Site Loader

Содержание

История открытия электромагнитных волн

Открытие электромагнитных волн — замечательный пример взаимодействия эксперимента и теории. На нем видно, как физика объединила, казалось бы, абсолютно разнородные свойства — электричество и магнетизм, — обнаружив в них различные стороны одного и того же физического явления — электромагнитного взаимодействия. На сегодня это одно из четырех известных фундаментальных физических взаимодействий, к числу которых также относятся сильное и слабое ядерные взаимодействия и гравитация. Уже построена теория электрослабого взаимодействия, которая с единых позиций описывает электромагнитные и слабые ядерные силы. Имеется и следующая объединяющая теория — квантовая хромодинамика — которая охватывает электрослабое и сильное взаимодействия, но ее точность несколько ниже. Описать все фундаментальные взаимодействия с единых позиций пока не удается, хотя в этом направлении ведутся интенсивные исследования в рамках таких направлений физики, как теория струн и квантовая гравитация.

Электромагнитные волны были предсказаны теоретически великим английским физиком Джеймсом Кларком Максвеллом (вероятно, впервые в 1862 году в работе «О физических силовых линиях», хотя подробное описание теории вышло в 1867 году). Он прилежно и с огромным уважением пытался перевести на строгий математический язык немного наивные картинки Майкла Фарадея, описывающие электрические и магнитные явления, а также результаты других ученых. Упорядочив одинаковым образом все электрические и магнитные явления, Максвелл обнаружил ряд противоречий и отсутствие симметрии. Согласно закону Фарадея переменные магнитные поля порождают электрические поля. Но не было известно, порождают ли переменные электрические поля — магнитные. Избавиться от противоречия и восстановить симметрию электрического и магнитного полей Максвеллу удалось, введя в уравнения дополнительный член, который описывал возникновение магнитного поля при изменении электрического. К тому времени благодаря опытам Эрстеда уже было известно, что постоянный ток создает вокруг проводника постоянное магнитное поле. Новый член описывал другой источник магнитного поля, но его можно было представить как некий воображаемый электрический ток, который Максвелл назвал

током смещения, чтобы отличить от обычного тока в проводниках и электролитах — тока проводимости. В итоге получилось, что переменные магнитные поля порождают электрические поля, а переменные электрические — магнитные. И тогда Максвелл понял, что в такой связке колеблющиеся электрическое и магнитное поля могут отрываться от порождающих их проводников и двигаться через вакуум с определенной, но очень большой скоростью. Он вычислил эту скорость, и она оказалась около трехсот тысяч километров в секунду.

Потрясенный полученным результатом, Максвелл пишет Уильяму Томсону (лорду Кельвину, который, в частности, ввел абсолютную шкалу температур): «Скорость поперечных волновых колебаний в нашей гипотетической среде, вычисленная из электромагнитных опытов Кольрауша и Вебера, столь точно совпадает со скоростью света, вычисленной из оптических опытов Физо, что мы едва ли может отказаться от вывода, что

свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений». И далее в письме: «Я получил свои уравнения, живя в провинции и не подозревая о близости найденной мной скорости распространения магнитных эффектов к скорости света, поэтому я думаю, что у меня есть все основания считать магнитную и светоносную среды как одну и ту же среду…»

Уравнения Максвелла далеко выходят за рамки школьного курса физики, но они так красивы и лаконичны, что их стоит разместить на видном месте в кабинете физики, ведь большинство значимых для человека явлений природы удается описать с помощью всего нескольких строчек этих уравнений. Так сжимается информация, когда объединяются ранее разнородные факты. Вот один из видов уравнений Максвелла в дифференциальном представлении. Полюбуйтесь.

E = 4πρ Закон Кулона
B = 0& магнитные заряды не существуют в природе
[∇E] = –1/cBt) закон Фарадея
[∇B] = (4π/c)j + (1/c)(δEt) Закон Ампера, с током смещения Максвелла (второй член правой части)
F = q(E+ [(v/c)×B]) Сила Лоренца

Хочется подчеркнуть, что из расчетов Максвелла получалось обескураживающее следствие: колебания электрического и магнитного полей — поперечные (что он сам все время подчеркивал). А поперечные колебания распространяются только в твердых телах, но не в жидкостях и газах. К тому времени было надежно измерено, что скорость поперечных колебаний в твердых телах (попросту скорость звука) тем выше, чем, грубо говоря, тверже среда (чем больше модуль Юнга и меньше плотность) и может достигать нескольких километров в секунду. Скорость поперечной электромагнитной волны была почти в сто тысяч раз выше, чем скорость звука в твердых телах. А надо заметить, что характеристика жесткости входит в уравнение скорости звука в твердом теле под корнем. Получалось, что среда, через которую идут электромагнитные волны (и свет), имеет чудовищные характеристики упругости. Возник крайне тяжелый вопрос: «Как же через такую твердую среду движутся другие тела и не чувствуют ее?» Гипотетическую среду назвали — эфиром, приписав ему одновременно странные и, вообще говоря, взаимоисключающие свойства — огромную упругость и необычайную легкость.

Работы Максвелла вызвали шок среди ученых-современников. Сам Фарадей с удивлением писал: «Сначала я даже испугался, когда увидел такую математическую силу, примененную к вопросу, но потом удивился, видя, что вопрос выдерживает это столь хорошо». Несмотря на то, что взгляды Максвелла опрокидывали все известные на то время представления о распространении поперечных волн и о волнах вообще, прозорливые ученые понимали, что совпадение скорости света и электромагнитных волн — фундаментальный результат, который говорит, что именно здесь физику ожидает основной прорыв.

К сожалению, Максвелл умер рано и не дожил до надежного экспериментального подтверждения своих расчетов. Международное научное мнение изменилось в результате опытов Генриха Герца, который через 20 лет (1886–89) в серии экспериментов продемонстрировал генерацию и прием электромагнитных волн. Герц не только в тиши лаборатории получил правильный результат, но страстно и бескомпромиссно защищал взгляды Максвелла. Причем он не ограничился экспериментальным доказательством существование электромагнитных волн, но и исследовал их основные свойства (отражение от зеркал, преломление в призмах, дифракцию, интерференцию и т. д.), показав полную тождественность электромагнитных волн со светом.

Любопытно, что за семь лет до Герца, в 1879 году английский физик Дэвид Эдвард Юз (Хьюз — D. E. Hughes) тоже продемонстрировал перед другими крупными учеными (среди них был также блестящий физик и математик Георг-Габриель Стокс) эффект распространения электромагнитных волн в воздухе. В результате обсуждений ученые пришли к выводу, что видят явление электромагнитной индукции Фарадея. Юз расстроился, не поверил самому себе и опубликовал результаты лишь в 1899 году, когда теория Максвелла-Герца стала общепринятой. Этот пример говорит, что в науке настойчивое распространение и пропаганда полученных результатов имеет часто не меньшее значение, чем сам научный результат.

Генрих Герц так подытожил результаты своих экспериментов: «Описанные эксперименты, как, по крайне мере, кажется мне, устраняют сомнения в тождественности света, теплового излучения и электродинамического волнового движения».

Далее: Великое объединение

Кто открыл электромагнитные волны? Электромагнитные волны

Электромагнитные волны (таблица которых будет приведена ниже) представляют собой возмущения магнитных и электрических полей, распределяющиеся в пространстве. Их существует несколько типов. Изучением этих возмущений занимается физика. Электромагнитные волны образуются из-за того, что электрическое переменное поле порождает магнитное, а оно, в свою очередь, порождает электрическое.

