Site Loader

Содержание

Кварцевые резонаторы. Виды и применение. Устройство и работа

Современная цифровая аппаратура нуждается в высокой точности, поэтому часто в цифровых устройствах содержится кварцевый резонатор, который является стабильным и надежным генератором гармонических колебаний. Цифровые микроконтроллеры работают на основе этой постоянной частоты, и используют ее для работы цифрового прибора. Кварцевые резонаторы являются надежной заменой контура колебаний, собранного на конденсаторе и катушке индуктивности.

Добротность контура колебаний на основе катушки и конденсатора не превышает 300. Она является характеристикой контура колебаний, определяющей величину полосы резонанса. Добротность показывает, во сколько раз энергия колебательной системы превышает потери энергии в течение одного периода колебаний. Чем больше добротность, тем меньше теряется энергии за один период, и медленнее затухают колебания. Емкость конденсатора в обычном контуре колеблется в зависимости от температуры среды. Величина индуктивности катушки также зависит от многих факторов. Существуют даже соответствующие коэффициенты, определяющие зависимость параметров этих элементов от температуры.

Кварцевые резонаторы, в отличие от вышеописанных контуров колебаний, обладают очень большой добротностью, достигающей значения в несколько миллионов. При этом температура в пределах -40 +70 градусов никак не влияет на этот параметр. Высокая стабильность работы кварцевых резонаторов при любой температуре послужила их широкому применению в цифровой электронике и радиотехнике.

Разновидности

По типу корпуса:
  • Для объемной установки (цилиндрические и стандартные).
  • Для поверхностного монтажа.
По материалу корпуса:
  • Металлические.
  • Стеклянные.
  • Пластиковые.
По форме корпуса:
  • Круглые.
  • Прямоугольные.
  • Цилиндрические.
  • Плоские.
По количеству резонансных систем:
  • Одинарные.
  • Двойные.
По защите корпуса:
  • Герметичные.
  • Негерметизированные.
  • Вакуумные.
По назначению:
  • Фильтровые.
  • Генераторные.

Важным свойством кварцевых резонаторов для успешной работы является их активность. Но она не определяется только собственными свойствами. Вся электрическая схема влияет на его активность.

В резонаторах, используемых в фильтрах, применяются такие же виды колебаний, как и в генераторных резонаторах. В фильтрах используются 2-х и 4-х электродные вакуумные резонаторы. Для многозвенных фильтров чаще всего применяются 4-х электродные, так как они более экономичные.

Принцип действия и устройство

Кварцевые резонаторы работают на основе пьезоэлектрического эффекта, образующегося на кварцевой пластинке. Кварц – это природный кристалл. Он представляет собой модификацию соединения кремния с кислородом, и имеет химическую формулу Si O2. Массовая доля кварца в земной коре составляет около 60%, в свободном виде 12%. В других минералах также может содержаться кварц.

Для производства кварцевых резонаторов используют низкотемпературный кварц. Он обладает выраженным пьезоэлектрическим эффектом. Химическая устойчивость кварца очень высока, растворить кварц способна только гидрофторидная кислота. По твердости кварц стоит на втором месте после алмаза. Кварцевую пластинку для резонатора изготавливают путем вырезания из кварца кусочка под заданным определенным углом. В зависимости от этого угла среза кварцевая пластинка отличается разными электромеханическими параметрами.

От вида среза зависит наличие или отсутствие паразитных частот, стабильность работы при любых температурах, частота колебаний. На обе стороны кварцевой пластинки наносят слой одного из дорогостоящих металлов: серебра, платины, никеля или даже золота. После этого пластинку фиксируют прочными проволочками в корпусе резонатора. Затем производят герметичную сборку корпуса.

В результате образуется колебательный контур, обладающий собственной частотой резонанса, определяющей работу всего резонатора. Если к электродам пластинки приложить переменное напряжение с частотой резонанса, то возникнет резонансный эффект, а амплитуда колебаний пластинки значительно повысится. При этом резонатор уменьшит свое сопротивление на значительную величину. Этот процесс подобен тому процессу, который происходит в контуре колебаний последовательного вида (на основе катушки и конденсатора). Потери энергии при возбуждении кварцевого резонатора на частоте резонанса очень малы, так как добротность кварцевого контура колебаний очень высока.

Эта эквивалентная схема состоит из:
  • R – Сопротивление.
  • С1 – Емкость.
  • L
    – Индуктивность.
  • С2 – Статическая электрическая емкость пластинок вместе с держателями.

Эти элементы определяют электромеханические параметры кварцевой пластинки. Если удалить монтажные элементы, получается последовательный контур . При установке на монтажную плату, кварцевый резонатор не переносит чрезмерного нагрева, так как его конструкция очень хрупкая. Сильное нагревание может деформировать держатель и электроды, что отражается на функционировании готового кварцевого резонатора. Кварц полностью теряет свои свойства пьезоэлектрика при нагревании до температуры 5370 градусов. Однако паяльник не способен так сильно разогреваться.

На электрических схемах кварцевый резонатор обозначается по аналогии с конденсатором, но между пластин изображен прямоугольник, символизирующий кварцевую пластинку. На схеме резонатор обозначен «QX».

Обычно причиной неисправностью кварцевого резонатора становится сильный удар или падение устройства, в котором он находится. В этом случае резонатор подлежит замене на новый, с такими же параметрами. Такие неисправности возникают в маленьких приборах, которые проще уронить, или повредить. Но такие повреждения резонаторов встречаются не часто, и обычно неисправность устройства кроется совсем в другом.

Как проверить кварцевые резонаторы

Для проверки резонатора на его работоспособность, собирают специальный простой тестер, помогающий проверить кроме работы резонатора, еще и его частоту резонанса. Схема такого устройства похожа на кварцевый генератор, собранный на транзисторе.

Подключив резонатор между отрицательным полюсом и базой транзистора через защитный конденсатор, с помощью частотомера измеряют частоту резонанса. Такая схема подходит для настройки контуров колебаний. При включенной схеме исправный резонатор создает колебания. В результате на эмиттере транзистора возникает переменное напряжение с частотой резонанса тестируемого резонатора.

Если к выходу тестера подключить частотомер, то можно измерить частоту резонанса. При стабильной частоте и небольшом нагревании корпуса резонатора паяльником частота не должна значительно изменяться. Если частотомер не обнаруживает возникновение частоты, либо она сильно изменяется или имеет большие отличия от номинала, то резонатор негоден и требует замены.

При использовании такого тестера для настройки контуров, емкость С1 обязательна. Но при проверке исправности резонаторов ее присутствие в схеме не требуется. При этом колебательный контур просто подсоединяют на место кварцевого резонатора и тестер начинает создавать колебания таким же образом.

Тестер, выполненный по рассмотренной схеме, хорошо зарекомендовал себя на частоте 15-20 мегагерц. Для других интервалов можно найти другие схемы, собранные на микросхемах и других компонентах.

Сфера применения
Благодаря стабильности параметров кварцевых резонаторов, они нашли широкое использование в различных областях:
  • Многие измерительные устройства работают на основе таких резонаторов, при этом точность измерений очень высока.
  • Пьезокварцевая пластина применяется в качестве резонатора в морском эхолоте для выявления объектов, расположенных в воде, исследования дна моря, определения нахождения отмелей и рифов. Это дает возможность изучения жизни в океане в глубоководных районах, а также создания точных карт морского дна.
  • Кварцевые резонаторы нашли широкую популярность в кварцевых часах, так как частота колебаний кварцевой пластины практически не зависит от температуры, и имеет малое относительное изменение частоты.

Кварцевые резонаторы расширяют свою сферу использования, потребность в них постоянно увеличивается, так как они обладают повышенными метрологическими параметрами, эффективностью работы.

Похожие темы:

Кварцевый резонатор | Описание, принцип работы

Что такое кварц

На самом деле, кварц  – это один из самых распространенных минералов  в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц также состоит из кремния но в связке с кислородом. Его формула SiO2.

Выглядит он примерно вот так:

кварц в природе

Ну прямо сокровище какое-то!

Но сокровище спрятано не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике…

Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы.

пьезоэффект

Существует также и обратный эффект, то есть при подаче напряжения мы можем деформировать эти кристаллы. Невооруженным глазом это практически не заметно. Такой эффект называется пьезоэффектом, а вещества  –  пьезоэлектриками.

ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, прижать такой кристалл и всю жизнь получать из него энергию? Побрейтесь). Кстати, пьезоизлучатель тоже относится к пьезоэлектрикам и из него можно получить ЭДС. Ниже на видео светодиод, подпаянный к пьезоизлучателю. Когда мы давим на пьезоизлучатель, вырабатывается ЭДС, которая и зажигает маленький светодиод:

Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия))).

Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.

Кварцевый резонатор

Резонатор – (от лат. resono –  звучу в ответ, откликаюсь) – это система, которая способна совершать колебания с максимальной амплитудой, то есть резонировать, при воздействии внешней силы определенной частоты и формы. Получается, кварцевый резонатор в электронике, а в народе просто “кварц”, – это радиоэлемент, который

способен резонировать, если на него подать переменный ток определенной частоты и формы.

Кварцевые резонаторы выглядят в основном вот так:

кварцевый резонатор

Разобрав кварцевый резонатор, можно увидеть воочию сам кристалл кварца. Давайте вскроем кварц советского производства вот в таком корпусе:

советский кварцевый резонатор

Итак, что мы тут видим? Прозрачный кристалл кварца, размещенный между двумя металлическими пластинками, к которым подпаяны выводы самого кварца.

В маленьких кварцах типа этих

маленький кварцевый резонатор

используются тонкие прямоугольные пластинки кварца. Здесь правило такое: чем больше толщина пластинки, тем ниже рабочая частота кварца. Поэтому, самые высокие частоты, на которые делают кварцы, составляет не более 50 Мегагерц, так как пластинка получается очень тонкая, что создает трудности при ее изготовлении. Да и держать ее как-то надо в корпусе, не поломав. По идее, можно выжать из кварца частоту и до 200 Мегагерц, но работать такой кварц будет на обертоне.

Что такое обертоны

Обертоны, или как еще их называют, моды или гармоники – это кратные частоты, выше основной частоты кварца. С помощью фильтров гасят основную частоту кварца и выделяют обертон. В кварцевом резонаторе в режиме обертонов используют нечетные обертоны. Если основная частота кварца F – это первый обертон, то его рабочие обертоны будут как 3F, 5F, 7F, 9F.  Стоит также отметить, что амплитуда обертона убывает с ростом его частоты, поэтому далее 9 обертона смысла брать уже нет, так как выделять амплитуду маленького сигнала очень трудно.

Пример: возьмем кварц с частотой в 10 Мегагерц. Тогда мы можем возбудить его на обертонах в 30 Мегагерц (третий обертон), в 50 Мегагерц (пятый обертон), в 70 Мегагерц (седьмой обертон) и максимум в 90 Мегагерц (девятый обертон).

Чтобы хоть как-то понять, что такое обертоны, для примера послушайте основную частоту 110 Герц и ее обертоны.

Схема, которая возбуждает кварц на обертонах, сложная и не очень надежная, так как во-первых, надо “давить” главную частоту кварца и выделять обертон, а во-вторых, кварц может возбудиться в режиме случайных колебаний. На практике все-таки делают схемы с умножением главной частоты кварца, что намного проще и надежнее.

Обозначение кварца на схеме

Кварц является диэлектриком. А что будет если тонкий диэлектрик разместить между двумя металлическими пластинами? Получится конденсатор! Конденсатор получается очень маленькой емкости, так что замерить его емкость вряд ли получится. Зато не стали мудрить со схемотехническим обозначением кварца, и на схемах его показывают как прямоугольный кусочек кристалла, заключенный между двумя пластинками конденсатора:

Принцип работы кварца

Очень много мифов ходит по интернету именно  о кварцевом резонаторе. Самый популярный миф гласит так: если подать постоянное напряжение на кварцевый резонатор, он будет выдавать переменное напряжение с частотой, которая на нем указана. Насчет “частоты, указанной на нем”, я, может быть, соглашусь, но насчет постоянного напряжения – увы. Кристалл кварца просто сожмется или разожмется). Некоторые вообще до сих пор думают, что кварц сам по себе выдает переменный ток ) Ага).

Для того, чтобы понять принцип работы кварцевого резонатора, надо рассмотреть его эквивалентную схему:

С – это собственно емкость между обкладками конденсатора. То есть если убрать кристалл кварца, то останутся две пластины и их выводы. Именно они и обладают этой емкостью.

С1 – это динамическая емкость самого кристалла. Динамическая – это значит проявляется при работе кварца. Ее значение несколько фемтоФарад. Фемто – это 10-15 !

L1 – это динамическая индуктивность кристалла. Она может достигать несколько тысяч Генри!

R1 – динамическое сопротивление, при работе кварца может достигать от нескольких Ом и до нескольких КилоОм

Можно заметить, что С1, L1 и R1 образуют последовательный колебательный контур, который обладает своей резонансной частотой.

Принцип работы кварцевого резонатора такой: если к обкладкам кварцевого резонатора подвести переменное напряжение, то  его пластинка начнет колебаться с частотой подведенного напряжения. Если подведенная частота  будет совпадать с собственной резонансной частотой колебания кварца, то наступит резонанс. Напряжение на обкладка кварца резко возрастает. В этом случае кварцевый резонатор ведет себя, как настроенный на определенную частоту колебательный контур с очень высокой добротностью.

Каждый кварц имеет разные частоты последовательного и параллельного резонанса. Если мы видим на кварце вот такую надпись

кварцевый резонатор маркировка

это говорит нам о том, что на частоте последовательного резонанса мы можем возбудить этот кварц на частоте 8 Мегагерц. В основном кварц работает на частоте последовательного резонанса. Здесь также есть еще одно правило: если частота маркируется в целых числах в Килогерцах – это работа на основной гармонике, а если в Мегагерцах через запятую – это обертонная гармоника. Например: РГ-05-18000кГц – резонатор для работы на основной частоте, а РГ-05-27,465МГц – для работы на 3-ем обертоне.

И запомните раз и навсегда:

кварцевый резонатор

 

Также рекомендую к прочтению продолжение статьи, которая называется кварцевый генератор.

Пьезоэлектрические кварцевые резонаторы и их применение в датчиках

Пьезоэлектрические кварцевые резонаторы и их применение в датчикахПьезоэлектрический резонатор представляет собой электромеханическую систему, в которой используется явление прямого и обратного пьезоэффекта, которая обычно выполнена в виде двухполюсника, объединяющего системы электрического возбуждения механических колебаний и съема электрического сигнала, пропорционально их амплитуде. В виду целого ряда свойств одним из самых распространенных пьезоэлектриков, применяемых в пьезоэлектрических резонаторах, является пьезокварц. Кварцевые резонаторы имеют высокую добротность 107 и более, кратковременную и долговременную стабильность 104 до 107 , практически отсутствует гистерезис при механических, температурных и электрических воздействиях.

В виду бурного развития радиоэлектронной промышленности в последние десятилетия кварцевые резонаторы нашли широкое применение в генераторах стабильной частоты.

 Опорные кварцевые резонаторы на стандартные частоты от 32 кГц до 12 МГц выпускаются несколькими предприятиями, в том числе и ООО «СКТБ ЭлПА» (г. Углич), но в последнее время спросом стали пользоваться миниатюрные опорные резонаторы. ООО «СКТБ ЭлПА» освоено производство миниатюрных:

  • камертонных кварцевых резонаторов на частоты от 32 до 320 кГц в корпусах Ø1,5х5 и Ø2х6 мм.;
  • полосковых резонаторов на частоты от 3,5 до 12 МГц в корпусе Ø3х10, с характеристиками не уступающим зарубежным аналогам см. рис. 1.

tempstab_rk206tempstab_rk308

Рис. 1

 Миниатюрные кварцевые резонаторы изготавливаются не только механической обработкой, но и групповым методом фотолитографии, который позволяет получить кварцевые детали сложной формы, включая мезаструктуры с воспроизводимостью размеров до 1 мкм.
 СКТБ разработаны и изготовлены опытные образцы микроминиатюрного опорного резонатора для поверхностного монтажа на частоту 256 кГц, в кварцевом корпусе 3,3(4,3)х1,7х0,65(0,4) мм. Есть возможность изготавливать такие резонаторы на диапазон частот от 32 до 256 кГц.
 Развитие современной цифровой электроники сделало более доступным применение датчиков с частотным или кодовым выходом для создания измерительных систем управления технологическими процессами, контроля параметров окружающей среды, создания образцовых средств измерений. На основе кварцевых резонаторов различных срезов СКТБ выпускаются прецизионные резонаторы-датчики температуры, давления, усилия, ускорения.
Чувствительным элементом датчика температуры является камертонный кварцевый резонатор термочувствительного среза, который помещен в корпус размером Ø2х6 мм. Данная конструкция имеет малые габаритные размеры и малую постоянную времени тепловой инерции (до 5 секунд). Также есть варианты датчиков температуры в том же корпусе, но с еще меньшей постоянной времени, что достигается заполнением внутри-корпусного пространства инертными газами. Характеристики термочувствительных резонаторов приведены в таблице 1. 


Характеристика

Тип резонатора

РКТ206

РКТВ206

Номинальная частота, кГц

32 .. 39

Таблица аналогов кварцевых резонаторов разных изготовителей

Принятое обозначение корпуса в магазине «Кварц» [старое обозначение] Размеры, мм Фирменные обозначения
Российские производители                    
01×04       C-005R                  
  (32,768кГц)          
01×05       C-004R     GWX-15            
CFS145 (32,768кГц) D5 (DT15)  (32,768кГц) ETDC (DT-15)              
(32,768кГц) C-4  (32~120кГц, 192кГц) GCX-15 (32,768кГц, 30~100кГц)    
  (32~120кГц, 192кГц)    (200~1000кГц)      
02х06 [AA]             GCX-26            
РК206AA   CFS206 С-002RX D6 (DT26) KX-26 (-20~700C) (30~150кГц) ETDA (DT-26) MMTF32  DT-26      
ТУ307-182.012-98             (32,768кГц) (32,768кГц) (32~120кГц,  KX-26T (-40~850C)  GDX-1 (32,768кГц,  (32,768кГц, (32,768кГц)   TF26 SP (CH-206)
(32,768кГц, 30~270кГц) CFV206 C-2 192кГц) (32,768; 77,5кГц) (32,768кГц) 30,0~100,0кГц) 28,0~80,0кГц) DT-261   (25,0~150,0кГц) (32,768кГц, 75кГц)
РК453АА (15~40МГц) (30~100кГц) (20~165кГц,      GWX-26     (28,0~100,0кГц)      
    307,2кГц)     (32,768кГц)            
03х08 (H=8мм)   РК308     A8 (AT38) KX-38 (-20~700C)                    ETDB (DT-38) MTF32  DT-38      
ТУ307-182.013-00 CFS308 С-001R (3,579~60МГц) KX-38T (-40~850C) GWX-38  (32,768кГц,  (32,768кГц, (32,768кГц)   TF38 SQ (CH-308) 
(3~5МГц, 8~12МГц) (32,768кГц) (32,768кГц) D8 (DT38)  (32,768кГц) (32,768кГц) 30,0~100,0кГц) 15,0~150,0кГц) DT-381   (25,0~150,0кГц) (32,768кГц, 75кГц)
      (32,0~120,0кГц, 192кГц)         (15,0~150,0кГц)      
03×09 (H=9мм)   CSA309  CA-301 A9 (AT39)   GCX-39 EAT (AT-39) MTF38 AT-38   3×9   
(4,01~70МГц) (4,0~64,0МГц) (3,579~60МГц)   (4,0~90,0МГц) (4,0~70,0МГц) (3,579545~91МГц) (3,579~28,0МГц)   (3,579545~60,0МГц)
03×10 (H=10мм)         KX-39 (-20~700C)              
  CSA310    A10 (AT310) KX-39T (-40~850C) GCX-39  EAT (AT-39)       3×10   
  (3,5~4,0МГц)   (3,579~60,0МГц) (40~100кГц, 3-я гарм.) (3,5~4,0МГц) (3,579545~4,0МГц)       (3,579545~60,0МГц)  
        (3,579545~70МГц)              
03×12  (H=12мм) РК330 (4194,304кГц)                      
HC49S2 (H=2,2~2,5мм) [HC49SS]         SS (HC-49US)   ESC (HC-49SB)        49S2 SС (ATS-25/U)
РК456МДУ     (3,0~33,5МГц)   (8,0~30,0МГц) SS2     (3,579545~30,0МГц) (3,579~27,0МГц)
ТУ6321-006-07604008-04      (26,0~40,0МГц 3-я   HC49-3H (30,0~66,0МГц 3-я (8,0~30,0МГц)     (24,0~70,0МГц 3-я (27,0~40,0МГц BT-срез)
(10~40МГц)     гармоника)   (3,579~90МГц) гармоника) (27,0~70,0МГц 3-я гармоника)     гармоника) (24,576~85,0МГц 3-я
      (20,0~40,0МГц BT-срез)     (27,0~40,0МГц BT-срез)       (60,0~80,0МГц 5-я гармоника)
                    гармоника)  
HC49S3 (H=3,3~3,6мм)  [HC49S]              РК415   HC49US   S (HC-49US) KX-3H (HC-49/U3H)   ESA (HC-49SA) SS3   HC49SFWA (HC-49/U-S) 49S SD (ATS-49/U)
ТУ6321-002-13279149-94 (3,5~30МГц)   (3,0~33,5МГц) (-20~700C) HC49-4H (3,2~30,0МГц) (3,2768~70МГц) AT-49 (3,2~20МГц) (3,579545~30,0МГц) (3,579~27,0МГц)
(3,5~24МГц) (30,001~50,0МГц   (26,0~40,0МГц 3-я KX-3HT (-40~850C) (1МГц, 3,2768~90МГц) (30,0~66,0МГц 3-я (27,0~70,0МГц 3-я гарм.) (3,072~33,9МГц) HC49SFWB (HC-49/U-S) (24,0~70,0МГц 3-я (27,0~40,0МГц BT-срез)
РН04  (ниобат лития)                          3-я гармоника)   гармоника) KX-3HE (-40~1050C)   гармоника) SS4 (26,0~70,0МГц 3-я (3,2~33,999МГц) гармоника) (24,576~85,0МГц 3-я
(0,4~20МГц)     (20,0~40,0МГц BT-срез) (3,5~40,0МГц)   (27,0~40,0МГц BT-срез) (3,2768~40МГц)

Кварцевый резонатор.

Принцип работы и свойства кварцевого резонатора

В современной электронике, особенно в цифровой сложно не найти электронный компонент под названием кварцевый резонатор. По своей сути, кварцевый резонатор является аналогом колебательного контура на основе ёмкости и индуктивности. Правда, кварцевый резонатор превосходит LC-контур по очень важным параметрам.

Как известно, колебательный контур характеризуется добротностью. Резонаторы на основе кварца обладают очень высокой добротностью, которая недостижима при использовании обычного колебательного LC-контура. Если добротность обычных контуров лежит в пределах 100 – 300, то для кварцевых резонаторов величина добротности достигает 105 – 107.

Ёмкость конденсатора довольно сильно зависит от температуры окружающей среды. У конденсаторов даже есть параметр, который называется ТКЕ (температурный коэффициент ёмкости). Он показывает насколько измениться ёмкость конденсатора при изменении температуры.

Естественно, при применении конденсатора в составе LC-контура, частота его колебаний будет очень сильно зависеть от внешней температуры среды. То же касается и индуктивности, у которой также есть своя температурная характеристика — ТКИ.

Понятно, что для использования в цифровой технике (в том числе и в технике связи) требуется более стабильный и надёжный источник гармонических колебаний.

Резонаторы на основе кварца обладают очень высокой температурной стабильностью. Именно благодаря высокой добротности и температурной стабильности кварцевые резонаторы применяются в радиотехнике очень активно.

Любой процессор или микроконтроллер работает на определённой тактовой частоте. Понятно, что для задания тактовой частоты необходим генератор. Такой генератор в качестве источника высокоточных гармонических колебаний, как правило, использует кварцевый резонатор. В тех схемах, где высокая добротность не требуется, могут применяться резонаторы на основе керамики – керамические резонаторы. Добротность резонаторов на основе пьезокерамики составляет не более 103. Их можно встретить в пультах дистанционного управления, электронных игрушках, бытовых радиоприёмниках.

Принцип работы кварцевого резонатора.

Принцип работы кварцевого резонатора целиком и полностью опирается на пьезоэлектрический эффект. Основой любого кварцевого резонатора является пластинка из кварца. Кварц – это одна из разновидностей кремнезема SiO2. Для изготовления резонаторов пригоден только лишь низкотемпературный кварц, который обладает пьезоэлектрическими свойствами. В природе такой кварц встречается в виде кристаллов и бесформенной гальки.

Кристалл кварца
Кристалл кварца

Химически кварц очень устойчив и не растворяется ни в одной из кислот, за исключением плавиковой. Также кварц очень твёрдый. На шкале твёрдости он занимает седьмое место из десяти.

Чтобы изготовить кварцевую пластинку берётся кристалл кварца и из него под определённым углом вырезается пластинка. От угла, под которым происходит срез, зависят электромеханические свойства кварцевой пластины. Тип среза существенно влияет на температурную стабильность, количество паразитных резонансов, резонансную частоту.

Далее на две стороны кварцевой пластины наносят металлизированный слой (из серебра, никеля, золота или платины) и посредством жёстких проволочных контактов закрепляют в кварцедержателе. Всю эту конструкцию помещают в герметичный корпус.

Кварцевый резонатор является электромеханической колебательной системой. Как известно, любая колебательная система обладает своей резонансной частотой. У кварцевого резонатора также есть своя номинальная резонансная частота. Если приложить к кварцевой пластине переменное напряжение, которое совпадает с резонансной частотой самой кварцевой пластины, то происходит резонанс частот и амплитуда колебаний резко возрастает.

При резонансе электрическое сопротивление резонатора уменьшается. В результате получается эквивалент последовательной колебательной системы. Поскольку потери энергии в кварцевом резонаторе очень малы, то он фактически представляет собой электрический колебательный контур с очень большой добротностью.

Эквивалентная электрическая схема кварцевого резонатора изображена на рисунке.

Эквивалентная электрическая схема кварцевого резонатора
Эквивалентная электрическая схема кварцевого резонатора

Здесь С0 – это постоянная (статическая) ёмкость образующаяся за счёт металлических пластин-электродов и держателя. Последовательно соединённые индуктивность L1,конденсатор С1 и активное сопротивление Rакт. отражают электромеханические свойства кварцевой пластинки. Как видим, если отбросить ёмкость монтажа и кварцедержателя С0, то получиться последовательный колебательный контур.

При монтаже кварцевого резонатора на печатную плату стоит позаботиться о том, чтобы не перегреть его. Эта рекомендация наверняка связана с тем, что конструкция кварцевого резонатора довольно тонкая. Температурный перегрев может вызвать деформацию кварцедержателя и пластинок-электродов. Естественно, всё это может отразиться на качестве работы резонатора в схеме.

Также известно, что если кварц нагреть свыше 5730 С, то он превращается в высокотемпературный кварц и лишается своих пьезоэлектрических свойств. Конечно, довести температуру кварца до такой температуры оборудованием для пайки нереально.

Обозначение кварцевого резонатора.

На принципиальных схемах и в технической документации кварцевый резонатор обозначается наподобие конденсатора, только между пластинами добавлен прямоугольник, который символизирует пластинку кварца. Рядом с графическим изображением указывается буква Z или ZQ.

Условное графическое обозначение кварцевого резонатора
Условное обозначение кварцевого резонатора на схемах

Как проверить кварцевый резонатор?

Многие начинающие радиолюбители задаются вопросом: “Как проверить кварцевый резонатор?”

К сожалению, достоверно проверить кварцевый резонатор можно только заменой. Причиной неисправности кварцевого резонатора может быть сильный удар либо падение электронного прибора, в котором он был установлен. Поэтому если есть подозрение в исправности кварцевого резонатора, то его стоит заменить новым. К счастью в практике ремонта неисправность кварцевого резонатора встречается редко, конечно, есть и исключения, но они относятся к портативной электронике, которую частенько роняют.

Более подробную информацию о кварцевых резонаторах вы узнаете из книги, которую найдёте здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Кварцевый резонатор [База знаний]

Принцип работы и свойства кварцевого резонатора

Теория

КОМПОНЕНТЫ
ARDUINO
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Кварцевый резонатор — электронный компонент, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы.

Кварцевый резонатор

В современной электронике, особенно в цифровой сложно не найти электронный компонент под названием кварцевый резонатор. По своей сути, кварцевый резонатор является аналогом колебательного контура на основе ёмкости и индуктивности. Правда, кварцевый резонатор превосходит LC-контур по очень важным параметрам.

Добротность — параметр колебательной системы, определяющий ширину резонанса и характеризующий, во сколько раз запасы энергии в системе больше, чем потери энергии за время изменения фазы на 1 радиан. Обозначается символом Q (в отечественной литературе Д).
 
Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.

Как известно, колебательный контур характеризуется добротностью. Резонаторы на основе кварца обладают очень высокой добротностью, которая недостижима при использовании обычного колебательного LC-контура. Если добротность обычных контуров лежит в пределах 100 – 300, то для кварцевых резонаторов величина добротности достигает 105 – 107.
 
Ёмкость конденсатора довольно сильно зависит от температуры окружающей среды. У конденсаторов даже есть параметр, который называется ТКЕ (температурный коэффициент ёмкости). Он показывает насколько измениться ёмкость конденсатора при изменении температуры. Резонаторы на основе кварца обладают очень высокой температурной стабильностью. Именно благодаря высокой добротности и температурной стабильности кварцевые резонаторы применяются в радиотехнике очень активно.
 
Любой процессор или микроконтроллер работает на определённой тактовой частоте. Понятно, что для задания тактовой частоты необходим генератор. Такой генератор в качестве источника высокоточных гармонических колебаний, как правило, использует кварцевый резонатор. В тех схемах, где высокая добротность не требуется, могут применяться резонаторы на основе керамики – керамические резонаторы. Добротность резонаторов на основе пьезокерамики составляет не более 103. Их можно встретить в пультах дистанционного управления, электронных игрушках, бытовых радиоприёмниках.

 


Принцип работы

Принцип работы кварцевого резонатора целиком и полностью опирается на пьезоэлектрический эффект. Основой любого кварцевого резонатора является пластинка из кварца.
 
Кварц — это одна из разновидностей кремнезема SiO2. Для изготовления резонаторов пригоден только лишь низкотемпературный кварц, который обладает пьезоэлектрическими свойствами. В природе такой кварц встречается в виде кристаллов и бесформенной гальки.
 
Химически кварц очень устойчив и не растворяется ни в одной из кислот, за исключением плавиковой. Также кварц очень твёрдый. По шкале твёрдости он занимает 7-е место из 10.

Кристалл кварца

Кварцевый резонатор является электромеханической колебательной системой. Как известно, любая колебательная система обладает своей резонансной частотой. У кварцевого резонатора также есть своя номинальная резонансная частота. Если приложить к кварцевой пластине переменное напряжение, которое совпадает с резонансной частотой самой кварцевой пластины, то происходит резонанс частот и амплитуда колебаний резко возрастает.
 
При резонансе электрическое сопротивление резонатора уменьшается. В результате получается эквивалент последовательной колебательной системы. Поскольку потери энергии в кварцевом резонаторе очень малы, то он фактически представляет собой электрический колебательный контур с очень большой добротностью.
 
Эквивалентная электрическая схема кварцевого резонатора изображена на рисунке ниже.

Эквивалентная электрическая схема кварцевого резонатора

Здесь С0 – это постоянная (статическая) ёмкость образующаяся за счёт металлических пластин-электродов и держателя. Последовательно соединённые индуктивность L1, конденсатор С1 и активное сопротивление Rакт. отражают электромеханические свойства кварцевой пластинки. Как видим, если отбросить ёмкость монтажа и кварцедержателя С0, то получиться последовательный колебательный контур.
 
При монтаже кварцевого резонатора на печатную плату стоит позаботиться о том, чтобы не перегреть его. Эта рекомендация наверняка связана с тем, что конструкция кварцевого резонатора довольно тонкая. Температурный перегрев может вызвать деформацию кварцедержателя и пластинок-электродов. Естественно, всё это может отразиться на качестве работы резонатора в схеме.
 
Также известно, что если кварц нагреть свыше +573 °C, то он превращается в высокотемпературный кварц и лишается своих пьезоэлектрических свойств. Конечно, довести температуру кварца до такой температуры оборудованием для пайки нереально.

 


Обозначение кварцевого резонатора

На принципиальных схемах и в технической документации кварцевый резонатор обозначается наподобие конденсатора, только между пластинами добавлен прямоугольник, который символизирует пластинку кварца. Рядом с графическим изображением указывается буква Z или ZQ. Обозначение кварцевого резонатора

Как проверить кварцевый резонатор?

К сожалению, достоверно проверить кварцевый резонатор можно только заменой. Причиной неисправности кварцевого резонатора может быть сильный удар либо падение электронного прибора, в котором он был установлен. Поэтому если есть подозрение в исправности кварцевого резонатора, то его стоит заменить новым. К счастью в практике ремонта неисправность кварцевого резонатора встречается редко, конечно, есть и исключения, но они относятся к портативной электронике, которую частенько роняют.

 


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *