Site Loader

Содержание

Дисплей на квантовых точках — Википедия

«Квантовые точки», облучённые ультрафиолетовым светом. Различные размеры «квантовых точек» излучают различные цвета.

Дисплей на квантовых точках — отображающее устройство, использующее квантовые точки для получения красного, зелёного и синего света. На данный момент существуют коммерческие модели дисплеев, основанного на квантово-точечных светодиодах (QD-LED или QD-OLED).

QLED (от англ. quantum dot, «квантовая точка») — маркетинговое название технологии изготовления ЖК-экранов со светодиодной подсветкой на квантовых точках от компании Samsung. Подобная технология от компании LG Electronics называется NanoCell, от компании Sony — Triluminos[1], от компании Hisense — ULED.

Квантовые точки — это кристаллы, которые светятся, когда подвергаются воздействию тока или света. Они излучают различные цвета в зависимости от размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями (LCD), а также более продолжительный срок службы по сравнению с OLED-дисплеями. Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев

[2].

По заявлениям создателей, обеспечивает более низкое потребление энергии, чем остальные технологии, в том числе OLED, и низкую стоимость производства (как и электронная бумага, OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях). При этом декларируются гораздо более высокие, чем у конкурирующих технологий, яркость и контрастность.

Создание целого телевизионного дисплея из квантовых точек, а не просто использование их в качестве подсветки, было начальной целью QD Vision. Предполагалось взять структуру устройства OLED, но использовать квантовые точки в качестве эмиссионного слоя[3]. Они производят монохроматический свет, поэтому более эффективны, чем источники белого света

[4]. QD-LED-дисплеи будут использовать электролюминесцентные квантовые точки в качестве излучающих элементов, управляемые активной матрицей из тонкоплёночных транзисторов (TFT).

На данный момент существуют только лабораторные образцы электроэмиссионных дисплеев. Пока все коммерческие продукты используют фотолюминесцентные квантовые точки для подсветки жидкокристаллических дисплеев. Как оказалось, использование квантовых точек для получения чистого спектрального цвета — это сравнительно недорогой способ обеспечить близкую к естественной цветопередачу для жидкокристаллических матриц.

В цветных дисплеях каждый пиксель содержит красный, зелёный и синий субпиксель. Эти цвета комбинируются с различной интенсивностью для получения миллионов оттенков. Исследователи смогли создать повторяемые образцы из красных, зелёных и синих полосок, многократно повторяя технологию литографического нанесения. Полоски наносятся непосредственно на матрицу тонкоплёночных транзисторов. Транзисторы сделаны из аморфного индий-галлий-цинкового оксида (IGZO), обладающего более высокой подвижностью электронов и являющегося полупроводником электронного типа проводимости, имеющего лучшую стабильность, чем транзисторы из аморфного гидрированного кремния (a-Si). В результате дисплей имеет субпиксели около 50 микрометров в ширину и 10 микрометров в длину, достаточно малого размера, чтобы было возможно использовать их в экранах телефонов

[2].

Идея использования квантовых точек в качестве источника света впервые была разработана в 1990-х годах[источник не указан 978 дней].
В начале 2000-х учёные начали понимать весь потенциал квантовых точек в качестве следующего поколения дисплеев. В 2004 году для разработки технологии QLED была основана лаборатория QD Vision (США, Лексингтон (Массачусетс)). В последствии к ней присоединились компании LG Electronics и Samsung Electronics.

В феврале 2011 года исследователи из Samsung представили разработки первого полноцветного дисплея на основе квантовых точек — QLED. 4-дюймовый дисплей управлялся активной матрицей, это означает, что каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором. Исследователи сделали прототип на стекле и на гибком пластике. Для создания прототипа на кремниевую плату наносится слой раствора квантовых точек и напыляется растворитель. Затем слой квантовых точек аккуратно запрессовывается в резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку[5].

Использование высокотоксичного кадмия, который в основном применялся в производстве квантовых точек, ограничено 0,01 % по весу однородного материала

[6]. Благодаря сотрудничеству Samsung с химической компанией Dow Chemical в 2015 году проблема была решена применением материалов содержащих индий вместо кадмия[7]. В создании технологии квантовых точек без кадмия LG тоже сотрудничает с Dow Chemical и LG Chem.

Все существующие дисплеи, которые заявляются как QLED, по факту являются LCD-матрицей со светодиодной подсветкой на квантовых точках, то есть единственное их преимущество перед LCD — это расширенный цветовой охват. По сравнению с OLED-телевизорами (где сами пиксели являются маленькими светодиодами), использующими электролюминесценцию, у телевизоров на QLED нет настоящего чёрного цвета и бесконечной контрастности, используется фотолюминесценция — переизлучение света в другом диапазоне частот. По аналогии, LED-телевизоры — это также не электролюминесцентное излучение как OLED, а вид подсветки, где вместо ранее применявшихся люминесцентных ламп с холодным катодом используется панель из светодиодов (LED).

Технология подсветки на квантовых точках Color IQ[править | править код]

Технология была разработана компанией QD Vision и использована в телевизорах Sony, выпущенных в 2013 году[8], TCL Corporation, Hisense (K7100)[9].

Свет от синего светодиода проходит через трубку, заполненную красными и зелёными квантовыми точками, которые флуоресцируют и генерируют красный и зелёный свет. Из трубки выходит белый свет, состоящий из смеси оригинального чистого синего, чистого красного и чистого зелёного. Трубки подсветки размещаются по краям дисплея[10].

Название принадлежит Samsung, но его разрешено использовать всем членам QLED Alliance, созданного в апреле 2017 года[11]

.

Технология QDEF (quantum dot enhancement film — улучшающая плёнка с квантовыми точками)[12][править | править код]

Строение жк-дисплея с плёнкой QDEF

Технология была разработана компанией Nanosys (англ.)русск. и представлена на выставке SID (англ.)русск. в 2011 году. Она призвана улучшить цветовую гамму, яркость и контраст экрана. Данная технология используется в телевизорах Samsung, TCL Corporation, Hisense, Philips, планшете Amazon Kindle Fire HD 7, ноутбуке ASUS Zenbook NX-500.

В жк-панелях между блоком подсветки из синих светодиодов и слоем с жидкими кристаллами (LCM) добавляется плёнка, пропитанная случайно распределёнными квантовыми точками двух разных размеров — одни излучают зелёный свет, другие — красный. Красный и зелёный свет смешивается с непоглощённым синим светом, и таким образом формируется белый. Затем он проходит через субпиксельный цветовой фильтр (BEF).

Технология QDОG (QD on Glass — квантовые точки на стекле)[править | править код]

Технология появилась в 2018 году, а телевизоры с экранами QDОG должны появиться в 2019-м. Технология позволяет сделать телевизоры тоньше и дешевле[13].

Квантовые точки нанесены на тонкий лист стекла, которое служит световодом.

Технология QDCF (QD color filter — квантово-точечный цветовой фильтр)[править | править код]

Технология позволяет отказаться от цветного матричного фильтра. Вместо зелёного и красного субпикселей используются ячейки с квантовыми точками, вместо синего субпикселя — прозрачный рассеивающий слой, который пропускает голубой свет от светодиодной подсветки. Сложность метода состоит в том, что квантовые точки должны быть расположены очень близко друг к другу, чтобы между ними не проходил синий свет и не мешал получать чистые цвета. Nanosys совместно с производителем чернил Dic Corporation (англ.)русск. разработали метод нанесения квантовых точек с помощью струйной печати, который был представлен в 2017 году

[14].

Технологию представила компания LG Display в 2017 году на выставке CES[15]. Она позволила расширить цветовой охват и увеличить угол обзора.

Традиционные экраны IPS обычно снабжены белой светодиодной подсветкой (WLED), которая позволяет им воспроизводить цвета в стандартном цветовом пространстве RGB. В технологии Nano IPS на белые светодиоды (а не на дополнительный светорассеивающий слой, как в QLED) наносится слой наночастиц (отсюда название Nano IPS) — квантовых точек размером менее 2 нм. Они поглощают свет с определённой длиной волны, например, ненужные оттенки желтого и оранжевого, что улучшает точность передачи оттенков красного

[16].

LG Electronics использует безкадмиевые квантовые точки Nanoco (англ.)русск., поставляемые Dow Chemical.