кто открыл электромагнитные волны

История исследований

Первые теории, которые можно считать самыми старыми вариантами гипотез об электромагнитных волнах, относятся как минимум к временам Гюйгенса. В тот период предположения достигли выраженного количественного развития. Гюйгенс в 1678-м году выпустил в некотором роде «набросок» теории — «Трактат о свете». В 1690-м он же издал другой замечательный труд. В нем была изложена качественная теория отражения, лучепреломления в том виде, в котором она и сегодня представлена в школьных учебниках («Электромагнитные волны», 9 класс).

Вместе с этим был сформулирован принцип Гюйгенса. С его помощью появилась возможность изучать движение фронта волны. Этот принцип впоследствии нашел свое развитие в трудах Френеля. Принцип Гюйгенса-Френеля имел особую значимость в теории дифракции и волновой теории света.

В 1660-1670-е годы большой экспериментальный и теоретический вклад внесли в исследования Гук и Ньютон. Кто открыл электромагнитные волны? Кем были проведены опыты, доказывающие их существование? Какие существуют виды электромагнитных волн? Об этом далее.

Обоснование Максвелла

Прежде чем говорить о том, кто открыл электромагнитные волны, следует сказать, что первым ученым, который вообще предсказал их существование, стал Фарадей. Свою гипотезу он выдвинул в 1832-м году. Построением теории впоследствии занимался Максвелл. К 1865-му году он завершил эту работу. В результате Максвелл строго оформил теорию математически, обосновав существование рассматриваемых явлений. Им же была определена скорость распространения электромагнитных волн, совпадавшая с применявшимся тогда значением световой скорости. Это, в свою очередь, позволило ему обосновать гипотезу о том, что свет является одним из типов рассматриваемых излучений.

Экспериментальное обнаружение

Теория Максвелла нашла свое подтверждение в опытах Герца в 1888-м году. Здесь следует сказать, что немецкий физик проводил свои эксперименты, чтобы опровергнуть теорию, несмотря на ее математическое обоснование. Однако благодаря своим опытам Герц стал первым, кто открыл электромагнитные волны практически. Кроме того, в ходе своих экспериментов ученый выявил свойства и характеристики излучений.

Электромагнитные колебания и волны Герц получал за счет возбуждения серии импульсов быстропеременного потока в вибраторе при помощи источника повышенного напряжения. Высокочастотные потоки можно обнаружить при помощи контура. Частота колебаний при этом будет тем выше, чем выше его емкость и индуктивность. Но при этом большая частота не является гарантией интенсивного потока. Для проведения своих опытов Герц применил достаточно простое устройство, которое сегодня так и называют – «вибратор Герца». Приспособление представляет собой колебательный контур открытого типа.

диапазоны электромагнитных волн

Схема опыта Герца

Регистрация излучений осуществлялась при помощи приемного вибратора. Это устройство имело такую же конструкцию, что и излучающий прибор. Под влиянием электромагнитной волны электрического переменного поля в приемном устройстве происходило возбуждение токового колебания. Если в этом приборе его собственная частота и частота потока совпадали, то появлялся резонанс. В результате возмущения в приемном устройстве происходили с большей амплитудой. Обнаруживал их исследователь, наблюдая искорки между проводниками в небольшом промежутке.

Таким образом, Герц стал первым, кто открыл электромагнитные волны, доказал их способность хорошо отражаться от проводников. Им было практически обосновано образование стоячего излучения. Кроме того, Герц определил скорость распространения электромагнитных волн в воздухе.

Изучение характеристик

Электромагнитные волны распространяются почти во всех средах. В пространстве, которое заполнено веществом, излучения могут в ряде случаев распределяться достаточно хорошо. Но при этом они несколько изменяют свое поведение.

Электромагнитные волны в вакууме определяются без затуханий. Они распределяются на любое, сколь угодно большое расстояние. К основным характеристикам волн относят поляризацию, частоту и длину. Описание свойств осуществляется в рамках электродинамики. Однако характеристиками излучений некоторых областей спектра занимаются более конкретные разделы физики. К ним, например, можно отнести оптику.

Исследованием жесткого электромагнитного излучения коротковолнового спектрального конца занимается раздел высоких энергий. С учетом современных представлений динамика перестает являться самостоятельной дисциплиной и объединяется со слабыми взаимодействиями в одной теории.

Теории, применяемые при изучении свойств

Сегодня существуют различные методы, способствующие моделированию и исследованию проявлений и свойств колебаний. Наиболее фундаментальной из проверенных и завершенных теорий считается квантовая электродинамика. Из нее посредством тех или других упрощений становится возможным получить перечисленные ниже методики, которые широко используются в различных сферах.

Описание относительно низкочастотного излучения в макроскопической среде осуществляется при помощи классической электродинамики. Она основана на уравнениях Максвелла. При этом в прикладных применениях существуют упрощения. При оптическом изучении используется оптика. Волновая теория применяется в случаях, когда некоторые части оптической системы по размерам приближены к длинам волн. Квантовая оптика используется, когда существенными являются процессы рассеяния, поглощения фотонов.

Геометрическая оптическая теория – предельный случай, при котором допускается пренебрежение длиной волны. Также существует несколько прикладных и фундаментальных разделов. К ним, к примеру, относят астрофизику, биологию зрительного восприятия и фотосинтеза, фотохимию. Как классифицируются электромагнитные волны? Таблица, наглядно изображающая распределение на группы, представлена далее.

Классификация

Существуют частотные диапазоны электромагнитных волн. Между ними не существует резких переходов, иногда они перекрывают друг друга. Границы между ними достаточно условны. В связи с тем, что поток распределяется непрерывно, частота жестко связывается с длиной. Ниже представлены диапазоны электромагнитных волн.

НазваниеДлинаЧастота
ГаммаМеньше 5 пмболее 6•1019 Гц
Рентген10 нм — 5 пм3•1016-6•1019 Гц
Ультрафиолет380 — 10 нм7,5•1014-3•1016 Гц
Видимое излучениеОт 780 до 380 нм429-750 ТГц
Инфракрасное излучение1 мм — 780 нм330 ГГц-429 ТГц
Ультракороткое10 м — 1 мм30 МГц-300ГГц
Короткое100 м — 10 м3-30 МГц
Среднее1 км — 100 м300кГц-3Мгц
Длинное10 км — 1 км30-300 кГц
СверхдлинныеБольше 10 кмМеньше 30 кГц

Ультракороткие излучения принято разделять на микрометровые (субмиллиметровые), миллиметровые, сантиметровые, дециметровые, метровые. Если длина волны электромагнитного излучения меньше метра, то ее принято называть колебанием сверхвысокой частоты (СВЧ).

Виды электромагнитных волн

Выше представлены диапазоны электромагнитных волн. Какие существуют виды потоков? Группа ионизирующих излучений включает в себя гамма- и рентгеновские лучи. При этом следует сказать, что ионизировать атомы способен и ультрафиолет, и даже видимый свет. Границы, в которых находятся гамма- и рентгеновские потоки, определяются весьма условно. В качестве общей ориентировки принимаются пределы 20 эВ — 0.1 Мэв. Гамма-потоки в узком смысле испускаются ядром, рентгеновские – электронной атомной оболочкой в процессе выбивания с низколежащих орбит электронов. Однако данная классификация неприменима к жестким излучениям, генерируемым без участия ядер и атомов.

Рентгеновские потоки формируются при замедлении заряженных быстрых частиц (протонов, электронов и прочих) и вследствие процессов, которые происходят внутри атомных электронных оболочек. Гамма-колебания возникают в результате процессов внутри ядер атомов и при превращении элементарных частиц.

