|
Аналог мощного стабилитрона как тестовая нагрузка для проверки зарядных устройств автомобильных аккумуляторов
При переделке компьютерных импульсных блоков питания (далее – ИБП) под зарядные устройства для автомобильных аккумуляторов, готовые изделия необходимо чем-то нагружать. Сначала это была старая аккумуляторная батарея с автомобильной лампой 12В 40/45Вт.
Переделанные ИБП держались под максимальной нагрузкой в течении дня. Но после изготовления десятого устройства аккумулятор умер, замкнули между собой пластины. Попытка нагружать ИБП мощными лампами или резисторами не радовала, так как при различных токах нагрузки на выходе получаем различное напряжение, не удобно настраивать ИБП.
Поэтому принято решение изготовить аналог мощного стабилитрона с регулируемым напряжением стабилизации!
Содержание / Contents
Резистором R6 можно регулировать напряжение стабилизации от 6 до 16 В.
Было изготовлено два таких устройства. В первом варианте в качестве транзисторов VT1 и VT2 применены КТ803, но внутреннее сопротивление было слишком велико, так при токе 2 А напряжение стабилизации составило 12 В, а при 8 А – 16 В.
Во втором варианте использованы составные транзисторы КТ827, так при токе 2 А напряжение стабилизации составило 12 В, а при 10 А – 12,4 В.
Коллекторы транзисторов VT1 и VT2 электрически можно соединить с корпусом. Вентилятор М1 служит для охлаждения радиатора, на котором установлены транзисторы VT1 и VT2, при замыкании контактов выключателя SA1 увеличивается производительность вентилятора. Светодиод HL1 служит для индикации работы устройства.
Само устройство собрано в корпусе от компьютерного блока питания, использован штатный вентилятор М1, транзисторы VT1 и VT2 установлены на радиаторе площадью не менее 250 см кв. Диод VD1 на ток 10 – 20 А служит для защиты схемы от переполюсовки. Стабилитрон VD1 на напряжение стабилизации 3 – 6 В.
После проверки правильности монтажа, аналог мощного стабилитрона подключают к источнику тока на 1 – 2 А и резистором R6 устанавливают напряжение для разряженного кислотного аккумулятора, скажем 11 В. Увеличивают ток до 10 – 12 А, при этом напряжение не должно возрасти более чем на 0,5 В.Внешний вид устройства
UR5YW, дядя Вася, г. Черновцы
Камрад, смотри полезняхи!
Василий Мельничук (korjavy)
Украина, г. Черновцы
Когда то был связистом.
| Для стабилизации напряжения питания нагрузки нередко пользуются простейшим стабилизатором — параметрическим (рис. 1), в котором питание от выпрямителя поступает через балластный резистор, а параллельно нагрузке включают стабилитрон. Подобный стабилизатор работоспособен при токах нагрузки, не превышающих максимального тока стабилизации для данного стабилитрона. А если ток нагрузки значительно больше, пользуются более мощным стабилитроном, например, серии Д815, допускающим ток стабилизации 1…1,4 А. При отсутствии такого стабилитрона подойдет маломощный, но использовать его нужно в паре с мощным транзистором, как показано на рис. 2. В итоге получается аналог мощного стабилитрона, обеспечивающий на нагрузке достаточно стабильное напряжение даже при токе 2 А, хотя максимальный ток стабилизации указанного на схеме стабилизатора КС147А составляет 58 мА. Работает аналог так. Пока питающее напряжение, поступающее от выпрямителя, меньше напряжения пробоя стабилитрона, транзистор закрыт, ток через аналог незначительный (прямая горизонтальная ветвь вольт- амперной характеристики аналога, приведенной на рис. 4). При увеличении питающего напряжения стабилитрон пробивается, через него начинает протекать ток и транзистор приоткрывается (изогнутая часть характеристики) Дальнейшее увеличение питающего напряжения приводит к резкому росту тока через стабилитрон и транзистор, а значит, к стабилизации выходного напряжения на определенном значении (вертикальная ветвь характеристики), как и в обычном параметрическом стабилизаторе. Эффект стабилизации достигается благодаря тому, что в режиме пробоя стабилитрон обладает малым дифференциальным сопротивлением и с коллектора транзистора на его базу осуществляется глубокая отрицательная обратная связь. Поэтому при уменьшении выходного напряжения будет уменьшаться ток через стабилитрон и базу транзистора, что приведет к значительно большему (в h21Э раз) уменьшению коллекторного тока, а значит, к увеличению выходного напряжения. При увеличении же выходного напряжения будет наблюдаться обратный процесс. Значение стабилизированного выходного напряжения определяют суммированием напряжения стабилизации стабилитрона с напряжением эмиттерного перехода открытого транзистора (» 0,7 В для кремниевого транзистора и » 0,3 В для германиевого). Максимальный же ток стабилизации аналога будет практически в h21Э раз превышать такой же параметр используемого стабилитрона. Соответственно во столько же раз будет больше и мощность рассеивания на транзисторе по сравнению с мощностью на стабилитроне. Из приведенных соотношений нетрудно сделать вывод, что статический коэффициент передачи мощного транзистора должен быть не менее частного от деления максимального тока потребления нагрузки к максимальному току стабилизации стабилитрона. Максимально допустимый ток коллектора транзистора и напряжение между коллектором и эмиттером должны превышать соответственно заданный ток стабилизации аналога и выходное напряжение. При использовании транзистора структуры р-п-р его следует подключать в соответствии с приведенной на рис. 3 схемой. В этом варианте транзистор можно укрепить непосредственно на шасси питаемой конструкции, а остальные детали аналога смонтировать на выводах транзистора. Для снижения пульсаций выходного напряжения и уменьшения дифференциального сопротивления аналога параллельно выводам стабилитрона можно включить оксидный конденсатор емкостью 100…500 мкФ. В заключение немного о температурном коэффициенте напряжения (ТКН) аналога. При использовании прецизионных стабилитронов серий Д818, КС191, ТКН аналога будет значительно хуже ТКН стабилитрона. Если применен стабилитрон с напряжением стабилизации более 16 В, ТКН аналога будет примерно равен ТКН стабилитрона, а со стабилитронами Д808 — Д814 ТКН аналога улучшится. |
Стабилитроны из транзисторов, или о чем было видео
После публикации моего предыдущего поста самые внимательные начали спрашивать меня в ЛС о том, что же это за устройство, почему схема такая странная и как она работает. Эта статья содержит ответы на заданные вопросы.Итак, все началось с того, что мне понадобился следующий пятиполюсник:
Т.е., необходимо хитро разделять питание, делая его двухуровневым/двуполярным (для чего мне нужна такая схема — тема отдельной статьи, пока призываю читателя принять эту нужду как данность).
Очевидное решение этой проблемы изображено на рисунке ниже.
Здесь бы все могло и закончиться, если бы я мог купить стабилитрон. Но, по известным сообществу причинам, в этом деле меня постигла э-э-э… большая неудача.
Что делать, если нет стабилитрона? Конечно, сделать его самому!
Шаг 1.
Известно, что диод — по сути низковольтный стабилитрон.
Видно, что прямая ветвь ВАХ диода по своим свойствам, в принципе, очень похожа на обратную (рабочую) ВАХ стабилитрона (и, естесственно, на его прямую ВАХ). Обе ветви имеют участок, на котором напряжение слабо зависит от тока — для стабилитрона это область обратного пробоя (конечно, и на прямой ветви стабилитрона такой участок тоже есть, но обычно он не используется), для диода — участок ВАХ, на котором диод открыт. В этом случае падение на диоде постоянно и составляет примерно 0.6В для кремния.
Шаг 2.
Известно, что диод можно заменить транзистором:
Это классическая схема, которая применялась в эпоху ТТЛ в микросхемах, и которую до сих пор преподают в ВУЗах.
Шаг 3.
Видно, что если расматривать диоды и стабилитроны как черные ящики, то друг от друга они отличаются только напряжением стабилизации. Например, обычный диод можно использовать как стабилитрон на 0.6В (диоды, специально предназначенные для стабилизации напряжения на прямой ветви ВАХ, называются стабисторами), синий светодиод — как стабилитрон (стабистор) на 3.3В, и т.д. Т.е., в реальности напряжение на открытом диоде зависит от материала полупроводника. Но можно доработать эквивалентную схему диода на транзисторе так, чтобы получить любое нужное напряжение на открытом аналоге диода за счет схемотехнической хитрости.
Переход база-эмиттер транзистора представляет собой самый настоящий диод. Таким образом, в рабочем режиме транзистор будет открываться ровно до тех пор, пока на переходе база-эмиттер не установится напряжение примерно 0.6В (для кремниевого транзистора). Потому очевидно, что в такой схеме
напряжение коллектор-эмиттер тоже будет равно 0.6В, ибо база подключена напрямую к коллектору.
Теперь давайте сделаем так, чтобы напряжение 0.6В получалось не при 0.6В между коллектором и эмиттером, а при произвольном напряжении (ясно, что для этого на базу надо подавать только часть напряжения коллектор-эмиттер):
И вот, мы имеем двухполюсник, падение напряжения на котором мы можем произвольно менять. По сути, мы получаем регулируемый стабилитрон.
Исходя из этих соображений, исходная схема преобразуется следующим образом:
Надеюсь, я ответил на все вопросы интересующихся. :)