Дистрибьютор MMD (Philips Monitors) и компания QD Vision сообщили, что в Китае начались продажи первого в мире монитора на квантовых точках. Выпускает мониторы гонконгская компания TPV Technology, выкупившая 2011—2014 году бренд «Philips»[17]. Речь идёт о 27-дюймовом мониторе 276E6ADS, который, благодаря технологии QD Vision, позволяет говорить о появлении профессиональных дисплеев по цене потребительских моделей. Он был представлен на выставке CES 2015. В основе устройства лежит панель IPS, разрешение панели 1920х1080 пикселей, время отклика 4 мс, максимальная яркость 300 кд/м². Монитор охватывает 99 % пространства Adobe RGB[18].

2013: телевизоры от Sony серий W900 (модель Ultra HD 55W900)

[19] и X900 (65X900, 55X900)[8], планшет Amazon Kindle Fire HDX 7[20].

2014: на выставке Computex ASUS представила ноутбук Zenbook NX500 с дисплеем, использующим технологию QDEF (Quantum Dot Enhancement Film)[21].

2015: телевизоры от TCL Corporation, Hisense, Samsung, LG Electronics[22].

2016: телевизоры с прямым экраном от Samsung серий Q9F и Q7F (75-, 65- и 55-дюймовые модели).

2017: телевизоры с изогнутым экраном от Samsung серий Q7C (диагонали 49 и 55 дюймов) и Q8C (диагонали 55, 65 и 75 дюймов) и мониторы серий CHG90 и CHG70 от Samsung . Буква «С» в серии означает «Curved» (изогнутый). На выставке CES 2017 Samsung переименовала свою технологию подсветки «SUHD» в «QLED»[23]. Телевизоры от LG серий SJ9500, SJ8500 и SJ8000. Также в этом году появился планшет с технологией Quantum Dot Iconia Tab 10 от Acer

[24], игровые мониторы Acer Predator X27 и ASUS ROG Swift PG27UQ.

2018: монитор ASUS ProArt PA32UC[25].

По заявлению Сэта Коу-Салливана (Seth Coe-Sullivan), основателя и руководителя компании QD Vision, множество проблем было решено исследователями и инженерами фирмы Samsung, однако лучшие устройства на квантовых точках не столь эффективны, как дисплеи на основе органических светодиодов. Также необходимо увеличить срок службы, так как яркость QLED дисплеев начинает уменьшаться спустя 10 000 часов[2].

  1. ↑ Quantum dots help return ‘Triluminos’ RGB LED lighting to Sony HDTVs (англ.). engadget (14 January 2013).
  2. 1 2 3 The First Full-Color Display with Quantum Dots (рус.). MIT Technology Review (22 ноября 2011). Дата обращения 7 апреля 2019. (недоступная ссылка)
  3. ↑ CES 2015: What the Heck Are Quantum Dots? (рус.). IEEE Spectrum (2 января 2015). Дата обращения 16 мая 2019.
  4. ↑ Белый свет содержит не только чистый красный, зеленый и синий, которые составляют телевизионное изображение, но и розовые, желтые и другие дополнительные элементы, искажающие красные, зеленые и синие тона. Эти посторонние цвета блокируются фильтрами, что снижает яркость картинки.
  5. ↑ Квантовые точки и зачем их ставят (рус.). habr (4 декабря 2016). Дата обращения 1 июня 2019.
  6. ↑ ТР ЕАЭС 037/2016 (рус.). Решение Совета Евразийской экономической комиссии от 18 октября 2016 года N 113. Дата обращения 19 апреля 2019.; Директива 2011/65/EU от 8 июня 2011 года (рус.). Европейский парламент и Совет ЕС. Дата обращения 16 мая 2019.
  7. ↑ Samsung may introduce cadmium-free quantum dots LCD TVs in 2015 (рус.). Оled-info (22 октября 2014). Дата обращения 18 апреля 2019.
  8. 1 2 What are Quantum Dots, and how could they help your next TV? (англ.). CNET (18 February 2013). Дата обращения 14 мая 2019.
  9. ↑ У Hisense готов первый в мире телевизор с изогнутым экраном, в котором применена технология квантовых точек QD Vision Color IQ (рус.). ixbt.com (6 июня 2015). Дата обращения 23 мая 2019.
  10. ↑ CES 2015: What the Heck Are Quantum Dots? (рус.). IEEE SPECTRUM (2 января 2015). Дата обращения 23 мая 2019.
  11. ↑ Samsung, TCL и Hisense создали QLED Alliance (рус.). STEREO&VIDEO (27 апреля 2017). Дата обращения 1 июня 2019.
  12. ↑ Nanosys Quantum-Dot Update at CES 2018 (рус.). AVSFORUM (18 января 2018). Дата обращения 10 мая 2019.
  13. ↑ Samsung изменит технологию квантовых точек для телевизоров (рус.). DailyComm (5 июля 2018). Дата обращения 19 мая 2019.
  14. ↑ Nanosys and DIC Announce Inkjet-Printed Quantum-Dot Process (рус.). AVSForum (4 декабря 2017). Дата обращения 22 мая 2019.
  15. ↑ LG представляет новую линейку телевизоров на базе технологии Nano Cell (рус.). 4pda (10 января 2017). Дата обращения 16 мая 2019.
  16. ↑ Технология Nano IPS (рус.). НИКС (1 ноября 2018). Дата обращения 10 мая 2019.
  17. ↑ Philips передает оставшиеся 30% акций совместного предприятия TP Vision (рус.). hifinews.ru (23 января 2014). Дата обращения 10 апреля 2019.
  18. ↑ Philips 276E6ADS — первый монитор на квантовых точках в розничной продаже (рус.). 3DNEWS (6 июня 2015). Дата обращения 10 апреля 2019.
  19. ↑ Технология Sony Triluminos (рус.). hifinews.RU (26 марта 2013). Дата обращения 7 апреля 2019.
  20. ↑ Mini Tablet Display Technology Shoot-Out (англ.). DisplayMate (2013). Дата обращения 21 мая 2019.
  21. Чуб А. Цена и сроки начала продаж ультрабука ASUS Zenbook NX500 с экраном 3840×2160 (рус.). gagadget.com (12 июня 2014). Дата обращения 11 апреля 2019.
  22. ↑ Телевизоры с технологией Quantum Dot на выставке CES 2015 (рус.). HDTV.RU (12 января 2017). Дата обращения 7 апреля 2019.
  23. ↑ Samsung представляет QLED телевизоры (рус.). LCD телевизоры. Характеристики и параметры. Дата обращения 11 апреля 2019.
  24. Карасёв С. Acer оснастила планшет Iconia Tab 10 дисплеем с технологией Quantum Dot (рус.). 3DNEWS (26 мая 2017). Дата обращения 17 апреля 2019.
  25. ↑ Asus ProArt PA32UC 4K HDR профессиональный монитор (рус.). ULTRAHD (18 марта 2018). Дата обращения 22 мая 2019.

Какой лучше ЖК (LCD) или LED монитор? Чем они отличаются?

Многие любой современный телевизор с плоским экраном называют «плазма», ошибаясь в 9 случаях из 10. Газорязрядные технологии, на основе которых работает плазменные TV, встречается редко у простых людей. При всех своих достоинствах, это дорогое решение. Чаще приобретаются модели, построенные с применением жидкокристаллических модулей. Они стоят на порядок меньше, не уступая при этом по большинству параметрам

Именно о ЖК-мониторах и пойдет речь ниже. Они бывают двух разновидностей: LCD и LED. Разница в техническом исполнении не столь существенна, чем кажется на первый взгляд.

Раскроем этот вопрос подробнее.

Почему нельзя сравнивать

Сравним LED и LCDСравним LED и LCD

На самом деле сопоставить LED и LCD невозможно. Поскольку первая аббревиатура означает разновидность группы устройств, обозначенной второй. Это то же самое, что спросить: что лучше – автомобиль или BMW.

Тем не менее именно так привыкли разделять ЖК-мониторы граждане. Поэтому далее, говоря «LED» будем иметь в виду эту технологию, а к «LCD» отнесем все остальные модели жидкокристаллических устройств.

Строение ЖК дисплеев

Углубленно вдаваться в принцип действия жидкокристаллического оборудования не имеет смысла: неподготовленному читателю сложно будет сориентироваться во всех тонкостях. В рамках статьи достаточно лишь кратко упомянуть о устройстве жидкокристаллической панели.

Упрощая, ЖК-матрица это две прозрачные пластины, разбитые на мельчайшие ячейки. Каждая из таких капсул заполняется особым веществом – жидким кристаллом. Внутренняя часть закрывается цветовыми RGB-фильтрами: красными, синими или зелеными. Каждый пиксель экрана включает три ячейки с вставками разных цветов.

Жидкокристаллическая субстанция обладает удивительным свойством. Если через нее пропустить электрический ток, она становится светопроницаема, в обычном состоянии оставаясь непрозрачной. Таким образом, если осветить сборку изнутри, то можно выстроить комбинацию разноцветных точек, в совокупности представляющих изображение.

Строение ЖК-экрановСтроение ЖК-экранов

Чем же отличается LED от LCD? Только в способе реализации подсветки.

LCD технология

Обычная подсветка LCD – это простая люминесцентная лампа холодного света, установленная в корпусе монитора перед дисплеем.

Такое освещение позволяет создать палитру разных цветов. Энергопотребление при электролюминесцентной подсветке сравнительно невысоко, но для ее работы требуется источник переменного тока высокой частоты. Преобразователи для функционирования источника света потребляют в среднем 25 Ватт в час.

Долговечность LCD (уменьшение яркости вдвое от начальной) составляет примерно 5 тысяч часов, на что влияет установленная интенсивность свечения.

Люминесцентная лампа обычных мониторов LCDЛюминесцентная лампа обычных мониторов LCD

LED технология

Такая подсветка сделана из группы ярких светодиодов. Для моделей с небольшим размером матрицы, устанавливают ленты с встроенными излучателями только с одной стороны (чаще всего сбоку). В широкоформатные устройства светодиоды устанавливают по всей площади дисплея.

Техническое функционирование LED может быть обеспечено от источника напряжения 5В без использования преобразователей. Такое решение потребляет минимум энергии и может быть использовано в компактных портативных устройствах.

Для регулировки яркости свечения применяют широтно-импульсные модуляторы.

LED-подсветка в корпусе монитораLED-подсветка в корпусе монитора

Какой тип монитора выбрать?

LED или LCD: что лучше? Однозначно, светодиодное освещение ЖК-матриц предпочтительнее. Полупроводники выигрывают по многим критериям. Перечислим основные из них.

  1. Малое энергопотребление. Светодиодам не нужны дополнительные преобразователи для питания. Токоограничитель – единственный компонент схемы, расходующий энергию. Потребление подсветки даже на экранах с диагональю 46+ см никогда не превышает 10 Ватт, для стандартных бытовых моделей – 3-5 Ватт.
  2. Долговечность. Срок службы LED составляет 50 тысяч часов. При этом, замена светодиодных полос простая и дешевая процедура, ремонт происходит быстро и не предполагает серьезных затрат.
  3. Габариты. Миниатюрность полупроводниковых приборов позволяет сделать монитор с действительно «плоским» дисплеем. В ряде устройств (например, ноутбуках) – это незаменимое решение.
  4. Качество цветопередачи. Отличие LED от LCD заключается и в том, что в случае с светодиодами возможно распределить подсветку равномерно по периметру экрана. Это улучает контрастность и повышает насыщенность изображения. Кроме того, изменяя яркость свечения отдельных участков дисплея, решается задача локального затемнения.

Мониторы и дисплеи, оснащенные светодиодной подсветкой, немного дороже, но эта разница не столь существенна. Выбор такой марки – это отличный компромисс между ценой и характеристиками. Эффективный, с яркой «живой» картинкой, эргономичный и безотказный: основные качества «правильного» TV.

Технология LCD уходит в прошлое, многие производители уже прекратили серийный выпуск устройств с люминесцентными лампами. Будущее за полупроводниковыми излучателями.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

LED и OLED отличия

LED и OLED отличия

Статья о том, чем отличается OLED от LED. Будут приведены основные характеристики, цены, структура, и тогда станет видна разница LED и OLED. Системы подсветки 4К OLED и 4K LED охватывают в значительной степени все типы технологии ТВ-дисплеев, присутствующих в настоящее время на рынке, и у каждой есть свои сторонники и противники.

Хотя в подавляющем большинстве 4K телевизоров используется технология LCD (ЖК) дисплеев, растёт ассортимент моделей, использующих конструкцию OLED, и количество их увеличивается с каждым годом. Всё больше брендов появляется на рынке с конца 2015 года.

OLED и LED

OLED означает Органический Светодиод. Изначально этот тип подсветки был прерогативой только LG, которая выпустила первые потребительские OLED 4K телевизоры в 2014 году в виде нескольких новых линеек, переходящих в 2015 и теперь также в 2016 год. В 2016 Panasonic также появилась в этой области со своими собственными телевизорами OLED разрешения Ultra HD.

С другой стороны, телевизоры LED и LCD (в чем разница мы уже писали на сайте) производятся любыми телевизионными заводами и основываются на более старом, более доступном и хорошо проверенном типе телевизионной подсветки большими светодиодами, освещающими жидкокристаллическую матрицу сзади.

Но об одной вещи многие покупатели могли бы спросить самих себя при сравнении телевизоров каждой из технологий подсветки – какая лучше в общих чертах? Это как раз то, о чём я собираюсь рассказать прямо сейчас. Проводя анализ пункт за пунктом, в чём состоит технология подсветки, мы придём к окончательному заключению, которое выявит отличия LED и OLED. Его можно назвать нашим окончательным вердиктом (по крайней мере, на данный момент, пока не появятся новые OLED, LCD-мониторы или другие технологии, например, QLED).

LED/LCD

Подавляющее большинство современных 4K телевизоров – это жидкокристаллические экраны разного типа. И при своих специфических отличиях, определённых внутренних усовершенствованиях и разных конфигурациях светодиодной подсветки, основной механизм их функционирования примерно одинаков у всех моделей.

Проще говоря, ЖК-телевизоры состоят из различных по конструкции решёток отдельных светодиодов (LED) позади экрана из цветовых фильтров и жидких кристаллов, которые, пропуская свет от этих LED, либо ограничивают его яркость, либо блокируют его (наподобие того, как поворот створок оконных жалюзи может регулировать силу светового потока).

Это делается, чтобы сформировать изображение с определёнными цветовыми настройками и конфигурацией подсветки в зависимости от показываемого на экране контента. Светодиодные матрицы позади ЖК-панелей с цветовыми фильтрами в 4K ЖК-телевизорах могут значительно отличаться. В самых дешёвых моделях с боковой (Edge) светодиодной подсветкой экранное пространство освещается с одного или более краёв ТВ горизонтально вдоль торца.

Панели самых дешёвых телевизоров с боковой подсветкой освещаются только с пары торцов прямоугольника экрана, но в самых дорогих моделях на рынке таких, как ТВ Sony XBRX940C (обзор здесь) или топовой модели Телевизор Samsung JS9500 SUHD, предлагается полноматричная светодиодная подсветка, в которой всё пространство позади экрана заполнено множеством отдельных LED. Точное число диодов может изменяться в зависимости от размера экрана и цены телевизора, но обычно исчисляется десятками и даже сотнями.

Один из премиальных Super Ultra HD 4К телевизоров Samsung предлагает возможно лучшую LED альтернативу OLED. Локальное затемнение, и его оппонент, локальная подсветка – по существу это процесс, посредством которого участки экрана телевизора затемняются с целью обеспечения более эффективного управления уровнем чёрного и контрастности.

Естественно, у телевизора с боковой светодиодной подсветкой процесс достаточно неточен и результатом часто бывает своего рода эффект «гало» вокруг освещённых объектов на показываемом изображении. Этот эффект гало может быть в значительной степени снижен применением полноматричной подсветки, поскольку гораздо более широкая решётка отдельных светодиодов обеспечивает гораздо более точную регулировку освещённости или затемнения непосредственно позади ЖК-панели и изображения на экране.

Тем не менее, в этой области начинает сказываться ключевой недостаток LCD/LED. Независимо от количества отдельных светодиодов и зон затемнения, находящихся позади ЖК-панели 4K телевизора, и количества пикселей изображения, максимальная точность освещения и уровня чёрного нашего экрана существенно ограничена по сравнению с технологией OLED-дисплеев, и теперь расскажем, почему.

Чем отличается OLED от LED

OLED

Как мы только что показали в некоторых деталях, в ЖК-телевизорах подсветка и места затемнения создаются путём включения или выключения светодиодов в матрице позади ЖК-панели. Световой поток этих светодиодов блокируется или фильтруется в соответствии с изменениями изображения на экране.

Тем не менее, подсветка и блокировка света никогда не бывают абсолютно совершенными или точными, поскольку существуют миллионы отдельных экранных пикселей и рассеянный жидкими кристаллами свет «просачивается» через них даже в момент блокирования светового потока. Кроме того, сами светодиоды больше по размеру по сравнению с пикселями и не могут идеально сконцентрировать световой поток в пределах одного пикселя.

С технологией OLED дело обстоит как раз наоборот. Дисплеи OLED в отличие от LED не фильтруют свет от светодиодов через ЖК-панель, они вместо этого проводят ток через миллионы отдельных органических светодиодов (размером с пиксель), сделанных из органических полимеров и способных к прецизионному отключению (затемнению) или включению (излучению). Если уж совсем просто, то LCD/LED телевизоры зависят от светящихся «лампочек» позади экрана, а в телевизорах OLED используется свечение или затемнение крошечных органических светодиодов в каждом пикселе матрицы.

В результате OLED-дисплеи могут прекрасно контролировать уровни света и затемнения по каждому из 8.2 млн пикселей дисплея 4K телевизора, а также могут отключать полностью весь свет в любых пределах вплоть до одного пикселя.

Варианты формирования цветовой структуры OLED

Кроме того, при формировании цвета OLED-дисплеи используют либо смешивание света субпиксельных светодиодов красного, зелёного и синего цветов внутри каждого пикселя матрицы OLED, либо так называемые «белые органические светодиоды», в которых определённый цвет получается путём соответствующей фильтрации светового потока каждого из белых светодиодов, так же по три на один пиксель.

Помимо этого, поскольку OLED телевизоры не используют ЖК-экраны над светодиодными массивами, они могут быть до смешного тонкими, гораздо тоньше LCD-телевизоров: последняя модель 4K OLED телевизора LG G6 имеет дисплей толщиной всего 2.57 мм!

В двух словах OLED технология означает гораздо меньшую толщину дисплея, идеальное управление уровнем свечения пикселей и идеальные углы обзора из-за отсутствия искажений, вносимых Ж-фильтрами при отклонении оси просмотра от центра.

Подборка 4K OLED телевизоров LG 2015

Локальное затемнение
Поскольку мы рассмотрели локальное затемнение и изменение яркости для ЖК-экранов, то же самое нужно сделать и для OLED. И как уже можно догадаться из описания технологии OLED, локальное управление яркостью осуществляется чётко в пределах каждого пикселя 4K телевизора OLED. Можно включить или выключить свет в одном пикселе и в результате получить идеальный чёрный цвет, без эффекта «гало» за счёт просачивания света в соседние пиксели.

В действительности имеем множество зон локального затемнения или освещения, соответствующее количеству индивидуальных пикселей в 4K OLED-дисплее, т.е. более 8 миллионов. Да… LCD/LED-телевизор сегодня даже близко не может соответствовать такому уровня точности. Такая технология применяется в OLED телевизорах LG премиум-сегмента LG EF9500 (обзор здесь), телевизоре LG 65EG9600 (обзор здесь) и в серии 2016 года LG G6 Signature.

LG G6 Signature OLED 4KCерия 2016 года LG G6 Signature.

LED и OLED отличия

Реализм цветопередачи
Какой бы изысканной ни была технология цветопередачи в лучших моделях LCD телевизоров на рынке, она просто не соответствует уровню OLED с точки зрения реалистичности и точности. Поскольку каждый пиксель OLED телевизора содержит все основные первичные цвета, необходимые для получения любого из цветов спектра, эти телевизоры более реалистично воспроизводят цветовую информацию и таким образом выглядят просто впечатляющими в своём реализме. Да, мы видели ЖК телевизоры со слегка более яркими и сочными цветами благодаря сочетанию технологий квантовых точек и люминесцентной фильтрации наряду с более яркой светимостью LCD (об этом чуть ниже), но если в качестве мерила использовать реализм цветопередачи, OLED пока выигрывает без особых усилий.
Победитель: OLED.

Как формируется цвет в LCD и OLED телевизорах

Яркость
Это единственный участок фронта, на котором LCD телевизоры с их LED подсветкой побеждают безоговорочно. OLED очень импозантна, но она не может соревноваться с LED с точки зрения чистой яркости, и усовершенствования светодиодной подсветки скорее всего продолжат эту тенденцию. Кроме того, LED подсветка особенно хороша для полного освещения всего экрана, в то время как OLED делает превосходную работу по освещению одиночных участков экрана, насколько хватает восприятия.

Так как OLED обычно тусклее светодиодной подсветки, то это – часть причины, почему ассоциация UHD Alliance устанавливает иные стандарты HDR для OLED-дисплеев, которые компенсируют их намного более превосходный уровень чёрного, великолепный по сравнению с просачиванием подсветки даже в лучших моделях LCD/LED-телевизоров. Таким образом телевизоры OLED могут создать ощущение более высокой яркости за счёт этого превосходного уровня чёрного.
Победитель: LCD.

oled и led

Контрастность и уровень чёрного
Ничто не может сравниться с OLED в отношении контрастности и уровня чёрного. Очевидный факт, что OLED-дисплей может полностью отключить весь измеряемый или каким-либо образом видимый свет вплоть до уровня одного пикселя, в значительной степени обеспечивает огромный уровень превосходства по сравнению с просачиванием подсветки, наблюдаемой даже в самых лучших полноматричных LED/LCD-телевизорах.

Результатом этого точного управления яркостью свечения каждого пикселя OLED телевизора является совершенный, точно настроенный уровень контрастности, максимальный для HDR, если, конечно, игнорировать пониженную максимальную яркость экрана. Великолепная контрастность и уровень чёрного в OLED также означает утончённый уровень реализма изображения на экране, и это не может не нравиться.
Победитель: OLED.

Контрастность и уровень чёрного

Углы обзора
В отношении практически идеальных углов обзора OLED-телевизоры так же не имеют конкурентов среди LCD/LED. Поскольку OLED не требует наличия дополнительного слоя, который в жидкокристаллических телевизорах располагается над источником подсветки, то ни светлые, ни тёмные участки, равно как и цвет сколь либо серьёзно не искажаются в любом направлении.

Таким образом, углы обзора 4K OLED телевизоров выглядят почти идеально даже при экстремальных отклонениях от центральной оси (больше 80°). Некоторые OLED 4K телевизоры с этих углов слегка отсвечивают жёлтым, но это пустяковое неудобство по сравнению с 50-процентной или более потерей контрастности при тех же условиях даже в высококачественных LCD/LED телевизорах.
Победитель: OLED.

Однородность цвета на экране
Равномерность экрана телевизоров OLED не является совершенной, но она гораздо ближе к идеалу, чем то, что можно наблюдать в любом ЖК-телевизоре, даже в некоторых из лучших моделей от Samsung или Sony.

Серые тона и другие цвета выглядят почти идеально распределёнными по экрану с очень незначительными перепадами, да и то лишь изредка наблюдаемыми, как правило, в старых моделях 4К-телевизоров. В противоположность этому, даже в таком топовом 4K LCD телевизоре, как Samsung JS9000 [ссылка], видна неравномерность по крайней мере для серого, а возможно, и для других цветов.
Победитель: OLED.

Цена
Здесь пока приведу рассуждения на качественном уровне. Повышенная цена всегда сопутствует OLED технологии и является проблемой, вызывающей особую озабоченность потребителей, которые хотели бы приобрести 4K OLED ТВ от LG, поскольку последние часто продаются за гораздо большие деньги, чем их ЖК-собратья премиум-класса.

Теперь, однако, это неравенство между ценами 4K OLED телевизоров и топовых LCD-телевизоров различных брендов начинает уменьшаться, но раз модели OLED 2015-2016 по-прежнему дороги, то и некоторые высококлассные ЖК-телевизоры с худшим изображением так же пока ненамного дешевле. Кроме того, ходят слухи, что в 2016 году LG сосредоточит усилия на производстве OLED-телевизоров, доступных для массового рынка, которые могли бы, наконец, привести к более разумным ценам по всему рынку этих телевизоров.
Победитель: LCD (не однозначно).

Вердикт
С точки зрения разрешения и LCD/LED и OLED 4K телевизоры одинаковы, и это очевидно. Разрешение 4K UHD – это стандартизированная характеристика и одинакова для обоих типов: 3840 х 2160 с общим количеством примерно 8290000 пикселей на весь экран.

Однако (и именно из-за этого мы не поленились упомянуть о разрешении), тот факт, что эта величина является одинаковой в обоих типах телевизоров, показывает, насколько количество пикселей само по себе вторично в отношении качества просмотра. В свете всех чётких и неоспоримых преимуществ остальных характеристик OLED технологии при равном числе пикселей, разрешение занимает близкую к последней позицию при ранжировании влияния на зрительные ощущения.
Победитель: ничья.

Общие характеристики
В подведении некоей суммарной характеристики скорее всего определённый кредит следовало бы предоставить OLED, как стоящей на ступеньку выше по всем показателям, по крайней мере, различимых визуально. OLED телевизоры занимают наиболее почётные места в номинациях моделей 2014-2015 годов и вероятно, будут продолжать получать такие же высокие оценки и в 2016 году.

У них превосходная контрастность, их освещённость и уровень чёрного по сути совершенны, и цветопередача чрезвычайно хорошо обеспечивает реализм на цифровом экране. ЖК-телевизоры действительно предлагают лучшую яркость, но более глубокий спектр чёрного в OLED-дисплеях уверенно противостоит этому преимуществу LCD/LED-дисплея.
Победитель: OLED.

У LED также есть склонность к небольшому энергосбережению и чуть более низким ценам, но если за основу брать качество изображения, то отличия LED и OLED довольно значительны. OLED будет царицей современных телевизионных технологий.
Удачного выбора!

https://ultrahd.su/video/chem-otlichaetsya-oled-ot-led.htmlLED и OLED отличияSemenВидеовидеоСтатья о том, чем отличается OLED от LED. Будут приведены основные характеристики, цены, структура, и тогда станет видна разница LED и OLED. Системы подсветки 4К OLED и 4K LED охватывают в значительной степени все типы технологии ТВ-дисплеев, присутствующих в настоящее время на рынке, и у каждой есть свои сторонники…SemenСемён [email protected]4k - Телевидение высокой четкости

что за технология, характеристики, отличия и особенности OLED TV

OLED-телевизоры — последнее слово в технологиях и лучшее на сегодняшний день качество изображения. Чем эта технология отличается от LED-телевизоров и стоит ли тратиться на OLED-модели? Разбираемся в особенностях OLED детально.

OLED: что это за технология и зачем она нужна в телевизорах?

Аббревиатура OLED расшифровывается как Organic Light Emitting Diode, а по-русски эту технологию чаще называют «органические светодиоды». Если не углубляться в технологические подробности, то это светодиоды, которые сами излучают очень яркий свет и потому не нуждаются в фоновой подсветке. Экран обычного LED-телевизора состоит из матрицы, на которой формируется изображение, и подсветки, которая делает его видимым. В OLED-экранах каждый пиксель светится сам по себе.

Как это влияет на качество картинки? В первую очередь OLED-телевизоры могут обеспечивать высококонтрастное изображение. Черный цвет на таких экранах получается очень глубоким — те диоды, которые должны передавать его, просто отключаются и не светятся. Поэтому черный всегда будет максимально глубоким, и неважно, насколько ярко освещен остальной экран.

Кроме того, OLED-экраны отличаются равномерным свечением и дают одинаково яркое и контрастное изображение в любых условиях — как в затемненной комнате, так и днем при ярком солнечном свете.

Многие путают OLED и QLED, однако это разные технологии. QLED ближе к привычному LED — такие мониторы также состоят из жидкокристаллического дисплея и подсветки. Разница лишь в том, что у QLED-экранов между этими двумя слоями расположена тончайшая нано-пленка, которая делает цвета ярче и насыщеннее. Тем не менее это лишь модифицированная разновидность LED, в то время как OLED — принципиально новая технология.

На заметку

OLED-дисплеи отличаются высокой прочностью, они устойчивы к механическому воздействию. Однако такие дисплеи не любят влагу.

OLED-дисплеи используются не только в телевизорах. Они применяются везде, где принципиальны вес и размер, в частности в смартфонах, планшетах и ноутбуках.

Плюсы и минусы OLED-телевизоров

Пожалуй, на сегодняшний день OLED — наиболее прогрессивная технология. OLED-телевизоры имеют множество преимуществ перед экранами предыдущих поколений, и чтобы оценить их, не нужно быть экспертом — они очевидны любому зрителю.

  • Высокая контрастность. Как мы уже говорили выше, черный на экране OLED-телевизора — действительно черный, глубокий и бархатный, без мерцания и малейших признаков свечения. Это обеспечивает очень высокую контрастность изображения — значительно лучшую, чем у LED или QLED. Причем такой уровень контрастности сохраняется вне зависимости от яркости картинки.
  • Время отклика. При очень быстром движении картинки на экране изображение может слегка размываться, поскольку пиксели не успевают изменить цвет достаточно быстро. Это особенно заметно при просмотре спортивных трансляций или боевиков. Но у OLED-мониторов время отклика очень короткое, практически мгновенное, поэтому эффект размытия у них практически незаметен.
  • Угол обзора. Пожалуй, самый заметный плюс OLED-телевизоров — большой угол обзора. Картинка будет отлично видна без искажений даже при угле обзора около 170 градусов.
  • Экологичность. В данном случае она же — экономия, если вы не особенно интересуетесь «зелеными» технологиями. OLED-экраны потребляют почти в 10 раз меньше электроэнергии, чем LED-панели, а это скажется на счетах за электричество и на состоянии природы. Можно сказать, что OLED-телевизор — это выбор сознательных сторонников защиты экологии.
  • Габариты. Как уже упоминалось выше, в OLED-панелях отсутствует слой, который подсвечивает экран — он просто не нужен, так как диоды светятся сами по себе. Это сказывается на размерах телевизора. OLED-панели тоньше и легче, чем LED-телевизоры, что делает их очень привлекательными: простой лаконичный дизайн вписывается в любой интерьер.

Тем не менее у OLED-телевизоров есть и некоторые минусы, о которых стоит знать, если вы собираетесь купить такую модель:

  • Невысокая яркость. В то время как черный цвет на таких экранах очень глубокий, светлые цвета все же не столь яркие, как у LED-телевизоров — 800 кд/м2 против 1400 кд/м2. Хотя уже сегодня в продаже можно найти и очень яркие OLED-телевизоры, пока они стоят достаточно дорого. Яркость также может снижаться при просмотре HDR-видео, однако это характерно не для всех моделей.
  • Цена. Технология развивается, и OLED-телевизоры постепенно дешевеют. Тем не менее пока они стоят относительно дорого в сравнении с другими моделями.

Перспективы развития технологии OLED: взгляд в будущее

На сегодняшний день OLED — самая современная технология, но на ее основе разрабатываются и другие. Они пока не запущены в коммерческое производство, и OLED еще долго будет оставаться флагманом. Тем не менее, у разработчиков уже есть несколько интересных идей. Например, TOLED — технология, которая уже очень скоро позволит создавать прозрачные дисплеи высокой контрастности. Также идет разработка PHOLED-дисплеев, потребляющих в три раза меньше электроэнергии, чем любые существующие ныне мониторы, и дающих очень яркие и насыщенные цвета. Интересная идея — ультратонкий гибкий OLED-дисплей. Все эти разработки уже дают существенные результаты.

Изучаем устройство светодиодного LED экрана: основные понятия

В сети интернет достаточно много информации про устройство светодиодного экрана, однако, на наш взгляд, она подается не всегда целостно и это создает неудобства для читателя. Чтобы исправить эту ситуацию, мы подготовили несколько статей и разбили их следующим образом: в данном материале Вы познакомитесь с основными используемыми понятиями, в статье «Светодиодные модули и кабинеты» с составляющими светодиодного экрана, а в статье «Управление светодиодным экраном» соответственно, с видами управления.

Итак, светодиодный экран (также называемый LED экран, видеоэкран, светодиодная панель и пр.) — это высокотехнологичное изделие, содержащее большое количество компонентов со сложным принципом работы, в основе которого лежат светодиоды. Светодиоды образуют пиксели, пиксели встроены в модули, модули помещаются в кабинеты, из которых и сделан светодиодный экран.

Светодиод (светоизлучающий диод, LED) является полупроводниковым прибором, который загорается, когда электричество проходит через него. Светодиоды не содержат нити, как обычные лампочки, и они не имеют тонких деталей, которые ломаются или сгорают, служат в течение долгого времени. В зависимости от того, какой тип полупроводникового кристалла используется зависит цвет светодиода: красный, белый, зеленый и пр. Если немного поменять химический состав кристалла, то изменится получаемый цвет. Часто оболочку (корпус) светодиода окрашивают, это делается для того, чтобы без включения светодиода можно было определить какого он цвета.

Устройство светодиодного экрана

Светодиод является самым маленьким элементом по размерам, но не по важности. Во многом, именно от его стоимости складывается стоимость и самого светодиодного экрана. Модели светодиодов, зарекомендовавшие себя как более качественные, могут стоить дороже аналогичных по техническим характеристикам аналогов в несколько раз. На сегодняшний день, самыми качественными признаны модели японского производителя Nichia, немного ниже по рейтингу стоят светодиоды американского производства Cree. Дальше Samsung и Epistar (Тайвань) — их стоимость примерно одинакова, еще ниже китайские Absen, Silan multicolor и некоторые другие. Чаще всего при производстве светодиодных экранов сегодня используют китайские светодиоды Silan. Они относительно демократичны по цене и обладают большим сроком эксплуатации.

Стандартные светодиоды рассчитаны на 100 000 часов (11+ лет) непрерывного использования и на их жизненный цикл не влияет количество включений/выключений, которых происходит очень много. Яркость светодиода получившая название — техника широтно-импульсной модуляции, регулируется следующим образом — напряжение на светодиод подается не постоянно, а попеременно. И в зависимости от того, какая яркость необходима определяется время подачи тока, т.е. если нужна половина яркости, то напряжение подается половину времени от частоты рефреша.

Частота рефреша (частота обновления, Refresh)- это количество обновлений кадров за определенное время (измеряется в Гц). Например, если частота рефреша компьютерного монитора 100 Гц, то это говорит о том, что обновление картинки происходит 100 раз за 1 секунду. Этот показатель очень важен, поскольку от него во многом зависит качество изображения. Если частота рефреша будет не достаточной, то будет видно «биение» изображения — мерцание, это объясняется тем, как человек визуально воспринимает источник света. Если мерцание происходит быстро, то происходит суммирование вспышек и свет воспринимается горящим постоянно. На сегодняшний день частота рефреша в светодиодных экранах составляет не менее 600 Гц, чаще всего этого достаточно.

Светодиоды являются настоящими незамеченными героями в мире электроники. Они делают десятки различных работ и встречаются во всех видах устройств. Среди прочего они формируют числа на электронных часах и говорят, когда наши приборы включены. В принципе, светодиоды — просто крошечные лампочки, которые легко вписываются в электрические цепи. Один или несколько объединенных светодиодов образуют пиксель.

Пиксель — светящаяся точка, это самая маленькая единица изображения. Для создания всего многообразия цветов передаваемых пикселем, используют, чаще всего, всего три разных по цвету светодиода: красный, зеленый и синий (обозначаемые R, G и B, соответственно). Для создания больших пикселей, диаметр которых может достигать 80 мм (применяемые в светодиодных экранах для медиафасадов), количество светодиодов увеличивают, например: 2R1G1B — т.е. 2 красных, 1 зеленый и 1 синий. То, сколько и какого цвета светодиодов использовать определяют с учетом наилучшего приближения к балансу белого цвета. Качественный белый цвет будет только тогда, когда красный, зеленый и синий цвета будут в соотношении 1 : 4,6 : 0,16. В случае отклонения от этого соотношения, белый цвет будет иметь отклонения, например: голубовато-белый или желтовато-зеленый.

Разрешение светодиодного экрана — количество пикселей на 1 м2 LED экрана. Оптимальным разрешением для экрана шириной 4м. и высотой 3м. считается разрешение не менее 256х192, т.е. 256 пикселей по горизонтали и 192 по вертикали. Это значение достигается при шаге пикселя 15,6 мм.

Шаг пикселя – расстояние от центральной точки одного пикселя до центральной точки соседнего пикселя. Соответственно, чем больше шаг, тем ниже разрешение экрана. Шаг пикселя получил обозначение латинской буквой «Р», например, P6 – означает LED экран с шагом пикселя 6 мм.

Устройство светодиодного экрана

Рассматривая устройство светодиодного экрана: выбор шага пикселя является очень важным моментом при покупке: уменьшение шага всего на пару миллиметров, значительно увеличивает плотность светодиодов, а следовательно и разрешающую способность экрана. Оценить необходимый шаг пикселя можно следующим образом: он прямо пропорционален рекомендуемому расстоянию просмотра, т.е. на экран с шагом пикселя 10 мм. рекомендуется смотреть на расстоянии 10 метров, для экрана с шагом пикселя 16 мм – 16 метров, для 25 мм – 25 метров. Если расстояние будет меньше, то зритель сможет различать отдельные пиксели, если больше то наоборот, не будет видно мелких деталей. Соответственно, для определения шага пикселя необходимо знать на каком расстоянии от светодиодного экрана будет находится преобладающая часть зрителей.

Устройство светодиодного экрана

Существует несколько способов объединения светодиодов в пиксели, называемые пиксельной конфигурацией. На сегодняшний день, используется два основных: DIP и SMD.
Устройство светодиодного экрана

Конфигурация DIP — это принцип имплантирования каждого диода в монтажную плату в своем собственном корпусе. Благодаря тому, что один пиксель формируется из ряда светодиодов, увеличивается надежность и общий уровень яркости экрана.
Устройство светодиодного экрана

Модули конфигурации DIP чаще всего используются в уличных светодиодных экранах, они обладают повышенной яркостью, усиленной маской защиты от механических повреждений, устойчивы к отрицательным температурам, влаго- и пылезащищены. Кроме того, имеют хорошую стабильность цвета и работают по технологии виртуальных пикселей, которая позволяет образовывать, так называемый, «виртуальный пиксель» — физически его нет, но для человеческого глаза создается иллюзия его присутствия. Благодаря этому, появляется возможность улучшить резкость в несколько раз, и сделать изображение более детальным и реалистичным. К недостаткам DIP модулей можно отнести малый угол обзора.
Устройство светодиодного экрана

Угол обзора — это угол, в пределах которого зритель наблюдает яркость изображения от 50% до 100%. Максимальное значение яркости будет в том случае, если на плоскость экрана смотреть перпендикулярно. Для экранов конфигурации DIP угол обзора составляет 120 градусов по горизонтали и 60 градусов по вертикали, для SMD конфигурации 120 градусов по горизонтали и 120 градусов по вертикали.
Устройство светодиодного экрана

Конфигурация SMD. Это последняя разработка значительно повлиявшая на устройство светодиодного экрана. Её отличительная особенность заключается в том, что три разных по цвету светодиода объединяются в один корпус, иногда их обозначают RGB (3 в 1). Технология SMD обеспечивает более качественную и четкую цветопередачу. Они применяются обычно для светодиодных экранов с небольшим шагом пикселя внутри помещений — концертных и спортивных залах, телестудиях, вокзалах и аэропортах. Пиксели конфигурации SMD, как правило, имеют меньшую яркость, она составляет примерно 1200-3000 кд/м2, в отличии от яркости пикселей конфигурации DIP (6000-10000 кд/м2), но этого для использования внутри помещений достаточно, иначе зрителей будет слепить. Они обладают более низким электропотреблением, они тоньше, и соответственно легче, обладают хорошей стабильностью цвета, большим углом обзора, насыщенной палитрой цветов. В последнее время данная технология получила распространение и на светодиодные экраны уличного применения.
Устройство светодиодного экрана

Светодиоды имплантированные в монтажную плату по технологии DIP и SMD образуют светодиодный модуль, но об этом в следующей статье рассматривающей устройство светодиодного экрана: «Светодиодные модули и кабинеты».

Светодиодный принтер — Википедия

Светодиодный принтер (англ. Light emitting diode printer, LED printer) — один из видов принтеров, являющий собой ветвь развития технологии лазерной печати. Как и лазерный, светодиодный принтер предназначен для переноса текстового или графического изображения с цифрового носителя на бумагу. Скорость светодиодных аппаратов примерно равна скорости лазерных, но у этих двух технологий есть и принципиальные различия.

Светодиодный принтер Kodak

Принципиальное отличие светодиодного принтера от лазерного заключается в механизме освещения светочувствительного вала. В случае лазерной технологии это делается одним источником света (лазером), который с помощью сканирующей системы призм и зеркал пробегает по всей поверхности вала. В светодиодных же принтерах вместо лазера используется светодиодная линейка, расположенная вдоль всей поверхности вала. Количество светодиодов в линейке составляет от 2,5 до 10 тыс. штук, в зависимости от разрешения принтера.

Принцип работы светодиодных принтеров во многом схож с принципом работы лазерных. Работа принтера основана на принципе сухого электростатического переноса — источник света освещает поверхность светочувствительного вала, воздействие света вызывает изменение заряда в освещенных частях барабана, за счет чего к ним притягивается порошкообразный тонер. Методы переноса тонера на барабан, на бумагу, и закрепления его в печке, идентичны аналогичным методам, применяющимся в лазерной печати — вал прокатывается по бумаге, перенося на неё тонер, после чего бумага передается в устройство термического закрепления (печку), где за счет высокой температуры и давления тонер закрепляется на бумаге.

История. Распространенные заблуждения[править | править код]

Светодиодная технология печати была изобретена фирмой Casio. Первый светодиодный принтер был выпущен в продажу компанией OKI в 1987 году, а в 1998 году той же компанией был выпущен первый цветной светодиодный принтер.

В Россию светодиодные принтеры пришли в 1996 году, когда OKI открыло представительство в Москве. В том же году OKI начинает продажи в России своего самого ходового принтера, OkiPage 4W, и представители OKI в России совершают свою крупнейшую ошибку, последствия которой до сих пор ощущаются на рынке светодиодной печати — принтер, разработанный японскими специалистами OKI для домашнего использования, в России, переживающей трудные времена, позиционируется как самый дешевый принтер для офиса.

И, поскольку OkiPage 4W стоил значительно дешевле своих лазерных аналогов, его массово начинают раскупать в офисы малого, среднего, а порой и крупного бизнеса. Где недорогой принтер, рассчитанный на домашние объемы печати, быстро выходит из строя, не справляясь с офисными потребностями — максимально допустимый объем печати на OkiPage 4W — 2500 листов в месяц.

В принтере предполагалось использовать новую по тем временам разработку OKI — тонер с шаровидными частицами, однако в России из-за дороговизны «штатных» расходных материалов картриджи перезаправляли, существенно снижая качество печати.

Все эти ошибки в позиционировании и эксплуатации привели к тому, что в России отношение к светодиодным принтерам в большей степени негативное. Часто можно услышать, что эти принтеры[1]:

  • ненадежны (так считают люди, в офисе которых в своё время побывал OkiPage 4W), в то время как современные светодиодные принтеры дают максимальную в своем классе нагрузку;
  • дают гораздо худшее качество печати, чем лазерные, хотя на самом деле, при использовании оригинальных расходных материалов светодиодные принтеры даже превосходят лазерные по четкости печати (см. раздел преимущества светодиодной технологии). В то же время использование оригинальных расходных материалов значительно увеличивает стоимость отпечатка;
  • дороги в эксплуатации.

В 1999 году свои светодиодные принтеры в Россию начинают продавать Panasonic и Kyocera, однако OKI продолжает оставаться крупнейшим производителем LED-принтеров, и именно их принтеры вспоминаются в первую очередь при упоминании светодиодной технологии. С конца 2012 года среди недорогих моделей актуальной была серия цветных принтеров OKI C300 и МФУ MC300.

Преимущества светодиодной технологии[править | править код]

Светодиодная технология имеет следующие преимущества[2] в сравнении с лазерной:

  • светодиодная линейка значительно компактнее сканирующей системы лазерных принтеров, что сказывается и на размерах самих принтеров. Цветные светодиодные принтеры почти в два раза меньше своих лазерных аналогов, для монохромных же моделей разница в размере заметна, но не столь ярко выражена;
  • в силу отсутствия в механизме формирования изображения подвижных частей, механическая часть теоретически проще и надежнее. Однако стоит учитывать, что ресурс современных лазерных принтеров среднего и старшего классов составляет от одного до десяти и более миллионов страниц, при том, что блок лазера с блоком развертки выходит из строя реже всего;
  • каждый светодиод в линейке даёт световое пятно одинаковой формы — в лазерных принтерах используются дополнительные линзы, корректирующие изменение геометрии светового пятна на краях фотобарабана. На практике разница незаметна;
  • данные на светодиодную линейку могут подаваться параллельно — электромагнитное излучение от включения большого количества элементов будет близко к шумовому и значительно сложнее осуществлять перехват данных с помощью радиосканера. Однако на практике к светодиодной линейке подходит шина с небольшим количеством проводников — данные к линейке подаются последовательно, что упрощает задачу перехвата.

Типичной иллюстрацией преимуществ светодиодной технологии можно считать решение компании Xerox, которая в течение нескольких лет под своей торговой маркой продавала OEM-версии светодиодных принтеров OKI, перейти к разработке и внедрению собственной светодиодной технологии. Это привело к выпуску на рынок в 2009 году цветного светодиодного принтера формата A3 модели Xerox Phaser 7500, полностью разработанному фирмой Fuji-Xerox и использующему светодиодную технологию HiQ LED, реализованной совместно с компанией Nippon Electric Glass. С тех пор все цветные офисные принтеры формата A3 компании Xerox являются светодиодными, включая модели Versalink C7000/C8000/C9000, объявленные в начале 2019г.

  • Для современной микроэлектроники характерен существенный разброс параметров — производители заявляют ±12—15 %, реальный же разброс в партии достигает ±30 %[3][4]. При разрешении 600 dpi и ширине зоны печати до 216 мм (производители принтеров учитывают не только формат А4, но и американский Letter — 8,5 дюймов) светодиодная линейка должна состоять из примерно 5000 светодиодов — и для каждого из них невозможно предусмотреть систему компенсации отклонения яркости свечения — в результате неравномерность свечения отдельных светодиодов приводит к полосам вдоль хода движения бумаги с повышенной и пониженной насыщенностью печати. В отличие от светодиодных, для лазерных принтеров необходимо корректировать параметры только одного источника — лазерного светодиода; при этом можно проводить прямое измерение яркости луча непосредственно во время печати путём установки фотодатчика на пути сканирования луча вне рабочей зоны. Кроме того, в лазерном принтере можно ввести компенсацию отклонения яркости луча изменением электрических параметров — например, напряжением заряда фотобарабана.
  • Для повышения качества изображения (сглаживания контуров) в ксерографической печати используют изменение размера (или насыщенности) элементарных точек и сдвиг на половину диаметра точки. Изменение размера или насыщенности доступно и для светодиодной, и для лазерной технологии. Сдвиг для светодиодных моделей невозможен (светодиоды жестко фиксированы), в то время как для лазерной технологии это легко реализуется сдвигом времени включения лазера.
  • Из-за миниатюрных размеров ограничены возможности фокусировки света от отдельных диодов линейки. Применение лазерной технологии позволяет использовать длиннофокусную схему — луч на достаточно большой длине имеет малую площадь сечения, при этом гораздо ниже требования по точности установки и юстировки оптики.
  • Максимальная производительность представленных на рынке устройств со светодиодной технологией составляет до 50 страниц в минуту; лазерные устройства демонстрируют скорость 110—135 страниц в минуту и больше.

Типичной иллюстрацией недостатков светодиодной технологии может служить решение компании Киосера-Мита (Kyocera-Mita): в моделях цветных принтеров FS-C5015/FS-C5025/FS-C5030 использовались светодиодные линейки; в последующих поколениях производитель отказался от них в пользу лазерных блоков (модели FS-C5100/FS-C5200/FS-C5300/FS-C5400, и затем FS-C5150/FS-C5250/FS-C5350). При этом габариты принтеров практически не изменились.

Сферический тонер с двойной структурой[править | править код]

Сферический тонер с двойной структурой применяется и в лазерной печати, однако разработан он был компанией OKI для своих светодиодных принтеров. В настоящий момент сферический тонер производит большинство компаний, поставляющих лазерные принтеры.

Сферический тонер, как явствует из названия, представляет собой микроскопические шарики примерно равного размера, в результате чего при переносе изображения на бумагу сферический тонер позволяет получить более четкую точку, нежели молотый тонер, растискивающийся по бумаге и в точку, и в овал, и в нечто бесформенное.

Тонер с двойной структурой состоит из твердой оболочки и более мягкого легкоплавкого ядра. В печке сначала плавится ядро, и к моменту, когда расплавится более плотная оболочка, ядро тонера уже представляет собой жидкость, которая, попадая на бумагу, глубоко проникает в её структуру.

Из-за такой сложной структуры сферический тонер значительно дороже обычного молотого, который применяется в лазерных принтерах.

Начиная с 2010 года, вместе с запуском компанией OKI принтеров моделей B411/B431, было прекращено использование сферического капсулированного тонера и вместо него стал использоваться обычный молотый однокомпонентный тонер, обладающий такими же свойствами, как и тонеры, используемые в лазерных и светодиодных принтерах других производителей. При этом необходимо уточнить, что сферический капсулированный тонер использовался лишь в самой первой модели цветного светодиодного принтера OKI, выпущенной в 1998г — принтере OKIPAGE 8c. Все последующие модели цветных принтеров и МФУ компании OKI не использовали сферический тонер. Вместо этого применялся и продолжает применяться молотый полимерный тонер с повышенным содержанием воска, что даёт возможность получать изображения с глянцевым блеском на обычной бумаге, а также не использовать в цветных принтерах масляный ролик в печке.

Сферический тонер не является необходимым элементом светодиодной технологии, а лишь использовался в некоторых моделей распространённых монохромных принтеров, производимых компаниями OKI и Brother.

Файл цветного изображения (в формате jpg, bmp, pdf и т. д.) передается на принтер, где растровый процессор принтера раскладывает изображения на 4 базовых цвета: cyan, yellow, magenta и black.

Дальнейший процесс сходен с процессом печати монохромного изображения, с той лишь разницей, что каждый из четырех фотобарабанов наносит на бумагу свой цвет. Большинство светодиодных принтеров делает это за один проход бумаги. В результате, после смешения цветов на бумаге и термического закрепления тонера в печке, мы имеем цветное изображение.

Все недостатки и преимущества светодиодной печати перед лазерной актуальны и для цветных принтеров. Сравнимая надежность, качество, и себестоимость при сопоставимых размерах принтеров.[5]

Скорость печати и допустимая нагрузка[править | править код]

Скорость печати от применения светодиодной линейки или лазера не зависит, а определяется скоростью работы механизма. Самый производительный из имеющихся на рынке на октябрь 2019 года светодиодных принтеров, OKI Pro9431, способен выдавать в минуту 50 цветных или монохромных страниц формата А4. Предельно допустимая нагрузка на него составляет 300 000 страниц в месяц[6], что сравнимо с лазерными принтерами аналогичного уровня.

[1]

  1. Oki Data Corporation. Технические характеристики | Pro9431 | Серия Pro9000 | Принтеры, решения для печати и услуги управления печатью (рус.). www.oki.com. Дата обращения 31 октября 2019.

OLED-телевизоры: достоинства и недостатки технологии

Чем интересна OLED-технология?

OLED (органический светодиод) называют будущим телевизионных технологий, которое обещает насыщенные цвета, включая глубокий чёрный, и сокращение размытия в движении.

Может показаться, что новая технология не сильно отличается от более распространённых на рынке LED-панелей. Но слово «органический» подразумевает разницу в самом способе представления изображений на экране.

В чём достоинства OLED-экранов?

LED-экран — жидкокристаллический дисплей с улучшенной светодиодной подсветкой. В современных LCD-телевизорах жидкие кристаллы вращаются под действием электричества и пропускают свет через каждый пиксель изображения. Свет проходит через фильтры (красный, синий и зелёный) и при их смешении даёт в результате цвета от самых тёмных до белого. Если все кристаллы поворачиваются так, чтобы не пропускать ни одного из трёх цветов, то на выходе получается чёрный цвет.

У кристаллов есть свои преимущества: низкая стоимость, тонкость и лёгкость материалов, но есть и важный недостаток — уровень чёрного цвета. Кристаллы перекрывают свет, но подсветка продолжает работать. Свет падает на «чёрные» пиксели, что делает тёмное изображение блеклым.

В OLED-экранах нет подсветки — каждый отдельный пиксель излучает свет самостоятельно во время подачи на него электрического тока. Если пиксель не получает электричества, то мы видим отсутствие света — настоящий чёрный цвет.

Абсолютно нулевые значения для цвета и яркости изменяют восприятие контрастности. На OLED-дисплее даже минимальное количество света в тёмных частях изображения воспринимается ярче по сравнению с LED-экранами. Кроме того, пиксели в OLED-экранах могут практически моментально изменять цвет в отличие от задержки на LED-панелях, для активации и движения кристаллов которых требуется больше времени.

Ещё одно достоинство OLED-технологии, которое вытекает из уровня чёрного и контрастности, — реалистичные насыщенные цвета.

Выгорают ли пиксели на OLED-экранах?

На старых плазменных телевизорах могли выгорать пиксели в тех частях экрана, где долгое время располагалось что-то статичное, например логотип канала или меню видеоигры. Следы от таких объектов могли навсегда «отпечататься» на дисплее, поэтому производители добавляли специальные инструменты в настройки телевизоров, чтобы этого можно было избежать.

Для OLED-экранов это не характерно, но если статичное изображение оставить на несколько часов подряд, то оно может «зависнуть», оставив едва заметный след, примерно на час, а затем полностью исчезнет. Ничего страшного с телевизором не случится.

Насколько OLED-дисплеи яркие?

Если на телевизоре есть наклейка Ultra HD Premium, то его пиксели должны достигать минимального порога яркости. Это значение может быть разным, в зависимости от глубины чёрного цвета. Если уровень чёрного цвета в OLED-панели находится где-то между 0,0005 и 0,5 кд/м2, то максимум яркости для такого телевизора должен начинаться от 1 000 кд/м2. Но если экран способен на ещё более тёмный цвет, то его максимум может начинаться уже от 540 кд/м2.

Яркость OLED-телевизора воспринимается в зависимости от места, где вы его расположите, поэтому в комнате с ярким светом преимущества экрана на органических светодиодах не будут сильно заметны. Недорогие OLED-панели выдают яркость на уровне 700–800 кд/м2, тогда как LED-телевизоры способны на большее — 1 400–1 500 кд/м2.

В этом году появятся новые модели OLED-телевизоров c яркостью до 2 000 кд/м2, но их цена вряд ли порадует покупателей.

При максимальной яркости экрана в 800 кд/м2 его преимущества над жидкокристаллическими телевизорами заметны ночью при слабом свете или днём с закрытыми шторами. Стоит только приглушить свет, как влияние чёрного цвета на качество изображения становится очевидным.

Однако глубокий чёрный цвет — это не волшебная сила, преображающая любой фильм на экране. Иногда, например в стриминговых сервисах, чёрный цвет может кодироваться не как полное отсутствие света, а как его более светлый вариант.

В чём недостатки OLED-технологии?

Как и в случае с качеством отображения цветов, сокращение размытия при движении зависит от исходного содержимого. Теоретически OLED-технология превосходит LCD и LED-стандарты в передаче движения.

На практике только специально подготовленные файлы и режим сокращения размытия приводят к заметным результатам. Динамичные фильмы с частотой изображения 24 кадра в секунду не подойдут. В то же время довольно трудно найти видео в 4K-разрешении, с реалистичными цветами и высокой частотой кадров одновременно, чтобы оправдать покупку дорогой OLED-панели.

Покупать OLED-телевизор или нет?

Пока что для большинства покупателей ответ отрицательный. Если вам не нужна обязательная поддержка стандартов HDR-10 или Dolby Vision, то вы можете потратить гораздо меньшую сумму на LED-телевизор с 4K-разрешением, низким уровнем размытия и задержки входного сигнала. Вы не получите максимально сочную картинку, но сможете, например, приобрести хорошую аудиосистему.

Если вы всё-таки хотите приобщиться к миру HDR, то в этом случае лучше выбрать OLED-экран, но придётся правильно его откалибровать. Для больших помещений такие телевизоры покупать невыгодно, только если у вас не найдётся больше 20 000 долларов на 77-дюймовую модель LG.

Низкий уровень размытия и яркие цвета OLED-панелей также хорошо подойдут для игр, но стоит учитывать более высокую задержку входного сигнала, что сказывается на отзывчивости управления и особенно критично в сетевых играх. Эту проблему производители уже начали решать обновлениями прошивок.

HDR-стандарт и OLED-технологии удивят вас качеством изображения уже сейчас, но подходящего для них контента пока ещё мало.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *