Site Loader

Радиоволны и распространение радиоволн

В данной статье расскажем вам про радиоволны и свойства их распространения.

Многие люди, не обладая элементарными понятиями о видах энергии, их свойствах, часто рассуждают о способах беспроводной передачи энергии на расстояния. Другие, не зная, как распространяются радиоволны, изготавливают антенны к своим радиопередатчикам и радиоприемникам, пытаясь добиться максимальных характеристик передачи и приема, но у них ничего не получается. Одни читают умные книги, а другие основываются на опыте, или совете малограмотного товарища. Для того, чтобы развеять хотя бы часть заблуждений и дать представление об электромагнитных волнах и как их виде – радиоволнах посвящена эта статья.

Как обычно, я не буду расписывать формул Максвелла, Фарадея и других известных деятелей науки. Их в огромном количестве имеется в учебниках физики, читая которые, даже я – имеющий образование и опыт работы в радиоэлектронике не понимаю, почему в этих учебниках приводятся заумные формулы, а простейшая, имеющая полезное практическое значение информация отсутствует? Ведь на следующий день, или неделю после окончания школы, ученик эти формулы не вспомнит, а простых понятий, как не знал, так и знать не будет.

Никола ТеслаНачнём с того, что великий изобретатель-практик электрических машин Никола Тесла активно использовал в своих экспериментах электромагнитные колебания, про которые раньше никто не знал, и как мы знаем теперь из учебников физики средней школы — порождают вид электромагнитных волн — радиоволны. Но повторюсь, во времена Теслы о существовании электромагнитных волн никто не знал. Интуитивно, путём наблюдений, Тесла понимал, что в результате его экспериментов в окружающем пространстве появляется какой-то вид энергии. Но в те времена не существовало такой науки и оборудования позволяющего раскрыть понятие электромагнитных волн. Поэтому, это явление рассматривалось как философская категория, которую Тесла называл — эфиром.

Нынче рассуждают, что «эфир» и электромагнитные волны это разные понятия. Они совершенно не правы лишь потому, что абсолютно все изобретения Теслы основаны на использовании обыкновенного переменного электрического тока и электромагнитных полей, которые в свою очередь и порождают не «эфир», а самые обыкновенные электромагнитные волны в радиочастотном диапазоне. Именно то, что в настоящее время называется электромагнитными волнами, в те времена Никола Тесла называл эфиром. Других вариантов объяснений быть не может. Можно долго рассуждать о том, что это разные понятия. Например, кто то с пеной у рта пытается доказать что скорость распространения эфира больше скорости света, а доказательная база отсутствует. С помощью какого эксперимента Никола Тесла мог измерить скорость эфира? Нигде такой информации нет. Вывод один, он её не измерял, а лишь предполагал. Вы скажете, что эфир несёт в себе энергию? Отвечу, любая электромагнитная волна несёт в себе энергию! Мне попадались практические схемы радиоприёмников без батареек, предназначенные не для работы на наушники или динамическую головку, а для получения постоянного электрического тока «из воздуха» теми жителями мегаполисов, которые живут рядом с мощными телерадиоцентрами.

электромагнитная волна – синусоидальное электромагнитное колебание в пространстве. Общепринятое сокращение – ЭМВ. Электромагнитная волна – это свет, тепловые лучи невидимого инфракрасного диапазона, рентгеновские лучи и радиоволны. Разница лишь в мощности колебаний и длине волны. В частности Тесла имел дело с радиоволнами. Фактически он и является изобретателем радио, а не Маркони с Поповым. Последние смогли описать радиоволны, поэтому их и считают изобретателями радио. Тесла был первооткрывателем, но у него в те времена не было научных объяснений, которые намного позже появились у Попова и Маркони. Кроме того, они использовали радиоволны в практических полезных целях. Тесла, в своё время писал о переносе информационного сигнала с помощью передатчика и приемника, но увлёкшись молниями, дойти до изобретения их практических устройств просто не успел. Резонный вопрос, а что же колеблется в электромагнитных волнах? Отвечу, далеко не углубляясь в ядерную физику, это фотоны – сгустки энергии, обладающие электромагнитным полем, но не обладающие массой. Именно эти свойства позволяют фотонам быть переносчиками энергии. Учёные-ядерщики и дальше «раскладывают» фотоны на составляющие элементы. Мы не будем продолжать этот ход мыслей, пожелаем им успехов, потому что это не по теме статьи. Если Вы противник считать что «эфир», это – электромагнитные волны, тогда попытайтесь принять, что «эфир» это – фотоны, а электромагнитные волны, это по своей сути — направленный поток фотонов.

Источником радиоволны может быть любой электрический проводник, в котором движется переменный электрический ток. На практике, источником радиоволны является высокочастотный генератор, колебательная энергия которого, распространяется в пространство через радиоантенну. Первым действующим источником радиоколебаний, изобретённым человеком и используемым с очевидным и рациональным успехом, был радиопередатчик-радиоприёмник Маркони (или Попова), использующий в качестве высокочастотного генератора – высоковольтный накопитель с искровым разрядником, подключенным на антенну — обыкновенный вибратор Герца.

картинка-схема передатчика и приемника Попова - Маркони
схема передатчика и приемника Попова — Маркони

 

Свойства распространения электромагнитных волн

 

Дальность распространения электромагнитной волны зависит от частоты колебания переменного электрического тока (электромагнитного колебания). На частотах от единиц до тысяч Герц, соответствующих звуковому диапазону волн, электромагнитная волна, созданная в пространстве с помощью индуктивности, распространяется на расстояние, не превышающее одного-двух десятков метров, поэтому полезного практического применения не имеет. На частотах от сотен килогерц и выше, что соответствует диапазонам радиоволн, электромагнитная волна способна распространяться более чем на тысячи километров.

фотография высоковольтной линии электропередач

Дальность распространения электромагнитной волны так же зависит от мощности протекающего по проводнику тока. Как было указано ранее, низкочастотная электромагнитная волна полезного практического применения не имеет, но зато имеет вредное влияние. В качестве примера вредного влияния можно привести влияние высоковольтной линии электропередач (ЛЭП) с напряжением в несколько десятков тысяч вольт на радиоприёмник проезжающего мимо автомобиля. Вокруг высоковольтных проводов формируется мощное электромагнитное поле, которое значительно превосходит по амплитуде электромагнитные колебания удалённых радиостанций и в приемнике вместо радиостанции слышен низкочастотный гул сетевого напряжения. Другой случай, когда происходит «глушение» радиоприёмника вблизи силовых линий электропередач при сетевом напряжении всего в 380 вольт, но токе свыше 100 ампер. В первом случае у нас большое напряжение, а во втором — большой ток. Из учебника физики средней школы известно, что мощность электрического тока в проводнике связана с напряжением и током через выражение
Р=U*I
. А чем больше мощность, тем дальше распространение электромагнитного поля и как следствие – электромагнитной волны, образуемой электромагнитным полем. Этим и объясняется влияние мощности на дальность распространения.

фотография высоковольтной линии электропередачПочему волна, про которую здесь пишется, называется электромагнитной? Потому, что она состоит из электрического и магнитного синусоидального колебания. Эти два вида колебаний ориентированы в пространстве друг относительно друга перпендикулярно – ровно на 90 градусов.
Когда электрическая волна «горизонтальна» — сориентирована параллельно линии горизонта, а магнитная волна соответственно «вертикальна» — сориентирована перпендикулярно линии горизонта, тогда говорят, что электромагнитная волна имеет

линейную горизонтальную поляризацию.

Когда электрическая волна «вертикальна» — сориентирована перпендикулярно линии горизонта, а магнитная волна соответственно «горизонтальна» — сориентирована параллельно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную вертикальную поляризацию.

Если электрическая волна (соответственно и магнитная волна) имеет наклон относительно линии горизонта – угол не равный нулю или 90 градусов, тогда говорят, что электромагнитная волна имеет линейную наклонную поляризацию.

