Site Loader

Расчёт энергии молнии

Огромные сполохи природной энергии – молнии, давно привлекают внимание людей. После того, как была установлена электрическая природа молний, люди стали подробнее изучать это явление. Естественно, рассматривался вопрос о практическом использовании энергии молний. Для этого, прежде всего, необходимо определить запас энергии молнии.

Максимальная разница потенциалов молнии достигает 50 миллионов вольт, а ток до 100 тысяч ампер. Для расчётов энергии молнии возьмем цифры ближе к средним для большинства молний, а именно: напряжение 20 миллионов вольт и ток 20 тысяч ампер.

При грозовом разряде, электрический потенциал уменьшается до нуля. Поэтому для того, чтобы правильно определить среднюю мощность грозового разряда, в расчётах надо брать половину первоначального напряжения.

Тогда мы имеем мощность электрического разряда:

Получается, что мощность грозового разряда молнии 200 миллионов киловатт. Длительность молнии составляет около тысячной доли секунды, а в каждом часе 3600 секунд. По этим данным можно определить общее количество энергии, которую даёт разряд молнии.

При цене электрической энергии 3 рубля за 1 кВт.ч., стоимость энергии, при условии полного использования всей энергии молнии, составит 166,67 рубля.

На большей части России частота ударов молнии в пределах 2 – 4 в год на квадратный километр, в горных районах до 10 ударов молнии. Из всех видов молний, как источник энергии нас может интересовать только разряд между землёй и электрически заряженными облаками. Для покрытия квадратного километра нужно большое количество молниеотводов. Технически возможно собрать небольшую часть электричества от молнии в высоковольтных конденсаторах. Понадобятся также преобразователи с функцией стабилизации напряжения. Но, как показывает расчёт энергоёмкости конденсаторов, для хранения даже небольшого количества электрической энергии, нужны конденсаторы огромной ёмкости и размеров. Стоимость такого оборудования будет на много порядков дороже стоимости полученной электрической энергии, даже при регулярном, например, ежегодном пополнении энергии разрядами молнии.

Подобные расчёты энергии молнии приводились в технической литературе. Реально получить и использовать, например, на нагрев воды, можно только небольшую часть этой энергии. Основная часть энергии молнии расходуется при искровом разряде на нагрев атмосферы и даже теоретически потребители могут использовать меньшую часть энергии молнии.

Для примера рассчитаем, сколько энергии потребляет на нагрев, например, такое устройство, как громоотвод. Электрическое сопротивление воздушного промежутка, молниеотвода и заземления, которое преодолевает молния при усредненных характеристиках разряда составит:

R = U/I = 20 000 000 В : 20 000 А = 1000 Ом

Расчёт сопротивления проводника громоотвода можно сделать по известной методике, если известны материал, его удельное сопротивление, длина и толщина провода. Но, для нашего примера, будем считать сопротивление проводника равным одному 1 Ом, а сопротивление заземления 4 Ома.

Если сопротивление молниеотвода в тысячу раз меньше, общего сопротивления для молнии, то по закону Ома для участка цепи падение напряжения на участке цепи (громоотводе), прямо пропорционально сопротивлению. А значит мощность, которая выделяется в виде тепла на молниеотводе, будет в тысячу раз меньше общей мощности или количеству энергии, которое выделяется на молниеотводе. В нашем примере это количество энергии будет равно 55,556 Вт.ч., что очень незначительно. Зная теплоёмкость материала молниеотвода и его массу, можно определить, на сколько градусов повысится температура молниеотвода.

Для повышения мощности потребителя, необходимо повысить электрическое сопротивление потребителя. Оптимальным вариантом для источника и потребителя электрической энергии является согласований сопротивлений, когда эти сопротивления равны. Нужно иметь в виду, что при увеличении общего сопротивления токопроводящей цепи уменьшится величина тока, а разность потенциалов останется прежней. Это приведёт к уменьшению общей энергии молнии и снизит без того небольшую вероятность грозового разряда.

