обозначение и основные характеристики, маркировка и принцип действия, сферы применения и проверка
Варистор (дословный перевод с английского — резистор с переменным сопротивлением) — полупроводник с нелинейной вольт—амперной характеристикой (вах).
Все электроприборы рассчитаны на свое рабочее напряжение (в домах 220 В или 380В). Если произошел скачок напряжения (вместо 220 В подали 380В) — приборы могут сгореть. Тогда на помощь и придет варистор.
Общие сведения
Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.
Рисунок 1 — УГО варистора.
Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.
Как же найти на плате варистор?
По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.
На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.
VA1- это варистор, а синяя деталь рядом это конденсатор-С70.
Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.
После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание – на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.
Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF – плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.
Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.
Ещё обратите внимание, что большинство плат – двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.
После замены варистора остаётся только поставить новый предохранитель и установить плату на место.
Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.
Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:
Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.
Виды и принцип работы
Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:
- Высоковольтные с рабочим напряжением до 20 кВ.
- Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.
Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.
В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.
Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.
Принцип действия варисторов
В обычном состоянии варистор имеет очень большое сопротивление (по разным источникам от сотен миллионов Ом до миллиардов Ом). Он почти не пропускает через себя ток. Стоит напряжению превысить допустимое значение, как прибор теряет свое сопротивление в тысячи, а то и в миллионы раз. После нормализации напряжения его сопротивление восстанавливается.
Если варистор подключить параллельно электроприбору, то при скачке напряжения вся нагрузка придется на него, а приборы останутся в безопасности.
Принцип работы варистора, если объяснять на пальцах, сводится к следующему. При скачке в электрической сети он выполняет роль клапана, пропуская через себя электрический ток в таком объеме, чтобы снизить потенциал до необходимого уровня. После того как напряжение стабилизируется этот «клапан» закрывается и наша электросхема продолжает работать в штатном расписании. В этом и состоит назначение варистора.
Маркировка и основные параметры
Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.
Вам это будет интересно Описание принципиальной электрической схемы с примером
Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:
- CNR — металлооксидный тип.
- 14 — диаметр прибора, равный 14 мм.
- D — радиокомпонент в форме диска.
- 471 — максимальное значение напряжения, на которое он рассчитан.
- К — допустимое отклонения классификационного напряжения, равное 10%.
Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.
Их основные характеристики:
- Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
- Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
- Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
- Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
- Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
- Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
- Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).
После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.
Как проверить S14 K275 этим методом?
Мы знаем, что напряжение срабатывания составляет 275 вольт. При подаче напряжения 220 вольт, схема работает в рабочем режиме: варистор имеет бесконечное сопротивление, ток протекает по основной цепи, лампа горит.
Подаем на вход повышенное напряжение (например, 400 вольт). Варистор переходит в режим защиты (сопротивление резко снижается, ток протекает через него), перегорает предохранитель, лампа гаснет. Вывод: варистор исправен.
Применение приборов
Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.
В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.
Вам это будет интересно Цифровой прибор мультиметр и измерение мультитестером
Схема 1 — Подключение варистора для сети 220В.
Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.
Однако технология их изготовления не стоит на месте, поскольку создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.
Как проверить работоспособность варистора?
Мы уже знаем, что варистор – по сути сопротивление. Стало быть, его можно проверить тестером. Простейший способ – замер сопротивления. Необходимо выпаять деталь из схемы, и проверить сопротивление в различных диапазонах измерения.
Сопротивление должно быть бесконечно большим – это свидетельствует об исправности варистора. Если схема не имеет дополнительного сопротивления в цепи подключения, можно проверить варистор мультиметром не выпаивая.
Например, в том же удлинителе. Только не забудьте выдернуть вилку из розетки, и отключить все потребители, включенные в удлинитель.
При необходимости точного измерения параметров, необходимо собрать схему из не слишком требовательного потребителя (например, мощной лампы накаливания) и предохранителя.
Под нагрузкой понимаем ту самую лампу.
Достоинства и недостатки
Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:
- Высокое время срабатывания.
- Отслеживание перепадов при помощи безинерционного метода.
- Широкий диапазон напряжений: от 12 В до 1,8 кВ.
- Длительный срок службы.
- Низкая стоимость.
У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:
- Большая емкость.
- Не рассеивают мощность при максимальном значении напряжения.
Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.
При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.
Варистор — что это такое?
Содержание:
В статье изучим что такое варистор, узнаем принцип его действия, рассмотрим основные характеристики и параметры, которыми обладает данное полупроводниковое устройство.
Варистор – это полупроводниковый резистор, сопротивление которого зависит от подаваемого на него напряжения. Имеет нелинейную симметричную вольт-амперную характеристику. Изготавливается прессованием из таких полупроводников как оксид цинка(ZnO) или карбид кремния (SiC). Из-за своего ВАХ, варистор может применяться в цепях переменного и постоянного тока.
Свое название варистор получил от английского словосочетания Variable Resistor, что дословно переводиться как переменный резистор. От слова Variable взяли начало, а от Resistor – конец. В отличии от переменного резистора в привычном понимании, варистор обладает немного другими свойствами и путать их не стоит.
Корпус варистора обычно выполняется в виде дисков и таблеток. Но так же существуют корпуса стержнем и с подвижные контактом (подстроечные варисторы).
Варистор имеет условно графическое обозначение (УГО) как у резистора, но с наклонной чертой и буквой U. Буква U на УГО указывает на то, что сопротивление этого элемента цепи зависит от напряжения. На схемах и платах обозначается двумя буквами RU и цифрой (порядковый номер на схеме). А вот так выглядит нелинейная симметричная вольт-амперная характеристика варистора.
Нужны варисторы для защиты цепей от перенапряжения. В электронике и низковольтных сетях они служат для защиты от статического электричества. Варисторы можно найти почти во всех электронных устройствах – от блоков питания до электронного пускорегулирующего аппарата светильника люминесцентных ламп. Есть варисторы и в smd варианте, они очень похожи на диоды и сложно отличаемы в схемах.
Как работает варистор?
Принцип работы варистора достаточно прост. Рассмотрим ситуацию, когда варистор защищает от перенапряжения. В схему он включается параллельно защищаемой цепи. При нормальном режиме работы он имеет высокое сопротивление и протекающий через него ток очень мал. Он имеется свойства диэлектрика и не оказывает никакого влияния на работу схемы. При возникновении перенапряжения, варистор моментально меняет свое сопротивление с очень высокого, до очень низкого и шунтирует нагрузку. Известно, что ток идет по пути наименьшего сопротивления, поэтому варистор поглощает это перенапряжение и рассеивает эту энергию в атмосферу, в виде тепла. После того, как напряжение стабилизируется, сопротивление снова возрастает и варистор “запирается”. Надеюсь даже чайник понял принцип работы. Если что-то не ясно, рекомендуется ознакомиться с видео.
Если напряжение будет выше того, которое может выдержать и рассеять варистор, то он выйдет из строя. Корпус его треснет либо развалиться на части. В некоторых случаях он может взорваться. Поэтому, в целях защиты основной схемы, рекомендуется ограждать его от основных компонентов защитным экраном либо монтировать его вне корпуса, особенно для высоковольтных схем. Как проверить варистор мультиметром – узнаете тут.
Как говорилось выше, варистор подключается параллельно нагрузке:
- В цепях переменного тока – фаза – фаза, фаза – ноль;
- В цепях постоянного тока – плюс и минус.
Так как варистор закорачивает цепь питания, перед ним всегда монтируется плавкий предохранитель. Несколько примеров схем включения варистора:
Характеристики и параметры варисторов
- Классификационное напряжение (Varistor Voltage) – это величина напряжения, при котором ток в 1 мА протекает через варистор;
- Максимально допустимое переменное напряжение (Maximum Allowable Voltage – ACrms) – Это среднеквадратичное значение переменного напряжения (rms) в вольтах. Это та величина, при которой варистор “открывается” и понижается его сопротивление, тем самым он начинает выполнять свою задачу;
- Максимально допустимое постоянное напряжение (Maximum Allowable Voltage – DC) – Варистор можно использовать в цепях постоянного тока, этот параметр показывает напряжение “открытия”, но уже для постоянного напряжения. Указывается в вольтах. Обычно выше, чем величина для переменных цепей;
- Максимальное напряжение ограничения (Maximum Clamping Voltage) – максимальное напряжение в вольтах, которое может выдержать корпус варистора без выхода из строя. Обычно указывается для конкретной величины тока;
- Максимальная поглощаемая энергия – указывается в джоулях (Дж). Величина импульса, которую может рассеять варистор, не выходя из строя;
- Время срабатывания – обычны указывается в наносекундах (нс). Это время, которое требуется варистору для изменения величины сопротивления от очень высокого, до очень низкого;
- Допустимое отклонение (Varistor Voltage Tolerance) – это допустимое отклонение квалификационного напряжения варистора, указывается оно в процентах (%). Это фиксированные величины ±5%, ±10%, ±20% и т.д. В импортных варисторах величина отклонения, зашифрованна в определенную букву и указывается в маркировке варистора, каждая фирма может использовать свои маркировки. К примеру, для варисторов фирмы Joyin принято такое обозначение: K – ±10%, L – ±15%, M – ±20%, P – ±25%.
Подбор варисторов осуществляется по специальным справочникам на основе вышеописанных параметров. Узнаем значения своей цепи и защищаемого оборудования. На основе этого выбираем варистор, который нужно ставить.
Маркировка варисторов
Обычно на корпусе варистора написана очень длинна маркировка, сейчас на примере 20D471K расшифруем маркировку и узнаем его характеристики.
- 20D – это диаметр варистора, в данном случае 20мм. Чем больше диаметр – тем больше энергии может рассеять варистор. По данному параметру можно косвенно судить о максимальной энергии, которую он может поглотить. Чем больше – тем лучше.
- 47 – Классификационное напряжение варистора, 470 вольт.
- 1K – допустимое отклонение квалификационного напряжения варистора, как было указано выше, K – это ±10%.
Обычно у производителей маркировки отличаются друг от друга, но незначительно. Примеры маркировки этого варистора, но от разных производителей: Epcos – S20K300, Fenghua – FNR-20K471, TVR -TVR20D471, CNR – CNR20D471, JVR – JVR-20N471K.
Как видим, у фирмы Epcos маркировка показывает на число 300, это уже не классификационное напряжение, а максимально допустимое переменное напряжение. В любом случае не рекомендуется гадать самому с маркировкой, если есть возможность, то лучше воспользоваться поисковиками либо справочником и получить всю подробнейшую информацию о нужном вам варисторе.
Заключение
Варистор – это достаточно надежный и дешевый компонент, такой себе простак и универсал. Может работать в разных условиях (переменные и постоянные цепи, высокие частоты), выдерживать большие перегрузки. Он нашел применение во всех нишах связанных с электричеством и не только как защитник от перенапряжения. Варистор используют как: регуляторы и стабилизаторы, в качестве ограничителей перенапряжения. Из недостатков: высокий шум на низких частотах, так же из-за внешних условий и старения, он может изменять свои параметры.
Предыдущая
РадиодеталиДиодный мост – что это такое?
Следующая
РадиодеталиЧто такое подстроечный резистор: описание устройства и область его применения
Варистор маркировка на корпусе — Мастерок
Содержание
- Содержание
- Изготовление [ править | править код ]
- Свойства [ править | править код ]
- Применение [ править | править код ]
- Материалы варисторов [ править | править код ]
- Параметры [ править | править код ]
- Стандартная схема подключения варистора
- Принцип действия варистора
- Маркировка варисторов
- Как же найти на плате варистор?
Вари́стор (лат. vari(able) – переменный (resi)stor — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать своё сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины [1] . При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).
Содержание
Изготовление [ править | править код ]
Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.
Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.
Свойства [ править | править код ]
Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.
Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:
λ = R R d = U I : d U d I ≈ c o n s t <displaystyle lambda =<frac >>=<frac >:<frac >approx const> ,
где U – напряжение, I – ток варистора
Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.
Применение [ править | править код ]
Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,0001 до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.
Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.
Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.
Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.
Материалы варисторов [ править | править код ]
Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.
Параметры [ править | править код ]
При описании характеристик варисторов в основном используются следующие параметры [1] :
- Классификационное напряжение Un — напряжение при определённом токе (обычно 1 мА), условный параметр для маркировки изделий;
- Максимально допустимое напряжение Um для постоянного тока и для переменного тока (среднеквадратичное или действующее значение), диапазон — от нескольких В до нескольких десятков кВ; может быть превышено только при перенапряжениях;
- Номинальная средняя рассеиваемая мощность P — мощность в ваттах (Вт), которую варистор может рассеивать в течение всего срока службы при сохранении параметров в заданных пределах;
- Максимальный импульсный ток Ipp (Peak Surge Current) в амперах (А), для которого нормируется время нарастания и длительность импульса;
- Максимальная допустимая поглощаемая энергия W (Absorption energy) в джоулях (Дж), при воздействии одиночного импульса;
- Ёмкость Co, измеренная в закрытом состоянии при заданной частоте; зависит от приложенного напряжения — когда варистор пропускает через себя большой ток, она падает до нуля.
Рабочее напряжение варистора выбирается исходя из допустимой энергии рассеяния и максимальной амплитуды напряжения. Рекомендуется, чтобы на переменном напряжении оно не превышало 0,6 Un, а на постоянном — 0,85 Un. Например, в сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В.
Варистор серии 07K, 10K, 14K, 20K – оксидно-цинковый защитный элемент, обладающий способностью мгновенного изменения собственного сопротивления под воздействием подаваемого напряжения. Характерные резко выраженные нелинейные и симметричные вольтамперные характеристики предоставляют возможность эксплуатации варисторов в цепях постоянного, переменного и импульсного тока.
Принцип работы варистора заключается в его способности в считанные наносекунды (до 25 нс) понижать собственное сопротивление до отметки в несколько Ом при воздействии напряжения, превышающего номинальное значение – напряжения срабатывания, ток срабатывания при этом может достигать 100А.
В обычном состоянии сопротивление варистора достигает нескольких сотен МОм, а поскольку подключают варисторы параллельно цепи, то ток через него не проходит и он выступает в роли диэлектрика. Импульсный скачок приводит варистор в действие, понижая его сопротивление – происходит короткое замыкание и перегорает плавкий предохранитель, который должен устанавливаться в обязательном порядке перед варистором, и цепь размыкается.
В момент срабатывания происходит шунтирование излишней нагрузки, поглощаемая энергия (до 282 Дж при импульсе тока 2,5 мс) рассеивается в виде теплового излучения. Габаритные размеры варистора при этом играют значительную роль – общая площадь поверхности варистора имеет пропорциональное влияние на возможность гашения импульса напряжения без разрушения самого устройства.
Варисторы серии 07K, 10K, 14K, 20K имеют форму диска (дисковые варисторы) различной толщины с однонаправленными проволочными выводами радиального типа. Изготавливаются представленные варисторы методом прессования порошкообразного оксида цинка (ZnO).
На корпусе варисторов нанесена маркировка с указанием номинального классификационного напряжения и соответствующего допуска по напряжению (±10%). На образцах варисторов импортного производства при маркировке допуска используют символьное обозначение, например, буква K обозначает допуск ±10%, буква M – допуск ±20%.
Устанавливаются варисторы параллельно защищаемому устройству с помощью пайки выводов. Для достижения максимального уровня защиты рекомендуется использование двух одинаковых варисторов, подключенных параллельно друг другу, и дополнительного плавкого предохранителя, устанавливаемого последовательно перед варисторами.
Применяются предоставленные варисторы 07K, 10K, 14K, 20K для защиты элементов от перенапряжения в источниках и системах электропитания, бытовой и военной технике, телекоммуникационном и измерительном оборудовании.
Подробные характеристики, расшифровка маркировки, габаритные размеры, общее устройство варисторов 07K, 10K, 14K, 20K указаны ниже. Наша компания гарантирует качество и работу варисторов в течение 2 лет с момента их приобретения; предоставляются сертификаты качества.
Окончательная цена на оксидно-цинковые варисторы 07K, 10K, 14K, 20K зависит от количества, сроков поставки и формы оплаты.
Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.
Скорее всего это произошло из-за скачков напряжения в сети.
При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.
Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт. Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. д.), а также из-за атмосферного электричества.
Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.
Стандартная схема подключения варистора
параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:
Принцип действия варистора
По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения. При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток. Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.
Маркировка варисторов
Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке. Например маркировка варисторов CNR:
CNR-07D390K , где:
- CNR- серия, полное название CeNtRa металлоксидные варисторы
- 07- диаметр 7мм
- D – дисковый
- 390 – напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
- K – допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.
Как же найти на плате варистор?
По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.
На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали. Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.
VA1- это варистор, а синяя деталь рядом это конденсатор-С70.
Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.
После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание – на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.
Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF – плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.
Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.
Ещё обратите внимание, что большинство плат – двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.
После замены варистора остаётся только поставить новый предохранитель и установить плату на место.
Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.
Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:
Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.
варистор%20маркировка%20код техническое описание и примечания по применению
Каталог техническое описание | MFG и тип | ПДФ | Теги документов |
---|---|---|---|
1996 — Варистор 250В Резюме: варистор S20 варистор 60 В варистор 300 В s10 варистор варистор Ve Q69X3454 Q69X3022 150 В варистор варистор* s20 | Оригинал | ЦКР-62 ЦКР-63 Варистор 250В варистор S20 варистор 60v варистор 300В s10 варистор варистор Ve Q69X3454 К69С3022 варистор 150В варистор* s20 | |
Варистор 10K431 Реферат: ВАРИСТОР 20к431 Варистор 14к431 Варистор 10к271 Варистор 14К241 Варистор 20К391 ФНР-10К471 10К471 14К471 ВАРИСТОР ВАРИСТОР 14К561 | Оригинал | ФНР-05К180 ФНР-07К180 ФНР-10К180 ФНР-32К102 ФНР-40К102 ФНР-25К112 Варистор 10К431 ВАРИСТОР 20к431 варистор 14к431 варистор 10к271 варистор 14К241 варистор 20К391 ФНР-10К471 10К471 14К471 ВАРИСТОРА ВАРИСТОР 14К561 | |
2002 — v 20 к 275 варистор Резюме: TNR20V471K v 14 k 175 варистор TNR варистор варистор v 14 k 130 варистор General Electric варистор TNR10V471K 23/32d431k VARISTOR 05 k 275 варистор | Оригинал | 9000ккал E1006J v 20 к 275 варистор ТНР20В471К v 14 к 175 варистор Варистор TNR варистор v 14 к 130 варистор общий электрический варистор ТНР10В471К 23/32д431к ВАРИСТОРА 05 к 275 варистор | |
2004 — варистор 471К Реферат: металлооксидный варистор 471к 20к ТНР 241К варистор 471К Варистор 271к варистор 420 с 20к 431к варистор ВАРИСТОР 221К ТНД10В221К варистор к 385 | Оригинал | 9000ккал Э1006М варистор 471К оксидно-металлический варистор 471k 20k Варистор ТНР 241К 471К варистор варистор 271k варистор 420 с 20к 431к варистор ВАРИСТОР 221К ТНД10В221К варистор к 385 | |
1995 — варистор Харриса Резюме: обозначение варистора условное обозначение варистора условное обозначение металлооксидного варистора SURGE 103 варистор условное обозначение металлооксидного варистора SURGE A варистор 103 условное обозначение металлооксидного варистора РАЗРЯДНИК ПЕРЕНАПРЯЖЕНИЙ Варистор 101 v 14 k 130 варистор | Оригинал | ||
3225 к50 варистор Реферат: ВАРИСТОР S14 K50 3225 K50 ВАРИСТОР S14 K40 Варистор S10 K50 ВАРИСТОР K50 ВАРИСТОР S10 ВАРИСТОР S/металлооксидный варистор | OCR-сканирование | ||
2002 — TNR10SE621K Резюме: v 14 k 275 варистор TNR10V471K v 20 k 275 варистор варисторы перекрестная ссылка TNR14V471K варистор tnr VARISTOR TNR10SE271K варистор 20K 240 | Оригинал | 9000ккал Э1006К ТНР10СЭ621К v 14 к 275 варистор ТНР10В471К v 20 к 275 варистор варисторы перекрестная ссылка ТНР14В471К варистор тнр ВАРИСТОР ТНР10СЭ271К варистор 20К 240 | |
2003 — ТНР10SE621K Реферат: 1501 ВАРИСТОР TNR14V471K TNR10V431K TNR10SE221K TNR10SE431K TNR14se471K TNR20SE271K tnr10se271k TNR14V221K | Оригинал | 9000ккал E1006L ТНР10СЭ621К 1501 ВАРИСТОРА ТНР14В471К ТНР10В431К ТНР10СЭ221К ТНР10СЭ431К ТНР14se471K ТНР20СЭ271К тнр10се271к ТНР14В221К | |
2008 — ТНД14СВ Реферат: Перекрестные ссылки на варисторы TND14V-471K TND10V471K TND10SV271KTLBPAA0 E1006Q TND10V431K VARISTOR | Оригинал | UL1449 E95427 UL1414 E65426 LR97864 9000ккал E1006Q ТНД14СВ ТНД14В-471К варисторы перекрестная ссылка ТНД10В471К ТНД10СВ271КТЛБПАА0 E1006Q ТНД10В431К ВАРИСТОР | |
1998 — варистор V130LA10A Реферат: Варистор Харриса V130LA10A Тестирование варистора Харриса Селеновый выпрямитель AN9773 ВАРИСТОР | Оригинал | AN9773 77Ч2224-5ЭМС, УЛ943, ПАС-102, варистор V130LA10A В130ЛА10А Харрис варисторы тестирование варистора Харрис варистор AN9773 селеновый выпрямитель ВАРИСТОР | |
1998 — варистор V130LA10A Аннотация: тестирование варистора Список кодов варистора V130LA10A Тестирование металлооксидного варистора Трансформатор переменного тока 50A 100V C62-41-1980 AN9773 селеновый выпрямитель «карбид кремния» варистор | Оригинал | AN9773 77Ч2224-5ЭМС, УЛ943, ПАС-102, варистор V130LA10A тестирование варистора В130ЛА10А список кодов варисторов Тестирование металлооксидного варистора Трансформатор переменного тока 50А 100В C62-41-1980 AN9773 селеновый выпрямитель варистор «карбид кремния» | |
2005 — smd-диод 1410 Реферат: Варистор диод EMC SMD МИКРОФОН smd диод 216 стабилитрон чип 270v варистор AVRL101A3R3FT варистор NS 102 VARISTOR | Оригинал | D74HC04C -630А 200пФ-0 АВРЛ101А3Р3ФТ АВРЛ101А6Р8ГТ смд диод 1410 варисторный диод ЭМС SMD МИКРОФОН смд диод 216 чип стабилитрона 270В варистор варистор НС 102 ВАРИСТОР | |
1999 — символ варистора Реферат: варистор 150 В варистор 110 В схематическое обозначение варистора 220 В переменного тока на 110 В схема трансформатора переменного тока варистор 103 gemov AN9767 символ оксидно-металлического варистора РАЗРЯДНИК ПЕРЕНАПРЯЖЕНИЙ 110 В на 5 В постоянного тока схема | Оригинал | ||
1997 — варистор модель Реферат: Варистор 400В SIOV-S20K275 Сименс Варистор S10K95 варистор 300В варистор Мацусита варистор Сименс 1,2 кВ SIOV-S10K95 ВАРИСТОРА | Оригинал | середина 70-х варисторная модель варистор 400В СИОВ-С20К275 Варистор Сименса С10К95 варистор 300В мацусита варистор Сименс варистор 1,2 кВ СИОВ-С10К95 ВАРИСТОР | |
1995 — проверка варистора Резюме: варистор 103 2kv 472 варистор keytek 587 варистор 250v селеновый выпрямитель тестирование металлооксидный варистор список кодов варистора микро инструмент 5203 Edison led 1w | Оригинал | 77Ч2224-5ЭМС, УЛ943, ПАС-102, тестирование варистора варистор 103 2кВ 472 варистор кейтек 587 Варистор 250В селеновый выпрямитель Тестирование металлооксидного варистора список кодов варисторов микроинструмент 5203 Эдисон привел 1w | |
1998 — AN9767 Реферат: варистор 100v gemov harris varistors harris varistor BL203 «upturn region» однофазный 220v фазовый сдвиг принципиальная схема VARISTOR ge-mov | Оригинал | AN9767 пр981. AN9767 варистор 100в гемов Харрис варисторы Харрис варистор BL203 «возвышенный район» Схема однофазной сети 220В с фазовым сдвигом ВАРИСТОР гэ-мов | |
2004 — E95427 Реферат: металлооксидный варистор 270 v 20 k 275 варистор VARISTOR | Оригинал | 9000ккал E1006L E95427 металлооксидный варистор 270 v 20 к 275 варистор ВАРИСТОР | |
Варистор VDR 275 Резюме: VARISTOR 593 varistor 594 vishay varistor 103 varistor 594 datasheet vishay varistor test varistor VDR 275 CIRCUIT K 250 VARISTOR METAL OXIDE VARISTOR указания по применению в сети переменного тока VARISTOR 64 | Оригинал | 13 октября 2006 г. варистор VDR 275 ВАРИСТОР 593 варистор 594 вишай варистор 103 варистор 594 техпаспорт vishay тестирование варистора варистор VDR 275 ЦЕПЬ К 250 ВАРИСТОРА Указания по применению METAL OXIDE VARISTOR в сети переменного тока ВАРИСТОР 64 | |
2012 — ВЗ0603 Реферат: ВАРИСТОР «чип-варистор» | Оригинал | МЭК-61000-4-2 элемент14 VZ0603 ВАРИСТОР «чип-варистор» | |
2004 — варистор 471К Реферат: ВАРИСТОР 221К 471К Варистор 431К Варистор Варистор 271К Варистор 271К ТНР 241К Варистор 511К Варистор 100 Варистор 471К Варистор 241К | Оригинал | 9000ккал Э1006М варистор 471К ВАРИСТОР 221К 471К варистор 431к варистор варистор 271k 271к варистор Варистор ТНР 241К 511к варистор 100 471К варистор варистор 241К | |
2007 — 100 471К Варистор Реферат: ВАРИСТОР ТНД10В471К ТНД10В-471К | Оригинал | 9000ккал Э1006П 100 471К варистор ТНД10В471К ВАРИСТОР ТНД10В-471К | |
2008 — ТНД14 Реферат: TND10SV271KTLBPAA0 TND10V271K ВАРИСТОРА | Оригинал | UL1449 E95427 UL1414 E65426 LR97864 9000ккал E1006Q ТНД14 ТНД10СВ271КТЛБПАА0 ТНД10В271К ВАРИСТОР | |
2008 — варистор 241К Реферат: Варистор 471К ТНД14В-621К ТНД10СЭ621КТ ТНД20В-471К ТНД10В-271К ВАРИСТОР 511К Варистор ТНД20В-271К ТНР 471к | Оригинал | 9000ккал E1006Q варистор 241К варистор 471К ТНД14В-621К TND10SE621KT ТНД20В-471К ТНД10В-271К ВАРИСТОР 511к варистор ТНД20В-271К 471 тыс. тенге | |
2003 — UL1020 Резюме: номинал варистора 20T300M UL102 Применение варистора 4T150E VARISTOR 595 Варистор 150 В 102 pg 20T300 20T30 | Оригинал | УЛ1449. 420 вольт. УЛ1020 номинал варистора 20Т300М UL102 применение варистора 4Т150Э ВАРИСТОР 595 150В варистор 102 пг 20Т300 20Т30 | |
варистор C22 Реферат: Варистор LED BL 05A BL 176A VARISTOR | Оригинал | 2/11-ЛИТ1103 варистор C22 Светодиод варистора БЛ 05А БЛ 176А ВАРИСТОР |
Предыдущий 1 2 3 … 23 24 25 Далее
Выберите правильные варисторы для защиты цепей от перенапряжения
Варисторы, также называемые металлооксидными варисторами (MOV), используются для защиты чувствительных цепей от различных условий перенапряжения. По сути, эти нелинейные устройства, зависящие от напряжения, имеют электрические характеристики, аналогичные встречно-параллельным стабилитронам.
Загрузить эту статью в формате .PDF
Переходные процессы напряженияВаристоры отличаются высокой надежностью, что необходимо для того, чтобы выдерживать повторяющиеся импульсные токи с высокими пиками и импульсные выбросы высокой энергии. Они также предлагают широкий диапазон напряжения, высокое поглощение энергии и быструю реакцию на переходные процессы напряжения. Номинальный пиковый ток находится в диапазоне от 20 до 70 000 А, а номинальная пиковая энергия — в диапазоне от 0,01 до 10 000 Дж.
В этом контексте «переходные процессы напряжения» определяются как кратковременные выбросы электрической энергии. В электрических или электронных цепях, которые предназначены для защиты варисторов, эта энергия может высвобождаться либо предсказуемым образом посредством управляемых переключений, либо случайным образом индуцироваться в цепь из внешних источников. Общие источники включают:
• Молния: На самом деле переходные процессы, вызванные молнией, не являются результатом прямого удара. Удар молнии создает магнитное поле, которое может вызвать переходные процессы большой величины в близлежащих электрических кабелях. Удар от облака к облаку может повлиять как на воздушные, так и на подземные кабели. Исход также непредсказуем: удар, произошедший на расстоянии мили, может вызвать 70 В в электрических кабелях, а другой удар может создать 10 кВ на расстоянии 160 ярдов.
• Переключение индуктивной нагрузки: Генераторы, двигатели, реле и трансформаторы представляют собой типичные источники индуктивных переходных процессов. Включение или выключение индуктивных нагрузок может генерировать высокоэнергетические переходные процессы, которые усиливаются по мере увеличения нагрузки. Когда индуктивная нагрузка отключается, разрушающееся магнитное поле преобразуется в электрическую энергию, которая принимает форму двойного экспоненциального переходного процесса. В зависимости от источника эти переходные процессы могут достигать сотен вольт и сотен ампер при продолжительности 400 мс. Из-за различных размеров нагрузки будут различаться форма волны, длительность, пиковый ток и пиковое напряжение переходных процессов. Как только эти переменные будут аппроксимированы, разработчики схем смогут выбрать подходящий тип подавителя.
• Электростатический разряд (ESD): Эта энергия является результатом дисбаланса положительных и отрицательных зарядов между объектами. Он характеризуется очень быстрым временем нарастания и очень высокими пиковыми напряжениями и токами.
Основные сведения о варисторах
Варисторы в основном состоят из массивов шариков из оксида цинка (ZnO), в которых ZnO изменен небольшими количествами других оксидов металлов, таких как висмут, кобальт или марганец. В процессе производства MOV эти шарики спекаются (вплавляются) в керамический полупроводник. Это создает кристаллическую микроструктуру, которая позволяет этим устройствам рассеивать очень высокие уровни переходной энергии по всей своей массе. После спекания поверхность металлизируется, а выводы прикрепляются с помощью пайки.
Благодаря высокому рассеиванию энергии варисторами MOV их можно использовать для подавления молний и других высокоэнергетических переходных процессов, характерных для линий электропередач переменного тока. Они способны выдерживать большое количество энергии и отводить эту потенциально разрушительную энергию от чувствительной электроники, расположенной ниже по течению. MOV, которые также используются в цепях постоянного тока, бывают различных форм-факторов (рис. 1) .
1. Металлооксидные варисторы (MOV) доступны в различных форм-факторах и размерах для широкого спектра применений. Тип диска с радиальными выводами является наиболее распространенным вариантом.
Многослойные варисторы
Многослойные варисторы (MLV) предназначены для определенной части спектра переходного напряжения: среды печатной платы. Несмотря на меньшую энергию, переходные процессы от электростатического разряда, переключения индуктивной нагрузки и даже остатки грозового перенапряжения могут в противном случае достичь чувствительных интегральных схем на плате. MLV также изготавливаются из материалов ZnO, но они изготовлены из переплетенных слоев металлических электродов и производятся в бессвинцовых керамических корпусах. Они предназначены для перехода из состояния с высоким импедансом в состояние проводимости при воздействии напряжения, превышающего их номинальное напряжение.
MLV бывают разных размеров в форме микросхем и способны рассеивать значительную энергию импульса для своего размера. Таким образом, они подходят как для линий передачи данных, так и для приложений подавления переходных процессов в источниках питания.
Руководство по применению
При выборе подходящего MOV для конкретного приложения защиты от перенапряжения разработчик схемы должен сначала определить рабочие параметры защищаемой цепи, включая:
• Условия цепи, такие как пиковое напряжение и ток во время всплеск событие
• Постоянное рабочее напряжение MOV (должно быть на 20 % выше максимального напряжения системы при нормальных условиях)
• Количество скачков напряжения, которое MOV должен выдержать
• Допустимое сквозное напряжение для защищаемой цепи
• Любые стандарты безопасности, с которыми цепь должна соответствовать
Для простоты в этом примере предположим, что цель состоит в том, чтобы выбрать низковольтный дисковый MOV постоянного тока для следующих условий и требований цепи:
• Цепь постоянного тока 24 В
• Текущая форма волны для перенапряжения составляет 8 × 20 мкс; форма волны напряжения составляет 1,2 × 50 мкс (это типичные формы сигналов промышленного стандарта)
• Пиковый ток во время выброса = 1000 A
• MOV должен выдерживать 40 импульсов
• Другие компоненты схемы (ИС управления и т. д.) должны иметь номинал, выдерживающий максимальное напряжение 300 В
Шаг 1: Чтобы найти номинальное напряжение MOV, примите во внимание 20-процентный запас с учетом скачков напряжения и допусков источника питания: 24 В постоянного тока × 1,2 = 28,8 В постоянного тока. Учитывая, что никакие варисторы не имеют номинального напряжения точно 28,8 В, проверьте спецификации для варисторов на 31 В постоянного тока.
Шаг 2: Чтобы определить, какой размер диска MOV использовать, сначала определите серию MOV, которая минимально соответствует требованиям к скачку напряжения 1000 А. Изучив приведенную выше таблицу, можно предположить, что 20-мм MOV с максимальным номинальным постоянным напряжением 31 В постоянного тока (номер по каталогу V20E25P) является возможным решением для удовлетворения требований.
Шаг 3: Используйте кривые импульсной мощности (рис. 2) в том же листе технических данных, чтобы определить импульсные характеристики относительно 40 импульсов при требовании 1000 А.
2. В техническом описании MOV будет представлена кривая импульсной мощности; этот пример для 20-мм MOV.
Шаг 4: Используйте кривую V-I (рис. 3) в техническом описании MOV, чтобы убедиться, что напряжение утечки будет меньше максимального значения в 300 В.
3. Техническое описание MOV также будет содержать кривую зависимости напряжения от тока, такую как эта кривая максимального напряжения фиксации для 20-мм устройства на рис. 2.
Защита MOV от теплового разгона
Поглощение варистором переходной энергии во время перенапряжения приводит к локализованному нагреву внутри компонента, что в конечном итоге приводит к его износу. Если оставить незащищенным, деградация варистора может увеличить нагрев и тепловой разгон. Таким образом, все большее число устройств защиты от перенапряжений на основе варисторов предлагают встроенную функцию теплового отключения. Он обеспечивает дополнительную защиту от катастрофических отказов и опасностей возгорания даже в экстремальных условиях окончания срока службы варистора или длительного перенапряжения.
MOV рассчитаны на определенные рабочие напряжения сети переменного тока. Превышение этих предельных значений при длительном аномальном перенапряжении может привести к перегреву и повреждению MOV.
MOV имеют тенденцию к постепенному ухудшению после сильного выброса или нескольких небольших скачков. Это ухудшение приводит к увеличению тока утечки MOV; в свою очередь, это повышает температуру MOV даже в нормальных условиях, таких как рабочее напряжение 120 В переменного тока или 240 В переменного тока. Терморазъединитель рядом с MOV (рис. 4) можно использовать для определения повышения температуры MOV, пока он продолжает деградировать до исходного состояния. В этот момент тепловое размыкание разомкнет цепь, удалив испорченный MOV из цепи и, таким образом, предотвратив потенциальный катастрофический отказ.
4. Термический разъединитель может разомкнуть цепь, предотвращая катастрофический отказ поврежденного металлооксидного варистора.
Драйверы для светодиодов и Lightning
Как правило, большинство источников питания для светодиодов имеют постоянный ток и часто называются драйверами для светодиодов. Их можно приобрести в виде готовых сборок, содержащих MOV, для удовлетворения более низких требований к перенапряжениям.
Обычно драйверы рассчитаны на перенапряжения в диапазоне от 1 до 4 кВ. Варистор диаметром от 7 до 14 мм обычно располагается после предохранителя в сети переменного тока. Тем не менее, чтобы обеспечить более высокий уровень устойчивости к перенапряжениям для освещения, установленного на открытом воздухе в условиях воздействия скачков напряжения, OEM-производители наружного освещения могут захотеть добавить устройства защиты от перенапряжения (SPD) на входных линиях переменного тока своих светильников перед драйвером светодиода.
Пример конструкции MOV: промышленные двигатели
Одним из аспектов защиты двигателя переменного тока является устойчивость самого двигателя к скачкам напряжения. В параграфе 20.36.4 стандарта NEMA для двигателей-генераторов MG-1 единица измерения перенапряжения определяется следующим образом: линейное напряжение сети переменного тока.
Для времени нарастания переходного процесса от 0,1 до 0,2 мкс на обмотках статора требуется удвоенное единичное значение импульсной способности. Когда время нарастания достигает 1,2 мкс или больше, указывается 4,5-кратное значение единицы измерения. В случае внешних переходных процессов, таких как молния, это соответствует допустимому перенапряжению 918 В PEAK для двигателя 230 В (полный ток нагрузки = 12 А) в условиях высокого напряжения 250 В. (Молниеносные перенапряжения могут превысить эти значения, поэтому для защиты обмоток статора также потребуется гасящий элемент.)
Загрузите эту статью в формате .PDF
Еще одним соображением является рабочая температура. Предположим, что рабочая температура окружающей среды для этого приложения находится в диапазоне от 0 до +70°C. Это будет в пределах диапазона от -40 до +85 °C MOV, и не будет требований по снижению номинальных значений импульсного тока или энергии в этом температурном диапазоне. быть выбраны для этого примера. При использовании однофазного двигателя среднего размера мощностью 2 л.с. требуемый номинальный импульсный ток MOV будет определяться пиковым током, индуцируемым в цепи питания двигателя. Предполагая место обслуживания двигателя и полное сопротивление линии 2 Ом, было определено, что возможен грозовой перенапряжение 3 кА.
В этом случае в одном техническом паспорте указано максимальное напряжение фиксации 3 кА при 900 В, что ниже рекомендуемой выдерживаемой способности обмотки статора при напряжении 918 В. Если бы срок службы двигателя был оценен в 20 лет и указан как способный выдержать 80 грозовых переходных процессов в течение срока службы, кривые номинальных импульсов в паспорте подтвердили бы рейтинг 100+ импульсных перенапряжений.
Для получения более подробной информации о том, как согласовать MOV с приложениями, ознакомьтесь с «Руководством по проектированию варисторов для приложений постоянного тока».
и 9767
%PDF-1.5 % 457 0 объект >/OCGs[552 0 R]>>/OpenAction 458 0 R/Threads 459 0 R/Тип/Каталог>> эндообъект 461 0 объект > эндообъект 62 0 объект > эндообъект 578 0 объект >поток 1999-05-04T09: 08: 01ZADOBE Illustrator CS32010-04-23T16: 20: 21-05: 002010-04-23T16: 20: 21-05: 00