круговая поляризация ЭМВ

Существует так же другой вид поляризации, используемый для повышения дальности передачи (приема) и лучшей помехозащищённости радиоприёмной аппаратуры – круговая поляризация – вид поляризации электромагнитной волны, при котором за один период электромагнитного колебания радиоволна делает полный оборот на 360 градусов. Один из видов круговой поляризации – эллиптическая поляризация — «приплюснутая» в одной из плоскостей круговая поляризация.

Все указанные виды поляризации определяются устройством и ориентированием радиоантенны.

Практическая важность поляризации заключается в том, что если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой, или её вообще не будет.

Примером использования поляризации света – как вида электромагнитных колебаний является 3D-кинотеатр. Принцип действия систем 3D-видеоизображения основан на следующем: Фильм снимается на кинокамеры (видеокамеры) разнесённые в пространстве, как два глаза человека. При его показе в кинотеатре, два независимых проектора закрываются поляризационными светофильтрами, точно такие же светофильтры в виде плёнок стоят в очках кинозрителей. Правый проектор и правый глаз зрителя прикрыты светофильтром с вертикальной поляризацией, а левый проектор и глаз – фильтром с горизонтальной поляризацией. Таким образом, правый глаз видит картинку от правого проектора, а левый глаз от левого. В качестве фильтров могут использоваться и другие варианты разделения световых волн, но статья не об этом, поляризация света – один из способов селекции электромагнитных волн.

 

Электромагнитные волны (радиоволны) распространяются в разных средах с разной скоростью. Скорость распространения радиоволн в вакууме приблизительно равна скорости света

300 000 км/сек. В воздухе радиоволны распространяются с чуть меньшей скоростью, но не на много, поэтому принимается та же цифра – 300 000 км/сек. Поскольку обыкновенная вода обладает электропроводностью, то её поверхность для радиоволн является отражателем, а часть энергии радиоволн тратится на нагрев поверхностных слоев воды. Типичным примером этому является микроволновая печь, разогревающая молекулы воды, содержащиеся в подогреваемой пище. Металлы не пропускают радиоволны, отражая всю энергию электромагнитных колебаний.

Немаловажным, являются свойства радиоволн распространяться в зависимости от их длины волны. Напомню, длина электромагнитной волны связана с частотой колебаний через скорость её распространения в вакууме (скорость света):

формула частоты колебаний

где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

 

Радиоволны подразделяются на несколько диапазонов:

 

Сверхдлинные «СДВ» – частотой 3 – 30 кГц, с длиной волны 100 — 10 км;

Длинные «ДВ» – частотой 30 – 300 кГц, с длиной волны 10 — 1 км;

Средние «СВ» – частотой 300 – 3000 кГц, с длиной волны 1000 — 100 метров;

Короткие «КВ» – частотой 3 – 30 МГц, с длиной волны 100 — 10 метров;

Ультракороткие «УКВ», включающие:

— метровые «МВ» – частотой 30 – 300 МГц, с длиной волны 10 — 1 метра;

— дециметровые «ДМВ» – частотой 300 – 3000 МГц, с длиной волны 10 — 1 дм;

— сантиметровые «СМВ» – частотой 3 – 30 ГГц, с длиной волны 10 — 1 см;

— миллиметровые «ММВ» – частотой 30 – 300 ГГц, с длиной волны 10 — 1 мм;

— субмиллиметровые «СММВ» – частотой 300 – 6000 ГГц, с длиной волны 1 – 0,05 мм;

Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами «СВЧ».

Естественно все перечисленные диапазоны радиоволн, как отечественные, так и буржуйские могут подразделяться на поддиапазоны.

подразделение на поддиапозоныДля передачи информации радиоволну необходимо модулировать сигналом содержащим информацию. Длинные, средние и короткие волны обычно имеют амплитудную модуляцию, что на английском звучит — amplitude modulation, и у буржуев обозначаются как — «АМ». Ультракороткие волны обычно имеют частотную модуляцию, что на английском звучит — frequency modulation, и у буржуев обозначаются как — «FМ» (по нашему «ЧМ»).

Кроме деления радиоволн на диапазоны необходимо добавить, что в зависимости от направления и путей распространения радиоволн, они бывают поверхностные (земные) (1) – распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы и пространственные (2) – распространяющиеся через верхние слои атмосферы и с отражением от ионосферы (3).

длинноволновый диапазонСуществует понятие, чем выше длина волны (меньше частота), тем она больше способна огибать препятствия. И наоборот, чем короче длина волны (выше частота), тем прямолинейнее(лучше по прямой) радиоволна распространяется.

Длинные волны способны распространяться вдоль поверхности земли и воды, но едва достигают ионосферы. Это свойство используется для организации связи с морскими судами – связь имеется практически в любой точке моря.

Средние волны распространяются вдоль поверхности земли и воды, а также отражаются ионосферой.

Короткие волны распространяются «скачками», периодически отражаясь от ионосферы и земной поверхности.

Ультракороткие волны и более высокие частоты распространяются прямолинейно, как свет от любого источника света, они не способны изгибаться вдоль земного шара, а ионосфера для них прозрачна.

Простым примером использования длинноволнового диапазона является радиосвязь с подводными лодками. Для того, чтобы не быть замеченной противником выходя на связь с командованием флота, лодка всплывает на очень короткое время. Но если бы волны, используемые для связи с подводной лодкой распространялись бы «скачками», то не в любой точке земного шара была бы связь. А на практике, в каком бы месте земного шара лодка бы не всплыла, связь появляется сразу. Конечно в последнее время с развитием техники, подводные лодки используют различные диапазоны, в том числе космическую связь (через спутники связи) на СВЧ-диапазоне.

Примером использования радиоволн диапазонов УКВ, ДМВ и СМВ является импульсная радиолокация, где свойство прямолинейного распространения радиоволн этих диапазонов используется для точного определения пространственных координат самолётов, стай птиц и других воздушных объектов. Даже проводится разведка погоды – уровня и интенсивности облачности на больших расстояниях.

От одного и того же радиопередающего устройства радиоволны отраженные от земной поверхности могут встретиться с неотражёнными волнами, или волнами, отражёнными от другого участка земной поверхности, или верхних слоёв атмосферы. В этом случае, происходит синфазное сложение радиоволн, или противофазное вычитание. В результате, в вертикальной плоскости пространства образуется изрезанная косекансная диаграмма направленности антенны. При синфазном переотражении радиоволн от земной поверхности на этих участках образуются зоны максимального переотражения – зоны Френеля. Если радиопередатчик имеет всенаправленную антенну (например штыревую), то зоны Френеля будут представлять из себя много колец на поверхности земли различного диаметра, в центре которых находится антенна. Диаметр колец может быть от десятков метров, до нескольких километров.

Для Вашей эрудиции: До военной агрессии в Югославии, американцы придавали большое значение противорадиолокационным ракетам, как средству уничтожения радаров противника. Противорадиолокационная ракета имеет самонаводящуюся радиоголовку, которая наводит ракету на сигнал радара. Но после этой своей миротворческой операции по превращению Югославии в марионеточное государство, они стали перевооружаться на ракеты с тепловыми головками самонаведения. Оказалось, что головки самонаведения противорадиолокационных ракет наводились на зоны Френеля, которые у вращающегося радара всё время меняются, в результате чего вычислитель ракеты не правильно определял координаты радара, и в лучшем случае ракета падала в одну из зон Френеля. Так, купленный у Советского Союза ещё в 80-х годах радар метрового диапазона волн, более 50 суток войны надежно обеспечивал Югославские ПВО информацией о полётах американцев. С его помощью был сбит не один чудо-самолёт-невидимка звёздно-полосатых. А по телевизору как обычно – врали, что американцы потерь не несут.

Сильное влияние на распространение радиоволн оказывают препятствия. Как правило, препятствия обладают отражающим свойством. В качестве препятствий могут выступать различные предметы как природного, так и искусственного происхождения. Как было написано ранее, радиоволны отражаются от земной поверхности. Стоит отметить, что если грунт сильно сухой (например в пустыне), то отражение радиоволн намного хуже, чем когда земля сырая от дождя. Так, расстояние связи у одной и той же аппаратуры связи на море на 50 – 70 процентов больше, чем на суше. Отражают радиоволны деревья и облака. Перечисленные естественные препятствия являются хорошими отражателями, потому, что в их состав входит вода. К искусственным препятствиям, отражающим радиоволны относятся различные металлические конструкции, в том числе арматура зданий и сооружений.

Влияние типа используемой антенны на качество и направленность приема (излучения) радиоволн

 

картинка-схема вибратора ГерцаКуда и как будет распространяться радиоволна, определяется размерами и формой антенны-излучателя радиоволн. Самой простой радиоантенной является Вибратор Герца. Это элементарный «кубик», который является основой для построения всех типов антенн.

Вибратор Герца – это два проводника, расходящиеся в противоположные стороны от «точки подключения энергии». По своей сути это «развернутый» колебательный контур. Для лучшего излучения радиосигнала, расстояние от конца одного проводника до конца другого должно быть равно половине длины волны излучаемого (или принимаемого) электромагнитного колебания. Это необходимо для того, чтобы на концах вибратора была максимальная разность потенциалов напряжения сигнала, а в центре вибратора – максимальная амплитуда тока. Правда необходимо использовать коэффициент укорочения, который учитывает скорость распространения электрического сигнала по поверхности проводников, которая намного меньше чем в вакууме. В зависимости от частоты сигнала и металла, из которого изготовлен вибратор коэффициент укорочения может быть в пределах от 0,65 до 0,85. То есть вибратор должен быть равен половине длины волны, помноженной на коэффициент укорочения.

Для уменьшения габаритов антенны иногда используется вибратор, по длине равный одной четвёртой длины волны. Могут использоваться и другие соотношения, но при этом, качество приёма (передачи) и направленные свойства антенны изменяются.

Диаграмма направленности полуволнового вибратораДиаграмма направленности полуволнового вибратора имеет форму тороида вращения – форму «бублика». Если вибратор расположить горизонтально относительно земли, то зоны максимального приема (передачи) будут на линии перпендикулярной вибратору, а зоны минимального приема по торцовым сторонам вибратора. Но учтите, это без учёта влияния переотражения от земли. Если учитывать влияние переотражения от земной поверхности, проекция диаграммы направленности антенны (ДНА) вибратора окажется слегка вытянутой в направлениях максимумов.
На рисунке изображены тороид вращения и проекция диаграммы направленности антенны на горизонтальную поверхность с учётом влияния земли.

Вертикальная штыревая антенна     Вертикальная штыревая антенна – это видоизменённый вибратор Герца, у которого в качестве одного проводника используется сам штырь, а в качестве другого противовес – кусок свисающего вниз провода, человек, у которого в руках мобильная рация, или поверхность земли. Диаграмма направленности штыревой антенны, это тот же торроид, находящийся в горизонтальной площади, только за счёт отражения от земли торроид приплюснут снизу. Зона максимального приёма будет во все стороны, а минимального – над штыревым вибратором. Зону минимального приема, находящуюся над антенной называют – мёртвая зона, или мёртвая воронка.

В зависимости от соотношения длины штыревой антенны к длине волны, диаграмма направленности антенны в вертикальной плоскости так же изменяется. На рисунке схематично изображено, влияние отношения длины штыря к длине волны на формирование диаграммы направленности антенны в вертикальной плоскости.

ДНА в зависимости от длины штыря

Вспомните практическую важность поляризации ЭМВ — если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой. К этому стоит добавить диаграмму направленности штыревой антенны, и тогда на примере двух радиотелефонов — переносных радиостанций (1 и 2) изображённых на рисунке ниже, можно сделать логическое заключение:

пример двух радиотелефонов переносимых радиостанцийЕсли антенны радиопередатчика и радиоприемника ориентированы в пространстве относительно горизонта одинаково и диаграммы направленности антенн максимумами направлены друг на друга, то связь будет наилучшей. Если не выполняется одно из указанных условий, то связи либо не будет, либо она будет плохой.

На дальность радиосвязи также влияет ещё один параметр – толщина элементов вибратора, чем она больше, тем антенна широкополоснее – диапазон хорошо принимаемых частот шире, но уровень сигнала практически на всех частотах уменьшается. Это связано с тем, что дипольная антенна – это тот же колебательный контур, а при расширении полосы частот АЧХ резонанса, амплитуда резонанса уменьшается. Поэтому не удивляйтесь, что телевизионная антенна, сделанная из пивных алюминиевых банок в городе, где уровень сигнала телевизионной вышки большой, принимает телевизионный сигнал разных каналов не хуже, а зачастую лучше сложной профессиональной антенны.

Хорошие профессиональные радиоантенны обладают показателем – коэффициентом усиления антенны. Ведь обычный полуволновой вибратор не усиливает сигнал, его действие избирательно – на определённой частоте, в определённых направлениях и определённой поляризации. Чтобы в приемнике было меньше помех, увеличить дальность приема-передачи, одновременно при этом сузить диаграмму направленности антенны (общепринятое название — ДНА), простой полуволновой вибратор не годится. Антенну усложняют.

 

Ранее, я писал о влиянии различных препятствий — их отражательном свойстве. Если препятствие по своим размерам не соизмеримо (на порядок меньше) с длиной радиоволны, тогда это не является для радиосигнала препятствием, оно никак на него не влияет. Если препятствие находится в плоскости параллельной электрической волне и больше длины волны, тогда это препятствие отражает радиоволну. Если препятствие по протяженности кратно (равно четверти, половине или целой) длине волны, сориентировано параллельно электрической волне и перпендикулярно направлению распространения волны, тогда это препятствие действует как резонансный колебательный контур на целой длине волны или её гармониках, и имеет наибольшие отражательные свойства.

 антенна, состоящая из петлевого полуволнового вибратора и рефлектораИменно эти описанные выше свойства и используются в сложных антеннах. Так, один из вариантов улучшения приемных свойств антенны является установка дополнительного рефлектора (отражателя), принцип действия которого основывается на отражении радиоволны и синфазного сложения двух сигналов – от телецентра (ТЦ) и от рефлектора. Диаграмма направленности при этом сужается и вытягивается. На рисунке изображена антенна, состоящая из петлевого полуволнового вибратора(1) и рефлектора(2). Длина вибратора (А) этой телевизионной антенны выбирается равной половине длины волны среднего телевизионного канала, помноженную на коэффициент укорочения. Длина рефлектора (Б) выбирается равной половине длины волны минимального телевизионного канала (с максимальной длиной волны). Расстояние между вибратором и рефлектором (С) выбирается таким, чтобы происходило синфазное сложение прямого и отражённого сигнала – половине длины волны.

антенна "волновой канал", состоящая из рефлектора, петлевого полуволнового вибратора и одного директораСледующий способ дальнейшего усиления приемного сигнала путём сужения и вытягивания ДНА – добавление пассивного вибратора – директора. Принцип действия всё на том же синфазном сложении. Диаграмма направленности при этом ещё сильнее сужается и вытягивается. На рисунке изображена антенна «волновой канал», состоящая из рефлектора (1), петлевого полуволнового вибратора (2) и одного директора (3). Дальнейшее добавление директоров ещё сильнее сужает и вытягивает диаграмму направленности. Длина директоров (В) выбирается чуть меньше длины активного вибратора. Для увеличения коэффициента усиления антенны и её широкополосности, перед активным вибратором добавляются директоры с постепенным уменьшением их длины. Обратите внимание, что длина активного вибратора равна половине средней длине волны принимаемого сигнала, длина рефлектора – больше половины длины волны, а длина директора – меньше половины длины волны. Расстояния между элементами выбирается также около половины длины волны.

В профессиональной технике часто применяется способ сужения ДНА и повышения усилительных свойств антенны – фазированная антенная решётка, в которой параллельно подключается несколько антенн (например простых диполей, или антенн типа «волновой канал»). В результате происходит сложение токов соседних каналов, и как результат – повышение мощности сигнала.

На сверхвысоких частотах в качестве вибратора антенны применяют волновод, а в качестве рефлектора применяют сплошное полотно, все точки которого равноудалены от плоскости вибратора (на одинаковом расстоянии) – параболоид вращения, или в простонародье – «тарелка». Такая антенна обладает очень узкой диаграммой направленности и высоким коэффициентом усиления антенны.