Мощность молнии в киловаттах — Портал о стройке

Ватт – это единица измерения активной электрической мощности. Кроме активной мощности существует реактивная мощность и полная мощность. Если рассматривать мощность с точки зрения физики, то это процесс, при котором идёт расход энергии за определённую единицу времени. Получается, один ватт электрической мощности равен расходу одного джоуля (1 Дж) за одну секунду (1 с).

Название единицы мощности произошло от фамилии изобретателя шотландско-ирландского происхождения по имени Джеймс Уатт, который прославился тем, что в своё время создал паровую машину.

Сколько ватт в киловатте

До того, как современная единица измерения электрической мощности начала использоваться официально (с 1882г.), мощность считали в лошадиных силах. Теперь же электрическая мощность обозначается в ваттах (Вт). Для более мощных потребителей электрическую мощность указывают в киловаттах (кВт).

Содержание статьи:

Переводим ватты в киловатты

Для того чтобы знать сколько в одном киловатте ватт, необходимо понимать, что приставка «кило» обозначает кратность одной тысяче. Т.е. 1 киловатт = 1 * 1000 ватт = 1000 ватт. Из этого следует, что 2 киловатта = 2 * 1000Вт = 2000 ватт. Если же величина мощности равна 0,5 киловатт, то мощность в ваттах составит 0,5 * 1000Вт = 500 ватт.

Если необходимо посчитать, сколько в одном ватте киловатт, то расчёт выполняется наоборот. Необходимо имеющееся значение мощности в ваттах разделить на тысячу. Т.е. 1 ватт = 1/1000 ватт = 0,001 киловатта. Получается, что 1 ватт составляет одну тысячную часть от киловатта. Тогда 1000 ватт = 1000/1000 ватт = 1 киловатт. Если величина мощности равна 500 ватт, то мощность в киловаттах будет равна 500/1000 ватт = 0,5 киловатта.

Где указывается мощность (Вт и кВт)

Практически для каждого потребителя электрической энергии указывается его номинальная величина потребляемой мощности. Мощность указывается либо в паспорте потребителя, либо значение наносится на само устройство.

К примеру, на лампе накаливания мощность указывается на стеклянной части, называемой колбой. Это может быть 60 ватт, 75 ватт, 95 ватт, 100 ватт, 150 ватт, 500 ватт. Стоит отметить, что для обычных ламп накаливания (да и для других ламп) мощность также указывается и на картонной упаковке.

Кроме ламп накаливания, номинальная мощность потребления указывается на электрических чайниках, обогревателях, бойлерах и т.д. Номинальная мощность электрических чайников обычно равна 1,5 киловатта. Мощность обогревателя может быть 2 киловатта, а мощность бойлера может и вовсе равняться 2,5 киловатта.

Суммарная мощность в ваттах (киловаттах)

Иногда необходимо посчитать суммарную мощность потребления нескольких приборов или устройств. Например, это нужно для того, чтобы правильно подобрать сечение электрического кабеля или провода. Также суммарную мощность желательно знать при выборе коммутационной или защитной аппаратуры.

Чтобы посчитать мощность всех потребителей электроэнергии, необходимо знать, сколько ватт в киловатте и наоборот, ведь на одних потребителях мощность указывается в ваттах, а на других потребителях для удобства она указывается в киловаттах. При расчёте суммарной мощности необходимо значение мощности отдельных потребителей перевести (преобразовать) в ватты или в киловатты.

Расчёт суммарной мощности потребителей

Допустим, имеется несколько потребителей. Это лампа накаливания 75 ватт, лампа накаливания 100 ватт, электрический обогреватель мощностью 2 киловатта, бойлер 2,5 киловатта и электрический чайник мощностью 1500 ватт.

Как видно, мощность ламп накаливания и чайника указана в ваттах, а мощность электрического обогревателя и бойлера указана в киловаттах. Поэтому для расчёта суммарной мощности всех указанных потребителей необходимо привести все значения к единой величине измерения, т.е к ваттам или к киловаттам. 

Суммарная мощность в ваттах

Определяем мощность в ваттах для тех потребителей, у которых изначально мощность указана в киловаттах. Это электрический обогреватель и бойлер.

У обогревателя мощность 2 киловатта, а т.к. в одном киловатте 1000 ватт, то мощность обогревателя в ваттах будет 2 киловатта * 1000 = 2000 ватт. Аналогично рассчитывается значение и для бойлера. Т.к. его мощность в киловаттах равна 2,5 киловатта, то мощность в ваттах будет равна 2,5 киловатта * 1000 = 2500 ватт.

Т.к. теперь известна мощность в ваттах для всех потребителей, то суммарная мощность будет равна сумме мощностей всех потребителей. Складываем мощность одной и второй лампы накаливания, электрического обогревателя, бойлера и электрического чайника. Получаем суммарную мощность, равную 75 ватт + 100 ватт + 2000 ватт + 2500 ватт + 1500 ватт = 6175 ватт.

Суммарная мощность в киловаттах

Определяем мощность в киловаттах для тех потребителей, у которых изначально номинальная мощность указана в ваттах. Это лампы накаливания и электрический чайник. У одной лампы мощность 75 ватт, а т.к. один ватт – это тысячная часть киловатта, то мощность этой лампы равна 75 ватт/1000 = 0,075 киловатта. Мощность второй лампы равна 100 ватт, что в киловаттах составит 100 ватт/1000 = 0,1 киловатта. Потребляемая мощность электрического чайника равна 1500 ватт, а в киловаттах она будет равна 1500 ватт/1000 = 1,5 киловатта.

Мощность каждого отдельного потребителя известна, поэтому общая мощность в киловаттах будет равна сумме всех мощностей, т.е. 0,075 киловатта + 0,1 киловатта + 2 киловатта + 2,5 киловатта + 1,5 киловатта = 6,175 киловатта.

Величина ватт-час или киловатт-час

В электричестве регулярно встречается такая величина, как ватт-час и киловатт-час. Многие не видят никакой разницы между величинами ватт и ватт-час или киловатт и киловатт-час, считая их одним и тем же значением. Однако на самом деле это две разные величины, хоть их названия и похожи.

Если ватт и киловатт – это мощность, то ватт-час (Вт*ч) или киловатт-час (кВт*ч) – это количество потреблённой электроэнергии. На практике это выглядит следующим образом: лампа накаливания мощностью 100 ватт за один час потребляет 100 ватт-час электроэнергии. За два часа такая лампа потребляет 100 ватт * 2 часа = 200 ватт-час. Ну а за 10 часов лампа мощностью 100 ватт потребляет 100 ватт * 10 часов = 1000 ватт-час потребления электроэнергии, т.е. 1 киловатт-час.



Source: aquagroup.ru

Читайте также

ЭНЕРГИЯ МОЛНИИ. ЦЕНА МОЛНИИ — 166 РУБЛЕЙ…

http://altinfoyg.ru/index.php/rashot/rachotidei/rem.html

Огромные сполохи природной энергии – молнии, давно привлекают внимание людей. После того, как была установлена электрическая природа молний, люди стали подробнее изучать это явление. Естественно, рассматривался вопрос о практическом использовании энергии молний. Для этого, прежде всего, необходимо определить запас энергии молнии.

Максимальная разница потенциалов молнии достигает 50 миллионов вольт, а ток до 100 тысяч ампер. Для расчётов энергии молнии возьмем цифры ближе к средним для большинства молний, а именно: напряжение 20 миллионов вольт и ток 20 тысяч ампер.

При грозовом разряде, электрический потенциал уменьшается до нуля. Поэтому для того, чтобы правильно определить среднюю мощность грозового разряда, в расчётах надо брать половину первоначального напряжения.

Тогда мы имеем мощность электрического разряда:

Получается, что мощность грозового разряда молнии 200 миллионов киловатт. Длительность молнии составляет около тысячной доли секунды, а в каждом часе 3600 секунд. По этим данным можно определить общее количество энергии, которую даёт разряд молнии.

При цене электрической энергии 3 рубля за 1 кВт.ч., стоимость энергии, при условии полного использования всей энергии молнии, составит 166,67 рубля.

На большей части России частота ударов молнии в пределах 2 – 4 в год на квадратный километр, в горных районах до 10 ударов молнии. Из всех видов молний, как источник энергии нас может интересовать только разряд между землёй и электрически заряженными облаками. Для покрытия квадратного километра нужно большое количество молниеотводов. Технически возможно собрать небольшую часть электричества от молнии в высоковольтных конденсаторах. Понадобятся также преобразователи с функцией стабилизации напряжения. Но, как показывает расчёт энергоёмкости конденсаторов, для хранения даже небольшого количества электрической энергии, нужны конденсаторы огромной ёмкости и размеров. Стоимость такого оборудования будет на много порядков дороже стоимости полученной электрической энергии, даже при регулярном, например, ежегодном пополнении энергии разрядами молнии.

Подобные расчёты энергии молнии приводились в технической литературе. Реально получить и использовать, например, на нагрев воды, можно только небольшую часть этой энергии. Основная часть энергии молнии расходуется при искровом разряде на нагрев атмосферы и даже теоретически потребители могут использовать меньшую часть энергии молнии.

Для примера рассчитаем, сколько энергии потребляет на нагрев, например, такое устройство, как громоотвод. Электрическое сопротивление воздушного промежутка, молниеотвода и заземления, которое преодолевает молния при усредненных характеристиках разряда составит:

R = U/I = 20 000 000 В : 20 000 А = 1000 Ом

Расчёт сопротивления проводника громоотвода можно сделать по известной методике, если известны материал, его удельное сопротивление, длина и толщина провода. Но, для нашего примера, будем считать сопротивление проводника равным одному 1 Ом, а сопротивление заземления 4 Ома.

Если сопротивление молниеотвода в тысячу раз меньше, общего сопротивления для молнии, то по закону Ома для участка цепи падение напряжения на участке цепи (громоотводе), прямо пропорционально сопротивлению. А значит мощность, которая выделяется в виде тепла на молниеотводе, будет в тысячу раз меньше общей мощности или количеству энергии, которое выделяется на молниеотводе. В нашем примере это количество энергии будет равно 55,556 Вт.ч., что очень незначительно. Зная теплоёмкость материала молниеотвода и его массу, можно определить, на сколько градусов повысится температура молниеотвода.

Для повышения мощности потребителя, необходимо повысить электрическое сопротивление потребителя. Оптимальным вариантом для источника и потребителя электрической энергии является согласований сопротивлений, когда эти сопротивления равны. Нужно иметь в виду, что при увеличении общего сопротивления токопроводящей цепи уменьшится величина тока, а разность потенциалов останется прежней. Это приведёт к уменьшению общей энергии молнии и снизит без того небольшую вероятность грозового разряда.

безумству храбрых поем мы песни

Преимущества грозовой энергетики

Грозовая энергетика – это пока лишь теоретическое направление. Суть методики заключается в поимке энергии молний и перенаправлении ее в электросеть. Данный источник энергии возобновляем и относится к альтернативным, т.е. экологически безопасным.

Процесс образования молний весьма сложен. Изначально из наэлектризованного облака к земле устремляется разряд-лидер, который был сформирован электронными лавинами, слившимися в разряды (стримеры). Этот разряд оставляет за собой горячий ионизированный канал, по которому в обратном направлении движется главный разряд молнии, вырванный с Земли мощным электрическим полем. За доли секунды процесс повторяется несколько раз. Основная проблема – это поймать разряд и перенаправить его в сеть.

Грозовая энергетика

Преимущества

За небесным электричеством охотился еще Бенджамин Франклин. Во время грозы он запустил воздушного змея в облако и понял, что тот собирает электрический заряд.

Энергия молний – это 5 млрд джоулей чистой энергии в одном ударе, что сопоставимо со 145 л бензина. Считается, что 1 разряд молнии содержит в себе такое количество энергии, которое все население США потребляет в течение 20 минут.

Ежегодно по всему миру регистрируется около 1,5 млрд разрядов, т.е. молния бьет по поверхности Земли примерно 40-50 раз в секунду.

Преимущества грозовой энергетики

Эксперименты

11 ноября 2006 г. компания Alternative Energy Holdings заявила о своих успехах в деле создания прототипа конструкции, которая могла бы продемонстрировать «захват» молнии с последующим преобразованием ее в «бытовую» электроэнергию. Компания заявила, что окупаемость действующего промышленного аналога составит 4-7 лет при розничной цене 0,005 долл. США за 1 кВт-ч. К сожалению, руководство проекта после серии практических опытов было вынуждено сообщить о провале. Тогда Мартин А. Умани сравнил энергию молний с энергией атомной бомбы.

В 2013 г. силами сотрудников университета Саунгтгемптона в лабораторных условиях был смоделирован искусственный заряд, аналогичный по всем параметрам молнии естественного происхождения. Благодаря сравнительно простому оборудованию ученые смогли «поймать» его и всего за несколько минут полностью зарядить аккумулятор смартфона.

Перспектива

Молниевые фермы пока являются мечтой. Они бы стали неиссякаемыми экологически безопасными источниками весьма дешевой энергии. Развитию данного направления энергетики препятствует ряд фундаментальных проблем:

Преобразование энергии

  • предсказать время и место грозы невозможно. Это означает, что даже там, где установлен максимум по ударам молний, нужно смонтировать достаточно много «ловушек»;
  • молния – это кратковременный энергетический всплеск, длительность которого равна долям секунды, и его нужно очень быстро осваивать. Для решения этой задачи нужны мощнейшие конденсаторы, которых еще не существует, а цена их, вероятно, будет очень высока. Можно применить и разнообразные колебательные системы с контурами 2-го и 3-го рода, позволяющие согласовывать нагрузку с внутренним сопротивлением генератора;
  • мощность разрядов также сильно отличается. Большинство молний – это 5-20 кА, но бывают всполохи силой тока в 200 кА, а каждый из них нужно привести к стандарту в 220 В и 50-60 Гц переменного тока;
  • молния бывает отрицательной, образующейся из энергии, скопившейся в нижней части облака, и положительной, накапливающейся в верхней его части. Данный фактор также нужно принимать во внимание при оборудовании молниевой фермы. Более того, чтобы уловить положительный заряд, потребуются затраты энергии, что доказано на примере люстры Чижевского;
  • плотность заряженных ионов в 1 куб.м атмосферы низка, сопротивление воздуха велико. Соответственно «поймать» молнию сможет только ионизированный электрод, максимально приподнятый над поверхностью земли, но он сможет улавливать энергию только в виде микротоков. Если же поднять электрод слишком близко к наэлектризованным облакам, это может спровоцировать молнию, т.е. получится кратковременный, но мощный всплеск напряжения, который приведет к поломке оборудования молниевой фермы.

Несмотря на очевидные сложности идея создания молниевых ферм жива: очень хочется человечеству укротить природу и получить доступ к огромным возобновляемым запасам энергии.

‘; blockSettingArray[0][«setting_type»] = 6; blockSettingArray[0][«elementPlace»] = 2; blockSettingArray[1] = []; blockSettingArray[1][«minSymbols»] = 0; blockSettingArray[1][«minHeaders»] = 0; blockSettingArray[1][«text»] = ‘

‘; blockSettingArray[1][«setting_type»] = 6; blockSettingArray[1][«elementPlace»] = 0; blockSettingArray[3] = []; blockSettingArray[3][«minSymbols»] = 1000; blockSettingArray[3][«minHeaders»] = 0; blockSettingArray[3][«text»] = ‘

Грозовая энергетика — Википедия

Материал из Википедии — свободной энциклопедии

Lightning3.jpg

Грозовая энергетика — это способ получения энергии путём поимки и перенаправления энергии молний в электросеть. Данный вид энергетики предполагает использовать возобновляемый источник энергии и относится к альтернативным источникам энергии.

Компания Alternative Energy Holdings 11 октября 2006 года объявила об успешном развитии прототипа модели, которая может продемонстрировать возможности «захвата» молнии для дальнейшего её превращения в электроэнергию[1]. Молния является чистой энергией, и её применение будет не только устранять многочисленные экологические опасности, но также будет значительно уменьшать дороговизну производства энергии. Также компания сообщила, что окупаться такая установка будет за 4—7 лет, молниевые фермы смогут производить и продавать электроэнергию по цене всего $ 0,005 за киловатт-час, что значительно дешевле производства энергии с помощью современных источников[1][2].

Lightning3.jpg Глобальная карта частоты молний. Шкала сбоку показывает количество молний в год на каждый квадратный километр

В 2006 году специалисты, работающие со спутником NASA «Миссия измерения тропических штормов», опубликовали данные по количеству гроз в разных регионах планеты. По данным исследования стало известно, что существуют районы, где в течение года происходит до 70 ударов молний в год на квадратный километр площади[3].

Молнии являются не очень надёжным источником энергии, так как заранее нельзя предугадать, где и когда случится гроза.

Ещё одна проблема грозовой энергетики состоит в том, что разряд молнии длится доли секунд и, как следствие, его энергию нужно запасать очень быстро. Для этого потребуются мощные и дорогостоящие конденсаторы.

Молния является сложным электрическим процессом и делится на несколько разновидностей: отрицательные — накапливающиеся в нижней части облака и положительные — собирающиеся в верхней части облака. Это тоже надо учитывать при создании молниевой фермы[1].

преимущества и перспективы использования энергии молний

Огромные молнии через все небо, пугающие наших предков и удивляющие ученых XXI века, не раз навевали мысли о практическом использовании пропадающих впустую киловаттов энергии. Но, несмотря на отдельные попытки реализовать задуманное, грозовая энергетика пока носит больше теоретический, чем практический характер. Тем не менее ряд стран выделяет немало средств на изучение данного направления и решение отдельных сложностей, связанных с «отловом» молний и их перенаправлением в централизованную сеть электроснабжения с помощью высоковольтных систем оборудования.

Можно ли использовать энергию молний? Современные достижения и реальные перспективы

Теоретическое обоснование возможности использования энергии молний

Яркая вспышка в небе во время ненастья – результат сразу нескольких физико-химических процессов. Наэлектризованные облака с высоким уровнем влажности служат благоприятной средой для образования электронных лавин, объединенных в разряды. Лавины формируют главный заряд, который направляется к земле. По следам его прохождения образуется горячий ионизированный канал, по которому под влиянием мощного электрического поля проходит главный разряд молнии. Процесс занимает мгновения и может повторяться несколько раз в секунду. Огромное напряжение, характерное для разряда, стало основой идеи грозовой энергетики. И сегодня ее основная цель – научиться улавливать молнию и уменьшать ее вольтаж, чтобы использовать полученную бесплатную электроэнергию для нужд промышленности и быта.

Теоретическое обоснование возможности использования энергии молний

Интересные эксперименты по применению энергии молний

Первым ученым, приблизившимся к изучению характера грозовых разрядов, стал Бенджамин Франклин. Во время грозы в рамках своих физических опытов он запускал в небо воздушных змеев. «Собранный» ими электрический заряд позволил предположить возможность его накопления и применения в отдаленном будущем, когда человечество сумеет сконструировать мощное улавливающее оборудование и научится управлять грозным атмосферным явлением без вреда для себя и окружающей среды.

Более поздние эксперименты помогли ученым узнать, сколько энергии в молнии. Говоря научным языком, энергия молнии в джоулях составляет 5 млрд, что аналогично ее объему от сгорания 145 литров бензина. Специалисты из США, где сегодня ведутся масштабные работы в рамках изучения грозовой энергетики, подсчитали: одного разряда достаточно, чтобы снабдить население страны электричеством на 20 минут. Учитывая климатические особенности Штатов и их «удачное» географическое расположение между двумя океанами, становится понятной стремление местных ученых изучить процесс и наладить его практическое применение в промышленных объемах. А если науке удастся преодолеть расстояние, то тысячи молний, ежедневно наблюдаемых в разных частях света, смогут полностью решить энергетическую проблему в рамках планеты.

Интересные эксперименты по применению энергии молний

Конструкция, позволяющая улавливать молнию и преобразовывать ее под параметры энергосетей, была впервые сконструирована в 2006 году и представлена научной аудитории в виде небольшого макета. Заслуга принадлежит компании Alternative Energy Holdings, заложившей первый камень в основание грозовой энергетики будущего. Согласно проведенным расчетам, оборудование окупится за 5-7 лет, бесперебойно производя электричество стоимостью не более 0,005 долларов. Однако масштабные эксперименты в практических условиях не подтвердили работоспособность предложенной схемы, и проект был свернут.

В 2013 году в университете Саутгемптона удалось смоделировать искусственный разряд, полностью повторяющий разряд молнии по уровню напряжения. С помощью несложной системы оборудования удалось уловить его и направить на зарядку смартфона, аккумулятор которого был пополнен до 100% за две минуты.

Проблемы и перспективы

Несмотря на первые неудачи, ученые настроены позитивно. В случае успеха человечество получит киловатты бесплатной, экологически чистой возобновляемой энергии, область применения которой ничем не ограничена. Но, чтобы открыть для себя столь заманчивые перспективы и научиться использовать энергию молнии, предстоит решить немало проблем:

  • Предсказать район и время очередной грозы пока не удается. А монтаж тысяч ловушек пока достаточно накладен даже для экономически развитой страны.
  • «Поймать» заряд требуется за доли секунд, что не в состоянии сделать самое быстродействующее оборудование. Мощные конденсаторы, способные справиться с этой задачей, пока не созданы, а их расчетная стоимость будет достаточно велика, что значительно повысит стоимость полученной энергии.
  • В зависимости от локализации в верхней или нижней части облаков, молнии могут иметь положительный или отрицательный заряд. Для уловления заряда в первом случае потребуется дополнительная энергия, подачу которой на оборудование нужно обеспечить за доли секунд до появления грозового разряда.
  • Мощность разрядов имеет диапазон от 5 до 200 кА. Любая величина требует адаптации столь значительного количества энергии к стандартной сети на 220В.
  • Плотность заряженных ионов снижается по мере приближения разряда к земле. Поэтому улавливающее оборудование необходимо поднять на значительную высоту от поверхности планеты. Но здесь возникает другая проблема – самопроизвольное образование молнии, процесс формирования которой нужно научиться контролировать и предотвращать. В противном случае чувствительное оборудование выйдет из строя от перегрузки, и огромные финансовые затраты на создание технических устройств окажутся напрасными.

Проблемы и перспективы

Несмотря на преграды, мешающие запустить проекты практической реализации грозовой энергетики, работы по ее всестороннему исследованию продолжаются. Возможно, уже через десятки лет можно будет говорить о первых успехах, а спустя пару веков электричество от молнии станет столь же доступным, как энергия солнца или ветра.

Сколько вольт в молнии?

Для грозы характерны заряды молний силой 100000 вольт и даже более. Искры молнии нагревают воздух выше 30000 градусов, что в несколько раз больше, чем в электрической дуге сварочного аппарата. А расширение воздуха при разрядах вызывает гром. Типы молний:

 

  • Сплошная – разряд между заряженными областями облака.
  • Зигзагообразная – возникает при разряде между облаком и землей.

В среднем на каждый квадратный километр территории России ежегодно приходится около трех ударов молний. Их эл. ток бывает до 30 000 ампер, а у самых мощных разрядов может превышать 200 000 ампер. Теплообмен шаровой молний с окружающей средой происходит через испускание значительного количества инфракрасного излучения. Если шаровой молнии приписать температуру 500- 600 К, то мощность равновесного теплового излучения, испускаемого молнией среднего диаметра , порядка 0,5-1кВт и максимум излучения лежит в области волн 5-10 мкм.

Полезная информация

Молния — гигантский электрический искровой разряд в атмосфере, обычно происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Ток в разряде молнии достигает 10-100 тысяч ампер, напряжение – 1 000 000 вольт, тем не менее, погибает после удара молнией лишь 10% людей.

Вольт – в системе СИ единица измерения электрического потенциала, разности потенциалов, электрического напряжения и электродвижущей силы.Разность потенциалов между двумя точками равна 1 вольту, если для перемещения заряда величиной 1 кулон из одной точки в другую над ним надо совершить работу величиной 1 джоуль. Вольт также равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт.Единица названа в честь итальянского физика и физиолога Алессандро Вольта , который изобрёл вольтов столб, первую электрическую батарею.1 В = 1/300 ед. потенциала СГСЭ .

 

«Укротитель молний» ловит руками электрические разряды в миллион вольт

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *