Магнитное поле прямого проводника. Магнитные линии (Гребенюк Ю.В.)
На этом уроке мы начнём изучать магнетизм. Рассмотрим магнитное поле прямого проводника, магнитные линии. Убедимся, что магнитные и электрические явления взаимосвязаны
На прошлых уроках мы упоминали о магнитном действии электрического тока. Можно сделать вывод, что электрические и магнитные явления связанны между собой. На данном уроке, тема которого «Магнитное поле прямого проводника. Магнитные линии», мы начнём подтверждать этот вывод.
Человечество собирает знания о магнитных явлениях более 4500 лет (первые упоминания об электрических явлениях датируются тысячелетием позже). В середине 19-го века учёные начали уделять внимание поиску взаимосвязей между явлениями электричества и магнетизма, поэтому, накопленные ранее, теоретические и экспериментальные сведения, отдельно по каждому явлению, стали хорошей базой для создания единой электромагнитной теории.
Вероятнее всего, необычные свойства природного минерала магнетита (см. Рис. 1) были известны в Месопотамии ещё в бронзовом веке, а после возникновения железной металлургии нельзя было не заметить, что магнетит притягивает железные изделия.
Рис. 1. Магнетит (Источник)
О причинах такого притяжения думал ещё древнегреческий философ Фалес Милетский, который объяснял его особой одушевлённостью этого минерала, поэтому, неудивительно, что слово магнит тоже имеет греческие корни. Старинная греческая легенда рассказывает о пастухе по имени Магнус. Он обнаружил однажды, что железный наконечник его палки и гвозди сапог притягиваются к чёрному камню. Этот камень стали называть «камнем Магнуса» или просто «магнитом», по названию местности, где добывали железную руду (холмы Магнезии в Малой Азии).
Магнитными явлениями интересовались ещё в Древнем Китае, так китайские мореплаватели в 11-ом веке уже пользовались морскими компасами.
Первое в Европе описание свойств природных магнитов сделал француз Пьер де Марикур. В 1269 году он отправил приятелю в Пикардию документ, который вошёл в историю науки как «Письмо о магните». В этом документе француз рассказывал о своих опытах с магнетитом, он заметил, что в каждом куске этого минерала есть две области, которые особенно сильно притягивают железо. Марикур усмотрел параллель между этими областями и полюсами небесной сферы, поэтому мы теперь говорим о южном и северном магнитном полюсе.
В 1600 году английский ученый Уильям Гильберт опубликовал труд «О магните, магнитных телах и большом магните – Земле». В этой книге Гильберт привёл все известные свойства природных магнитов, а также описал свои опыты с шаром из магнетита, с помощью которого он воспроизвёл основные черты земного магнетизма.
После Гильберта вплоть до начала 19-го века наука о магнетизме практически не развивалась.
Как объяснить то, что наука о магнетизме, в сравнении с учением об электричестве, развивалась очень медленно? Главная проблема заключалась в том, что магниты в то время существовали только в природе, их невозможно было получить в лабораторных условиях. Это очень сильно ограничивало возможности экспериментаторов.
Электричество находилось в более выгодном положении – его можно было получать и накапливать. Первый генератор статических зарядов в 1663 году построил бургомистр Магдебурга Отто фон Герике (см. Рис. 2)
Рис. 2. Немецкий физик Отто фон Герике и первый генератор статического электричества (Источник)
В 1744 году немец Эвальд Георг фон Клейст, а в 1745 году голландец Питер ван Мушенбрук изобрели лейденскую банку – первый электрический конденсатор (см. Рис. 3), в то время появились и первые электрометры. В результате к концу 18-го века наука знала об электричестве намного больше, чем о магнетизме.
Рис. 3. Лейденская банка (Источник)
Однако в 1800 году Алессандро Вольта изобрёл первый химический источник электрического тока – гальваническую батарею (вольтов столб) (см. Рис. 4). После этого открытие связи между электричеством и магнетизмом оказывалось делом неизбежным.
Стоит заметить, что открытие такой связи могло произойти через несколько лет после изобретения лейденской банки, однако французский учёный Лаплас не предал значение тому, что параллельные проводники при прохождению по ним тока в одном направлении притягиваются.
Рис. 4. Первая гальваническая батарея (Источник)
В 1820 году датский физик Ханс Кристиан Эрстед, который вполне сознательно пытался получить связь между магнитными явлениями и электрическими, установил, что провод, по которому течёт электрический ток, отклоняет магнитную стрелку компаса. Первоначально Эрстед располагал проводник с током перпендикулярно стрелке – стрелка оставалась неподвижной. Однако на одной из лекций он расположил проводник параллельно стрелке, и она отклонилась.
Для того чтобы воспроизвести опыт Эрстеда необходимо к источнику тока через реостат (сопротивление) подключить проводник, возле которого расположена магнитная стрелка (см. Рис. 5). При протекании тока по проводнику наблюдается отклонение стрелки, это доказывает, что электрический ток в проводнике оказывает влияние на магнитную стрелку.
Рис. 5. Опыт Эрстеда (Источник)
Задача 1
На рисунке 13 изображена линия магнитного поля проводника с током. Укажите направление тока.
Рис. 13 Иллюстрация к задаче
Решение
Для решения данной задачи воспользуемся правилом правой руки. Расположим правую руку так, чтобы четыре согнутых пальца совпадали с направлением магнитных линий, тогда большой палец укажет направление тока в проводнике (см. Рис. 14).
Рис. 14. Иллюстрация к задаче
Ответ
Ток течёт из точки B в точку A.
Задача 2
Укажите полюса источника электрического тока, которые замкнуты проводом (магнитная стрелка находится под проводом) (см. Рис.15). Изменится ли ответ, если такое же положение будет занимать стрелка, расположенная над проводом.
Рис. 15. Иллюстрация к задаче
Решение
Направление линий магнитного поля совпадают с направлением северного полюса магнитной стрелки (синяя часть). Следовательно, по правилу правой руки, располагаем руку так, чтобы четыре согнутых пальца совпадали с направлением магнитных линий и огибали провод, тогда большой палец укажет направление тока в проводнике. Ток протекает от «плюса» к «минусу», поэтому полюса источника электрического тока располагаются как на рисунке 16.
Рис. 16. Иллюстрация к задаче
Если бы стрелка располагалась над проводом, то получили бы противоположное течение тока и знаки полюсов были другими (см.Рис. 17).
Рис. 17. Иллюстрация к задаче
После оглашения результатов опыта французский физик и математик Анри Ампер решил заняться экспериментами по выявлению магнитных свойств электрического тока. Вскоре Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток в одну сторону, то такие проводники притягиваются (см.Рис. 6 б) если ток течёт в противоположные стороны – проводники отталкиваются (см. Рис. 6 а).
Рис. 6. Опыт Ампера (Источник)
Из своих опытов Ампер сделал следующие выводы:
1) Вокруг магнита, или проводника, или электрически заряженной движущейся частицы существует магнитное поле;
2) Магнитное поле действует с некоторой силой на заряженную частицу, движущуюся в этом поле;
3) Электрический ток представляет собой направленное движение заряженных частиц, поэтому магнитное поле действует на проводник с током;
4) Взаимодействие проводника с током и магнита, а также взаимодействие магнитов можно объяснить, предположив существование внутри магнита незатухающих молекулярных электрических токов.
Таким образом, все магнитные явления Ампер объяснял взаимодействием движущихся заряженных частиц. Взаимодействия осуществляются с помощью магнитных полей этих частиц.
Магнитное поле – особая форма материи, которая существует вокруг движущихся заряженных частиц или тел и действует с некоторой силой на другие заряженные частицы или тела, движущиеся в этом поле.
Издавна для изучения магнитных явлений применяются магнитные стрелки (магниты в виде ромба). Если расположить вокруг магнита большое количество маленьких магнитных стрелок (на подставках, чтобы стрелки могли свободно вращаться), то они определённым образом соориентируются в магнитном поле магнита (см. Рис. 9). Оси магнитных стрелок будут проходить вдоль определённых линий. Такие линии называются линиями магнитного поля или магнитными линиями.
За направление линий магнитного поля принимают направление, на которое указывает северный полюс магнитной стрелки (см. Рис. 9).
Рис. 9. Расположение магнитных стрелок вокруг магнита (Источник)
С помощью магнитных линий удобно изображать магнитные поля графически (см. Рис. 10)
Рис. 10. Изображение графически магнитных линий (Источник)
Однако для определения направления магнитных линий не обязательно пользоваться магнитными стрелками.
Рис. 11. Расположение железных опилок вокруг проводника с током (Источник)
Если вокруг проводника с током высыпать железные опилки, то через некоторое время опилки, попав в магнитное поле проводника, намагнитятся и расположатся по окружностям, которые охватывают проводник (см. Рис.11). Для определения направления магнитных линий в таком случае можно воспользоваться правилом буравчика — если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока. (см. Рис. 12). Также можно использовать правило правой руки — если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока (см. Рис. 13).
Рис. 11.Правило буравчика (Источник)
Рис. 12. Правило правой руки (Источник)
На этом уроке мы начали изучение магнетизма, обсудили историю изучения данного явления и узнали о линиях магнитного поля.
Список рекомендованной литературы
- Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. – М.: Мнемозина.
- Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
- Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.
Домашнее задание
- П. 58, вопросы 1–4, стр. 168, задание 40 (2). Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
Рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал Myshared.ru (Источник).
- Интернет-портал Clck.ru (Источник).
- Интернет-портал Class-fizika.narod.ru (Источник).
Характеристики и свойства магнитного пола. Проявления магнитного поля в жизни
Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!
Магнитное поле
Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).
Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!
Магнит
Магнит — тело, обладающее собственным магнитным полем.
У магнита есть полюса, называемые северным и южным. Обозначения «северный» и «южный» даны лишь для удобства (как «плюс» и «минус» в электричестве).
Магнитное поле изображается посредством силовых магнитных линий. Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля — силовые линии.
Картина магнитного поля
Характеристики магнитного поля
Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток и магнитная проницаемость. Но давайте обо всем по порядку.
Сразу отметим, что все единицы измерения приво
Какое условное обозначение имеет магнитная линия поля, перпендикулярная плоскостичертежа и направленная на НАС!
Нужно рисовать крестики х х х х х х х х х х х х Энциклопедия магнетизма. Энциклопедия магнетизма Магнетизм в школьной программе. Неоднородное и однородное магнитное поле. Рассмотрим картину линий магнитного поля постоянного полосового магнита, изображенную на рисунке. Магнитное поле постоянного магнитаМагнитное поле проводника с током Из курса физики 8 класса мы знаем, что магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность. Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает. Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на нее поле магнита. Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке. Таким образом, сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению. Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке. Еще одним примером неоднородного магнитного поля может служить поле вокруг прямолинейного проводника с током. На рисунке изображен участок такого проводника, расположенный перпендикулярно к плоскости чертежа. Кружочком обозначено сечение проводника. Точка означает, что ток направлен из-за чертежа к нам, как будто мы видим острие стрелы, указывающей направление тока (ток, направленный от нас за чертеж, обозначают крестиком, как будто мы видим хвостовое оперение стрелы, направленной по току). Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника. В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению. Рассмотрим магнитное поле, возникающее внутри так называемого соленоида, т. е. проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита). Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой. Однородным является также поле внутри постоянного полосового магнита в центральной его части. Изображение магнитного поля (от нас) Изображение магнитного поля (к нам) Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками, а если из-за чертежа к нам – то точками. Как и в случае с током, каждый крестик – это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка – острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий). Вопрос Что Вы знаете о направлении и форме линий поля полосового магнита? Ответ У полосового магнита магнитные линии выходят из северного полюса и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, для средней линии, идут из бесконечности в бесконечность. Вопрос Какое магнитное поле – однородное или неоднородное – образует
Помогите ответить на вопрос по Физике . Что называют линиями магнитной индукции ?
Линиями магнитной индукции (силовыми линиями магнитного поля) называются линии, проведенные в магнитном поле так, что в каждой точке поля касательная к линии магнитной индукции совпадает с направлением вектора В в этой точке поля. Линии магнитной индукции проще всего наблюдать с помощью мелких Игольчатых железных опилок, которые намагничиваются в исследуемом поле и ведут себя подобно маленьким магнитным стрелкам (свободная магнитная стрелка разворачивается в магнитном поле так, чтобы ось стрелки, соединяющая ее южный полюс с северным, совпадала с направлением В).
Магнитное поле можно наглядно себе представить, если изобразить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор В в данной точке поля. В этом отношении линии магнитной индукции аналогичны линиям напряжённости электростатического поля. Построим линии магнитной индукции для магнитного поля прямолинейного проводника с током. Из приведённых ранее опытов следует, что линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной этому проводнику с током. Центр окружностей находится на оси проводника. Стрелки на линиях указывают, в какую сторону направлен вектор магнитной индукции, касательный к данной линии <img src=»//otvet.imgsmail.ru/download/cf228977000111fbbc706de30dcb0761_i-67.jpg» > <img src=»//otvet.imgsmail.ru/download/cf228977000111fbbc706de30dcb0761_i-68.jpg» >
что такое линия магнитной индукции. напишите определение пж
Линии магнитной индукции — линии, касательные к которым направлены также как и вектор магнитной индукции в данной точке поля. Магнитные поля, так же как и электрические, можно изображать графически при помощи линий магнитной индукции. Через каждую точку магнитного поля можно провести линию индукции. Так как индукция поля в любой точке имеет определённое направление, то и направление линии индукции в каждой точке данного поля может быть только единственным, а значит, линии магнитного поля, так же как и электрического поля, линии индукции магнитного поля прочерчивают с такой густотой, чтобы число линий, пересекающих единицу поверхности, перпендикулярной к ним, было равно (или пропорционально) индукции магнитного поля в данном месте. Поэтому, изображая линии индукции, можно наглядно представить, как меняется в пространстве индукция, а следовательно, и напряжённость магнитного поля по модулю и направлению.
Линии магнитной индукции — линии, касательные к которым направлены направлены также как и вектор магнитной индукции в данной точке поля.
Силовые линии магнитного поля – воображаемые линии, обладающие свойствами: 1) Индукция магнитного поля направлена по касательной к силовой линии. 2) Силовые линии замкнуты и не пересекаются. 3) Чем гуще силовые линии, тем больше по величине индукция магнитного поля. 4)Силовые линии начинаются на северном полюсе магнита — и заканчиваются на южном полюсе магнита .
Василий, абсолютно неверно!!! Линии индукции магнитного поля перпендикулярны силовым, т. е. по касательной к которым в каждой точке линии направлена сила Лоренца. Не путать с линиями напряженности электростатического поля, которые действительно совпадают с силовыми!