 

Выводы на основе распространения и сложности формирования радиоволн

 

Как и куда распространяются радиоволны можно рассчитать с помощью умных формул и преобразований только для идеальных условий – при отсутствии естественных препятствий. Для этого, элементы антенн, различные поверхности должны быть идеально ровные. На практике, из-за влияния многих факторов преломления и отражения, ещё ни один «учёный мозг» не смог с высокой достоверностью рассчитать распространение радиоволн в естественных природных условиях. Существуют области пространства уверенного приема и зоны радиотени – там, где прием вовсе отсутствует. Только в кино альпинисты не отвечают на вызов по радиосвязи потому, что у них заняты руки, или они сами заняты «спасением мира», на самом деле радиосвязь – дело не устойчивое и чаще альпинисты не отвечают потому, что связи просто нет – отсутствует прохождение радиоволн. Именно зависимость радиосвязи от природных явлений (дождь, низкая облачность, разряженность атмосферы и т.д.) привела к возникновению понятия «радиолюбитель». Это сейчас понятие «радиолюбитель» – человек, который любит паять радиосхемы. Лет двадцать назад это был «связист-коротковолновик», который на изготовленном своими руками маломощном трансивере связывался с другим радиолюбителем (или по другому — радиокорреспондентом), находящимся на другой стороне Земли, за что получал «бонусы». Раньше даже проводились соревнования по радиосвязи. Нынче тоже проводятся, но с развитием техники это стало не так актуально. Среди этих радиолюбителей-связистов есть много недовольных тем, что обыкновенные «паялы», не сидящие в наушниках в поисках радиокорреспондентов для организации радиообмена, называют себя радиолюбителями.

Радиоволны и частоты

ЧТО ТАКОЕ РАДИОВОЛНЫ

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати, свет это тоже электромагнитные волны, обладающие схожими с радиоволнами свойствами (отражение, преломление, затухание и т.п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны в метрах рассчитывается по формуле:

 или примерно ,
где f – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что длина волны напрямую влияет на длину антенны для радиосвязи.

Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волн встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от его поверхности и либо уходит обратно, либо рассеивается в пространстве. Кстати, на этом основано применение электромагнитных волн в радиолокации.

Еще одним полезным свойством электромагнитных волн является их способность огибать на своем пути некоторые препятствия. Но это возможно лишь в том случае, когда размеры объекта меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить. Вспомните военную технологию снижения заметности «Stealth», в рамках которой разработаны соответствующие геометрические формы, радиопоглощающие материалы и покрытия для уменьшения заметности объектов для локаторов.

Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.

РАСПРЕДЕЛЕНИЕ СПЕКТРА

Радиоволны, используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.

Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.

Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Диапазон
частот

Наименование диапазона частот

Наименование
диапазона волн

Длина волны

3–30 кГц

Очень низкие частоты (ОНЧ)

Мириаметровые

100–10 км

30–300 кГц

Низкие частоты (НЧ)

Километровые

10–1 км

300–3000 кГц

Средние частоты (СЧ)

Гектометровые

1–0.1 км

3–30 МГц

Высокие частоты (ВЧ)

Декаметровые

100–10 м

30–300 МГц

Очень высокие частоты (ОВЧ)

Метровые

10–1 м

300–3000 МГц

Ультравысокие частоты (УВЧ)

Дециметровые

1–0.1 м

3–30 ГГц

Сверхвысокие частоты (СВЧ)

Сантиметровые

10–1 см

30–300 ГГц

Крайневысокие частоты (КВЧ)

Миллиметровые

10–1 мм

300–3000 ГГц

Гипервысокие частоты (ГВЧ)

Децимиллиметровые

1–0.1 мм


Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.


Распределение спектра между различными службами.

Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:

Термин

Диапазон частот

Пояснения

КВ

2–30 МГц

Из-за особенностей распространения в основном применяется для дальней связи.

«Си-Би»

25.6–30.1 МГц

Гражданский диапазон, в котором могут пользоваться связью частные лица. В разных странах на этом участке выделено от 40 до 80 фиксированных частот (каналов).

«Low Band»

33–50 МГц

Диапазон подвижной наземной связи. Непонятно почему, но в русском языке не нашлось термина, определяющего данный диапазон.

УКВ

136–174 МГц

Наиболее распространенный диапазон подвижной наземной связи.

ДЦВ

400–512 МГц

Диапазон подвижной наземной связи. Иногда не выделяют этот участок в отдельный диапазон, а говорят УКВ, подразумевая полосу частот от 136 до 512 МГц.

«800 МГц»

806–825 и
851–870 МГц

Традиционный «американский» диапазон; широко используется подвижной связью в США. У нас не получил особого распространения.


Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.

В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.

КАК РАСПРОСТРАНЯЮТСЯ РАДИОВОЛНЫ

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.

Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).

Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.

Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.

Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.


Распространение длинных и коротких волн.

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.

Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.

Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.


Отражательные слои ионосферы и распространение коротких волн в зависимости от частоты и времени суток.

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.


Распространение коротких и ультракоротких волн.

Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны).

Возможность направленного излучения волн позволяет повысить эффективность системы связи. Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящимся не в створе луча.

При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.


Параболическая направленная спутниковая антенна (фото с сайта ru.wikipedia.org).

Необходимо отметить, что с уменьшением длины волны возрастает затухание и поглощение энергии в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, ограничивающей дальность связи.

Мы выяснили, что радиоволны обладают различными свойствами распространения в зависимости от длины волны и каждый участок радиоспектра применяется там, где лучше всего используются его преимущества.

Скорость — распространение — радиоволна

Скорость — распространение — радиоволна

Cтраница 1

Скорость распространения радиоволн равна 3 10s м / с.  [1]

Скорость распространения радиоволн в свободном пространстве ( в вакууме) равна скорости света. Распространение радиоволн в других средах происходит с фазовой скоростью, отличающейся от с, и сопровождается поглощением электромагнитной энергии. Оба эффекта объясняются возбуждением колебаний электронов и ионов среды пор действием электрического поля волны. Если напряженность поля Е гармонической волны мала по сравнению с напряженностью поля, действующего на заряды в самой среде ( например, на электрон в атоме), то колебания происходят также по гармоническому закону с частотой со пришедшей волны. Колеблющиеся электроны излучают вторичные радиоволны той же частоты, но с другими амплитудами и фазами. В результате сложения вторичных волн с приходящей формируется результирующая волна с новой амплитудой и фазой. Сдвиг фаз между первичной и переизлученными волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами являются причиной поглощения радиоволн.  [2]

Скорость распространения радиоволн v c / j / Vji определяется относительной диэлектрической & и магнитной д / проницаемостью среды. Для реальных сред, с которыми связано распространение электромагнитных колебаний в радиолиниях ( воздух, почва, метеорологические образования), магнитная проницаемость х близка к единице.  [4]

Скорость распространения радиоволн в воздушном пространстве на удалении от земной поверхности, равном двум-трем значениям длины волны, близка к 300 000 км / сек.  [6]

Скорость распространения радиоволн в длинных лиииях не очень значительно отличается от 300 000 км / сек. Поэтому для задержки в 1 мксек требуется линия длиной в сотни метров, что неудобно. Обычно вместо длинных линий применяются искусственные линии ( см.), которые позволяют получать время задержки до нескольких микросекунд.  [7]

Скорость распространения радиоволн в длинных линиях не очень значительно отличается от 300 000 KMJCBK. Поэтому для задержки в 1 мксек требуется линия длиной в сотни метров, что неудобно. Обычно вместо длинных линий применяются искусственные линия ( см.), которые позволяют получать время задержки до нескольких микросекунд.  [8]

Изменение скорости распространения радиоволн в воздухе в зависимости от атмосферных условий незначительно и практически не имеет значения.  [9]

Так как скорость распространения радиоволн известна, то можно градуировать прямую А В прямо в единицах длины и непосредственно читать на экране ос циллографа расстояние до отражающего предмета.  [11]

Как зависит скорость распространения радиоволн от свойств среды, в которой волны распространяются.  [12]

Так как скорость распространения радиоволн известна — то можно градуировать прямую АВ прямо в километрах и непосредственно читать на экране осциллографа расстояние до отражающего предмета. В действительности радиолокатор посылает не однократный сигнал, показанный на рис. 65, а ряд таких сигналов, следующих друг за другом через равные промежутки времени много ( например, тысячу) раз в секунду. Развертка тоже делается периодической и синхронной с посылкой сигналов. Таким образом, изображения посылаемого и принимаемого ( отраженного) сигналов воспроизводятся на экране — осциллографа много раз в секунду и воспринимаются наблюдателем как непрерывная картина.  [14]

Страницы:      1    2    3    4

Распространение радиоволн — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 апреля 2019; проверки требуют 6 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 апреля 2019; проверки требуют 6 правок.

Распространение радиоволн — явление переноса энергии электромагнитных колебаний в диапазоне радиочастот (см. Радиоизлучение). Разные аспекты этого явления изучаются различными техническими дисциплинами, являющимися разделами радиотехники. Наиболее общие вопросы и задачи рассматривает радиофизика. Распространение радиоволн в специальных технических объектах таких, как кабели, волноводы антенны, рассматривают специалисты по прикладной электродинамике, или специалисты по технике антенн и фидеров. Техническая дисциплина распространение радиоволн рассматривает только те задачи радиоизлучения, которые связаны с распространением радиоволн в естественных средах, то есть влияние на радиоволны поверхности Земли, атмосферы и околоземного пространства, распространение радиоволн в природных водоемах, а также в техногенных ландшафтах. Как техническая дисциплина Распространение радиоволн входит в программу подготовки радиоинженеров, во многих вузах всего мира. Обычно этот курс занимает один учебный семестр.

Радиоизлучение охватывает очень широкий диапазон частот. Физические эффекты и наблюдаемые явления в различных диапазонах радиоволн могут отличаться не только количественно, но и качественно, поэтому направления исследований в этой науке распадаются на отдельные ветви, соответствующие в целом классификации радиоволн по диапазонам. Основные физические эффекты и изучаемые явления:

  • влияние поверхности Земли на излучаемые волны, формирование волн, связанных с Земной поверхностью;
  • отражение волн от различных объектов как природных, так и искусственных, расположенных на поверхности Земли и многолучевое формирование итогового сигнала;
  • ослабление мощности радиоволн из-за их поглощения дождем, снегом, пылью;
  • отражение радиоволн от дождя, снега, пыли, стай птиц;
  • искривление путей распространения радиоволн из-за неоднородности слоев атмосферы.

Основные результаты теории, используемые специалистами смежных областей:

  • Оценка потерь мощности сигнала при распространении радиоволн, необходимая для оценки дальности действия любой радиотехнической системы/
  • Многолучевое распространение радиоволн из-за постоянного изменения соотношения приводит к колебаниям мощности принимаемого сигнала, замираниям. Специалисты по теории связи изучают статистику этих замираний, конструируют аппаратуру и используют методы кодирования, адаптированные к характеру замираний.
  • Отражение радиоволн от разных объектов, представляет существенную помеху радиолокационным станциям, создавая ложные цели.
  • Искривление линии распространения радиоволн в неоднородной атмосфере ведет к ошибкам измерения координат в радиолокации и радионавигации.
  • Определение пространственного сектора доступности радиосредств (зона радиовидимости).

Наиболее существенным фактором, влияющим на распространение радиоволн в реальных условиях, является метеорология. Поэтому данные метеорологии широко используются данной отраслью знаний. С другой стороны она предъявляет к метеорологии свои запросы, например, о размере капель воды в дожде разной интенсивности.

Дальняя космическая связь — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 сентября 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 сентября 2019; проверки требует 1 правка. Антенна РТ-70 Центра дальней космической связи

Дальняя космическая связь — вид радиосвязи с космическими аппаратами, находящимися на значительном удалении от Земли. Дальняя космическая связь осложняется значительным ослаблением сигнала за счёт рассеяния в пространстве, доплеровским смещением частоты, а также значительными задержками, вызванными конечной скоростью распространения радиоволн (см. скорость света).

Передача сигнала на космический аппарат сопряжена с меньшими трудностями, так как мощность сигнала, передаваемого с Земли, практически не ограничена, в дальнем космосе отсутствуют электромагнитные помехи техногенного происхождения, а естественный фон радиоизлучения очень слаб, что позволяет оснащать космические аппараты сверхвысокочувствительными приёмниками. Бо́льшую проблему представляет передача сигналов с космического аппарата на Землю, так как энергетические возможности бортовой аппаратуры ограничены, в лучшем случае, сотнями ватт, а в зоне приёмных антенн на земле велик уровень техногенных электромагнитных помех, что не позволяет повышать чувствительность приёмников. Указанная проблема частично решается применением узконаправленных параболических антенн и корреляционным анализом принимаемого сигнала на высокоскоростных ЭВМ.

Космический аппарат «Вояджер-1» — один из самых удаленных от Земли объектов, с которым поддерживается связь. «Вояджер-2» в середине ноября 2019 года находился на расстоянии в 122,27 астрономической единицы (18,29 млрд км, или 0,001933 светового года) от Солнца, то есть на расстоянии, преодолеваемом светом за 17 часов. Скорость движения станции относительно Солнца на этот момент составляет около 15,4 км/с, или 3,24 а. е. в год. Улучшить приём сигналов удаётся с использованием территориально удалённых приёмных антенн.
Вероятность того, что две антенны ультракоротковолнового диапазона, удалённые на расстояния в несколько тысяч километров, примут один и тот же сигнал земного происхождения, крайне мала, так как ультракороткие волны распространяются лишь в зоне прямой видимости. В то же время сигнал от космического аппарата будет действовать на обе антенны одинаково. Таким образом, результатом свёртки сигналов, принятых двумя антеннами, будет именно сигнал от космического аппарата.

Целесообразно применение для дальней космической связи спутников-ретрансляторов. Они находятся достаточно далеко от Земли и практически не подвержены техногенным помехам. Кроме того, сигнал от удалённого космического аппарата не ослабляется атмосферой Земли.

Тем не менее, несмотря на принимаемые меры и огромные затраты на их реализацию, скорость приёма данных от удалённых космических аппаратов очень низкая — единицы-десятки килобит в секунду. Однако, даже такая маленькая скорость позволяет получать ценную научную информацию.

Поскольку для дальней космической связи используются узконаправленные антенны, необходимо строго выдерживать ориентацию космического аппарата на Землю. Для этого аппараты оснащают автономными системами ориентации, независимыми от радиосигналов. Чаще всего — ориентация оптическими датчиками с узкополосными светофильтрами, реагирующими на излучения Солнца и ярких звёзд (Канопуса, Сириуса). Поскольку ширина луча радиоволн от аппарата, находящегося даже в районе Сатурна, уже существенно больше диаметра орбиты Земли, точное «прицеливание» на Землю не требуется — достаточно лишь передавать сигнал в направлении Солнца.

Американская автоматическая межпланетная станция «Вояджер-1», запущенная 5 сентября 1977 года, является самым удалённым космическим объектом, с которым поддерживается радиоконтакт. Расстояние, которое он пролетел на конец 2010 года составляет более 17 млрд км[1][2]. Радиосигнал проходит это расстояние более, чем за 16 часов. Для приема радиосигналов с него используется Сеть дальней космической связи НАСА.

Системы и центры дальней космической связи[править | править код]

Радиодиапазоны дальней космической связи[править | править код]

ITU выделило несколько частотных диапазонов для использования в радиосвязи с космическими аппаратами, в зависимости от расстояния (дальней условно считается связь с аппаратами, находящимися на расстояниях более 2 млн километров от Земли)[3].

Частотный диапазон в МГц
Обозначение Дальний космос (более 2 млн км от Земли) Ближний космос (менее 2 млн км от Земли)
От Земли в космос От аппарата на Землю От Земли в космос От аппарата на Землю
S-диапазон 2110-2120 2290-2300 2025-2110 2200-2290
X-диапазон 7145-7190 8400-8450 7190-7235 8450-8500
K-диапазон * * * 25500-27000
Ka-диапазон 34200-34700 31800-32300 * *

Символом «*» обозначены сочетания, не поддерживаемые Сетью дальней космической связи НАСА.

Связь с подводными лодками — Википедия

Связь с подводными лодками, когда они находятся в погружённом состоянии — достаточно серьёзная техническая задача. Основная проблема состоит в том, что электромагнитные волны с частотами, используемыми в традиционной радиосвязи, сильно ослабляются при прохождении через толстый слой проводящего материала, которым является солёная морская вода.

В ряде случаев хватает простейшего решения: всплыть к самой поверхности воды и поднять антенну над водой, но тогда подводная лодка становится более уязвимой. Атомная подводная лодка может находиться в подводном положении на рабочей глубине в течение нескольких недель и даже месяцев, и связь с ней должна быть обеспечена. Для этого применяются специальные технические решения.

  • Звук может распространяться в воде достаточно далеко, и подводные громкоговорители и гидрофоны могут использоваться для связи. Во всяком случае, военно-морские силы и СССР, и США устанавливали акустическое оборудование на морском дне областей, которые часто посещались подводными лодками, и соединяли их подводными кабелями с наземными станциями связи.
  • Односторонняя связь в погружённом положении возможна путём использования взрывов. Серии взрывов, следующих через определённые промежутки времени, распространяются по подводному звуковому каналу и принимаются гидроакустиком.

Радиосвязь в диапазоне сверхдлинных волн[править | править код]

Сверхдлинные радиоволны включают диапазоны крайне низких частот, сверхнизких частот, инфранизких частот и очень низких частот.

С увеличением частоты уменьшается длина волны радиопередатчика, а значит и необходимая длина элементов антенны, так как они находятся в прямой зависимости. Но с увеличением радиочастоты уменьшается и глубина проникновения в толщу земли или моря. С уменьшением частоты уменьшается количество информации, которое можно передать на конкретной частоте за единицу времени. В некоторых странах крайне низкие частоты определяются как частоты диапазона 3—300 Гц, поэтому бывают разночтения при переводе.

Аэрофотография КНЧ-передатчика (Клэм Лэйк, Висконсин, 1982)

Радиоволны крайне низких частот или extremely low frequencies (КНЧ, ELF, 3—30 Гц) легко проходят сквозь Землю и морскую воду. Радиоволны сверхнизких частот или super low frequencies (СНЧ, SLF, 30—300 Гц) также легко проникают сквозь Землю и морскую воду, но имеют размеры элементов антенн на порядок меньше. Строительство КНЧ/СНЧ-передатчика — чрезвычайно сложная задача из-за огромной длины волны и крайне низкого КПД передатчика. Вместо сооружения полноразмерных антенн используют два очень больших электрода, заглублённых в землю в районе с достаточно низкой удельной проводимостью на расстоянии несколько десятков километров друг от друга. Электрический ток между электродами проникает глубоко в недра Земли, используя их как часть огромной антенны. По причине крайне высокой технической сложности такой антенны, только СССР и США имели СНЧ-передатчики.

Вышеописанная схема реализована в передатчике «ЗЕВС», находящемся на Кольском полуострове в Североморске-3, к востоку от Мурманска в районе с координатами 69° с. ш. 33° в. д.HGЯOL[1] (факт существования советского СНЧ-передатчика был обнародован только в 1990 году). Такая схема антенны имеет крайне низкий КПД — на каждый ватт излучаемой энергии необходимо затратить до 100 кВт энергии генераторов[2][3][4].

Приём сигнала СНЧ на подводной лодке осуществляется на магнитные антенны. Они располагаются как в надстройке лодки (для приёма на малых глубинах), так и на специальном буксируемом устройстве, которое обеспечивает приём на глубинах в сотни метров, при этом само антенное устройство находится на небольшой глубине в приповерхностном слое[5].

Советская система «Зевс» работает на частоте 82 Гц (длина волны 3656 км), американская «Seafarer» (с англ. — «мореплаватель») — 76 Гц (длина волны 3944,64 км). Длина волны в этих передатчиках сравнима с радиусом Земли. До 1977 года использовалась система «Sanguine», находящаяся в Висконсине. Частота — 76 Гц или 45 Гц. ВМС Великобритании предпринимали попытки построить свой передатчик в Шотландии, но проект был свёрнут.

Радиоволны инфранизких частот или infra low frequencies (ИНЧ, ILF 300—3000 Гц) имеют более компактные элементы антенн, но меньшее проникновение в толщу морских и земных глубин.

Радиоволны очень низких частот или very low frequencies (ОНЧ, VLF 3—30 кГц) имеют ещё более компактные антенны по сравнению с предыдущим диапазонам, но могут проникать в морскую воду только на глубины до 20 метров, преодолевая поверхностный (скин) эффект. Подводная лодка, находящаяся на небольшой глубине, может использовать этот диапазон для связи. Подводная лодка, находящаяся гораздо глубже, может использовать буй с антенной на длинном кабеле. Буй может находиться на глубине нескольких метров и из-за малых размеров не обнаруживаться сонарами противника. Первый в мире ОНЧ-передатчик, «Голиаф», был построен в Германии в 1943 году, после войны перевезён в СССР, в 1949—1952 годах восстановлен в Нижегородской области и эксплуатируется до сих пор. В Белоруссии, под Вилейкой, функционирует мегаваттный ОНЧ-передатчик для связи с подводными лодками ВМФ России — 43-й узел связи.

Недостатки радиосвязи указанных диапазонов:

  • Линия связи является односторонней. Подводная лодка на борту не может иметь свой передатчик из-за огромного требуемого размера антенны. Даже приёмные антенны КНЧ/СНЧ-связи отнюдь не малы: лодки используют выпускаемые буксируемые антенны длиной от сотен метров.
  • Скорость такого канала крайне мала — порядка нескольких знаков в минуту. Таким образом, разумно предположить, что передаваемые сообщения содержат общие инструкции или команды по использованию других видов связи.

Если субмарина находится в надводном положении, то она может использовать обычный диапазон радиосвязи, как и прочие морские суда. Это не означает использование обычного коротковолнового диапазона: чаще всего это связь с военным спутником связи. В США подобная система связи называется «спутниковая подсистема обмена информацией с подводными лодками» (англ. Submarine Satellite Information Exchange Sub-System, SSIXS)[6], часть морской системы спутниковой связи на ультравысоких частотах (англ. Navy Ultra High Frequency Satellite Communications System, UHF SATCOM).

В 1970-х годах в СССР был разработан проект модификации подводных лодок проекта 629 для использования их в качестве ретрансляторов сигнала и обеспечения связи кораблей из любой точки мира с командованием ВМФ. По проекту было модифицировано три субмарины.

Для связи с подводными лодками в ВМФ РФ (СССР) используется самолёт-ретранслятор Ту-142МР «Орёл» (по классификации НАТО — «Bear-J»). В нижней части фюзеляжа установлен барабан с выпускной буксируемой тросовой антенной длиной 8,6 км и приёмопередатчик СДВ-диапазона большой мощности — станция Р-826ПЛ «Фрегат». Кроме этого, на самолёте установлен комплекс коротковолновых станций для тропосферной связи — «БКСР-А» и дополнительное оборудование для кодирования и автоматизации радиосвязи, под управлением БЦВМ «Орбита-20». В составе экипажа два лётчика, штурман, бортинженер, кормовой стрелок, радист и три оператора (СДВ, ТЛГ и ПУР). Для защиты экипажа от электромагнитного излучения на всех иллюминаторах, за исключением трёх лобовых стёкол лётчиков, установлены металлические экранирующие сетки. Самолёт способен находиться в воздухе до 17 часов без дозаправки.

Аналогичное оборудование установлено на воздушном командном пункте — самолёте Ил-80.

В ВМС США для связи с ПЛ в СДВ диапазоне используется самолёт E-6 Mercury (созданный на базе пассажирского Боинга-707, используются буксируемые антенны длиной 7925 м (основная) и 1219 м (вспомогательная)). Собственно, этот самолёт не является чистым ретранслятором сигналов боевого управления для ПЛАРБ, а служит командным пунктом для управления стратегическими ядерными силами. В состав экипажа, помимо 5 человек, непосредственно управляющих машиной, ещё входит 17 операторов.
Правительственный воздушный командный пункт E-4A (на базе Боинга-747) также имеет станцию СДВ и буксируемую трос-антенну длиной около 8 км.

Сеансы связи, особенно со всплытием лодки, нарушают её скрытность, подвергая риску обнаружения и атаки. Поэтому принимаются различные меры, повышающие скрытность лодки, как технического, так и организационного порядка. Так, лодки используют передатчики для передачи коротких импульсов, в которых сжата вся необходимая информация. Также передача может быть осуществлена всплывающим и подвсплывающим буём. Буй может быть оставлен лодкой в определённом месте для передачи данных, которая начинается, когда сама лодка уже покинула район.

  1. ↑ ZEVS, The russian 82 Hz ELF transmitter
  2. ↑ «Радиоэлектроника и телекоммуникации» № 3 (21), 2002 (неопр.) (недоступная ссылка). Дата обращения 27 июля 2018. Архивировано 24 мая 2015 года.
  3. Trond Jacobsen. ZEVS, THE RUSSIAN 82 Hz ELF TRANSMITTER (англ.). ALFLAB. Дата обращения 15 ноября 2017.
  4. ↑ Втекающие и вытекающие несобственные моды: анализ диссипативных … — Давидович М. В. — Google Книги
  5. ↑ Взаимодействие электромагнитных полей контролируемых источников СНЧ диапазона с ионосферой и земной корой: Материалы Всероссийского (с международным участием) научно-практического семинара. В 2 т. / Рос. акад. наук, Отд. наук о Земле, Кольский научный центр, Геологический институт; гл. ред. академик РАН Е. П. Велихов, зам. гл. редактора д. г.-м. н. Ю. Л. Войтеховский. — Апатиты, 2014. — Т. 1. — 206 с. — С. 169.
  6. ↑ Special Intelligence Submarine Satellite Information Exchange Subsystem (SI SSIXS) / FAS, July 04, 1997  (англ.)

Распространение радиоволн — это… Что такое Распространение радиоволн?

         Двойное лучепреломление. Существенное влияние на Р. р. оказывает магнитное поле Земли

пронизывающее ионосферу. В постоянном магнитном поле ионизированный газ становится анизотропной средой. Попадающая в ионосферу волна испытывает

, т. е. расщепляется на 2 волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. В магнитном поле

на электрон, движущийся со скоростью υ, действует

, под действием которой электрон вращается с частотой

         В простейшем случае, когда направление Р. р. перпендикулярно H0 (Е лежит в одной плоскости с H0), волну можно представить в виде суммы 2 волн с Е Н0 и Е || Н0. Для первой волны (необыкновенной) характер движения электронов и, следовательно, n изменяются, для второй (обыкновенной) они остаются такими же, как и в отсутствии магнитного поля:

        

         В случае произвольного направления Р. р. относительно магнитного поля Земли формулы более сложные: как n1, так и n2 зависят от ωH. Поскольку отражение радиоволны происходит от слоя, где n = 0, то обыкновенная и необыкновенная волны отражаются на разной высоте. Критические частоты для них также различны.

         По мере Р. р. в ионосфере из-за различия в скорости накапливается сдвиг фаз между волнами, вследствие чего поляризация результирующей волны непрерывно изменяется. Линейная поляризация падающей волны в определённых условиях сохраняется, но плоскость поляризации при распространении поворачивается (см. Вращение плоскости поляризации). В общем случае поляризация обеих волн эллиптическая.

         Рассеяние радиоволн. Помимо регулярной зависимости электронной концентрации N от высоты (рис. 12), в ионосфере постоянно происходят случайные изменения концентрации. Ионосферный слой содержит большое число неоднородных образований различного размера, которые находятся в постоянном движении и изменении, рассасываясь и возникая вновь. Вследствие этого в точку приёма, кроме основного отражённого сигнала, приходит множество рассеянных волн (рис. 13), сложение которых приводит к замираниям — хаотическим изменениям сигнала.

         Существование неоднородных образований приводит к возможности рассеянного отражения радиоволн при частотах, значительно превышающих максимальные частоты отражения от регулярной ионосферы. Аналогично рассеянию на неоднородностях тропосферы это явление обусловливает дальнее Р. р. (метрового диапазона).

         Характерные неоднородные образования возникают в ионосфере при вторжении в неё метеоритов (См. Метеориты). Испускаемые раскалённым метеоритом электроны ионизируют окружающую среду, образуя за летящим метеоритом след, диаметр которого вследствие молекулярной диффузии быстро возрастает. Ионизированные следы создаются в интервале высот 80—120 км, длительность их существования колеблется от 0,1 до 100 сек. Радиоволны зеркально отражаются от метеорного следа. Эффективность этого процесса зависит от массы метеорита.          Нелинейные эффекты. Для сигналов не очень большой мощности две радиоволны распространяются через одну и ту же область ионосферы независимо друг от друга (см. Суперпозиции принцип), ионосфера является линейной средой. Для мощных радиоволн, когда поле Е волны сравнимо с характерным «плазменным полем» Ep ионосферы, ε и σ начинают зависеть от напряжённости поля распространяющейся волны. Нарушается линейная связь между электрическим током и полем Е.          Нелинейность ионосферы может проявляться в виде перекрёстной модуляции 2 сигналов (Люксембург — Горьковский эффект (См. Люксембург-Горьковский эффект)) и в «самовоздействии» мощной волны, например в изменении глубины модуляции сигнала, отражённого от ионосферы.

         Особенности распространения радиоволн различного диапазона в ионосфере. Начиная с УКВ волны, частота которых выше максимально применимой частоты (МПЧ), проходят через ионосферу. Волны, частота которых ниже МПЧ, отражаясь от ионосферы, возвращаются на Землю. Такие радиоволны называются ионосферными, используются для дальней радиосвязи на Земле. Диапазон ионосферных волн снизу по частоте ограничен поглощением. Поэтому связь при помощи ионосферных волн осуществляется в диапазоне коротких волн и в ночные часы (уменьшается поглощение) в диапазоне средних волн. Дальность Р. р. при одном отражении от ионосферы Распространение радиоволн 3500—4000 км, т.к. угол падения φ на ионосферу из-за выпуклости Земли ограничен: наиболее пологий луч касается поверхности Земли (рис. 14). Связь на большие расстояния осуществляется за счёт нескольких отражений от ионосферы (рис. 15).

         Длинные и сверхдлинные волны практически не проникают в ионосферу, отражаясь от её нижней границы, которая является как бы стенкой сферического радиоволновода (второй стенкой волновода служит Земля). Волны, излучаемые антенной в некоторой точке Земли, огибают её по всем направлениям, сходятся на противоположной стороне. Сложение волн вызывает некоторое увеличение напряжённости поля в противолежащей точке (эффект антипода, рис. 16).

         Радиоволны звуковых частот могут просачиваться через ионосферу вдоль силовых линий магнитного поля Земли. Распространяясь вдоль магнитной силовой линии, волна уходит на расстояние, равное нескольким земным радиусам, и затем возвращается в сопряжённую точку, расположенную в др. полушарии (рис. 17). Разряды молний в тропосфере являются источником таких волн. Распространяясь описанным способом, они создают на входе приёмника сигнал с характерным свистом (свистящие Атмосферики).          Для радиоволн инфразвуковых частот, частота которых меньше гироскопической частоты ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение которой описывается уравнениями гидродинамики (См. Гидродинамика). Благодаря наличию магнитного поля Земли любое смещение проводящего вещества, создающее электрический ток, сопровождается возникновением сил Лоренца, изменяющих состояние движения. Взаимодействие между механическими и электромагнитными силами приводит к перемещению случайно возникшего движения в ионизированном газе вдоль магнитных силовых линий, т. е. к появлению магнито-гидродинамических (альфвеновских) волн, которые распространяются вдоль магнитных силовых линий со скоростью 4 м/сек (ρ — плотность ионизированного газа).

         Космическая радиосвязь. Когда один из корреспондентов находится на Земле, диапазон длин волн, пригодных для связи с космическим объектом, определяется условиями прохождения через атмосферу Земли. Т. к. радиоволны, частота которых Мгц), не проходят через ионосферу, а волны с частотой > 6—10 Ггц поглощаются в тропосфере, то волны от космического объекта могут приниматься на Земле при частотах от Распространение радиоволн 30 Мгц до 10 Ггц. Однако и в этом диапазоне атмосфера Земли не полностью прозрачна для радиоволн. Вращение плоскости поляризации при прохождении через ионосферу при приёме на обычную антенну приводит к потерям, которые уменьшаются с ростом частоты. Только при частотах > 3 Ггц ими можно пренебречь (рис. 18). Эти условия определяют диапазон радиоволн для дальней связи на УКВ при использовании спутников.

         Для связи с объектами, находящимися на др. планетах, необходимо учитывать поглощение и в атмосфере этих планет. При осуществлении связи между 2 космическими кораблями, находящимися вне атмосферы планет, особенное значение приобретают миллиметровые и световые волны, обеспечивающие наибольшую ёмкость каналов связи (см. Оптическая связь). Сведения о процессах Р. р. в космическом пространстве даёт Радиоастрономия.

         Подземная и подводная радиосвязь. Земная кора, а также воды морей и океанов обладают проводимостью и сильно поглощают радиоволны. Для осадочных пород в поверхностном слое земной коры σ ≈ 10—3—10—2ом—1м—1. В этих средах волна практически затухает на расстоянии ≤ λ. Кроме того, для сред с большой σ коэффициент поглощения увеличивается с ростом частоты. Поэтому для подземной радиосвязи используются в основном длинные и сверхдлинные волны. В подводной связи наряду со сверхдлинными волнами используют волны оптического диапазона.

         В системах связи между подземными или подводными пунктами может быть использовано частичное распространение вдоль поверхности Земли или моря. Вертикально поляризованная волна, возбуждаемая подземной передающей антенной, распространяется до поверхности Земли, преломляется на границе раздела между Землёй и атмосферой, распространяется вдоль земной поверхности и затем принимается подземной приёмной антенной (рис. 19). Глубина погружения антенн достигает десятков м. Системы этого типа обеспечивают дальность до нескольких сотен км и применяются, например, для связи между подземными пунктами управления при запуске ракет. Системы др. типа используют подземные волноводы — слои земной коры, обладающие малой проводимостью и, следовательно, малыми потерями. К таким породам относятся Каменная соль, поташ и др. Эти породы залегают на глубинах до сотен м и обеспечивают дальность Р. р. до нескольких десятков км. Дальнейшим развитием этого направления является использование твёрдых горных пород (гранитов, гнейсов, базальтов и др.), расположенных на больших глубинах и имеющих малую проводимость (рис. 20). На глубине 3—7 км σ может уменьшиться до 10—11ом—1м—1. При дальнейшем увеличении глубины благодаря возрастанию температуры создаётся ионизация (обращенная ионосфера) и проводимость увеличивается. Образуется подземный волновод толщиной в несколько км, в котором возможно Р. р. на расстоянии до нескольких тыс. км. Одна из основных проблем подземной и подводной связи — расчёт излучения и передачи энергии от антенн (См. Антенна), расположенных в проводящей среде.

         Преимущество систем подземной связи состоит в их независимости от бурь, ураганов и искусственных разрушений на поверхности Земли. Кроме того, благодаря экранирующему действию верхних проводящих осадочных пород системы подземной связи обладают высокой помехозащищенностью от промышленных и атмосферных шумов.

         Лит.: Фейнберг Е. Л., Распространение радиоволн вдоль земной поверхности, М., 1961; Альперт Я. Л., Распространение электромагнитных волн и ионосфера, М., 1972; Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973; Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967; Чернов Л. А., Распространение волн в среде со случайными неоднородностями, М., 1958; Гинзбург В. Л., Распространение электромагнитных волн в плазме, М., 1967; Макаров Г. И., Павлов В. А., Обзор работ, связанных с подземным распространением радиоволн. Проблемы дифракции и распространения радиоволн, Сб. 5, Л., 1966; Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972; Гавелей Н. П., Никитин Л. М., Системы подземной радиосвязи, «Зарубежная радиоэлектроника», 1963, № 10; Габиллард [Р.], Дегок [П.], Уэйт [Дж.], Радиосвязь между подземными и подводными пунктами, там же, 1972, № 12; Ратклифф Дж. А., Магнито-ионная теория и ее приложения к ионосфере, пер. с англ., М., 1962.

         М. Б. Виноградова, Т. А. Гайлит.

        

        Рис. 1. Область, существенная при распространении радиоволн: А — передающая антенна; В — приёмная; Z1 и Z2 — их высоты над поверхностью Земли.

        Рис. 2. Лепестковая структура поля в точке приёма.

        Рис. 2. Лепестковая структура поля в точке приёма.

        Рис. 3. к ст. Распространение радиоволн.

        Рис. 3. к ст. Распространение радиоволн.

        Рис. 4. Высота шарового сегмента h, характеризующая выпуклость Земли.

        Рис. 4. Высота шарового сегмента h, характеризующая выпуклость Земли.

        Рис. 4. Высота шарового сегмента h, характеризующая выпуклость Земли.

        Рис. 5. График изменения напряжённости поля с расстоянием r ( в км ). По вертикальной оси отложена величина множителя ослабления, который определяется отношением напряжённости поля в реальных условиях распространения к величине напряжённости поля при распространении в свободном пространстве.

        Рис. 6. Изменение напряженности Е поля волны при пересечении береговой линии.

        Рис. 6. Изменение напряженности Е поля волны при пересечении береговой линии.

        Рис. 7. к ст. Распространение радиоволн.

        Рис. 7. к ст. Распространение радиоволн.

        Рис. 8. Усиление радиоволн при дифракции на непологих неровностях.

        Рис. 8. Усиление радиоволн при дифракции на непологих неровностях.

        Рис. 9. Искривление радиолучей в тропосфере в результате ее неоднородности.

        Рис. 9. Искривление радиолучей в тропосфере в результате ее неоднородности.

        Рис. 10. Схематическое изображение линии радиосвязи, использующей рассеяние радиоволн на неоднородностях тропосферы.

        Рис. 10. Схематическое изображение линии радиосвязи, использующей рассеяние радиоволн на неоднородностях тропосферы.

        Рис. 11. Смещение электронов ионосферы под действием поля волны Е приводит к появлению дополнительного поля ΔE.

        Рис. 11. Смещение электронов ионосферы под действием поля волны Е приводит к появлению дополнительного поля ΔE.

        Рис. 11. Смещение электронов ионосферы под действием поля волны Е приводит к появлению дополнительного поля ΔE.

        Рис. 12. Изменение концентрации N электронов в ионосфере с высотой; Е, F1, F2 — слои ионосферы.

        Рис. 13. Рассеяние радиоволн на неоднородностях ионосферы.

        Рис. 13. Рассеяние радиоволн на неоднородностях ионосферы.

        Рис. 14. к ст. Распространение радиоволн.

        Рис. 14. к ст. Распространение радиоволн.

        Рис. 15. к ст. Распространение радиоволн.

        Рис. 15. к ст. Распространение радиоволн.

        Рис. 16. Зависимость напряженности Е поля волны от расстояния до передатчика r в отсутствии поглощения (пунктир) и при учете поглощения.

        Рис. 16. Зависимость напряженности Е поля волны от расстояния до передатчика r в отсутствии поглощения (пунктир) и при учете поглощения.

        Рис. 17. к ст. Распространение радиоволн.

        Рис. 17. к ст. Распространение радиоволн.

        Рис. 18. Зависимость потерь энергии за счет вращения плоскости поляризации волны от частоты для трех значений угла возвышения β.

        Рис. 18. Зависимость потерь энергии за счет вращения плоскости поляризации волны от частоты для трех значений угла возвышения β.

        Рис. 19. Система подземной связи с частичным распространением радиоволн вдоль земной поверхности. Вторичные волны изображены условно.

        Рис. 19. Система подземной связи с частичным распространением радиоволн вдоль земной поверхности. Вторичные волны изображены условно.

        Рис. 20. Изменение проводимости Земли σ с глубиной.

        Рис. 20. Изменение проводимости Земли σ с глубиной.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *