питания в основном преобразует напряжение сети (240 В) в чрезвычайно высокие напряжения, необходимые для катушки Тесла.
Обычно любители ищут трансформаторы нескольких типов.
Трансформаторы с неоновыми вывесками (NST), вероятно, являются самыми популярными. Их можно приобрести в магазинах с неоновой вывеской. Стоимость может составлять от 30 до 100 долларов в зависимости от состояния и рейтинга. Обычно они находятся в диапазоне от 6000 В до 15000 В, с током около 30 мА. Существует 2 типа трансформаторов для неоновых вывесок: один с железным сердечником и работает на частоте 50 Гц, а другой — это новый, меньший по размеру, с переключаемым режимом, который работает на частоте 20 кГц и намного легче.Тяжелые с железным сердечником обычно работают лучше.
Конечным трансформатором будет Pole Pig. Они используются вашими местными правительственными учреждениями для подачи энергии в город. Их можно найти высоко на столбах, по которым подается электричество. Они весят около 200 кг, поэтому, если вы собираетесь украсть его, приготовьтесь с краном или чем-то еще. Кроме того, вы можете иметь с собой электрика, когда вы запускаете катушку Тесла дома, так как ваши автоматические выключатели легко сработают из-за большого тока, который требуется этим парням.В принципе, не беспокойтесь.
Я позвонил в магазин неоновых вывесок, и они действительно продали старые / старые NST. Я посетил их и купил один за 45 сингапурских долларов. Если вы не знаете, как им управлять, лучше попросите магазин продемонстрировать. Они обманывают мелкие; Они довольно тяжелые, от 8 до 20 кг, и у меня болели руки после того, как я принес их домой в общественном транспорте.
Во-первых, некоторые детали моего трансформатора, а также спецификации, которым должна соответствовать моя катушка Тесла.
My NST выдает 15 кВ и 30 мА.
Более подробно…
Используя эту формулу, я выяснил, что моя катушка Тесла может достигать длины искры до 91,64 см. Теперь он не может приблизиться к этому значению, но он просто дает надежную оценку пространства, которое мне нужно для проведения тестов.
Конденсаторная батарея
Каждая катушка тесла должна иметь конденсаторную батарею. Это сохраняет мощность, необходимую для разряда катушки Тесла.Можно построить три типа конденсаторных батарей, в том числе полностью самодельный, состоящий из пивных бутылок и прочего. Но самый простой метод — это конструкция с несколькими мини-конденсаторами (MMC). Для MMC необходимо учитывать множество факторов.
Во-первых, вы должны знать пиковое напряжение, с которым должна справиться конденсаторная батарея.
В то время как мой трансформатор выдает 15000 В, напряжение может достигать пика до 21 213 В!
Затем нужно выбрать тип конденсатора.
Я выбрал полипропиленовый конденсатор на 1500 В постоянного тока, 0,047 мкФ, потому что он обеспечивает наилучшее соотношение цены и качества, т. Е. лучший мкФ за доллар.
Теперь, поскольку моя MMC должна хранить как минимум 21213 В, я решил, что напряжения должны быть разделены конденсаторами, когда они включены последовательно. Я планирую расположить 15 таких конденсаторов последовательно, что в сумме даст 22500 В, с которыми он может справиться.
Используя приведенную выше формулу, я подсчитал, что моему трансформатору требуется конденсаторная батарея 0.0064 мкФ. Однако это всего лишь значение резонансной шапки. Чтобы быть в большей безопасности, нам нужно значение LTR (больше, чем резонанс). Это значение зависит от того, используете ли вы статический разрядник или SRSG (синхронный вращающийся разрядник), о котором я подробнее расскажу позже. Я буду использовать статический зазор, поэтому значение LTR составляет 0,0095 мкФ.
Расчетная общая емкость 1 «струны» из 15 конденсаторов — это просто номинальная емкость каждой шапки (т. Е. 0,045 мкФ), деленная на количество насадок в струне (т. Е.15), поэтому каждая моя струна имеет 0,00313 мкФ. Для производства 0,0095 мкФ мне понадобится примерно 3 струны.
Итак, это 3 струны по 15 заглавных букв, что в сумме дает 45 заглавных букв.
К каждой крышке также должен быть прикреплен резистор. Стабилизирующие резисторы используются для безопасного разряда каждого конденсатора, чтобы обеспечить безопасное обращение при настройке и транспортировке катушки. Я выбрал резистор 10 МОм 0,5 Вт 3500 В постоянного тока.
Общая конструкция моей конденсаторной батареи выглядит следующим образом:
После того, как я закончил сборку конденсаторной батареи, делая снимки по пути, по какой-то причине изображения конструкции конденсаторной батареи пропали, возможно, были удалены / отформатированы, и моя программа для восстановления данных не смогла их вернуть.
Итак, я не могу показать фотографии того, как я делал батарею конденсаторов, но я постараюсь изо всех сил описать это словами.
Хорошо, я нарисовал схему конденсаторов на бумаге формата А4. Затем я прикинул размер банка, купив 3 акрила такого размера.
Один кусок акрила будет использоваться для крепления конденсаторов. На концах конденсатора просверливались отверстия. Контакты конденсаторов проходили через эти отверстия, чтобы надежно прикрепить их к акрилу.
Мои навыки пайки были ужасными, поэтому мне было трудно спаять точки контакта вместе, чтобы сформировать цепочки конденсаторов.
Затем к каждому конденсатору были добавлены резисторы. И снова, с пайкой, работа была сделана довольно плохо.
Наконец, я просверлил отверстия в 4 углах трех частей акрила. Они будут использоваться для сквозной установки болтов и гаек.
Остальные 2 части акрила предназначены для покрытия конденсаторов из соображений безопасности.Один покрывает заднюю часть со всеми точками контакта и пайкой, а другой закрывает переднюю часть, защищая меня от конденсаторов, а их от меня.
Конденсаторная батарея находится в той части цепи катушки Тесла, где как напряжение, так и ток высокие. Требуется толстый хорошо изолированный медный провод.
Я отмерил необходимую длину конденсаторной батареи. Голый медный сердечник был обнажен в различных точках окончания цепочек конденсаторов. Конечная точка контакта была прикреплена с помощью проволочного наконечника.
Моя паяльная работа выглядит так, как будто ее выполнил пятилетний ребенок.
И, наконец, заклейка всей голой проводки. Готово! Вид сверху, обнаруживающие конденсаторы.
Общая стоимость конденсаторной батареи более 100 долларов США. Но это намного дешевле, чем покупать промышленный импульсный конденсатор.
Примерно через неделю я решил испытать недостроенную катушку Тесла. Получилось ужасно.
Зигзагообразная компоновка была глупым решением, поскольку ток предпочитал пробиваться через диэлектрический воздух, чем проходить через конденсаторы.
Между двумя соседними точками конденсаторной батареи возникла дуга, во многом благодаря ужасной конструкции Yours Truly. Я мог добавить изоляционный слой между всей цепочкой крышек, но расстояние было настолько маленьким, что я не мог найти подходящий материал.
И вот я решил все это перестроить. Это было последнее, о чем я думал, когда думал о вариантах, но, похоже, у меня не было выбора.
Потратил около часа или двух на распайку всех конденсаторов и резисторов, и мой отец купил мне новые кусочки акрила.На этот раз он будет не зигзагообразным, а просто из трех прямых цепочек заглавных букв.
На бурение потребовалось время, но, как я делал раньше, это было немного проще и быстрее…
Затем я вставил колпачки, спаял их вместе.
И, конечно, добавление резисторов…
Соединения на концах выполняются припаиванием толстого провода к 3 точкам контакта.
Электропроводка
Обычно для катушек Тесла требуются толстые хорошо изолированные медные провода из-за большого количества проходящего через них тока и напряжения.Количество обработанной меди в проволоке делает ее очень дорогой. Я попросил один диаметром 6-8 мм, 7 м, и парень дал мне 7,2 мм и назвал 47 долларов. Я не мог позволить себе платить столько только за проводку, поэтому попросил другую, меньшего размера. Это примерно 3-4 мм, не совсем то, что я хотел, но вдвое дешевле. Так что 20 долларов + за толстую проводку.
Итак, когда я сделал еще один тестовый прогон, это произошло:
Нет искр на разрядном выводе, но вместо этого на первичной обмотке!
Как видно из рисунка выше, дуга на самом деле возникает в проводе.Да, 20000 Вольт просто проскочили прямо через изоляцию провода. Я думал, что он на самом деле довольно толстый, но нет, мне следовало купить высоковольтные провода (высоковольтные), но это довольно дорого.
Итак, чтобы решить эту проблему, я купил несколько трубок для аквариума, чтобы обмотать провода в качестве дополнительной изоляции. Все провода теперь изолированы трубками для аквариумов.
Разгрузочный терминал
В верхней части катушки Тесла находится разрядный терминал, что и делает он.Один, как следует из названия, должен действовать как выходной терминал для стримерных разрядов, а другой — как емкостная нагрузка для вторичной катушки.
Может быть двух форм: тороид или сфера. Я не знаю разницы, плюсов и минусов между ними, но понятия не имею, как сделать большую металлическую сферу. Поэтому выбрана тороидальная конструкция.
Коммерческий алюминиевый тороид будет стоить несколько сотен, если не тысяч долларов. Самодельный стоит около 40 долларов.
Вот как я делаю свой тороид.
3 шт. Воздуховоды алюминиевые, досталось мне 3м. Довольно дорого — 30 долларов +. Затем алюминиевая лента. Это около 10 долларов. И, наконец, блюда для пирогов, очень дешевые.
Просверлите пару отверстий в центре и по краям форм для пирога, а затем затяните их вместе болтами и гайками.
Отмерьте необходимую длину алюминиевого воздуховода и вырежьте его. Я использовал алюминиевую ленту, чтобы скрепить концы воздуховода, плотно прилегая к формам для пирога.
Сглаживал внешний вид тороида, добавляя ленты от алюминиевого воздуховода к формам для пирога.
Вторичная обмотка
Вторичная обмотка — черт возьми.
Он отвечает за генерирование необходимого очень высокого напряжения, а его конструкция чрезвычайно утомительна.
Во-первых, требуется форма катушки. Провода, намотанные примерно на тысячу витков, полностью охватывают форму катушки, которая должна быть из изоляционного материала.О металлических трубах по понятным причинам не может быть и речи. Вода убивает производительность, поэтому также избегайте картона. Подойдет большинство пластиковых материалов. Обычно используются трубы из ПВХ, потому что их легко найти. Некоторые намотчики Tesla пытались и преуспели в том, чтобы намотать проводку вокруг формы катушки и полностью удалить ее, но на данный момент это выходит за рамки моих возможностей.
Черный ПВХ следует избегать, потому что он содержит углерод, серый работает, но белый — лучше всего.
Я купил 3-дюймовую трубу из ПВХ, 2 фута.При покупке формы катушки важно выбрать правильную длину, так как она сильно повлияет на высоту катушки. Слишком высокий, слишком громоздкий; Слишком короткая катушка Тесла способна поразить сама себя. Здесь играет роль соотношение диаметра к высоте. У меня была ошибка в расчетах, поэтому получилось странное соотношение 1: 6,67. Думаю, для моей катушки это плохо, учитывая, что рекомендуется соотношение от 1: 3 до 1: 6.
Перед тем, как начать, желательно покрыть форму змеевика полиуретановым лаком.
Был нанесен слой или два, и после того, как он высох, я сразу приступил к намотке проводов.
Несколько замечаний. Мы должны стремиться к диапазону от 800 до 1200 оборотов, любое большее или меньшее значение, похоже, снижает выход (либо из-за повышенного сопротивления, либо из-за низкой индуктивности). Я нацеливаюсь на 1000 ходов.
Я купил 0,5 кг провода 0,5 мм (AWG 24) (довольно дорого, от 30 долларов США). 1000 оборотов должны дать 20 дюймов.
Ранение утомительно. Я ищу слово со значением, аналогичным «утомительным», но с большей степенью страдания.Но пока подойдет утомительное занятие. Чтобы дать вам некоторую перспективу, вот процесс:
Для начала я нашел валяющуюся вешалку для полотенец. Ладно, не совсем «валяется», но взял это от мамы.
Разорвав его и реконструировав, я получил эту маленькую новаторскую штуку.
Намотка была невероятно утомительной, поскольку я прибегал к этому.
Я потратил 5-6 часов на намотку и намотку. Для развлечения я сделал это перед своим компьютером, пока я смотрел все оставшиеся серии CSI и Lost, которые я оставил.
Началось в 17:00, а примерно в 23:00 было так:
Я подсчитал и решил, что повредил около 240 м медной проводки. О, боль!
На самом деле я начал довольно хорошо, с хорошими и плотными обмотками. Я потерял терпение на полпути, и оттуда все стало неряшливо. Надеюсь, это не сильно повлияет на работу катушки.
Я еще не доработал дизайн того, как вторичная катушка будет прикреплена к тороиду, но это должно выглядеть так.
Как я упоминал ранее, я обнаружил, что количество витков на моей вторичной катушке было слишком большим, почти 1000 витков. Это дает слишком высокое отношение диаметра формы к длине катушки, равное 6,67. Рекомендуемое максимальное соотношение — 6, что я намного выше. Я решил потратить некоторое время на раскручивание витков, чтобы получить длину катушки 18 дюймов из 20 дюймов.
Завершение вторичной катушки осуществляется путем прикрепления ее к алюминиевой ленте и использования перфоратора для подключения к концу заземляющего наконечника.
Штанга заземления
Заземляющий стержень, даже если он звучит незначительно, играет важную роль. Большинство компонентов необходимо заземлить не только из соображений безопасности, но и для их работы. Я решил использовать один заземляющий стержень с множеством подключений к нему, так как я не хотел, чтобы слишком много стержней врезались в землю.
Я начал с толстого медного провода и 1-дюймовой медной трубы длиной в фут.
Я просто просверлил медную трубку, вставил болт и гайку и прикрепил медный провод с проволочным наконечником на конце.
Заземляющий стержень должен быть забит в землю надежно и глубоко.
Искровой разрядник
Искровой разрядник действует как выключатель питания для первичного контура бака. Он использует воздух для проведения электричества между электродами и при этом выделяет много тепла.
Звучит достаточно просто, но Spark Gap — единственный компонент, на который я тратил больше всего времени. Около 20 часов легко. Существует множество проектов Spark Gaps, и было довольно сложно выбрать один из них.
Существует два основных типа искровых разрядников. Статический, не связанный с движением электродов, отсюда и название. И экзотический тип, в котором электроды вращаются для повышения производительности. Схема вращающегося искрового промежутка была слишком сложной, поэтому я остановился на статическом искровом промежутке.
Конструкция статического искрового промежутка может отличаться от простой, например:
Однако зазор обычно делится на множество меньших зазоров, соединенных последовательно.Это сделано по двум причинам; 1) Чем больше у вас зазоров, тем с большей мощностью он может справиться; 2) Можно изменять напряжение зажигания промежутка, изменяя количество электродов в цепи (перемещая соединительные провода).
При этом вы получаете многосерийный статический искровой разрядник, который я выбрал для создания. Этот дизайн для этого сильно различается, и он имеет большое значение по цене, эффективности, выполнимости, затраченному времени и т. Д. У разных людей будут разные предпочтения в большом количестве доступных дизайнов.После нескольких часов поиска в Интернете я нашел дизайн, который мне понравился. Это парень по имени Скотт. Какой Скотт, я не знаю, но сколько там Скоттов, которые используют Tesla Coiler?
Итак, я начал.
Два куска прозрачного акрила, просверленные и поддерживаемые стержнями с резьбой по 4 углам. Стержни с резьбой действительно раздражали пилу и пилку.
Я нашел алюминиевые U-образные профили правильного размера! И снова пилить было настоящей болью.
И их выравнивание…
Электроды! Медные трубы, удерживаемые из акрила алюминиевыми U-образными профилями.
После многочасового бурения…
Последний собранный статический искровой разрядник Multi Series! Соединения крепились к болтам и гайкам, поддерживающим медную трубу и U-образные профили.
Тогда еще одно разочарование. В одном из тестовых запусков, откладывая настройку, чтобы завершить день, я уронил Spark Gap.Он очень сильно сломался и выглядел так, будто полностью вышел из строя. Я потратил на этот искровой разрядник целый день, а возможно, и больше, что-то вроде 6 часов непрерывной утомительной технической работы, и видеть, как он ломается, было совершенно отстойным чувством.
Мне нужно было построить еще один, но я сказал себе: «Ни в коем случае не еще 6 часов сверления, пиления и т. Д.», И поэтому я импровизировал. Придумал новый дизайн, и с его помощью появился шанс улучшить ситуацию.
Я нашел эти Г-образные металлические детали где-то в доме, и мне в голову пришла идея.Я попросил у папы еще, и он достал целую коробку.
И я купил 2 твердые пластиковые линейки, которые служат опорой, и они также обеспечивают точные измерения расстояния искрового промежутка.
Необходимо настроить искровой промежуток, чтобы катушка Тесла могла достичь максимальной производительности.
Для этого я подключил разрядник только к трансформатору 15000В. Оттуда я отрегулировал расстояние между электродами таким образом, чтобы добиться максимального расстояния искрового промежутка, который соответствует максимальному проходящему через него напряжению.
Первичная обмотка
Первичная обмотка и основной конденсатор резервуара образуют первичный резонансный контур. Для правильной работы катушка Тесла должна иметь идентичные первичные и вторичные резонансные частоты.
О моей первичной катушке мало что можно сказать. По сути, это моток медной трубы, намотанный плоской блинной спиралью. Диаметр самого внутреннего витка должен быть на 2 дюйма больше диаметра вторичной катушки, и он закручивается по спирали, сохраняя зазор 1/4 дюйма между соседними витками.Общее количество необходимых витков зависит от значений других компонентов схемы, но максимум 10-15 витков будет хорошим числом.
Медные трубки, обычно используемые в системах центрального отопления, идеально подходят для изготовления первичных змеевиков. Он имеет большую гладкую поверхность, которая идеально подходит для работы с высокими частотами / высоким напряжением, и его легко сгибать вручную.
Хорошим материалом для монтажа высоковольтных компонентов является полиэтилен высокой плотности (HDPE), который легко достать в виде разделочных досок.Это то, что я буду использовать для поддержки трубки. Если вы используете древесину, ее следует просушить и покрыть лаком, чтобы гарантировать, что она действует как изолятор.
Сначала вырезал пилой полосы из ПНД.
После этого я просверлил отверстия во всех полосах, через которые будут проходить медные трубки.
Я сел перед телевизором и начал продевать опоры через медную катушку.
Вот и готово!
Много недель спустя, когда я успешно протестировал испытанную катушку, мне удалось получить дугу 25-27 см… но характеристики катушки Тесла были ограничены.
Проблема была с первичной обмоткой. У меня был отвод первичной обмотки на катушке номер 8, с улучшением характеристик по мере увеличения количества витков. Моя первичная катушка, к сожалению, имела всего 8 витков. Работа моей катушки Тесла была ограничена, в первую очередь, моей первичной катушкой!
Если бы у меня были более длинные медные трубки и, следовательно, больше витков в первичной катушке, я бы смог добиться гораздо большей производительности. Очень жаль, что первичная катушка не позволяет мне достичь резонанса.
Итак, я купил новую 50-футовую медную трубку для своей новой первичной обмотки. По сравнению с моей 18-футовой старой первичной катушкой, у меня никогда не должно закончиться оборотов, от которых я мог бы отводить.
Целый день работал над этим. После 4 часов пиления, сверления, забивания молотком.
На этот раз я сделал это немного по-другому, потому что научился на собственном опыте. Продевать через опоры было мучительно утомительно, поэтому я поумнел и сделал это по-другому.Вместо того, чтобы продевать его, я просто сделал узкие выступы с небольшими отверстиями в опорах. Оттуда я могу просто вставить медные трубки, чтобы они хорошо вошли в выступы опор.
К первичной обмотке необходимо выполнить два электрических соединения; фиксированное соединение на одном конце катушки и подвижная точка отвода для подключения к любой точке катушки. Это то, что позволяет нам настраивать частоту первичного контура резервуара в соответствии с естественным резонансом вторичного контура.
Подвижное соединение отвода первичной обмотки было выполнено с помощью держателя предохранителя. Он был разработан для установки предохранителей, но если осторожно согнуть его плоскогубцами, возможно хорошее соединение с медной трубкой. На самом деле мне потребовалось много модификаций, чтобы заставить его хорошо соединиться с толстым медным проводом.
Неподвижное соединение выполняется путем скручивания внутреннего конца медной трубки вниз, и я приклеил проволочный наконечник, чтобы обеспечить хороший электрический контакт.
Стенд
Я решил создать подходящую подставку, чтобы упростить настройку, улучшить внешний вид и удобство хранения, когда я закончу с ней.Итак, несколько недель назад (на самом деле почти месяц) я попросил отца выступить за это. Я описал ему, что хочу: две палубы, 4 опоры, на колесах.
Через неделю или две он сделал это, но я продолжал просить мелкие исправления и изменения. Это выглядело действительно некрасиво с желтым, белым, серым и коричневым. Четыре опоры представляют собой трубы из ПВХ, а деревянные блоки используются для удержания предметов на месте.
Если я и чему-то научился у Apple iPod, так это тому, что Immaculate White выглядит потрясающе.
S $ 9.00 за белую аэрозольную краску. Глупые плееры iPod учат глупым вещам.
Я потратил почти 2 дня на постоянную установку катушки Тесла на подставку. Мне пришлось просверлить больше отверстий, добавить больше деревянных блоков, чтобы удерживать предметы на месте, просверлить крючки, отрегулировать длину проводов, чтобы они соответствовали конструкции, и т.д., и, наконец, снова покрасить распылением их в белый цвет.
В конструкции были функции и особенности, в том числе:
Крюк для удержания длинного провода заземления и медного стержня заземления.Так что теперь это намного более управляемо и удобно.
Трансформатор 15 кВ, искровой разрядник и батарея конденсаторов удобно расположены на нижней палубе. Все кабели изолированы трубками для аквариума и укорочены, чтобы поддерживать их в чистоте и порядке. Трансформатор также находится на колесах, так как я не могу перемещать установку с катушкой Тесла. Один только трансформатор, возможно, тяжелее, чем остальная часть катушки Тесла.
Тороид жестко установлен поверх вторичной обмотки.
Первичный змеевик поддерживается 4 трубками из ПВХ.
И, наконец, полностью завершенная установка катушки Тесла.
Красавица, не правда ли?
Тесты
Я провел много тестовых прогонов со всей собранной установкой, и примерно половина из них была неудачной. Но я не буду документировать их все. Вместо этого ниже представлены только успешные тесты.
Тест 1: Первый свет
Столкнувшись с таким количеством проблем и неудач во всех предыдущих тестовых запусках, я вошел в этот тест с мышлением, что это-будет-еще-еще-пробный-запуск-с-проблемами-которые-я-должен-исправить.
Искровой разрядник вообще не настраивался, но я все равно запустил полную настройку. Первичная обмотка была задействована на 7-м повороте. Было уже довольно поздно, около 8 часов вечера, но мне нужна была темнота.
… и ВКЛЮЧАЙТЕ!
Искровой разрядник горел очень громко; опасная вещь, на которую можно смотреть, так как она излучает ультрафиолетовые лучи. Но потрясающая искра на разрядном выводе намного, намного красивее.
Увеличенное изображение.
Замечательный спектакль! Наконец-то первый свет от разрядной клеммы!
Я уверен, что при правильной настройке его производительность может быть увеличена примерно в 3-5 раз по сравнению с пробным запуском.
Я измерил диаметр тороидального разрядного вывода, сравнил его с длиной искры на фотографии и оценил, что он составляет 8 см.
Поскольку у меня нет подходящего метода измерения чрезвычайно высокого напряжения, давайте сделаем некоторые приблизительные оценки.
В электрическом поле (создаваемом разрядным выводом в форме тороида) электрический пробой воздуха соответствует примерно 30 000 В / см.
Таким образом, сфотографированная дуга длиной 8 см составляет около 240000 В.0,5 Vмакс = 495300 В
Эта формула каким-то образом дает моей катушке плохую максимальную длину искры 16 см. При использовании другой формулы (приведенной выше в разделе «Источник питания / трансформатор») получилось 91,64 см.
Тест 2: Ограничено первичной обмоткой
18:00, я решил вытащить всю свою установку Tesla Coil на улицу. Починил кое-что, настроил камеру, предупредил моих братьев и сестер / родителей о шуме, который я собирался создать, забил стержень заземления…
К тому времени стемнело…
Я всегда ненавижу удары по заземляющему стержню.Мой сад на заднем дворе теперь квалифицируется как поле для гольфа.
Точка отрыва — это просто неинтересный алюминиевый стержень, приклеенный к тороиду. Ленты будут извергаться из этой точки прорыва, а не вспыхивать случайным образом.
И я загорелся!
Глупый я. Я даже не подключил первичный ответвитель к первичной катушке. Результат? Серьезное искрение, когда ток пытается замкнуть цепь.
Что я нашел невероятным, так это то, что, несмотря на огромные потери энергии при искрообразовании, катушка работала! См. Верхнюю часть точки отрыва, которая слегка изгибается по отношению к заземленному стержню справа.
Итак, я исправил проблему с первичным ответвлением и попытался снова.
Появились гоночные искры. Это происходит, когда есть искра от первичной обмотки к вторичной обмотке. И через некоторое время (из-за множества попыток) это стало серьезной проблемой.
Гоночные искры возникают, когда катушка имеет одно или несколько из следующего:
— Чрезмерно высокое сцепление
— Система с повышенной мощностью
— Плохое гашение в искровом промежутке
— Несоответствие, слишком большой тороид
— Чрезмерно большой первичный конденсатор
Неважно, в какую мою попадет, но мне это не понравилось.
У меня не было выбора, кроме как изменить уровень первичной катушки, сделав его ниже. Это будет связано с опорами для труб из ПВХ (на которые я потратил много усилий) и вернуться к временным опорам.
И это сработало идеально!
Я решил поставить рядом с установкой люминесцентную лампу. Это совершенно ни с чем не связано. Просто лежал. И МАГИЯ!
Хорошо, если вы кое-что знаете об электрических полях.
Известно, что электрические поля катушек Тесла (да, даже самодельные) настолько мощны, что могут создавать помехи для телевизионных сигналов и делать любые цифровые устройства, которые вы носите, бесполезными. Большинство коммерческих катушек Тесла помещено в клетку Фарадея как таковую.
Когда все НАКОНЕЦ заработало (почти больше часа), настало время утомительной настройки.
Мне пришлось настроить частоту первичной катушки в соответствии с частотой вторичной катушки, чтобы они находились в резонансе и производили максимальную мощность.Это делается путем изменения положения первичного ответвителя в разных точках первичной катушки.
И я начал настраивать, и удаление точки прорыва…
И обратно с точкой прорыва в позиции:
Обычно намотчики Tesla должны найти идеальное количество витков для намотки первичной обмотки. Слишком много оборотов или слишком мало резонанса не будет достигнуто.
У меня был другой случай. Все началось так…
Когда я пошел покупать компоненты для своей катушки, я купил гибкую медную трубку, чтобы сделать первичную катушку у какой-то старушки.Ранее мне говорили, что цена на медь за последние годы взлетела до небес. Она брала с меня 12 долларов за метр, я купил их на 66 долларов.
Когда я сделал свою первичную катушку, она дала мне 8 витков, что довольно мало. Но, думаю, большего я себе позволить не мог. Однажды мне сказали, что я могу купить медную трубку по цене 25 долларов за 50 футов. И что старушка меня обманула.
Grah. Я мог бы пройти вдвое больше поворотов за 25 долларов, по сравнению с 8 жалкими поворотами за 25 долларов.
Вернувшись туда, где мы были, я понял, что производительность катушки Тесла увеличивается с количеством витков. На 7-м повороте образовалась искра в 25 см.
Итак, у меня был первичный ответвитель на 8-м ходу, максимум.
Если бы у меня были более длинные медные трубки и, следовательно, больше витков в первичной катушке, я бы смог добиться гораздо большей производительности. Очень жаль, что первичная катушка не позволяет мне достичь резонанса.
Как бы я ни хотел завершить проект Tesla Coil сегодня раз и навсегда, я думаю, что будет разумнее, если я куплю новую более длинную трубку и настрою катушку на максимальную производительность, а не ограничиваясь первичными витками.Так что этот проект будет снова расширен.
Сегодняшняя максимальная искра составляла около 25-27 см! С моей катушкой мощностью 450 Вт я должен получить как минимум 40-50 см искр. Но пока это лучший результат.
Звук от катушки Тесла пугающе громкий. Мне удалось запустить его довольно много раз сегодня (кажется, более 10 раз), потому что соседи справа были далеко от дома. Я забыл о соседях слева, поэтому они услышали это и подумали, что это их домашняя сигнализация (Да! ТАК громко.). Поэтому они вынули батарейки из домашней сигнализации и вернулись к своим делам. Представьте, что случилось, когда меня нашли. Ургх.
Вот результаты на сегодня!
Тест 3: Финал
В течение нескольких недель после испытания 2 я починил первичную катушку, сделав новую. Однако пройдут месяцы, прежде чем я смогу провести какие-либо тесты с новой первичной катушкой из-за всех моих обязательств и школьной работы.
Когда наступили июньские каникулы, моя семья решила отправиться в путешествие по Европе, тем самым отложив мои планы окончательно закончить катушку Тесла раз и навсегда.
Итак, еще через три месяца наступили сентябрьские каникулы. Идеально.
Я вынул катушку Тесла, покрытую видимым слоем пыли после СЕМЬ месяцев нетронутой.
Медь первичной обмотки, очевидно, была окисленной, с более темным и менее отражающим видом. Это может снизить производительность, но я все равно пошел дальше.
Также расшатался разрядник. Я не хотел тратить время на то, чтобы снова довести его до совершенства и максимальной производительности, поэтому я просто затянул его и подключил к системе.
После тщательной очистки я перенес настройку в резервную копию, и все было готово!
Катушка Тесла началась с очень слабого дисплея…
Затем я настроил первичный отвод, чтобы настроить катушку…
Я перешел с Turn 9.5 на 8.5 и обнаружил, что это значительно повысило производительность. Я перешел на 7.5, но производительность упала, но не так сильно, как в Turn 9.5
Итак, я прикинул, что идеальное место отвода находится где-то между 7-м поворотом.5 и 8.5, поэтому я перешел на 8-й поворот.
Отсюда точная настройка показывает очень незначительные улучшения, если они вообще есть. Но я подумал, что Turn 8 выглядит немного лучше, чем Turn 8.5, поэтому я попытался настроить его еще больше.
Я установил положение ответвления на 7,75, что, как и следовало ожидать, имело еще более незаметную разницу. Я не был уверен, был ли поворот 7,75 лучше, чем поворот 8, но мой папа сказал, что так оно и есть.
Итак, я остановился на Turn 7.75 и сделал оттуда пару фотографий.Видео включено!
На этот раз я измерил расстояние между точкой прорыва и целью, в которую попали дуги молнии, и оказалось около 40-50 см! Это соответствует примерно 1 350 000 В! Милая!
Это должно закончиться моим путешествием с катушкой Тесла. С тех пор, как я начал работу над проектом 28 февраля 2007 года, до сегодняшнего дня прошел очень долгий путь. Больше полутора лет.
Производительность отличная! Хотя я не слишком уверен, что это примерно на максимуме, который он может выдавать, поскольку я не настраивал искровой разрядник после того, как он ослаб в течение нескольких месяцев, я думаю, что должен быть довольно близок.
Думаю, это завершает этот удивительный проект, так что наслаждайтесь фотографиями!
Покупаете проводной звонок для видеодомофона? Убедитесь, что у вас есть подходящий трансформатор
Источник: Хаято Хусеман / Android Central
Одной из замечательных сделок, предстоящих на Amazon Prime Day в этом году, станет Ring Video Doorbell Pro, и как тот, у кого он есть, позвольте мне сказать вам, что это довольно круто. Увидеть, кто стоит у входной двери, может быть очень удобно, особенно когда вас нет дома, чтобы выглянуть из-за занавески и посмотреть.Но удовольствие будет недолгим, если у вас нет существующего трансформатора дверного звонка, достаточно сильного, чтобы запитать эту штуку.
Даже если у вас уже есть дверной звонок, ваш трансформатор может не обеспечивать достаточную мощность для Ring Pro.
Есть большая вероятность, что в вашем доме уже есть звуковой трансформатор, особенно если у вас есть дверной звонок. Это небольшое металлическое электрическое устройство, которое преобразует напряжение в вашем доме в низкое напряжение, необходимое для звонка дверного звонка, и вы даже не узнаете, что оно есть, если вам не понадобится его заменить.Поскольку большинству дверных звонков не нужен большой ток, довольно часто для них используются трансформаторы 8 В или 16 В / 15-20 ВА (вольт-амперы, единица мощности в электрической цепи), особенно в домах старше 20 лет. .
Это также первое, на что следует обратить внимание, если ваш новый Ring Pro «работает неправильно». Ваш текущий трансформатор может быть достаточным для включения и первоначального подключения к Wi-Fi, но как только вы попытаетесь подключить видео или даже отправить данные через приложение или своего виртуального помощника, все может стать немного странно, и все работы будут заблокированы вверх.Поскольку Ring Pro выполняет больше функций, ему требуется больше энергии, а маломощный трансформатор не может ее обеспечить.
Здесь мы должны упомянуть, что вам нужно быть в безопасности. Найти и заменить трансформатор дверного звонка несложно, но он подключен к электросети вашего дома напряжением 110 В и может быть потенциально опасным. Если вы не знаете, что делаете, или не уверены, что сможете сделать это самостоятельно, вызовите электрика.
Если вы подозреваете, что ваш трансформатор недостаточно мощный, сначала вам нужно его найти.Посмотрите вокруг самого звонка — небольшой коробки внутри вашего дома, где вы слышите звонок — сначала найдите глухую крышку над электрической коробкой, затем откройте крышку самого звонка или свою электрическую панель, если вы ничего там не видите. Поскольку одна сторона трансформатора подключена к напряжению более 100 вольт, он не должен лежать где-то там, но я видел их вмонтированными в электрическую коробку на чердаке или в подвале. Вы также можете проследить за проводами, подключенными к звуковой сигнализации, которая приведет к трансформатору, если все остальное выйдет из строя.
Найти трансформатор может быть сложнее, чем его заменить, но вызовите электрика, если вы не знаете, что делаете.
Как только вы найдете его, убедитесь, что питание отключено. и посмотрите на верхнюю часть самого трансформатора. Вы найдете наклейку или гравировку с указанием номинального напряжения и мощности в ВА. Для правильного питания вам понадобится трансформатор на 16-24 В переменного тока и 30 ВА. . Если это не то, что у вас есть, вам нужно это изменить.
Эти детали найти нетрудно, и если они правильно оценены, каждая из них будет работать. Amazon — отличное место, чтобы его забрать. Просто возьмите тот, который монтируется так же, как и ваш существующий, и вы будете настроены в кратчайшие сроки.
Вам также понадобится сам дверной звонок
Звонок видео дверной звонок Pro (250 долларов на Amazon)
В этом компактном и простом в использовании видеодомофоне так много всего, что может понравиться, особенно если вы уже знакомы с экосистемой Ring.Открывайте дверь откуда угодно и работайте с другими продуктами Ring, чтобы открыть дверь и многое другое.
Мы можем получать комиссию за покупки, используя наши ссылки. Учить больше.
Инверторпротив сварочного аппарата трансформатора: что лучше для ваших нужд?
0Последнее обновление
Электросварочные аппараты эксплуатируются более 100 лет. Как и любая технология, сварочные аппараты в настоящее время значительно усовершенствованы, чем в предыдущие десятилетия.
Однако есть что сказать и о надёжности старого образца. Когда речь идет о трансформаторных или инверторных сварочных аппаратах, у многих профессионалов в области сварки есть выбор.
Однако ваши предпочтения должны зависеть от того, какой из них лучше подходит для выполняемой работы. Чтобы помочь вам, мы собрали всю важную информацию о сварщиках, чтобы вы могли лучше понять, как они работают, и, наконец, выберите ту, которая вам больше всего подходит. Вот подробное описание инверторных и трансформаторных сварочных аппаратов.Читать дальше!
Обзор инверторного сварочного аппарата
Кредит: Рижка Назар, Shutterstock
.Как это работает?
Инверторный сварочный аппарат преобразует переменный ток в выходное напряжение с более низким допустимым напряжением. Например, от источника питания 240 В переменного тока до выходного напряжения 20 В постоянного тока. В инверторных устройствах для преобразования мощности используется пара электронных компонентов.
Напротив, традиционные трансформаторные приборы в основном полагаются на один большой трансформатор для регулирования напряжения.Инвертор работает за счет увеличения частоты первичного источника питания с 50 Гц до 20 000 — 100 000 Гц.
Это делается с помощью электронных кнопок, которые быстро включают и выключают питание (до одной миллионной секунды). Используя этот способ управления источником питания до того, как он попадет в трансформатор, можно значительно уменьшить размер трансформатора.
Примечательные особенности
Повышенная эффективностьС помощью инверторного сварочного аппарата вы можете отрегулировать профиль сварного шва в соответствии с требуемой толщиной.Инверторные сварочные аппараты улучшают внешний вид сварного шва и в то же время поддерживают качество сварки.
Механизм инверторного сварочного аппарата очень эффективен и остается холодным даже при продолжительной работе. Обычно они используют минимальное количество фильтрующего металла. Они эффективно снижают тепловложение и обеспечивают превосходную производительность.
Эффективность и энергосбережениеИнверторные сварочные аппараты не только энергоэффективны, но и обеспечивают безнапорное и бесплатное подключение.Эти инверторные сварочные аппараты являются прекрасной заменой обычным сварочным аппаратам, когда дело доходит до выработки тепла и потребления энергии.
Инверторный сварочный аппарат имеет выходную мощность до 93% по сравнению с обычными сварочными аппаратами. Уровень производства обычных сварщиков составляет 60%. Инвертор значительно уменьшает трансформатор, габариты реактора и вес сварщика.
Сопоставимые потери мощности (в основном, потребление энергии в проводнике и потери в магнитном сердечнике) также значительно уменьшены.
Холодильная установкаЭти превосходно сделанные инверторные сварочные аппараты имеют внутренний охлаждающий вентилятор. Он снижает рабочее тепло и предотвращает выработку дополнительного тепла. С помощью охлаждающих вентиляторов машины не только перестают перегреваться, но и приводят к увеличению срока службы устройств.
Кредит: Сергей Храмов, Shutterstock
Выходное напряжение и текущая стабильностьМногие традиционные сварочные аппараты используют переменный ток (AC), и, следовательно, эти аппараты не обеспечивают непрерывный ток и выходную мощность.
В таком случае дуги этих машин нуждаются в нескольких повторных зажиганиях, примерно от 100 до 120 раз в секунду. В отличие от обычных сварочных аппаратов, инверторный сварочный аппарат быстро выделяет тепло.
Эти машины могут поддерживать постоянный ток. Он предотвращает нестабильность напряжения и температуры, поскольку эти машины имеют защиту от помех. По сути, сварочные аппараты обладают защитой от помех и имеют более низкую вероятность изменений температуры и колебаний напряжения.
Поскольку направление тока и напряжение часто меняются, традиционные инверторные сварочные аппараты используют переменный ток. Дуга может быть погашена и зажжена до 120 раз в секунду. Дуга непостоянна и горит постоянно. Это приводит к продолжительному нагреву. А его прочность снижает сварной шов.
Методы IGBTЭти инверторные сварочные аппараты могут быстро собирать электроэнергию, используя любое устройство тока затвора. Это возможно благодаря технологии биполярных транзисторов с изолированным затвором.Переключатель инверторного сварочного аппарата также работает быстро и потребляет меньше энергии для выполнения заключительной операции.
Компактная и легкая модель
Благодаря минимальной конструкции инверторный сварочный аппарат можно использовать практически везде. По сравнению с другими традиционными сварочными аппаратами эти сварочные аппараты компактны. Вы можете разместить их в любом компактном пространстве благодаря компактной конструкции устройства.
Конструкция достаточно компактна, так что вы можете полностью хранить ее в ограниченном пространстве.Вес и размер трансформатора будут значительно уменьшены, поскольку частота инверторного сварочного аппарата намного выше рабочей частоты.
Аналогичным образом, значительное увеличение размера, веса реактора и рабочей частоты будет значительно сведено к минимуму.
Плюсы
- Низкое энергопотребление.
- Обеспечивает превосходный контроль электрической дуги.
- Поставляется с охлаждающим вентилятором для защиты деталей от нагрева.
- Это портативный.
Минусы
- Они менее долговечны по сравнению с обычными трансформаторными сварочными аппаратами.
- Дорогой ремонт.
Обзор сварщика трансформаторов
Кредит: Владимир Ненезич, Shutterstock
Как это работает?
Сварочные аппараты с трансформатором — более традиционный вариант сварки. Эти высокопроизводительные устройства являются «рабочей лошадкой» в отрасли и требуют питания от сети.В основном они используются для промышленной сварки прутков. Они бывают размерами от 250 А до 600 А при 415 В.
Сварщик трансформатора позволяет сварщику выбирать выходной ток, перемещая обмотку ближе или дальше от вторичной обмотки. Он также может перемещать магнитный шунт внутри и из сердечника трансформатора, используя последовательный реактор насыщения с изменяемым подходом последовательно с выходом вторичного тока, или просто позволяя сварщику выбирать выходное напряжение, нажимая на вторичную обмотку трансформатор.
Эти приборы трансформаторного типа обычно являются наиболее экономичными.
Отличительные особенности
Особенностью трансформаторного сварочного аппарата является то, что на электрод подается переменный ток. Это означает, что преобразование активировано. Из-за этого увеличивается разбрызгивание металла, что, в свою очередь, сказывается на качестве шва.
КПД трансформатора составляет около 80%, так как большая часть энергии используется для нагрева «железа» прибора. Устройства разделены на домашние, производящие ток до 200 Ампер, профессиональный и полупрофессиональный, до 300 Ампер, и еще один, превышающий 300 Ампер.
Когда дело доходит до использования прибора в домашних условиях, используется однофазный электрический ток 220 вольт. Однако в большинстве экспертных устройств часто используется трехфазный ток 380 В.
НадежностьБольшинство людей спорят о надежности сварщика. На протяжении почти столетия трансформаторные сварочные аппараты подвергались комплексным исследованиям и разработкам для создания надежных и прочных аппаратов, в то время как инверторным сварочным аппаратам уделялось такое же внимание только 30 лет.
Сварочные аппараты с трансформатором более надежны по сравнению с лучшими инверторными сварочными аппаратами. Однако за последние годы разрыв значительно сократился. Те дни в 1990-х годах, когда отказы инверторов вызывали кошмары, ушли в прошлое.
Кредит: kofana12, Shutterstock
. Возможные ограниченияОбщая тенденция состоит в том, что трансформаторные сварочные аппараты более просты, но надежны, в то время как инверторные сварочные аппараты могут объединять множество разнообразных процедур с меньшей надежностью.
Другое соображение — это то, как устройство будет ограничивать вас в среднесрочной и долгосрочной перспективе. Если за этими устройствами правильно ухаживать, они могут прослужить значительное количество времени. Если у вас есть трансформаторный сварочный аппарат, он будет крупнее и менее многофункциональным по сравнению с инверторным сварочным аппаратом.
Хотели бы вы приобрести дополнительное оборудование, чтобы иметь такую же производительность, что и инверторный сварочный аппарат? Или вам нужна надежность сварочного аппарата на базе трансформатора, но вам также нужно что-то, что вы можете носить с собой в качестве резервного, которое обеспечивается инверторным сварочным аппаратом?
Время простояНекоторые области применения могут привести к преждевременному разрушению инверторных сварочных аппаратов, например, из-за дополнительных загрязняющих веществ в воздухе и высокой влажности.Производители пытались создать продукты, более устойчивые к сбоям из-за экологических проблем.
Однако они всегда более склонны к неудачам. Если ваша машина выйдет из строя, вы не сможете использовать ее, пока она не будет отремонтирована. Но как это повлияет на вашу повседневную деятельность? Если вы просто любитель, это не помешает осуществлению важных проектов и не повлияет на ваш доход.
Хотя ваша машина имеет решающее значение для бесперебойной работы вашего бизнеса, вы должны учитывать влияние простоев, которые могут у вас возникнуть.Если окружение, в котором вы находитесь, способствует преждевременному выходу из строя и находится вне вашего контроля, стоит иметь более надежное устройство, которое проще по сравнению с универсальным устройством, которое не работает.
В таком случае лучше всего подойдет трансформаторный сварочный аппарат, поскольку он прочен, надежен и редко выходит из строя.
Область применения
Сварочные аппараты для трансформаторов — это неприхотливое оборудование, которое используется практически во всех сферах человеческой деятельности, где необходимы сварочные соединения для железных металлов.
Приборы используются для следующих целей:
- Ремонт и прокладка трубопроводов.
- Сварка водопроводных трубопроводов.
- Устройство металлических конструкций на стройплощадке.
- Соединение листовых материалов, два в стык и внахлест.
Плюсы
- Начальная стоимость невысока.
- Идеален для ремонта фермы.
- Сварщик не требует обслуживания.
- Эксплуатационные расходы также относительно низкие.
- Высокая надежность.
Минусы
- Зажигать дугу сложно.
- Чувствителен к снижению напряжения в сети.
против сварочного аппарата трансформатора: что подходит именно вам?
Хотя инверторные сварочные аппараты имеют преимущества перед трансформаторными сварочными аппаратами, не все из этих преимуществ могут быть вам полезны. Окончательный выбор в конечном итоге сводится к предпочтениям пользователя.
Мы предоставили вам все необходимое, чтобы помочь вам учесть ваши требования и выяснить, что вам подходит. Кроме того, мы составили список различий между инверторными и трансформаторными сварочными аппаратами с учетом таких факторов, как долговечность, вес, стоимость и т. Д.
Начнем прямо сейчас!
ПостоянствоПо сути, трансформаторы имеют более высокие рабочие циклы. Следовательно, теоретически они могут решать более сложные задачи, чем инверторные сварочные аппараты.На данный момент инверторы новые в магазинах и, следовательно, их долговечность сомнительна.
Сейчас мы знаем о долговечности трансформаторных сварочных аппаратов, поскольку они используются достаточно долго, чтобы анализировать и повышать их долговечность. Тем не менее, инверторная технология невероятно увлекательна, поскольку вы можете вложить много энергии в небольшой легкий корпус.
ЗатратыМежду сварщиками инверторов и трансформаторов ведутся давние дебаты о ценах.Многие сварочные аппараты для трансформаторов экономичны, когда речь идет о начальных затратах.
Но в конечном итоге инверторный сварочный аппарат сэкономит вам много денег. Все это сводится к затратам с течением времени. Начнем с того, что инверторные сварочные аппараты потребляют меньше энергии. Хотя точная стоимость, как правило, завышена, многие профессионалы сходятся во мнении, что вы можете сэкономить около 10% на счетах за электроэнергию.
Сварочные аппараты с инверторомтакже потребляют меньше расходных материалов и сварочного газа благодаря повышенной стабильности дуги.Со временем не будет безумием сказать, что сварочные аппараты окупятся сами за себя.
МассаПо сравнению с трансформаторными сварочными аппаратами, инверторные сварочные аппараты легче. Они даже вдвое меньше нескольких трансформаторных машин. Если вы выполняете неподвижные работы на большой площади, большой и здоровенный сварочный аппарат для трансформатора не будет проблемой.
Однако, если вы собираетесь перемещать сварщика или помещение ограничено, лучше всего подойдет инверторный сварочный аппарат.
Стабильность и эффективностьЗа последние 50 лет сварочные аппараты для трансформаторов прошли долгий путь. Используя сварочный аппарат премиум-класса, вы можете достичь привлекательного уровня эффективности, сохраняя при этом относительно стабильную дугу.
Впрочем, по сравнению с инверторными сварочными аппаратами это ничто. Большинство инверторных сварочных аппаратов вдвое эффективнее трансформаторных сварочных аппаратов. Например, по сравнению с трансформаторным сварочным аппаратом, инверторный сварочный аппарат использует половину ампер для получения аналогичного количества вольт.
Из-за этого большинство инверторных сварочных аппаратов могут работать от обычной домашней розетки, и, следовательно, вам не нужно покупать генератор или большую розетку на 220 В.
Долгое время в инверторных сварочных аппаратах использовался DC (постоянный ток). Хотя у них была более стабильная дуга, чем у обычных сварочных аппаратов с трансформатором постоянного тока, для сварщиков на переменном токе был доступен только один вариант.
В настоящее время инверторные сварочные аппараты могут использовать как постоянный, так и переменный ток. А поскольку инверторные сварочные аппараты более эффективны, они могут генерировать более стабильную дугу.По этой причине инверторные сварочные аппараты являются лучшим выбором с точки зрения эффективности и стабильности.
Качество сварных швовРаз уж мы обсуждаем сварочные аппараты, давайте перейдем к сути сварки и остановимся на дуге и сварных швах. Если вы из тех сварщиков, которые работают с гладкой сталью весь день, каждый день, вам не нужно искать трансформаторный сварочный аппарат.
Однако мы живем в мире, который требует совершенства сварки в любом положении и на каждом материале.Сварщики с инвертором начинают сиять в этом требовательном мире. Поскольку инверторные сварочные аппараты можно запрограммировать на выполнение чего угодно, теперь мы видим, что улучшенная импульсная сварка MIG работает аналогично высококвалифицированной сварке TIG.
Программное обеспечение и усовершенствованная электроника открывают мир, который коренным образом изменил возможности сварочного аппарата. Иногда даже средний сварщик выглядит неплохо.
Когда дело доходит до качества сварки и инноваций, инверторный сварочный аппарат — лучший выбор. Тем не менее, для стали все еще можно упростить.
Рабочий циклКак правило, инверторные сварочные аппараты могут достигать гораздо более высоких рабочих циклов из-за размера трансформатора. Хотя более мелкие детали инверторного сварочного аппарата быстро нагреваются, их можно охладить намного быстрее и проще.
Однако в традиционных сварочных аппаратах с трансформатором детали намного больше и, следовательно, имеют тенденцию сохранять тепло и долго остывать.
Использование мощности генератораЭффективность означает, что использование мощности генератора более возможно с помощью инверторных сварочных аппаратов, которые могут работать на портативных генераторах меньшего размера.Это невозможно с обычными сварочными аппаратами для трансформаторов.
Однако следует учитывать, что использование энергии от генератора чревато опасностями.
ФункциональностьПо сравнению с традиционными сварочными аппаратами для трансформаторов производительность высококачественных инверторных сварочных аппаратов значительно выше. Это особенно заметно при ручной сварке (MMA), при которой операторы считают, что сварка проще, и им не нужно «бороться» с дугой.
В основном это происходит из-за способности инверторных сварочных аппаратов иметь более высокое напряжение холостого хода и интегрировать такие функции, как Anti-Stick, Arc Force и Hot Start.Основным примером этого является сварка тонких материалов: с использованием традиционного аппарата для ручной сварки это печально известно сложно, если не непрактично.
Однако с помощью инверторных сварочных аппаратов, которые имеют неограниченную регулировку силы тока и стабильную дугу, мощность может быть значительно снижена, так что, например, лист металла толщиной 1,6 мм или секции труб можно сваривать значительно проще и контролируемым образом.
Кредит: Супавит Сретбхакди, Shutterstock
Что такое технология IGBT?
Буквы IGBT обозначают «Биполярные транзисторы с изолированным затвором».Это высокоскоростные переключающие устройства, используемые во всех сварочных аппаратах без сварки, которые упрощают регулировку напряжения.
Некоторые инверторные сварочные аппараты используют старую технологию MOSFET или транзисторы. Технология IGBT обеспечивает значительные преимущества по сравнению с MOSFET. Возможно, решающим преимуществом является то, что IGBT менее подвержены колебаниям мощности генератора и питающей сети, что делает их более надежными и менее уязвимыми для отказов или повреждений.
Когда использовать инверторный сварочный аппарат Когда использовать трансформаторный сварочный аппарат Внутри в регулируемой среде В пыльной и грязной среде Можно использовать на многих типах недрагоценных металлов Вы можете использовать его с одним и тем же металлом изо дня в день
Заключение
За последние 15 лет инверторные сварочные аппараты претерпели стремительные преобразования.Они постоянно улучшают функциональность и стоимость. Однако это не означает, что мы должны зарывать трансформаторные сварочные аппараты, поскольку они также играют решающую роль в отрасли.
В конечном итоге все сводится к индивидуальному взвешенному решению, зависящему от множества факторов.
Кредит предоставленного изображения: (L) Mehaniq, Shutterstock | (R) Алан Сау, Shutterstock
PassDiy
Источники питания
Перевал Нельсона
Введение
Многие люди не разбираются в электричестве, но они понимают водопровод.Гидравлика представляет собой хорошую аналогию для понимания основных электрических потоков. Проволока — это труба. Давление воды — это напряжение. Водяной поток — это электрический ток. Озера и водохранилища — это конденсаторы. Диоды — это односторонние клапаны. Лампы и транзисторы — это краны.
Всю силовую схему усилителя можно рассматривать как коммунальную систему водоснабжения. Солнце, управляя погодным циклом, оставляет воду на ландшафте, и она собирается в озере за плотиной. Сообщество черпает воду по трубам по мере необходимости.Зимой в озере собирается дождь, и напор воды увеличивается по мере того, как оно наполняется. Летом уровень воды падает, как и давление. Когда сообщество набирает больше воды, чем обычно, уровень воды падает еще больше, и часто требуется больше одного сезона, чтобы восстановить его.
Дождь в усилителе обеспечивает ваша электросеть, домашняя проводка, шнур питания и трансформатор. Конденсаторная батарея — это резервуар. Конденсаторы получают электрический заряд каждые 1/120 секунды, отражая два импульса тока от трансформатора для каждого цикла синусоидальной волны 60 Гц, предоставленной энергетической компанией.
Эти импульсы имеют относительно короткую длительность, и конденсаторы источника питания должны сохранять энергию в течение 6 миллисекунд или около того электрической засухи, которая возникает между импульсами заряда. Нам нужно постоянное напряжение (уровень воды) от нашего источника питания, и это обычно достигается за счет использования больших конденсаторов, которые накапливают больше заряда, и больших трансформаторов, которые обеспечивают столько заряда, сколько необходимо. Вы уловили идею.
Поскольку мы здесь не разрабатываем усилители, а, скорее, пытаемся разобраться в том, что представляет собой качество на рынке, полном ажиотажа, я хочу поговорить о некоторых общих идеях и прокомментировать некоторые общие подходы, используемые производителями.Поймите, что мы просто хотим, чтобы от источника питания было постоянное, бесшумное напряжение, независимо от того, какую нагрузку мы на него предъявляем.
Больше и тяжелее — лучше. Более крупные трансформаторы и провода меньше нагружают. Большие конденсаторы держат больше заряда.
Есть такое понятие, как слишком большое? Конечно, по мере того, как мы становимся больше, доходность уменьшается. Когда трансформатор выдает 1 ватт на схему предусилителя, переход от тысячи ватт к двум киловаттам не принесет вам больших улучшений.Однако это соображение не сильно отпугивает среднего аудиофила.
Трансформаторы силовые.
Лучшие силовые трансформаторы — это тороиды с магнитными сердечниками в форме пончика. Они обладают наибольшей мощностью по весу и размеру, и они производят меньше шума. Тороидальные трансформаторы должны иметь номинал не менее
Некоторое понимание здесь даст изучение цифр. Обычно индуктивность большого электролитического конденсатора приводит к тому, что его импеданс начинает увеличиваться примерно на 10 кГц, так что его импеданс составляет значительную долю ома на частоте 100 кГц.При параллельном размещении пленочного колпачка импеданс будет на 0,1 Ом выше этой частоты.
Это важно, потому что на этих частотах звук имеет реальную мощность? Нет. Аудио имеет мощность, которая снижается примерно на 12 дБ / октаву выше 5 кГц, а реальные значения скорости нарастания музыкального сигнала составляют доли вольта за микросекунду, что означает, что на частоте 100 кГц практически не требуется мощность.
Однако высокочастотный импеданс может быть важен для стабильности усилителя, особенно в более сложных схемах, поскольку полное сопротивление источника источника питания начинает влиять на обратную связь на частотах в мегагерц или около того.Интересно, что некоторые разработчики полагались на конкретный импеданс источника питания на этих частотах для стабильности, таким образом, можно дестабилизировать схему усилителя путем параллельного включения пленочных конденсаторов через электролитические компоненты. Однако в целом пленочные заглушки в блоках питания — это хороший знак с точки зрения потребителя.
Индукторы.
Несмотря на то, что мы часто пытаемся устранить индуктивность в конденсаторах и проводке, катушки индуктивности могут использоваться для улучшения характеристик источников питания.Размещение индуктивности и конденсаторов на линии переменного тока для формирования фильтров уменьшит как входящие, так и исходящие высокочастотные шумы. Большие катушки индуктивности, включенные последовательно с первичными и вторичными обмотками трансформатора, могут использоваться для увеличения длительности импульса заряда конденсаторов источника питания, улучшая регулирование и уменьшая шум. Большие катушки индуктивности в сочетании с несколькими конденсаторами источника питания могут образовывать «пи-фильтры» для уменьшения шума в линиях питания.
Катушки индуктивности очень полезны, но стоят денег.Их использование в источниках питания для усилителей мощности является показателем того, что производитель необычайно привержен качеству.
Проволока.
Аудиофилы любят провод. Возможно, привлекательность заключается в доступности понимания. Возможно нет. В любом случае, мне нравится толстая и короткая проволока, сделанная из чистых мягких металлов, таких как медь или серебро. Мне нравится, что он плотно заделан и по возможности припаян.
Выпрямители.
Да, конечно, выпрямители важны, в конце концов, переменный ток должен быть преобразован в постоянный, но мне не нравятся типы быстрого восстановления, которыми бредят некоторые аудиофилы.Быстрое восстановление означает, что они выдерживают много ампер и вольт за десятые доли нескольких наносекунд, что мы не очень часто видим в старой линии переменного тока 60 Гц. Они являются важным элементом в импульсных источниках питания, но для обычных «линейных» источников питания я предпочитаю МЕДЛЕННЫЕ диоды, и мы создаем их, размещая небольшие конденсаторные цепи поперек диодов, что значительно снижает излучаемый шум.
Положение
много трансформатора и конденсаторной батареи. Другая цель состоит в том, чтобы физически и электрически изолировать каждый канал усилителя мощности друг от друга, встречаясь только на линии переменного тока, а иногда даже не там.Таким образом, все, что происходит на одном канале, оказывает минимальное влияние на другие.
Работа в моно очень желательна в системах высокого класса, но, конечно, это дорого. Скромный компромисс предлагает режим «двойное моно», при котором два канала используют одно шасси и шнур питания, но имеют отдельные трансформаторы и конденсаторы питания. Этим достигается большая часть желаемой изоляции при меньших затратах.
Работа от аккумулятора
Примерно полная изоляция. Почти нулевой шум.Стоит мятный.
Заключение
Итак, что мы узнали здесь? В общем, покупка большого оборудования для производства действительно хороших источников питания требует больших денег.
Некоторые из обсуждаемых здесь подходов приводят лишь к незначительным улучшениям, но их можно измерить. При рассмотрении этих аспектов конструкции источника питания нет необходимости вступать в дискуссию об объективных и субъективных характеристиках. Вопрос только в том, сколько вы готовы инвестировать в убывающую прибыль.
Инженерное дело — это наука компромисса, каждый производитель проводит свою собственную границу затрат и выгод, и, по моему опыту, большинство производителей довольно добросовестно относятся к этому. Степень сложности и массивности предложения зависит от цены продукта, и ваши ожидания должны быть соответствующим образом оценены.
Как потребитель, вы хотите получить наилучший звук. Вы можете добиться этого посредством критического слушания. В качестве второстепенной цели мы все хотим получить то, что кажется хорошей аппаратной ценностью, и мы хотим знать, что производитель действительно вложил реальные деньги в продукт, который стоит небольшое состояние.Если вы можете прочитать спецификации или заглянуть под капот, то блок питания, являющийся одной из самых дорогих частей усилителя, обычно является хорошим показателем. Это должна быть самая большая и тяжелая часть усилителя.
Что делать, если вы не хотите испытывать неприятности, но все же хотите, чтобы ваши деньги окупались? Получите не менее 15 фунтов усилителя за каждую потраченную тысячу долларов.
мощность в несколько раз больше запланированной, потому что мощность подается на конденсаторы короткими импульсами.
Как правило, стереоусилитель класса AB, рассчитанный на постоянную мощность 200 Вт на канал, должен обеспечивать мощность 700 Вт или около того, а это означает, что номинальная мощность трансформатора составляет около 2000 Вт.Все, что меньше, означает прерывистую работу. Это может быть хорошо для усилителя класса AB, где не требуется максимальная непрерывная работа.
Если стереоусилитель рассчитан на 200 Вт на канал чистого класса A, он будет постоянно потреблять около 1000 Вт, а это означает, что требуется не меньше 3000 Вт силового трансформатора.
Теперь тороидальный трансформатор обеспечивает около 30 Вт на фунт, поэтому тороид мощностью 3000 Вт будет весить около 100 фунтов, а может и больше. Остальная часть такого усилителя, вероятно, будет весить примерно столько же, поэтому, если вы смотрите на стереоусилитель класса A мощностью 200 Вт на канал, вы захотите узнать, весит ли он не менее 200 фунтов.
Один фунт веса на каждые 2 Вт — хорошая лакмусовая бумажка для оценки усилителей класса А. Усилитель с меньшим весом может не относиться к чистому классу A. Он может быть почти к классу A или может быть одним из многих продуктов, получивших обозначение класса A с помощью хитрых схем.
Чтобы еще больше снизить уровень шума, тороиды иногда помещают в металлические банки. Чтобы уменьшить магнитное излучение, эти банки обычно, но не всегда, делают из стали. Это хорошо, но имейте в виду, что в прошлом, по крайней мере, одна компания использовала небольшой трансформатор в большой банке, а компенсировала разницу песком.
Конденсаторы.
Из-за требуемых высоких значений емкости конденсаторы источника питания почти всегда имеют электролитическую конструкцию. Конденсаторы, которые вы видите в усилителях мощности, имеют номинальную емкость в микрофарадах, напряжение и ток. Типичное значение емкости одной из больших банок составляет 25 000 микрофарад или 0,025 фарада. Фарад — это большая вещь; та емкость, которая потеряет 1 вольт после подачи 1 ампер в течение 1 секунды. В усилителе мощности, потребляющем напряжение смещения 8 ампер, как в нашем примере 200-ваттного стерео класса A, это означает, что пульсации источника питания составляют около.06 вольт, среднеквадратичное значение.
В большинстве случаев вы хотите видеть в сумме не менее 100 000 микрофарад, что для нашего примера дает пульсацию около 0,6 вольт. Это довольно хорошо, составляя около 1% от общего напряжения питания. Меньшие усилители могут обойтись меньшими затратами, большие усилители требуют большего.
Большие электролитические конденсаторы имеют небольшую индуктивность или «спиральность» в своем составе, что является результатом спиральной намотки емкостной пленки. Чтобы уменьшить влияние этой индуктивности, пленочные конденсаторы с низкой индуктивностью часто размещаются параллельно, так что на высоких частотах ток течет немного легче.
Активное линейное регулирование — отличный способ сделать напряжение питания постоянным. К сожалению, обычно это не делается должным образом. В прошлом некоторые усилители, использующие активное регулирование, подвергались критике за отсутствие видимой динамики, и это дало технологии меньшую репутацию, чем она заслуживает.
При правильном выполнении линейное регулирование должно выходить за рамки поверхностных требований к номинальным характеристикам усилителя. Регулятор должен быть способен в десять раз превышать постоянный выходной ток канала усилителя.Перед регулятором должны быть установлены большие емкости со значениями, сопоставимыми со значениями, необходимыми для нерегулируемых цепей. Размер трансформатора по-прежнему должен быть таким же большим, как и в нерегулируемой цепи.
При таком подходе линейное активное регулирование доставляет товары.
Гораздо менее затратный подход позволяет достичь некоторых целей регулирования, а именно регулировать или иным образом изолировать маломощный входной каскад усилителя, оставляя выходной каскад на нерегулируемом источнике питания.Это может быть достигнуто с помощью полностью отдельных источников питания, активного регулирования или всего лишь с двумя резисторами и двумя конденсаторами.
Другой способ регулирования — использование источников постоянного тока, которые питают цепь постоянным током, который не колеблется с напряжением питания. Хороший источник постоянного тока может улучшить регулирование входных схем малой мощности в 100 раз, а в сочетании с регулированием напряжения питания дает действительно отличные характеристики при небольших затратах.
Вы также можете смещать выходной каскад с помощью источника постоянного сильного тока, чтобы создать несимметричный усилитель класса A.Я не шучу.
Коммутационные принадлежности
Преимущества импульсных источников питания заключаются в небольшом весе, низкой стоимости материалов и их способности активно регулировать без дополнительных затрат. Шум — это потенциальная проблема при переключении источников питания, но ее можно решить, физически изолировав и отфильтровав источник питания, другими словами, потратив деньги.
Это может быть серьезной темой, но достаточно сказать, что я считаю, что некоторые из тех же предостережений применимы к импульсным источникам питания в качестве линейных регуляторов.Опять же, они должны быть рассчитаны далеко за пределы требований к номинальному току схемы усилителя, особенно потому, что переключатели, которые я видел, обычно сильно ухудшаются за пределы своих номиналов. Кроме того, это помогает, если конденсаторы источника питания до и после переключателя очень большие. Обычно это не так, поскольку одной из основных причин использования коммутаторов является экономия денег.
Более изощренное использование коммутационной схемы, такой как у Боба Карвера, — это нечто большее, чем я хотел бы здесь затронуть, но вы, безусловно, можете получить от него ясное объяснение.
Моно операция
Все мы знаем, что означает «моно», то есть одноканальный усилитель. Конечно, для канала, который не должен совместно использовать ресурсы питания, это означает улучшение, так как в блоке заданного размера он может иметь вдвое больше
СИММЕТРИЧНЫЙ ИСТОЧНИК ПИТАНИЯ (1,5А) с независимой регулировкой напряжения.
Важнейший строительный блок для нашего самодельного синтезатора. с выходами для +/- 15 В, 12 В и 5 В при 1,2 ампера.Прокрутите до половины статьи, чтобы найти вторую версию (которая является модульной по настройке) с раскладками на полосе
Я поставил себе задачу создать свой собственный синтезатор.) и мне будет чем заняться в зимние месяцы.
Первое, что мне нужно для этого проекта, — это симметричный источник питания, который давал бы мне положительное и отрицательное напряжение, потому что практически все, что связано с синтезатором, требует двойного источника питания.
Я использовал LM317 и LM337 для этого проекта, потому что с ними легко работать и они полностью защищены от короткого замыкания и перегрева. Регуляторы серии LM3XX могут обеспечивать до 1,5 ампер.
Это схема, которую я придумал, и она работает очень хорошо: (щелкните изображение, чтобы просмотреть в полноэкранном режиме)
(ПЛАН ПЛАТЫ ДАЛЕЕ В СТАТЬЕ!)
На схеме выше вы можете видеть, что выходные конденсаторы имеют емкость 1000 мкФ.Они не должны быть такими большими. 100 мкФ тоже подойдет. Колпачки разряжаются через потенциометр 220 Ом и 10К при выключении.
Если вам нужен блок питания, который может выдерживать больший ток, например, 10 Ампер, то вы можете легко настроить эту схему, добавив 2N3055 на положительной стороне и MJ2955 на отрицательной стороне. Вы даже можете подключить больше мощных транзисторов друг к другу, чтобы получить еще большие текущие характеристики. Переместите конденсаторы, которые идут после транзисторов LM3XX, но поместите дополнительный конденсатор 100 нФ между базой и нулем, чтобы подавить переходные процессы и т. Д.Используйте Google, чтобы найти для этого более конкретные схемы, если они вам нужны.
Но для модульного синтезатора эти изменения не нужны, потому что отдельные модули, которые я собираюсь построить, вообще не потребляют много тока. Это в основном от 20 до 80 миллиампер. Единственный трансформатор, который у меня был и был достаточно большим для этого проекта, не имел центрального ответвителя, но имел два независимых вторичных выхода. Один на 21 В и один на 17 В. Это было достаточно близко. Я соединил по одному проводу от каждого выхода вместе, чтобы образовать центральный ответвитель, и сделал монтажную плату для подключения источника питания.(Убедитесь, что когда вы соединяете две вторичные обмотки вместе таким образом, что вы измеряете выход переменного тока, прежде чем переходить к следующим шагам. Если вы подключите неправильные провода, два напряжения будут пытаться нейтрализовать друг друга. Это не повредит трансформатор, но вы не получите никакого напряжения.) У меня больше не было травильной жидкости, поэтому я вырезал разные островки на медной стороне отпечатка, используя инструмент dremmel с фрезерной коронкой. У меня был старый 25 ампер. В моей коллекции компонентов был диодный мост Гретца, и после того, как я просверлил все отверстия, сборка была довольно простой.
Я использовал маленькие подстроечные потенциометры, припаянные к отпечатку, чтобы установить напряжение. После того, как вы его установите, вам не нужно прикасаться к нему снова, но если вы хотите сделать его непрерывно регулируемым, вы, конечно, можете использовать потенциометры 10K, монтируемые на панели, с ручкой. Я поставил несколько светодиодов на выходной стороне, чтобы показать, что все работает хорошо. Разница в яркости указывает на то, что напряжения установлены по-разному. Вы также можете пойти по роскошному пути и использовать два панельных вольтметра для измерения напряжения, но поскольку я намереваюсь это сделать для питания моего синтезатора, в этом нет необходимости.
Но если вы построите его как автономный источник питания, было бы неплохо использовать два измерителя на выходах.
Блок питания, как описано выше, выдает от 1,5 до 25 Вольт (в зависимости от используемого трансформатора) при максимальном токе 1,5 Ампера. Если вам нужна более мощная версия, вы можете использовать регуляторы LM3XX для управления силовыми транзисторами 2N3055 и MJ2955 NPN и PNP, как указано выше, а затем вы можете потреблять до 10-15 ампер. Имейте в виду, что выводы регуляторов LM отличаются друг от друга.Правильные номера контактов указаны на схеме выше.
Пульсации на выходе очень низкие. На самом деле это лучше, чем те, которые вы покупаете готовыми. Убедитесь, что используемые электролитические конденсаторы рассчитаны на 50 вольт или выше. (Я использовал 35V, и они, кажется, тоже работают нормально, но не опускайтесь ниже!) И убедитесь, что они правильно ориентированы. Плюс к плюсу на положительной стороне и плюс к земле и минус к отрицательному напряжению на отрицательной стороне. Напряжение на вторичной обмотке сразу после выпрямления может быть на 10 В выше, чем напряжение переменного тока от трансформатора.Не подавайте больше 35 В на входной контакт регуляторов и обязательно используйте большие радиаторы на обоих из них.
Я измерил пульсацию и шум источника питания, используя метод, описанный Дэйвом Джонсом из блога EEVblog на YouTube в его видео EEVblog # 594 — Как измерить пульсацию и шум источника питания.
Я использовал грубую силу моей простой домашней сборки. мощность нагрузки », описанная в статье от января 2017 года, и при нагрузке в 1 ампер среднеквадратичное напряжение составляло 6 мВ, а размах напряжения — 10 мВ. Это очень хорошие результаты.
Вот макет платы питания. Существуют незначительные различия в значениях и компонентах, потому что этот макет основан на комплекте eBay, а не на схеме выше, но он отлично работает, уверяю вас. Вы можете установить регуляторы напряжения на один большой радиатор, но они должны быть электрически изолированы от радиатора и друг друга.
[NB: 11 сентября 2021 года Я только что построил один из них сегодня снова, используя эту схему, и он сразу заработал.]
Вот несколько изображений первого источника питания.Как видите, на отпечатке осталось место для дополнительных регуляторов напряжения, чтобы получать другие напряжения от того же источника:
Я добавил катушку индуктивности последовательно с нулевым полюсом, чтобы подавить любой высокочастотный шум. Это просто что-то, что я добавил в качестве теста, но вы можете игнорировать это.
Прошла неделя, и я закончил блок питания, так как он мне нужен для моего проекта синтезатора. Теперь он имеет -15 / 0 / + 15В, -12 / 0 / + 12В и -5 / 0 / + 5В. Я выгляжу немного беспорядочно, как обычно мои проекты, но все работает нормально.Вот фото готового БП:
Очевидно, вы не можете вставить все модули в одни и те же отверстия, поэтому я построил систему шины питания, к которой я могу подключить каждый созданный мной модуль. Это немного грубо, и я использую много горячего клея, чтобы приклеить все это на место, но он работает отлично, и все это будет невидимо, когда корпус будет готов.
Ниже вы видите коннектор, который я построил. Контакты имеют следующие напряжения: сверху вниз на рисунке ниже, верхние 2 контакта заземлены или 0 В.Затем вытащил два штифта и набил горячим клеем отверстия в гнездовом разъеме. Это необходимо для получения асимметричного распределения, чтобы вы не могли неправильно установить разъем. Затем есть -15, -12 и -5 Вольт, а затем мы получаем +5, +12 и +15 Вольт. Я держал плюсовые и минусовые контакты как можно дальше друг от друга из соображений безопасности.
ЧАСТЬ ВТОРАЯ. ВТОРОЙ ЭЛЕКТРОПИТАНИЕ для второй ступени моего синтезатора.
Итак, пока я пишу это, мы уже 6 месяцев занимаемся сборкой синтезатора, и я собираюсь добавить вторую ступень поверх синтезатора, который я уже построил.
Мне нужен второй блок питания. Первый дизайн, показанный выше, работает настолько хорошо, что я повторяю его для второго этапа с небольшими изменениями. Я использую многооборотные потенциометры для регуляторов напряжения LM317 и 337, поэтому могу настроить их очень точно. Фактически, тот, который я только что построил, имеет плюс и минус 15,00 В, что с точностью до 1/100 вольт. Я использую для этого все регуляторы LM3xx, потому что их у меня много, и потому что их напряжение не падает, если вы вытаскиваете из них больше тока, что важно, потому что в противном случае ГУН выйдет из строя.Я использую ту же схему, что и выше, и делал отдельные распечатки для каждого этапа поставки. Вот макет стрипборда:
Мостовой выпрямительный принт. (Не забудьте разрезать медную полоску под предохранителями и залудить все медные полоски, по которым течет ток). Вы можете повесить несколько отпечатков регулятора напряжения на выпрямляющую печать моста, если трансформатор и выпрямительные диоды могут выдерживать максимальный ток отпечатков комбинированного регулятора.
Печать регулятора напряжения.(Опять же, обязательно залудите все медные полоски, по которым проходит ток). Вы можете установить регуляторы напряжения на один радиатор, но вы должны убедиться, что они электрически изолированы от радиатора, иначе вы получите короткое замыкание и много волшебного дыма. Если вы установите каждый регулятор на отдельный радиатор, они могут находиться в прямом контакте с радиатором до тех пор, пока радиаторы не соприкасаются друг с другом: (Последняя редакция: 30 января 2021 г .: Исправлено подключение светодиода индикатора отрицательного напряжения.)
НЕКОТОРЫЕ ЗАМЕЧАНИЯ ПО РАЗЛИЧНЫМ КОМПОНЕНТАМ ДЛЯ ИСПОЛЬЗОВАНИЯ:
Пусть вас не смущает то, что конденсаторы на плате имеют другое значение, чем на схеме.Электролитические крышки на плате выпрямителя большие. Они могут быть от 1000 мкФ до 2200 мкФ или даже выше, и они выполняют основное подавление пульсаций. На плате регулятора электролитические колпачки могут быть меньше, например, 100 мкФ, потому что основное подавление пульсаций уже выполнено, и они предназначены для подавления шума и тому подобного. Для этого достаточно 100 мкФ.
Диоды тоже. Диоды вокруг регуляторов напряжения — это просто предохранительные клапаны. Их цель — предотвратить выходное напряжение более высокого напряжения, чем входное, что может повредить регулятор.Схема будет работать нормально, даже если вы не включите диоды. Вы можете использовать любой тип диода от 1N4148, от 1N4001 до 1N4007. На самом деле это не имеет значения. Однако диоды мостового выпрямителя должны быть такого типа, которые могут выдерживать напряжение не менее 100 В и 1,5 А. Вы не можете пойти на компромисс с ними, но есть много разных типов, из которых вы можете выбирать, поэтому я не указывал, какое количество диодов использовать. Вы также можете использовать мостовой выпрямитель Graetz, это 4 больших диода в одном корпусе. Я видел 1000V / 4Amp за 50 центов на eBay.
Естественно, регуляторы напряжения не обязательно устанавливать на самом отпечатке. Вы можете установить их на задней стороне передней панели, используя ее в качестве радиатора, или на стороне металлического корпуса, который вы используете, а затем вы можете подключить их к отпечатку с помощью обычного электрического провода. Используйте свое воображение, но убедитесь, что регуляторы электрически не контактируют друг с другом, в противном случае — стрела!
Светодиоды присутствуют просто как визуальный индикатор того, что схема находится под напряжением, и они не критичны для работы схемы, поэтому вы можете обойтись без них, если хотите.Вместе со светодиодами используйте токоограничивающие резисторы 15 кОм, потому что более низкие значения могут нагреваться.
Вот несколько фото готового блока питания. Лужить все медные полоски, по которым проходит ток, очень важно, потому что они становятся очень тонкими вокруг отверстий в плате. Каждый регулятор LM3xx имеет свой собственный радиатор, и вы должны убедиться, что они не соприкасаются друг с другом! Если вы хотите установить оба LM на один радиатор, они должны быть электрически изолированы от металла радиатора.
Я смонтировал весь блок питания на длинном куске из МДФ, готовый к установке системы шин питания, которую мне нужно построить.
Я нашел несколько очень старых винтажных диодов в металлическом корпусе, которые, на мой взгляд, выглядят очень круто и работают нормально. Они также прочные, потому что у меня было несколько коротких замыканий при тестировании, и предохранитель сработал 2 раза, но диоды не возражали, и я тоже использую медленные предохранители, чтобы они пропускали через них ток.
Нанесите на LM большое количество теплопроводящего состава.Электролитические заглушки по 1000 мкм; все четыре, и это вся емкость, которую я вложил. 1000 мкФ в выпрямителе и 1000 мкФ на выходной стороне регуляторов напряжения. Крышки выпрямителя имеют резисторы 10 кОм 1 Вт, чтобы гарантировать, что напряжение отсутствует при отключении источника питания. (На картинке это 2K2, но они немного нагреваются, поэтому я заменил их на 10K)
ПРОСТОЙ ФИКСИРОВАННЫЙ ПИТАНИЕ НАПРЯЖЕНИЯ с использованием регуляторов напряжения 7812 и 7912.
Наконец, я хочу завершить эту статью очень простым источником питания, в котором используются фиксированные стабилизаторы напряжения.7812 для положительного напряжения и 7912 для отрицательного напряжения. Они могут использовать до 1,5 ампер, но я бы не стал использовать их более чем на 1 ампер. в противном случае они сильно нагреваются даже с радиатором.
Между прочим, вы должны использовать их и на радиаторе, как и в предыдущих проектах, и вы должны убедиться, что они электрически не касаются радиатора, если у вас есть оба регулятора на одном радиаторе. Иначе получится короткое замыкание и много волшебного дыма. Схему его можно найти, щелкнув здесьВот макет, который я сделал для этого блока питания.Он очень маленький и может поместиться где угодно. Светодиоды указывают на наличие питания на выходах. Вы можете установить их на панели, если сделаете панель для источника питания. Я всегда устанавливаю такие светодиоды возле переключателя ВКЛ / ВЫКЛ блока питания.
Хорошо, на этом все. Если у вас есть какие-либо вопросы, вы можете оставить их в комментариях или опубликовать в нашей специальной группе Facebook для этого веб-сайта, где у нас есть классное небольшое сообщество, которое с радостью поможет вам. Если вам нравится то, что вы видите здесь, и вы хотели бы Помогите поддерживать этот сайт и продолжать работу над новыми проектами, вы можете купить мне кофе.Для этого есть кнопка под главным меню, если вы используете ПК или MAC. В противном случае вы можете использовать эту ссылку PayPal ME. Все пожертвования идут на покупку компонентов для будущих проектов! Спасибо!!
Зачем платить установщику, если можно сделать самому? — Страница 3
2GIG PANIC1-345 — это однокнопочный пульт управления паникой, который является частью линейки 2GIG 345 МГц. Вы можете активировать эту кнопку в любое время, находясь в зоне действия вашей системы безопасности, чтобы вызвать тревогу паники. Некоторые люди также используют 2GIG PANIC1-345 в качестве устройства медицинского оповещения в случае, если они упали или попали в какую-либо другую чрезвычайную ситуацию.Это простая кнопка паники без излишеств, но она делает именно то, что нужно. Мы даем 2GIG PANIC1-345 оценку 5 звезд.
Есть несколько ключевых аспектов, которые нам нравятся в 2GIG PANIC1-345. Во-первых, он поставляется с зажимом для датчика, который позволяет закрепить его на автомобильном козырьке, ремне, браслете или шнурке. Датчик небольшой и компактный, поэтому у вас не должно возникнуть проблем с его переноской. У вас есть несколько вариантов программирования датчика. Это позволяет вам выбрать, будет ли он служить полицейской, пожарной или медицинской паникой.Датчик водонепроницаем, поэтому его можно носить в ванне или душе. Только учтите, что он не должен полностью погружаться в жидкость. Светодиодный индикатор на датчике может быть полезен для проверки активации. Мы также ценим тот факт, что датчик требует, чтобы вы нажали и удерживали кнопку в течение двух (2) полных секунд для активации. Это помогает предотвратить ложные срабатывания.
Минусов у 2GIG PANIC1-345 не так много. Срок службы батареи несколько невелик, так как без замены она может прослужить всего два (2) года.К счастью, ваша система должна сообщать вам, когда батарея разряжена, чтобы вы знали, когда ее заменить. Еще один небольшой недостаток заключается в том, что его можно использовать только с системами, поддерживающими частоту 2GIG 345 МГц.