Радиопотоки

За счет большого значения длин рассмотрение этих волн допускается осуществлять, не учитывая атомистическое строение среды. В качестве исключения выступают лишь самые короткие потоки, которые примыкают к инфракрасной области спектра. В радиодиапазоне квантовые свойства колебаний проявляются достаточно слабо. Тем не менее их необходимо учитывать, например, при анализе молекулярных стандартов времени и частоты во время охлаждения аппаратуры до температуры в несколько кельвинов.

Квантовые свойства принимаются во внимание и при описании генераторов и усилителей миллиметрового и сантиметрового диапазонов. Радиопоток формируется во время движения переменного тока по проводникам соответствующей частоты. А проходящая электромагнитная волна в пространстве возбуждает переменный ток, соответствующий ей. Данное свойство применяется при конструировании антенн в радиотехнике.

Видимые потоки

Ультрафиолетовое и инфракрасное видимое излучение составляет в широком смысле слова так называемый оптический участок спектра. Выделение этой области обуславливается не только близостью соответствующих зон, но и аналогичностью приборов, используемых при исследовании и разработанных преимущественно во время изучения видимого света. К ним, в частности, относятся зеркала и линзы для фокусирования излучений, дифракционные решетки, призмы и прочие.

Частоты оптических волн сравнимы с таковыми у молекул и атомов, а длины их – с межмолекулярными расстояниями и молекулярными размерами. Поэтому существенными в этой области становятся явления, которые обусловлены атомистической структурой вещества. По той же причине свет вместе с волновыми обладает и квантовыми свойствами.

Возникновение оптических потоков

Самым известным источником является Солнце. Поверхность звезды (фотосфера) имеет температуру 6000° по Кельвину и излучает ярко-белый свет. Наивысшее значение непрерывного спектра располагается в «зеленой» зоне — 550 нм. Там же находится максимум зрительной чувствительности. Колебания оптического диапазона возникают при нагревании тел. Инфракрасные потоки поэтому также именуют тепловыми.

Чем сильнее происходит нагревание тела, тем выше частота, где располагается максимум спектра. При определенном повышении температуры наблюдается каление (свечение в видимом диапазоне). При этом сначала появляется красный цвет, затем желтый и далее. Создание и регистрация оптических потоков может происходить в биологических и химических реакциях, одна из которых применяется в фотографии. Для большинства существ, живущих на Земле, в качестве источника энергии выступает фотосинтез. Эта биологическая реакция протекает в растениях под влиянием оптического солнечного излучения.

Особенности электромагнитных волн

Свойства среды и источник оказывают влияние на характеристики потоков. Так устанавливается, в частности, временная зависимость полей, которая определяет тип потока. К примеру, при изменении расстояния от вибратора (при увеличении) радиус кривизны становится больше. В результате образуется плоская электромагнитная волна. Взаимодействие с веществом также происходит по-разному.

Процессы поглощения и излучения потоков, как правило, можно описывать при помощи классических электродинамических соотношений. Для волн оптической области и для жестких лучей тем более следует принимать во внимание их квантовую природу.

Источники потоков

Несмотря на физическую разницу, везде – в радиоактивном веществе, телевизионном передатчике, лампе накаливания – электромагнитные волны возбуждаются электрическими зарядами, которые движутся с ускорением. Существует два основных типа источников: микроскопические и макроскопические. В первых происходит скачкообразный переход заряженных частиц с одного на другой уровень внутри молекул либо атомов.

Микроскопические источники испускают рентгеновское, гамма, ультрафиолетовое, инфракрасное, видимое, а в ряде случаев и длинноволновое излучение. В качестве примера последнего можно привести линию спектра водорода, которая соответствует волне в 21 см. Это явление имеет особое значение в радиоастрономии.

Источники макроскопического типа представляют собой излучатели, в которых свободными электронами проводников совершаются периодические синхронные колебания. В системах данной категории происходит генерация потоков от миллиметровых до самых длинных (в линиях электропередач).

Структура и сила потоков

Электрические заряды, движущиеся с ускорением и изменяющиеся периодически токи оказывают воздействие друг на друга с определенными силами. Направление и их величина находятся в зависимости от таких факторов, как размеры и конфигурация области, в которой содержатся токи и заряды, их относительное направление и величина. Существенное влияние оказывают и электрические характеристики конкретной среды, а также изменения концентрации зарядов и распределения токов источника.

В связи с общей сложностью постановки задачи представить закон сил в виде единой формулы нельзя. Структура, называемая электромагнитным полем и рассматриваемая при необходимости в качестве математического объекта, определяется распределением зарядов и токов. Оно, в свою очередь, создается заданным источником при учете граничных условий. Условия определяются формой зоны взаимодействия и характеристиками материала. Если речь ведется о неограниченном пространстве, указанные обстоятельства дополняются. В качестве особого дополнительного условия в таких случаях выступает условие излучения. За счет него гарантируется «правильность» поведения поля на бесконечности.

Хронология изучения

Корпускулярно-кинетическая теория Ломоносова в некоторых своих положениях предвосхищает отдельные постулаты теории электромагнитного поля: «коловратное» (вращательное) движение частиц, «зыблющаяся» (волновая) теория света, ее общность с природой электричества и т. д. Инфракрасные потоки были обнаружены в 1800 году Гершелем (английским ученым), а в следующем, 1801-м, Риттером был описан ультрафиолет. Излучение более короткого, нежели ультрафиолетовое, диапазона было открыто Рентгеном в 1895-м году, 8 ноября. Впоследствии оно получило название рентгеновского.

Влияние электромагнитных волн изучалось многими учеными. Однако первым, кто исследовал возможности потоков, сферу их применения, стал Наркевич-Иодко (белорусский научный деятель). Он изучил свойства потоков применительно к практической медицине. Гамма-излучение было открыто Полем Виллардом в 1900-м году. В этот же период Планк проводил теоретические исследования свойств черного тела. В процессе изучения им была открыта квантовость процесса. Его труд стал началом развития квантовой физики. Впоследствии было опубликовано несколько работ Планка и Эйнштейна. Их исследования привели к формированию такого понятия, как фотон. Это, в свою очередь, положило начало созданию квантовой теории электромагнитных потоков. Ее развитие продолжилось в трудах ведущих научных деятелей ХХ столетия.

Дальнейшие исследования и работы по квантовой теории электромагнитного излучения и взаимодействия его с веществом привели в итоге к образованию квантовой электродинамики в том виде, в котором она существует и сегодня. Среди выдающихся ученых, занимавшихся изучением данного вопроса, следует назвать, кроме Эйнштейна и Планка, Бора, Бозе, Дирака, де Бройля, Гейзенберга, Томонагу, Швингера, Фейнмана.

Заключение

Значение физики в современном мире достаточно велико. Практически все, что применяется сегодня в жизни человека, появилось благодаря практическому использованию исследований великих ученых. Открытие электромагнитных волн и их изучение, в частности, привели к созданию обычных, а впоследствии и мобильных телефонов, радиопередатчиков. Особое значение практическое применение таких теоретических знаний имеет в области медицины, промышленности, техники.

Такое широкое использование объясняется количественным характером науки. Все физические эксперименты опираются на измерения, сравнение свойств изучаемых явлений с имеющимися эталонами. Именно для этой цели в рамках дисциплины развит комплекс измерительных приборов и единиц. Ряд закономерностей является общим для всех существующих материальных систем. Так, например, законы сохранения энергии считаются общими физическими законами.

Науку в целом называют во многих случаях фундаментальной. Это связано, прежде всего, с тем, что прочие дисциплины дают описания, которые, в свою очередь, подчиняются законам физики. Так, в химии изучаются атомы, вещества, образованные из них, и превращения. Но химические свойства тел определяются физическими характеристиками молекул и атомов. Эти свойства описывают такие разделы физики, как электромагнетизм, термодинамика и прочие.

Физический класс | Электромагнитные волны «

Английский ученый Дж. Максвелл в 1865 г. опираясь, в частности, на труды М. Фарадея получил систему уравнений, описывающих электромагнитное поле. Из этих уравнений вытекает, что электромагнитное поле может распространяться в вакууме в виде электромагнитной волны с конечной скоростью равной скорости света с=300 тыс. км/с.

В 1887 году немецкий ученый Г. Герц экспериментально обнаружил электромагнитные волны и исследовал их свойства, используя в качестве экспериментальной установки высокочастотный искровой разрядник (вибратор Герца, представляющий собой открытый колебательный контур) и приемный диполь.

Одним из первых, кто занялся в России изучением электромагнитных волн, был А.С. Попов. 7 мая 1895 г. им впервые была продемонстрирована радиотелеграфная связь на заседании Русского физико-химического общества в Петербурге.

Важным шагом в развитие радиосвязи следует считать создание в 1913 г. генератора незатухающих высокочастотных электромагнитных колебаний. Стало возможным осуществление радиотелефонной связи – передача звуковой информации с помощью электромагнитных волн.

В настоящее время электромагнитные воны используются в радиосвязи, радиолокации, телевидение.


   кнопка плюс для перехода кликнуть левой кнопкой мыши  

Скачать (PDF, 528KB)

 

Опорный конспект по теме “Электромагнитные волны”

 

опорный конспект электромагнитные воны

 

 

Распространение радиоволн

 

На распространение радиоволн влияют форма и физические свойства земной поверхности, и состояние атмосферы.

 

распространение радиоволн

Длинные, средние, короткие, ультракороткие волны используются в телеграфии, радиовещании, телевидении, радиолокации  и т.д.

 

Сантиметровые и миллиметровые волны получают в магнетронных, клистронных генераторах и мазерах. Применяются в радиолокации, радиоспектроскопии и радиолокации.

 

 

таблица радиоволны

 

Вопросы для самоконтроля по блоку «Электромагнитные волны»

  1. Кто и когда предсказал существование электромагнитных волн, открыл электромагнитные волны, впервые применил электромагнитные волны для радиосвязи?
  2. Как должна двигаться заряженная частица, чтобы она излучала электромагнитные волны?
  3. Как объяснить излучение волн открытым колебательным контуром?
  4. Как ориентированы векторы напряженности электрического поля и индукции магнитного поля по отношению друг к другу в электромагнитной волне?
  5. Что называют детектированием колебаний?
  6. Для чего нужна модуляция колебаний?
  7. Как устроен простейший детекторный радиоприемник?
  8. Перечислите известные вам свойства электромагнитных волн.
  9. На каких принципах основана работа радиолокационной станции?
  10. Что влияет на распространение радиоволн?

Электромагнитные волны. Опыты Г. Герца. Изобретение радио А. Поповым

Продолжаем изучение вопросов, связанных с электромагнитными волнами, и тема нашего урока будет посвящена опытам Генриха Герца и созданию радио русским ученым А .Поповым

Электромагнитные колебания, возникающие в колебательном контуре, по теории Максвелла могут распространяться в пространстве. В своих работах он показал, что эти волны распространяются со скоростью света в 300 000 км/с. Однако очень многие ученые пытались опровергнуть работу Максвелла, одним из них был Генрих Герц. Он скептически относился к работам Максвелла и попытался провести эксперимент по опровержению распространения электромагнитного поля.

Распространяющееся в пространстве электромагнитное поле называется электромагнитной волной.

В электромагнитном поле магнитная индукция и напряженность электрического поля располагаются взаимно перпендикулярно, и из теории Максвелла следовало, что плоскость расположения магнитной индукции и напряженности находится под углом 900 к направлению распространения электромагнитной волны (Рис. 1).

Плоскости расположения магнитной индукции и напряженности

Рис. 1. Плоскости расположения магнитной индукции и напряженности (Источник)

Эти выводы и попытался оспорить Генрих Герц. В своих опытах он попытался создать устройство для изучения электромагнитной волны. Для того чтобы получить излучатель электромагнитных волн, Генрих Герц построил так называемый вибратор Герца, сейчас мы называем его передающей антенной (Рис. 2).

Вибратор Герца

Рис. 2. Вибратор Герца (Источник)

Рассмотрим, как Генрих Герц получил свой излучатель или передающую антенну.

Закрытый колебательный контур Герца

Рис. 3.Закрытый колебательный контур Герца (Источник)

Имея в наличии закрытый колебательный контур (Рис. 3), Герц стал разводить обкладки конденсатора в разные стороны и, в конце концов, обкладки расположились под углом 1800, при этом получилось, что если в этом колебательном контуре происходили колебания, то они обволакивали этот открытый колебательный контур со всех сторон. В результате этого изменяющееся электрическое поле создавало переменное магнитное, а переменное магнитное создавало электрическое и так далее. Этот процесс и стали называть электромагнитной волной (Рис. 4).

 Излучение электромагнитной волны

Рис. 4. Излучение электромагнитной волны (Источник)

Если к открытому колебательному контуру подключить источник напряжения, то между минусом и плюсом будет проскакивать искра, что как раз и есть ускоренно движущийся заряд. Вокруг этого заряда, движущегося с ускорением, образуется переменное магнитное поле, которое создает переменное вихревое электрическое поле, которое, в свою очередь, создает переменное магнитное, и так далее. Таким образом, по предположению Генриха Герца будет происходить излучение электромагнитных волн. Целью эксперимента Герца было пронаблюдать взаимодействие и распространение электромагнитных волн.

Для принятия электромагнитных волн Герцу пришлось сделать резонатор (Рис. 5).

Резонатор Герца

Рис. 5. Резонатор Герца (Источник)

Это колебательный контур, который представлял собой разрезанный замкнутый проводник, снабженный двумя шариками, и эти шарики располагались относительно

друг от друга на небольшом расстоянии. Между двумя шариками резонатора проскакивала искра почти в тот же самый момент, когда проскакивала искра в излучатель (Рис. 6).

Излучение и прием электромагнитной волны

Рисунок 6. Излучение и прием электромагнитной волны (Источник)

Налицо было излучение электромагнитной волны и, соответственно, прием этой волны резонатором, который использовался как приемник.

Из этого опыта следовало, что электромагнитные волны есть, они распространяются, соответственно, переносят энергию, могут создавать электрический ток в замкнутом контуре, который находится на достаточно большом расстоянии от излучателя электромагнитной волны.

В опытах Герца расстояние между открытым колебательным контуром и резонатором составляло около трех метров. Этого было достаточно, чтобы выяснить, что электромагнитная волна может распространяться в пространстве. В дальнейшем Герц проводил свои эксперименты и выяснил, как распространяется электромагнитная волна, что некоторые материалы могут препятствовать распространению, например материалы, которые проводят электрический ток, не давали проходить электромагнитной волне. Материалы, которые не проводят электрический ток, давали электромагнитной волне пройти.

Опыты Генриха Герца показали возможность передачи и приема электромагнитных волн. В дальнейшем многие ученые начали работать в этом направлении. Наибольших успехов добился русский ученый Александр Попов, именно ему удалось первому в мире осуществить передачу информации на расстоянии. Это то, что мы сейчас называем радио, в переводе на русский язык «радио» обозначает «излучать», с помощью электромагнитных волн беспроводная передача информации была осуществлена 7 мая 1895 года. В университете Санкт-Петербурга был поставлен прибор Попова, который и принял первую радиограмму, она состояла всего лишь из двух слов: Генрих Герц.

Дело в том, что к этому времени телеграф (проводная связь) и телефон уже существовали, существовала и азбука Морзе, с помощью которой сотрудник Попова передавал точки и тире, которые на доске перед комиссией записывались и расшифровывались. Радио Попова, конечно, не похоже на современные приемники, которыми мы пользуемся (Рис. 7).

 Радиоприемник Попова

Рис. 7. Радиоприемник Попова (Источник)

Первые исследования по приему электромагнитных волн Попов проводил не с излучателями электромагнитных волн, а с грозой, принимая сигналы молний, и свой приемник он назвал грозоотметчик (Рис. 8).

Грозоотметчик Попова

Рис. 8. Грозоотметчик Попова (Источник)

К заслугам Попова относится возможность создания приемной антенны, именно он показал необходимость создания специальной длинной антенны, которая могла бы принимать достаточно большое количество энергии от электромагнитной волны, чтобы в этой антенне индуцировался электрический переменный ток.

Рассмотрим, из каких же частей состоял приемник Попова. Основной частью приемника был когерер (стеклянная трубка, заполненная металлическими опилками (Рис. 9)).

Когерер

Рис. 9. Когерер (Источник)

Такое состояние железных опилок обладает большим электрическим сопротивлением, в таком состоянии когерер электрического тока не пропускал, но, стоило проскочить небольшой искорке через когерер (для этого там находились два контакта, которые были разделены), и опилки спекались и сопротивление когерера уменьшалось в сотни раз.

Следующая часть приемника Попова – электрический звонок (Рис. 10).

Электрический звонок в приемнике Попова

Рис. 10. Электрический звонок в приемнике Попова (Источник)

Именно электрический звонок оповещал о приеме электромагнитной волны. Кроме электрического звонка в приемнике Попова был источник постоянного тока – батарея (Рис. 7), которая обеспечивала работу всего приемника. И, конечно же, приемная антенна, которую Попов поднимал на воздушных шарах (Рис. 11).

Приемная антенна

Рис. 11. Приемная антенна (Источник)

Работа приемника заключалась в следующем: батарея создавала электрический ток в цепи, в которую был включен когерер и звонок. Электрический звонок не мог звенеть, так как когерер обладал большим электрическим сопротивлением, ток не проходил, и необходимо было подобрать нужное сопротивление. Когда на приемную антенну попадала электромагнитная волна, в ней индуцировался электрический ток, электрический ток от антенны и источника питания вместе был достаточно большим – в этот момент проскакивала искра, опилки когерера спекались, и по прибору проходил электрический ток. Звонок начинал звенеть (Рис. 12).

Принцип работы приемника Попова

Рис. 12. Принцип работы приемника Попова (Источник)

В приемнике Попова кроме звонка был ударный механизм, выполненный таким образом, что ударял одновременно по звоночку и когереру, тем самым встряхивая когерер. Когда электромагнитная волна приходила, звонок звенел, когерер встряхивался – опилки рассыпались, и в этот момент вновь сопротивление увеличивалось, электрический ток переставал протекать по когереру. Звонок переставал звенеть до следующего приема электромагнитной волны. Таким образом и работал приемник Попова.

Попов указывал на следующее: приемник может работать достаточно хорошо и на больших расстояниях, но для этого необходимо создать очень хороший излучатель электромагнитных волн – в этом была проблема того времени.

Первая передача прибором Попова состоялась на расстоянии 25 метров, и буквально за несколько лет расстояние уже составляло более 50 километров. Сегодня при помощи радиоволн мы можем передавать информацию по всему земному шару.

Не только Попов работал в этой области, итальянский ученый Маркони сумел внедрить свое изобретение в производство практически  по всему миру. Поэтому первые радиоприемники пришли к нам из-за границы. Принципы современной радиосвязи мы рассмотрим на следующих занятиях.

 

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. – М.: Просвещение, 1990.

 

Домашнее задание

  1. Какие выводы Максвелла попытался оспорить Генрих Герц?
  2. Дайте определение электромагнитной волны.
  3. Назовите принцип работы приемника Попова.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Mirit.ru (Источник).
  2. Интернет-портал Ido.tsu.ru (Источник).
  3. Интернет-портал Reftrend.ru (Источник).

Открытие электромагнитных волн — Знаешь как

Открытие электромагнитных волнВ своей первой работе Герц получил быстрые электрические колебания и исследовал действие вибратора на приемный контур, особенно сильное в случае резонанса. В работе «О действии тока» Герц перешел к изучению явлений на более далеком расстоянии, работая в аудитории длиной 14 м и шириной 12 м. Он обнаружил, что если расстояние приемника от вибратора менее 1 м, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих 3 м, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 м, тогда как в перпендикулярном направлении оно достигает расстояний, больших 12 м. Этот результат противоречит всем законам теории дальнодействия. Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями,— писал Герц в своей восьмой статье 1888 г.,— показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики».

Рис. Поле вибратора Герца

Герц предпринимает теоретический анализ излучения своего вибратора («осциллятор Герца») на основе теории Максвелла. Статья «Силы электрических колебаний, рассматриваемые по максвелловской теории» содержит результаты такого анализа. В ней Герц выписывает уравнения Максвелла в форме, отличной от максвелловской, в виде двух «триплетов»:

Уравнения Максвелла

Эти уравнения отличаются от современных обозначениями.

К уравнениям (1) и (2) Герц прибавляет уравнения, выражающие отсутствие зарядов и токов (за исключением начала координат, где Герц помещает диполь с переменным во времени электрическим моментом Elsinnt):

Открытие электромагнитных волн

или в современной векторной форме:

divH = 0, divĒ =0.

Далее Герц выписывает выражения для электрической и магнитной энергии:

Открытие электромагнитных волн

и выводит из уравнений Максвелла теорему Пойнтинга о потоке энергии, которую он называет «в высшей степени замечательной». Современные учебники электродинамики пишут фундаментальные уравнения электромагнитной теории в форме Герца, за исключением обозначений, как было сказано выше. Теперь чаще применяют не гауссову систему единиц, как это делал Герц, а систему СИ. Герц решает уравнения, введя вспомогательную функцию, получившую название «вектор Герца», которую сам Герц выписывал в виде

Вектор Герца

где — заряд диполя, l— его длина, т= π/λ

n= π/T

Полученное Герцем решение дает вблизи вибратора картину электростатического поля диполя и магнитного поля элемента тока в соответствии с законом Био—Савара. Но на дальних расстояниях получается волновое поле, напряженность которого убывает обратно пропорционально расстоянию, электрическая сила и магнитная сила перпендикулярны радиусу-вектору и пропорциональны синусу угла, образованному направлением радиуса-вектора с осью диполя. Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества.

Это поле распространяется в пространстве со скоростью света c=1/A причем в направлении оси диполь не излучает. Максимальное излучение происходит в экваториальном направлении перпендикулярно оси диполя. Эти расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул.

Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света. В работе «О лучах электрической силы», помещенной в «Протоколах Берлинской Академии наук» 13 декабря 1883 г., Герц описывает свои опыты по распространению, поляризации, отражению, преломлению электромагнитных волн. Герц построил зеркала для опытов с этими волнами (зеркала Герца), призму из твердой смолы (асфальта) с основанием 1,2 м и высотой 1,5 м с преломляющим углом 30°. Все эти опыты доказали полную аналогию электромагнитных и световых волн. Готовя в 1891 г. издание собрания своих статей под общим названием «Исследования о распространении электрической силы», Герц написал вводную статью, в которой подробно изложил историю и содержание своих исследований. Обзор экспериментальных работ он заканчивал словами: «Целью этих работ была проверка основных гипотез теории

Фарадея—Максвелла, а результат опытов есть подтверждение основных гипотез этой теории».

В 1889 г. Герц прочитал доклад «О соотношении между светом и электричеством» на 62-м съезде немецких естествоиспытателей и врачей. Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, но тем не менее они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла… Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение».

Опыты Герца вызвали огромный резонанс. Особенное внимание привлекли опыты, описанные в работе «О лучах электрической силы». «Эти опыты с вогнутыми зеркалами, — писал Герц в «Введении» к своей книге «Исследования по распространению электрической силы»,— быстро обратили на себя внимание, они часто повторялись и подтверждались. Они получили положительную оценку, которая далеко превзошла мои ожидания».

Линии вибратора ГерцаРис. Линии вибратора Герца

Среди многочисленных повторений опытов Герца особое место занимают опыты русского физика П. Н. Лебедева, опубликованные в 1895 г., первом году после года смерти Герца. П. Н. Лебедев, усовершенствовав метод Герца, получил самые короткие электромагнитные волны и провел с ними опыты по двойному лучепреломлению, которые Герц не мог воспроизвести со своими относительно длинными волнами. Статья Лебедева «О двойном преломлении лучей электрической силы» появилась одновременно на русском и немецком языках. На немецком языке она была напечатана в тех же «Annalen der Physik» Видемана, в которых публиковал свои статьи Герц. В начале этой статьи Лебедев кратко излагает ее цель и содержание: «После того как Герц дал нам методы экспериментально проверить следствия электромагнитной теории света и тем открыл для исследования неизмеримую область, естественно появилась потребность делать его опыты в небольшом масштабе, более удобном для научных изысканий…»

Таким образом, П. Н. Лебедев уже в эпоху зарождения радиофизики и радиотехники поставил задачу миниатюризации приборов для излучения и исследования электромагнитных волн и тем самым как бы предначертал современное направление конструкторской мысли в этой области. Приборы Лебедева были настолько малы, что, по выражению итальянского физика Аугусто Риги (1850—1920), который в 1894 г. разработал метод получения коротких волн, их можно было носить в жилетном кармане. Генератор Лебедева состоял из двух платиновых цилиндров, каждый по 1,3 мм длиной и 0,5 мм в диаметре, между которыми проскакивала искра. Зеркала Лебедева имели высоту 20 мм, отверстие 12 мм, фокусное расстояние 6 мм. Для исследования преломления Лебедев использовал эбонитовую призму высотой 1,8 см, шириной 1,2 см, весом менее 2 г, тогда как призма Герца весила 600 кг. Столь же малыми были двупреломляющие призмы из ромбической серы. Для наблюдения волн Лебедев пользовался термоэлементом.

Зеркала ГерцаРис. Зеркала Герца

Лебедев своей работой выдвинул также задачу идти по пути уменьшения длин электромагнитных волн до смыкания их с длинными инфракрасными волнами. Встретившись на одном из съездов с немецким физиком Рубенсом, который занимался исследованием инфракрасных волн, Лебедев высказал шутливое пожелание встретиться в эфире. Это пожелание осуществили в 20-х годах русские ученые-женщины А. А. Глаголева-Аркадьева и М. А. Левицкая.

П. Н, Лебедев, с одной стороны, укрепил позиции теории Максвелла и, с другой стороны, первым измерил предсказанное Максвеллом световое давление и показал, что оно совпадает по величине с теоретическим значением, полученным Максвеллом.

Петр Николаевич Лебедев родился 8 марта 1866 г. в Москве в купеческой семье. «Свое школьное образование,— писал Лебедев в своем «жизнеописании», приложенном к страсбургской диссертации,— я получил в Евангелическом Петропавловском церковном училище и в Реальном училище Хайновского… С сентября 1884 г. по март 1887 г. посещал Московское высшее техническое училище.

Чтобы посвятить себя изучению физики, я учился с октября 1887 по август 1889 г. в Страсбурге, зимний семестр 1889/90 г. в Берлине, а с пасхи 1890 по июль 1891 г. снова в Страсбурге».

Учителем Лебедева в Страсбурге был известный физик Август Кундт (1839—1894)к которому Лебедев относился с большим уважением и сердечной признательностью. Кунд-ту Лебедев посвятил после его смерти теплый прочувствованный некролог, в котором характеризовал его «не только как первоклассного ученого», но и как «несравненного учителя, который заботился о будущем своей любимой науки, образуя и воспитывая ее будущих деятелей».

Защитив в Страсбурге диссертацию «Об измерении диэлектрических постоянных паров и о теории диэлектриков Моссоти — Клаузиуса», Лебедев вернулся в Россию и стал работать в Московском университете у Столетова в должности лаборанта. Последним выступлением Лебедева в Страсбурге и первой его печатной публикацией в Москве была небольшая заметка «Об отталкивательной силе лучеиспускающих тел». Она начиналась словами: «Максвелл показал, что световой или тепловой луч, падая на поглощающее тело, производит на него механическое давление в направлении падения; величину этой давящей силы можно выразить в форме

= E/V

где Е — энергия, которая падает в единицу времени на поглощающее тело, а V — скорость луча в той среде, в которой находится тело».

П. Н. ЛебедевРис. П. Н. Лебедев

Итак, первая русская статья П. Н. Лебедева начиналась указанием на существование светового давления. Световому давлению была посвящена и последняя, оставшаяся незаконченной, статья Лебедева. Исследование светового давления стало делом жизни Петра Николаевича.

В заметке об отталкивательной силе лучеиспускающих тел Лебедев показывает, что при малых размерах тела, находящегося под воздействием силы тяготения со стороны Солнца, она может быть сравнима с отталкивательной силой давления солнечных лучей. Лебедев пишет: «Пылинки, радиус которых не превышает одной тысячной миллиметра, будут отталкиваться в мировом пространстве с силой, порядок которой в миллион раз превышает порядок сил их ньютоновского притяжения». Однако для молекул, как указывает Лебедев, произведенные расчеты не применимы. «Взаимодействие молекул можно рассматривать как более сложный случай, как действие резонаторов друг на друга».

Исследованию этого «более сложного случая» Лебедев посвятил свою докторскую диссертацию «Экспериментальное исследование пондеромоторного действия волн на резонаторы». Эта диссертация заняла у Лебедева немало времени и сил. Он начал работу над темой в 1894 г., в котором вышла первая часть его работы, посвященная действию электромагнитных волн. В 1896 г. была опубликована статья, посвященная действию гидродинамических волн, в 1899 г.— статья, описывающая действие акустических волн. В 1899 г. Лебедев опубликовал все три статьи отдельной брошюрой, которым предпослал особое «Введение». В 1900 г. за эту работу, представленную как магистерская диссертация, Лебедев полученую степень доктора, минуя магистерскую степень. Это была высокая оценка факультетом его труда.

Лебедев начинает «Введение» с упоминания о «гениальных работах» Герца, которые «открыли исследованию необозримую область явлений». Лебедев указывает, что работы Герца направлены на исследование источников электромагнитного излучения и, следовательно, приводят «к одному из наиболее сложных вопросов современной физики — «к учению о молекулярных силах». «Мы должны утверждать,— пишет Лебедев,— что между двумя лучеиспускающими молекулами, как между двумя вибраторами, в которых возбуждены электромагнитные колебания, существуют пондеромоторные силы…».

Лебедев с целью исследования этих сил изучает действие волн на колеблющуюся систему. Такая система — резонатор — моделирует молекулу. Изучая действие электромагнитных волн на резонатор, Лебедев исследует отдельно действие магнитного и действие электрического вектора волны.

Магнитный осциллятор, возбуждаемый магнитным вектором падающей волны, представлял собой миниатюрную катушку из четырех витков серебряной проволоки, соединенную с конденсатором из двух пластинок, вырезанных в форме «бисквитов» квадрантного электрометра. Вся система была подвешена на чувствительном подвесе.

Электрический резонатор состоял из двух цилиндрических квадрантов, собранных из отдельных алюминиевых полосок, соединенных с катушкой самоиндукции из серебряной проволоки, подвешенной так, что магнитный вектор не мог вызвать ее замыкания и только электрические силы могли действовать на заряды конденсатора.

Лебедев показал, что законы пондеромоторного действия волн на магнитные и электрические резонаторы тождественны. Если частота колебаний резонатора выше частоты падающей волны (частота вибратора), то он притягивается к вибратору, ниже настроенный резонатор отталкивается. Притяжение сменяется отталкиванием при переходе через резонанс.

Лебедев изучил далее действие гидродинамических волн, возбуждаемых соответствующим вибратором, на гидродинамический резонатор, представляющий собой шарик на стальной пружине.

Здесь он также обнаружил притяжение при частотах резонатора более высоких, чем частота вибратора и отталкивание в противоположном случае и смену притяжения отталкиванием при переходе через резонанс. В последней части своего исследования Лебедев обратился к акустическим волнам. Здесь также наблюдались притяжения и отталкивания в зависимости от отношения частот вибратора и резонатора, но только в непосредственной близости от вибратора. По мере увеличения расстояния до резонатора притягивательные силы уменьшаются и на достаточно большом расстоянии полностью исчезают, остаются лишь отталкивательные силы, достигающие наибольшей величины при резонансе.

Лебедев считал, что обнаруженная им тождественность пондеромоторных сил в столь различных явлениях показывает, что элементарные законы этих явлений должны быть независимы от природы волн и воспринимающих их резонаторов. Отсюда вытекает возможность распространения этих законов на область молекулярного излучения и взаимодействия молекул. Однако, указывает Лебедев, «нет никаких данных, позволяющих сказать что-либо определенное о свойствах молекул-резонаторов».

Важнейшими достижениями П. Н. Лебедева были его классические опыты по световому давлению, принесшие ему всемирную славу. Предварительное сообщение о своей работе по измерению давления света на твердые тела Лебедев сделал в 1899 г. С докладом о своих опытах он выступил на Всемирном конгрессе физиков в Париже в 1900 г. Сама работа «Опытное исследование светового давления» была опубликована в 1901 г. на немецком языке в журнале «Аnnаlen der Physik» и в сокращенном изложении на русском языке в ЖРФХО.Эта работа многократно описывалась в учебниках, статьях и книгах, и мы здесь ограничимся только кратким рефератом статьи, сделанным самим Лебедевым для немецкого реферативного журнала: «Fortschritte der Physik»: «…Автор исследует пондеромоторные силы, с которыми лучи белого, красного и голубого цвета действуют на поглощающие, покрытые платиновой чернью, и отражающие (алюминий, платина, никель и слюда) крылья в высоком вакууме.

Опыты были проведены с тремя различными приборами и с двумя различными калориметрами; они были разбиты на десять независимых групп, и их результаты сводятся к следующему:

1. Падающий пучок световых лучей оказывает давление как на поглощающее, так и отражающее тело; это пондеромоторное действие не зависит ни от известных вторичных круксовых сил, вызываемых нагреванием, ни от явлений конвекции.

2. Эти силы светового давления прямо пропорциональны падающему количеству энергии и не зависят от цвета световых лучей.

3. Эти силы светового давления в пределах ошибок наблюдения количественно дают полное совпадение с пондеромоторными силами излучения, вычисленными Максвеллом и Бартоли.

Таким образом, существование сил давления световых лучей, предсказанных Максвеллом и Бартоли, доказано экспериментально».

Итальянский физик Адольфо Бартоли (1851—1896), о котором упоминает здесь Лебедев, обосновал из термодинамических соображений в 1876 г. существование светового давления. В своей последней статье «Давление света» Лебедев предполагал посвятить доказательству Бартоли целый параграф. Этот параграф был написан П. П. Лазаревым.

Схема опыта П. Н. Лебедева по получению ультракоротких электромагнитных волнРис. Схема опыта П. Н. Лебедева по получению ультракоротких электромагнитных волн

Результат Лебедева произвел огромное впечатление. В. Томсон (лорд Кельвин) признавался К- А. Тимирязеву, что он всю жизнь воевал с Максвеллом из-за его светового давления, но Лебедев теперь заставил его признать свою неправоту.

В 1901 г. Лебедев становится профессором Московского университета, в котором он десять лет назад начинал работу у Столетова в скромной должности лаборанта. Теперь он всемирно известный ученый, глава школы физиков, в которой под его руководством работают десятки учеников. Из школы Лебедева вышли такие известные советские ученые, как академик П. П. Лазарев, в свою очередь создавший школу, чл.-кор. Академии наук СССР В. К. Аркадьев, также глава школы магнетологов и радиофизиков, профессора В. И. Романов, А. К. Тимирязев, Н. А. Капцов и многие другие. Питомцы лебедевской школы и их ученики составили большой отряд советской физики.

В 1902 г. Лебедев выступил на съезде немецкого астрономического общества с докладом, в котором вновь вернулся к вопросу о космической роли светового давления. В историческом обзоре этого доклада Лебедев напоминает о гипотезе Кеплера, который предположил, что отталкивание кометных хвостов Солнцем обусловлено давлением его лучей на частицы хвоста. Действие света на молекулу, указывает Лебедев, зависит от ее избирательного поглощения. Для лучей, поглощаемых газом, давление обусловлено законом Максвелла, лучи, не поглощаемые газом, действие на него не оказывают. Лебедев ставит задачу определить давление света на газы. Эта многолетняя работа, потребовавшая от экспериментатора много сил и остроумия, подводила итог всей его научной деятельности начиная с 1891 г.

Для измерения малых сил давления Лебедев ставил эксперимент таким образом, чтобы «газ мог перемещаться в направлении пронизывающих его лучей и производил давление на очень чувствительный поршневой аппарат, на который лучи света непосредственно действовать немогли». Чтобы избежать влияния конвекционных токов, Лебедев смешивал газ с водородом, обладающим значительной теплопроводностью, что позволяло быстро выравнивать плотность в разных точках газа. Эта трудная экспериментальная работа осталась непревзойденным образцом экспериментального искусства.

За работы по давлению света Лебедев был избран в 1911 г. почетным членом Королевского института в Лондоне.

Лебедев глубоко интересовался проблемами астрофизики, активно работал в Международном Союзе по исследованию Солнца, написал ряд статей о кажущейся дисперсии межзвездной среды. Открытие Хейлом магнетизма солнечных пятен направило его внимание на исследование магнетизма вращения.

В последние годы жизни его внимание привлекла проблема ультразвука. Этими вопросами занимались его ученики В. Я. Альтберг и Н. П. Неклепаев. Сам Лебедев написал заметку «Предельная величина коротких акустических волн».

Его ученики П. П. Лазарев и А. К. Тимирязев исследовали явление внутреннего трения в разреженных газах. Но вся эта напряженная работа оборвалась в 1911 г., когда Лебедев вместе с другими профессорами покинул университет в знак протеста против действий реакционного министра просвещения Кассо. Русская и международная общественность поспешила на помощь Лебедеву, но силы его были подорваны, и 14 марта 1912 г. П. Н. Лебедев скончался.

В историю физики Лебедев вошел как первоклассный экспериментатор, решивший ряд труднейших проблем современной ему физики. Значение Лебедева для России не исчерпывается этим. Он был создателем московской школы физиков. Вышедшие из этой школы ученые сыграли важную роль в становлении и развитии советской физики.

Статья на тему Открытие электромагнитных волн

§ 53. Электромагнитные волны —

Вопросы.1. Какие выводы относительно электромагнитных волн вытекали из теории Максвелла?

Задолго до того, как удалось получить и зарегистрировать электромагнитные волны Максвеллом были предсказаны некоторые их свойства: волны могут распространяться не только в веществе, но и в вакууме; их скорость в вакууме равна скорости света; быстропеременное электромагнитное поле должно распространяться в пространстве в виде поперечных волн.



2. Какие физические величины периодически меняются в электромагнитной волне? В электромагнитной волне меняются вектор индукции магнитного поля В и вектор напряженности электрического поля Е.

3. Какие соотношения между длиной волны, ее скоростью, периодом и частотой колебаний справедливы для электромагнитных волн?




4. При каком условии волна будет достаточно интенсивной для того, чтобы ее можно было зарегистрировать?

При частоте порядка 100 000 колебаний в секунду.



5. Когда и кем были впервые получены электромагнитные волны?

Электромагнитные волны были впервые получены в 1888 г. немецким ученым Генрихом Герцем.



6. Приведите примеры 2—3 диапазонов электромагнитных волн.

Радиоволны (длина волны от 1 мм), инфракрасное излучение (1мм — 780 нм), видимое (оптическое) излучение (780 — 380 нм), ультрафиолетовое (380 -10 нм), рентгеновское (10 нм — 5 пм) гамма- излучение (менее 5 пм).




7. Приведите примеры применения электромагнитных волн и их воздействия на живые организмы.

Радиоволны используются человеком для теле- и радиовещания. Инфракрасное излучение от Солнца поддерживает жизнь на Земле. Электромагнитное излучение в видимом диапазоне позволяет людям и животным получать информацию об окружающей среде, а растениям  осуществлять процесс фотосинтеза. Ультрафиолетовое излучение может оказывать негативное действие на организм человека. Рентгеновское излучение используют в медицине.



 Упражнения.

1. На какой частоте суда передают сигнал бедствия SOS, если по международному соглашению длина радиоволны должна быть 600 м?



2. Радиосигнал, посланный с Земли на Луну, может отразиться от поверхности Луны и вернуться на Землю. Предложите способ измерения расстояния между Землей и Луной с помощью радиосигнала.
Указание: задача решается таким же методом, каким измеряется глубина моря с помощью эхолокации (см. §34).




3. Можно ли измерить расстояние между Землей и Луной с помощью звуковой или ультразвуковой волны? Ответ обоснуйте.

Нет нельзя. Вакуум неупругая среда и поэтому звуковые волны в нем не распространяются.


Тестовая работа по теме: «Электромагнитные волны» (9 класс)

Тест на тему: «Электромагнитные волны».

Вариант 1

1.Что такое механическая волна?

а). Процесс распространения механических колебаний в среде.

б). Процесс распространения механических движений в среде.

в). Периодически повторяющиеся движения.

2.Где не распространяются механические волны?

а). В твердой среде. б). В вакууме в). В жидких и газообразных средах.

3.Чему равно ν?

а). …= б.) …= в). …=

4.Кто предположил, что всякое изменяющееся магнитное поле порождает электрическое поле, а всякое изменяющееся электрическое поле порождает магнитное поле?

а) Генрих Герц. б). Джеймс Максвелл. в). Александр Степанович Попов.

5.Конденсатор — это….?

а). Прибор, с помощью которого можно накапливать и сохранять электрические заряды

б). Прибор, с помощью которого можно измерить напряжение.

в). Прибор, который служит для получения электрических зарядов.

6.Какое утверждение верно?

а). Скорость распространение электромагнитных волн меньше скорости распространения света. б). Скорость распространение электромагнитных волн равна скорости распространения света. в). Скорость распространение электромагнитных волн больше скорости распространения света.

7.Кто в 1888 году впервые получил и зарегистрировал электромагнитные волны?

а). Гульельмо Маркони. б). Никола Тесла. в). Генрих Герц.

8.К характеристикам радиоволн относятся:

а). Частота, скорость, амплитуда.

б).Частота, амплитуда , период, длина волны, скорость.

в). Частота, мощность, длина волны, масса, скорость, сила.

9.Радиостанция излучает радиоволны частотой 10МГц. Какова длина этих радиоволн?

а). 0,3м. б). 3м. в). 30м.

10.На каком рисунке показано изображение Солнца, полученное с помощью спутников в рентгеновском диапазоне излучения электромагнитных волн?

а). А. б). Б. в). В.

11.Виды спектров:

а).Сплошной, полосатый, линейчатый.

б). Полосатый, линейчатый, клетчатый .

в). Волнистый, линейчатый, клетчатый.

12.Излучения каких веществ имеет линейчатый спектр?

а). Бытовой газ. б)Li,Na,Ne,H2 в) Пары йода.

13.Каким цветом будет казаться синяя лампа сквозь красный светофильтр?

а). Синим. б). Красным. в) Черным.

14.Какие виды спектров изучают в спектральном анализе?

а). Линейчатые и полосатые спектры. б). Клетчатые и линейчатые спектры.

в). Сплошные и полосатые спектры.

15.Все устройства, используемые для радио связи, можно разделить на…:

а). Радиосигналы и радиоприемники.б). Радиопередатчики и радиоприёмники.

в). Радиопередатчики и радиомаячки.

Тест по теме: «Электромагнитные волны».

Вариант 2

1.Что такое электромагнитные колебания?

А) Периодическое изменение напряжённости и индукции. Б)Изменение напряжённости поля В)Изменение индукции

2.Чему равна скорость распространения электромагнитных волн?

А) 2,98 *108 м/ч . Б) 2,78 *108м/с В) нет определённых значений.

3.Кому впервые удалось рассчитать скорость распространения электромагнитных волн?

А) Александр Степанович Попов Б) Исаак Ньютон В) Джеймс Максвелл

4.Что такое электромагнитные волны?

А) Распространение электромагнитного поля

Б) Следствие возникновения электромагнитного поля

В) Изменение состояния среды электромагнитного поля.

5) Где способно распространяться электромагнитное поле?

А) В среде

Б) В веществе

В) В среде и в веществе

6)Что такое радиоволны?

А) Световое излучение

Б) Электромагнитное излучение

В) Звуковое излучение.

7)Где используются радиоволны?

А) В передаче данных в радиосетях

Б) В передаче данных в электромагнитных волнах

В) Нет подходящего ответа.

8.Что такое радиоизлучение?

А) Устройство приема света

Б) Устройство для устранения помех радиоволн

В) Устройство для приема радиоволн.

9)Что называется колебательным контуром?

А) Конденсатор и катушка Б) Конденсатор и источник тока В) источник тока и катушка.

10)Кто впервые получил электромагнитные волны?

А) Джеймс Максвелл Б) Исаак Ньютон В) Генрих Герц

11) По какой формуле найти частоту колебаний?

А) ν=Nt Б) ν = В) ν=

12) Что обозначает λ в отношении λ= cT =

А) Частота колебаний Б) Длина волны В) Частота волны

13)Что нужно сделать, чтобы заставить газ излучать свет?

А)Нагреть Б) Создать электрический заряд В) оба ответа правильны

14)Из чего состоит линейчатый спектр?

А) Из отдельных линий разного цвета, имеющих разные расположения

Б) Из отдельных линий одного цвета, имеющих разные расположения В) Оба ответа верны

15)Кем впервые была открыта радиосвязь?

А) Александр Степанович Попов Б) Никола Тесла. В) Гульельмо Маркони

Ответы:

Вариант 1

Вариаант 2

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *