Site Loader

Содержание

Размеры и типы корпусов SMD-компонентов

Технологии и Процесс

Поверхностный монтаж — технология изготовления электронных изделий на печатных платах, которую также называют ТМП (технология монтажа на поверхность), SMT (англ. surface mount technology) и SMD-технология (от англ. surface mounted device — прибор, монтируемый на поверхность).

Электронные компоненты для поверхностного монтажа («чип-компоненты» или SMD-компоненты) выпускаются различных размеров и в разных типах корпусов. Таблица типоразмеров и SMD-корпусов поможет быстро получить необходимые данные.


Размеры и типы корпусов SMD-компонентов


Двухконтактные компоненты: прямоугольные, пассивные (резисторы и конденсаторы)

Обозначение типоразмера состоит из четырех цифр. Две первые соответствуют округленно длине L в принятой системе измерения (либо метрической, либо дюймовой), а две последние — ширине W.

Типоразмер (дюймовая система) Типоразмер (метрическая система) Размер (мм)
008004 0201 0.25×0.125
009005 03015 0.3×0.15
01005
0402 0.4×0.2
0201 0603 0.6×0.3
0402 1005 1.0×0.5
0603 1608 1.6×0.8
0805
2012
2.0×1.25
1008 2520 2.5×2.0
1206 3216 3.2×1.6
1210 3225 3.2×2.5
1806 4516
4.5×1.6
1812 4532 4.5×3.2
1825 4564 4.5×6.4
2010 5025 5.0×2.5
2512 6332 6.3×3.2
2725 6863 6.9×6.3
2920 7451 7.4×5.1

Двухконтактные компоненты: цилиндрические, пассивные (резисторы и диоды) в корпусе MELF

корпус размеры (мм) и другие параметры
Melf (MMB) 0207
L = 5,8 мм, Ø = 2,2 мм, 1,0 Вт, 500 В
MiniMelf (MMA) 0204 L = 3,6 мм, Ø = 1,4 мм, 0,25 Вт, 200 В
MicroMelf (MMU) 0102 L = 2,2 мм, Ø = 1,1 мм, 0,2 Вт, 100 В

Двухконтактные компоненты: танталовые конденсаторы

тип размеры (мм)
A (EIA 3216-18) 3,2 × 1,6 × 1,6
B (EIA 3528-21) 3,5 × 2,8 × 1,9
C (EIA 6032-28) 6,0 × 3,2 × 2,2
D (EIA 7343-31) 7,3 × 4,3 × 2,4
E (EIA 7343-43) 7,3 × 4,3 × 4,1

Двухконтактные компоненты: диоды (англ. small outline diode, сокр. SOD)

обозначение размеры (мм)
SOD-323 1,7 × 1,25 × 0,95
SOD-123 2,68 × 1,17 × 1,60

Трёхконтактные компоненты: транзисторы с тремя короткими выводами (SOT)

обозначение размеры (мм)
SOT-23 3 × 1,75 × 1,3
SOT-223 6,7 × 3,7 × 1,8
DPAK (TO-252) корпус (трёх- или пятиконтактные варианты), разработанный компанией Motorola для полупроводниковых устройств с большим выделением тепла
D2PAK (TO-263) корпус (трёх-, пяти-, шести-, семи- или восьмивыводные варианты), аналогичный DPAK, но больший по размеру (как правило габариты корпуса соответствуют габаритам TO220)
D3PAK (TO-268) корпус, аналогичный D2PAK, но ещё больший по размеру

Многоконтактные компоненты: выводы в две линии по бокам

обозначение
расстояние между выводами (мм)
ИС — с выводами малой длины (англ. small-outline integrated circuit, сокращённо SOIC) 1,27
TSOP — (англ. thin small-outline package) тонкий SOIC (тоньше SOIC по высоте) 0,5
SSOP — усаженый SOIC 0,65
TSSOP — тонкий усаженый SOIC 0,65
QSOP
— SOIC четвертного размера
0,635
VSOP — QSOP ещё меньшего размера 0,4; 0,5 или 0,65

Многоконтактные компоненты: выводы в четыре линии по бокам

обозначение расстояние между выводами (мм)
PLCC, CLCC — ИС в пластиковом или керамическом корпусе с выводами, загнутыми под корпус с виде буквы J 1,27
QFP — (англ. quad flat package) — квадратные плоские корпусы ИС разные размеры
LQFP — низкопрофильный QFP 1,4 мм в высоту
разные размеры
PQFP — пластиковый QFP (44 или более вывода) разные размеры
CQFP — керамический QFP (сходный с PQFP) разные размеры
TQFP — тоньше QFP тоньше QFP
PQFN — силовой QFP нет выводов, площадка для радиатора

Многоконтактные компоненты: массив выводов

обозначение расстояние между выводами (мм)
BGA — (англ. ball grid array) — массив шариков с квадратным или прямоугольным расположением выводов 1,27
LFBGA — низкопрофильный FBGA, квадратный или прямоугольный, шарики припоя 0,8
CGA — корпус с входными и выходными выводами из тугоплавкого припоя разные размеры
CCGA — керамический CGA разные размеры
μBGA — (микро-BGA) — массив шариков расстояние между шариками менее 1 мм
FCBGA — (англ. flip-chip ball grid array) массив шариков на подложке
к подложке припаян кристалл с теплораспределителем
разные размеры
PBGA — массив шариков, кристалл внутри пластмассового корпуса разные размеры
LLP — безвыводный корпус

Обратите внимание:

Компания «Глобал Инжиниринг» предлагает большой каталог с оборудованием для поверхностного монтажа. У нас вы найдёте: трафаретные принтеры; системы дозирования; оборудование для монтажа компонентов; печи конвекционной и парофазной пайки; установки лужения; приборы для подготовки паяльной пасты; конвеерные системы и многое другое. // Приобретая оборудование, вы получаете 100% гарантийную и пост-гарантийную поддержку, помощь в приобретении запасных частей и расходных материалов, программы обучения и всю техническую информацию.


Возврат к списку статей


Корпуса компонентов для поверхностного монтажа (SMD) — Маркировка электронных компонентов — Компоненты — Инструкции

Несмотря на большое количество стандартов, регламентирующих требования к корпусам электронных    компонентов, многие фирмы выпускают элементы в корпусах не соответствующих международным стандартам. Также встречаются ситуации, когда корпус, имеющий стандартные размеры у фирмы имеет другое название.


Часто название корпуса состоит из четырех цифр, которые отображают его длину и ширину. Но в одних стандартах эти параметры задаются в дюймах, в других — в миллиметрах. Так, например, название корпуса 0805 получается следующим образом: 0805=L x W=(0.08 x 0.05) дюйма. А корпус 5845 имеет габариты (5.8 х 4.5) мм. Корпуса с одним и тем же названием могут иметь разную высоту, различные контактные площадки, и выполнены из различных материалов, но рассчитаны для монтажа на стандартное установочное место. Ниже приведены параметры (мм) наиболее популярных типов корпусов.

Таблица 1.

Тип корпуса

L* (мм)

W* (мм)

Н* (мм)

К (мм)

Примечание

0402 (1005)

1.0

0.5

0.35…0.55

0.2

 

0603(1608)

1.6

0.8

0.45…0.95

0.3

 

0805(2012)

2.0

1.25

0.4…1.6

0.5

ГОСТ Р1-12-0.062

1206(3216)

3.2

1.6

0.4…0.75

0.5

ГОСТР1-12-0.125:Р1-16

1210(3225)

3.2

2.5

0.55…1.9

0.5

 

2118(3245)

3.2

4.5

0.55…1.9

0.5

 

1806(4516)

4.5

1.6

1.6

0.5

 

1208(4520)

4.5

2.0

2.0

0.5

 

1812(4532)

4.5

3.2

0.6..3.2

0.5

 

2010(5025)

5.0

2.5

0.55

0.5

 

2220(5750)

5.7

5.0

1.7

0.5

 

2225(5763)

5.7

6.3

2.0

0.5

 

2512(6432)

6.4

3.2

2.0

0.5

 

2824(7161)

7.1

6.1

3.9

0.5

 

3225(8063)

8.0

6.3

3.2

0.5

 

4030

10.2

7.6

3.9

0.5

 

4032

10.2

8.0

3.2

0.5

 

5040

12.7

10.2

4.8

0.5

 

6054

15.2

13.7

4.8

0.5

 

 

*• в зависимости от технологии, которыми обладает фирма, варьируется и нормируемые разбросы относительно
базовых габаритов. Наиболее распространенные допуски: — 0,05 мм корпуса длиной до I мм. например, 0402;
-0,1 мм -до 2 мм, например. SOD-232; + 0.2 мм —до 5 мм;-0.5 мм — выше 5 мм.
Небольшие расхождения в цифрах у разных фирм обусловлены степенью точности перевода дюймов в мм, а так же
указанием только min. max или номинального размера.
**• Корпуса с одним и тем же названием могут иметь разную высоту.
Это обусловлено: для конденсаторов — величиной емкости и рабочим напряжением, для резисторов — рассеиваемой
мощности, и т.д.

Таблица 2.

Тип корпуса

L* (мм)

W* (MM)

H** (мм)

F (мм)

Примечание

2012(0805)

2.0

1.2

1.2

1.1

EIAJ

3216(1206)

3.2

1.6

1.6

1.2

EIAJ

3216L

3.2

1.6

1.2

1.2

EIAJ

3528

3.5

2.8

1.9

2.2

EIAJ

3528L

3.5

2.8

1.2

2.2

EIAJ

5832

5.8

3.2

1.5

2.2

5845

5.8

4.5

3.1

2.2

EIAJ

6032

6.0

3.2

2.5

2.2

EIAJ

7343

7.3

4.3

2.8

2.4

EIAJ

7343H

7.3

4.3

4.3

2.4

EIAJ

DO-214AA

5.4

3.6

2.3

2.05

JEDEC

DO-214AB

7.95

5.9

2.3

3.0

JEDEC

DO-214AC

5.2

2.6

2.4

1.4

JEDEC

DO-214BA

5.25

2.6

2.95

1.3

JEDEC

SMA

5.2

2.6

2.3

1.45

MOTOROLA

SMB

5.4

2.6

2.3

2.05

MOTOROLA

SMC

7.95

5.9

2.3

3.0

MOTOROLA

SOD 6

5.5

3.8

2.5

2.2

ST

SOD 15

7.8

5.0

2.8

3.0

ST

 

Таблица 3.

Тип корпуса

L* (мм)

L** (мм)

W*(мм)

Н** (мм)

В (мм)

Примечание

DO-215AA

4.3

6.2

3.6

2.3

2.05

JEDEC

DO-215AB

6.85

9.9

5.9

2.3

3.0

JEDEC

DO-215AC

4.3

6.1

2.6

2.4

1.4

JEDEC

DO-215BA

4.45

6.2

2.6

2.95

1.3

JEDEC

ESC

1.2

1.6

0.8

0.6

0.3

TOSHIBA

SOD-123

2.7

3.7

1.55

1.35

0.6

PHILIPS

SOD-123

1.7

2.5

1.25

1.0

0.3

PHILIPS

SSC

1.3

2.1

0.8

0.8

0.3

TOSHIBA

 

*• в зависимости от технологии, которыми обладает фирма, варьируется и нормируемые разбросы относительно базовых
габаритов. Наиболее распространенные допуски: ± 0.05 мы корпуса длиной до I мм. например, 0402;
±0,1 мм-до 2 мм, например, SOD-232; ±0.2 мм -до 5 мм; ±0,5 мм -свыше 5 мм. Небольшие расхождения в цифрах у
разных фирм обусловлены степенью точности перевода дюймов в мм, а так же указанием только min. max или
номинального размера.
**• Корпуса с одним и тем же названием могут иметь разную высоту. Это обусловлено: для конденсаторов — величиной
емкости и рабочим напряжением, для резисторов — рассеиваемой мощности, и т.д.

Таблица 4

Тип корпуса

L*(mm)

D*(мм)

F*(мм)

S*(мм)

Примечание

DO-213AA (SOD80)

3.5

1.65

0.48

0.03

JEDEC

DO-213AB (MELF)

5.0

2.52

0.48

0.03

JEDEC

DO-213AC

3.45

1.4

0.42

JEDEC

ERD03LL

1.6

1.0

0.2

0.05

PANASONIC

ER021L

2.0

1.25

0.3

0.07

PANASONIC

ERSM

5.9

2.2

0.6

0.15

PANASONIC, ГОСТ Р1-11

MELF

5.0

2.5

0.5

0.1

CENTS

SOD80 (miniMELF)

3.5

1.6

0.3

0.075

PHILIPS

SOD80C

3.6

1.52

0.3

 

PHILIPS

SOD87

3.5

2.05

0.3

 

PHILIPS

 

Типы корпусов smd компонентов. SMD компоненты. Размеры SMD резисторов и их мощность

В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского – удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа – SMT технологии (S urface M ount T echnology ), и конечно же, без SMD компонентов.

Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD (S urface M ounted D evice ), что в переводе с английского – “прибор, монтируемый на поверхность”. В нашем случае поверхностью является печатная плата, без сквозных отверстий под радиоэлементы:

В этом случае SMD компоненты не вставляются в отверстия плат. Они запаиваются на контактные дорожки, которые расположены прямо на поверхности печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на котором раньше были SMD компоненты.


Плюсы SMD компонентов

Самыми большим плюсом SMD компонентов являются их маленькие габариты. На фото ниже простые резисторы и :



Благодаря малым габаритам SMD компонентов, у разработчиков появляется возможность размещать большее количество компонентов на единицу площади, чем простых выводных радиоэлементов. Следовательно, возрастает плотность монтажа и в результате этого уменьшаются габариты электронных устройств. Так как вес SMD компонента в разы легче, чем вес того же самого простого выводного радиоэлемента, то и масса радиоаппаратуры будет также во много раз легче.

SMD компоненты намного проще выпаивать. Для этого нам потребуется с феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье как правильно паять SMD . Запаивать их намного труднее. На заводах их располагают на печатной плате специальные роботы. Вручную на производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.

Многослойные платы

Так как в аппаратуре с SMD компонентами очень плотный монтаж, то и дорожек в плате должно быть больше. Не все дорожки влезают на одну поверхность, поэтому печатные платы делают многослойными. Если аппаратура сложная и имеет очень много SMD компонентов, то и в плате будет больше слоев. Это как многослойный торт из коржей. Печатные дорожки, связывающие SMD компоненты, находятся прямо внутри платы и их никак нельзя увидеть. Пример многослойных плат – это платы мобильных телефонов, платы компьютеров или ноутбуков (материнская плата, видеокарта, оперативная память и тд).

На фото ниже синяя плата – Iphone 3g, зеленая плата – материнская плата компьютера.



Все ремонтники радиоаппаратуры знают, что если перегреть многослойную плату, то она вздувается пузырем. При этом межслойные связи рвутся и плата приходит в негодность. Поэтому, главным козырем при замене SMD компонентов является правильно подобранная температура.

На некоторых платах используют обе стороны печатной платы, при этом плотность монтажа, как вы поняли, повышается вдвое. Это еще один плюс SMT технологии. Ах да, стоит учесть еще и тот фактор, что материала для производства SMD компонентов уходит в разы меньше, а себестоимость их при серийном производстве в миллионах штук обходится, в прямом смысле, в копейки.

Основные виды SMD компонентов

Давайте рассмотрим основные SMD элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом, и другие компоненты выглядят как обычные маленькие прямоугольники, а точнее, параллелепипеды))

На платах без схемы невозможно узнать, то ли это резистор, то ли конденсатор то ли вообще катушка. Китайцы метят как хотят. На крупных SMD элементах все-таки ставят код или цифры, чтобы определить их принадлежность и номинал. На фото ниже в красном прямоугольнике помечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также их номинал.


Типоразмеры SMD компонентов могут быть разные. Вот есть описание типоразмеров для резисторов и конденсаторов. Вот, например, прямоугольный SMD конденсатор желтого цвета. Еще их называют танталовыми или просто танталами:


А вот так выглядят SMD :



Есть еще и такие виды SMD транзисторов:


Которые обладают большим номиналом, в SMD исполнении выглядят вот так:



Ну и конечно, как же без микросхем в наш век микроэлектроники! Существует очень много SMD типов корпусов микросхем , но я их делю в основном на две группы:

1) Микросхемы, у которых выводы параллельны печатной плате и находятся с двух сторон или по периметру.


2) Микросхемы, у которых выводы находятся под самой микросхемой. Это особый класс микросхем, называется BGA (от английского Ball grid array – массив из шариков). Выводы таких микросхем представляют из себя простые припойные шарики одинаковой величины.

На фото ниже BGA микросхема и обратная ее сторона, состоящая из шариковых выводов.


Микросхемы BGA удобны производителям тем, что они очень сильно экономят место на печатной плате, потому что таких шариков под какой-нибудь микросхемой BGA могут быть тысячи. Это значительно облегчает жизнь производителям, но нисколько не облегчает жизнь ремонтникам.

Резюме

Что же все-таки использовать в своих конструкциях? Если у вас не дрожат руки, и вы хотите сделать, маленького радиожучка, то выбор очевиден. Но все-таки в радиолюбительских конструкциях габариты особо не играют большой роли, да и паять массивные радиоэлементы намного проще и удобнее. Некоторые радиолюбители используют и то и другое. Каждый день разрабатываются все новые и новые микросхемы и SMD компоненты. Меньше, тоньше, надежнее. Будущее, однозначно, за микроэлектроникой.

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные , предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код , а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

Мы уже познакомились с основными радиодеталями: резисторами, конденсаторами, диодами, транзисторами, микросхемами и т.п., а также изучили, как они монтируются на печатную плату. Ещё раз вспомним основные этапы этого процесса: выводы всех компонентов пропускают в отверстия, имеющиеся в печатной плате. После чего выводы обрезаются, и затем с обратной стороны платы производится пайка (см. рис.1).
Этот уже известный нам процесс называется DIP-монтаж. Такой монтаж очень удобен для начинающих радиолюбителей: компоненты крупные, паять их можно даже большим «советским» паяльником без помощи лупы или микроскопа. Именно поэтому все наборы Мастер Кит для самостоятельной пайки подразумевают DIP-монтаж.

Рис. 1. DIP-монтаж

Но DIP-монтаж имеет очень существенные недостатки:

Крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
— выводные радиодетали дороже в производстве;
— печатная плата для DIP-монтажа также обходится дороже из-за необходимости сверления множества отверстий;
— DIP-монтаж сложно автоматизировать: в большинстве случаях даже на крупных заводах по производству электронику установку и пайку DIP-деталей приходится выполнять вручную. Это очень дорого и долго.

Поэтому DIP-монтаж при производстве современной электроники практически не используется, и на смену ему пришёл так называемый SMD-процесс, являющийся стандартом сегодняшнего дня. Поэтому любой радиолюбитель должен иметь о нём хотя бы общее представление.

SMD монтаж

SMD компоненты (чип-компоненты) — это компоненты электронной схемы, нанесённые на печатную плату с использованием технологии монтирования на поверхность — SMT технологии (англ. surface mount technology).Т.е все электронные элементы, которые «закреплены» на плате таким способом, носят название SMD компонентов (англ. surface mounted device). Процесс монтажа и пайки чип-компонентов правильно называть SMT-процессом. Говорить «SMD-монтаж» не совсем корректно, но в России прижился именно такой вариант названия техпроцесса, поэтому и мы будем говорить так же.

На рис. 2. показан участок платы SMD-монтажа. Такая же плата, выполненная на DIP-элементах, будет иметь в несколько раз большие габариты.

Рис.2. SMD-монтаж

SMD монтаж имеет неоспоримые преимущества:

Радиодетали дешёвы в производстве и могут быть сколь угодно миниатюрны;
— печатные платы также обходятся дешевле из-за отсутствия множественной сверловки;
— монтаж легко автоматизировать: установку и пайку компонентов производят специальные роботы. Также отсутствует такая технологическая операция, как обрезка выводов.

SMD-резисторы

Знакомство с чип-компонентами логичнее всего начать с резисторов, как с самых простых и массовых радиодеталей.
SMD-резистор по своим физическим свойствам аналогичен уже изученному нами «обычному», выводному варианту. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. Это же правило относится и ко всем другим SMD-компонентам.

Рис. 3. ЧИП-резисторы

Типоразмеры SMD-резисторов

Мы уже знаем, что выводные резисторы имеют определённую сетку стандартных типоразмеров, зависящих от их мощности: 0,125W, 0,25W, 0,5W, 1W и т.п.
Стандартная сетка типоразмеров имеется и у чип-резисторов, только в этом случае типоразмер обозначается кодом из четырёх цифр: 0402, 0603, 0805, 1206 и т.п.
Основные типоразмеры резисторов и их технические характеристики приведены на рис.4.

Рис. 4 Основные типоразмеры и параметры чип-резисторов

Маркировка SMD-резисторов

Резисторы маркируются кодом на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, На рис. 5. резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 кОм. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифробуквенная. Например, резистор с кодом 4R7 имеет сопротивление 4.7 Ом, а резистор с кодом 0R22 – 0.22 Ом (здесь буква R является знаком-разделителем).
Встречаются и резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как предохранители.
Конечно, можно не запоминать систему кодового обозначения, а просто измерить сопротивление резистора мультиметром.

Рис. 5 Маркировка чип-резисторов

Керамические SMD-конденсаторы

Внешне SMD-конденсаторы очень похожи на резисторы (см. рис.6.). Есть только одна проблема: код ёмкости на них не нанесён, поэтому единственный способ ёё определения – измерение с помощью мультиметра, имеющего режим измерения ёмкости.
SMD-конденсаторы также выпускаются в стандартных типоразмерах, как правило, аналогичных типоразмерам резисторов (см. выше).

Рис. 6. Керамические SMD-конденсаторы

Электролитические SMS-конденсаторы

Рис.7. Электролитические SMS-конденсаторы

Эти конденсаторы похожи на своих выводных собратьев, и маркировка на них обычно явная: ёмкость и рабочее напряжение. Полоской на «шляпке» конденсатора маркируется его минусовой вывод.

SMD-транзисторы


Рис.8. SMD-транзистор

Транзисторы мелкие, поэтому написать на них их полное наименование не получается. Ограничиваются кодовой маркировкой, причём какого-то международного стандарта обозначений нет. Например, код 1E может обозначать тип транзистора BC847A, а может – какого-нибудь другого. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники. Сложности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатную плату, без документации производителя на эту плату иногда бывает очень сложно.

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов приведены на рисунке ниже:

Рис.9. SMD-диоды и SMD-светодиоды

На корпусе диода обязательно указывается полярность в виде полосы ближе к одному из краев. Обычно полосой маркируется вывод катода.

SMD-cветодиод тоже имеет полярность, которая обозначается либо точкой вблизи одного из выводов, либо ещё каким-то образом (подробно об этом можно узнать в документации производителя компонента).

Определить тип SMD-диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода выштамповывается малоинформативный код, а на корпусе светодиода чаще всего вообще нет никаких меток, кроме метки полярности. Разработчики и производители современной электроники мало заботятся о её ремонтопригодности. Подразумевается, что ремонтировать печатную плату будет сервисный инженер, имеющий полную документацию на конкретное изделие. В такой документации чётко описано, на каком месте печатной платы установлен тот или иной компонент.

Установка и пайка SMD-компонентов

SMD-монтаж оптимизирован в первую очередь для автоматической сборки специальными промышленными роботами. Но любительские радиолюбительские конструкции также вполне могут выполняться на чип-компонентах: при достаточной аккуратности и внимательности паять детали размером с рисовое зёрнышко можно самым обычным паяльником, нужно знать только некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее об автоматическом и ручном SMD-монтаже будет рассказано отдельно.

Что такое SMD компоненты и зачем они нужны

Приветствую, друзья!

Мы уже рассказывали, как устроены некоторые «кирпичики», из которых сделаны компьютеры и периферийные устройства.

Любители копать поглубже читали здесь, как работают транзисторы и диоды.

Сейчас мы посмотрим, какие еще штуковины производители запихивают в электронную технику.

Для начала отметим — технический прогресс заключается и в уменьшении размеров электронных компонентов.

Обычные элементы и SMD компоненты

Помните, мы с вами ремонтировали материнскую плату компьютера и меняли конденсаторы и полевые транзисторы? Это достаточно крупные элементы, на которых можно невооружённым взглядом прочесть маркировку.

Конденсаторы в низковольтном стабилизаторе напряжения ядра процессора на материнской плате нельзя сделать очень маленькими. Для должной фильтрации пульсаций они должны обладать емкостью в несколько сотен микрофарад. Такую емкость не втиснешь в маленький объем.

Полевые транзисторы в этом стабилизаторе тоже нельзя сделать очень маленькими. Через них протекают токи в десятки ампер.

Используются полевые транзисторы с очень небольшим сопротивлением открытого канала — десятые и сотые доли Ома. Но при таких токах они могут рассеивать мощность в половину Ватта и больше. Протекание тока по открытому каналу вызывает нагрев транзистора.

Тепло при этом излучается в окружающее пространство через площадь корпуса транзистора. Если корпус будет очень маленьким, транзистор не сможет рассеять тепло и сгорит. Кстати, обратите внимание: полевые транзисторы припаяны корпусом к площадкам печатной платы. Медные площадки хорошо проводят тепло, поэтому теплоотвод получается более эффективным.

Но есть на той же материнской плате компоненты, по которым не протекают большие токи, и они не рассеивает большой мощности. Поэтому их можно сделать очень небольшими.

Если мы заглянем внутрь компьютерного блока питания, то увидим там очень небольшие по размерам конденсаторы и резисторы.

Они используют в цепях управления и обратной связи.

Такие элементы выглядят как цилиндрик или кирпичик с тонкими проволочными выводами.

Монтаж этих компонентов ведется традиционным способом: через отверстия в плате элемент припаивается выводами к контактным площадкам платы. Это технология была освоена десятки лет назад.

Ее недостаток в том, что в плате нужно сверлить десятки или сотни отверстий.

Это не самая простая технологическая операция. Чтобы избавиться от сверления (или уменьшить число отверстий) и уменьшить размеры готовых изделий, и придумали SMD компоненты.

Материнские платы компьютеров содержат как обычные элементы с проволочными выводами, так и SMD компонентов. Последних – больше.

Как выглядят SMD компоненты?

SMD (Surface Mounted Device) — это компоненты, предназначенные для поверхностного монтажа.

SMD резисторы и конденсаторы выглядят как кирпичики.

Без проволочных выводов!

По краям и торцам кирпичика нанесен слой припоя.

Этими местами эти элементы припаивается к контактным площадкам.

Монтаж электронных плат ведется, естественно, автоматизированными системами.

SMD элементы сначала приклеивают, а затем припаивают.

Последние несколько лет используются, согласно директиве RoHS , бессвинцовые припои. Это вызвано заботой об окружающей среде.

Интересно отметить, что надежность пайки бессвинцового припоя ниже, чем припоев, содержащих свинец. Поэтому директива RoHS не распространяется, в частности, на военные изделия и активные имплантируемые медицинские устройства.

SMD диоды и стабилитроны выглядят как кирпичики с очень короткими выводами (0,5 мм и меньше), либо как цилиндрики с металлизированными торцами.

SMD транзисторы бывают в корпусах различных размеров и конфигураций.

Широко распространены, например, корпуса SOT23 и DPAK. Выводы могут располагаться с одной или двух сторон корпуса.

Микросхемы для поверхностного монтажа можно условно разделить на два больших класса.

У первого выводы располагаются по сторонам корпуса параллельно поверхности платы.

Такие корпуса называются планарными.

Выводы могут быть с двух длинных или со всех четырех сторон.

У микросхем другого класса выводы делаются в виде полушаров снизу корпуса.

Как правило, в таких корпусах делают большие микросхемы (чипсет) на материнских платах компьютеров или видеокартах.

Интересно отметить, что на традиционные элементы вначале наносилась цифровая маркировка.

На резисторах, например, наносили тип, номинальное значение сопротивления и отклонение. Затем стали использовать маркировку в виде цветных колец или точек. Это позволяло маркировать самые мелкие элементы.

В SMD элементах используются буквенно-цифровая (там, где позволяет типоразмер) и цветовая маркировка.

Что дает применение SMD компонентов?

При использовании SMD компонентов не нужно сверлить отверстия в платах, формировать и обрезать выводы перед монтажом. Сокращается число технологических операций, уменьшается стоимость изделий.

SMD компоненты меньше обычных, поэтому плата с такими элементами и устройство в целом будут более компактными.

Мобильный телефон без SMD элементов не был бы в полном смысле мобильным.

SMD компоненты можно монтировать с обеих сторон платы, что еще больше увеличивает плотность монтажа.

Устройство с SMD элементами будет иметь лучшие электрические характеристики за счет меньших паразитных емкостей и индуктивностей.

Есть, конечно, и минусы. Для монтажа SMD компонентов нужно специальное оборудование и технологии. С другой стороны, монтаж электронных плат давно осуществляется автоматизированными комплексами. Чего только не придумает человек!

При ремонтных работах во многих случаях можно монтировать и демонтировать SMD компоненты.

Однако и здесь не обойтись без вспомогательного оборудования. Припаять микросхему в BGA корпусе без паяльной станции невозможно! Да и планарную микросхему с сотней выводов утомительно паять вручную. Разве только из любви к процессу…

В заключение отметим, что предохранитель тоже могут иметь SMD исполнение.

Такие штуки используют на материнских платах для защиты USB или PS/2 портов.

Пользуясь случаем, напомним, что устройства с PS/2 разъемами (мыши и клавиатуры) нельзя переключать «на ходу» (в отличие от USB).

Но если случилась такая неприятность, что PS/2 устройство перестало работать после «горячей» коммутации, не спешите хвататься за голову.

Проверьте сначала SMD предохранитель вблизи соответствующего порта.

Можно еще почитать:

Что такое полевой транзистор и как его проверить.

С вами был Виктор Геронда.

До встречи на блоге!


SMD компоненты | Виды и типы SMD компонентов

В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского  – удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа  – SMT технологии (Surface Mount Technology), и конечно же, без SMD компонентов.

Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD (Surface Mounted Device), что в переводе с английского  –  “прибор, монтируемый на поверхность”. В нашем случае поверхностью является печатная плата, без сквозных отверстий под радиоэлементы:

В этом случае SMD компоненты не вставляются в отверстия плат. Они запаиваются на контактные дорожки, которые расположены прямо на поверхности  печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на котором раньше были SMD компоненты.

Плюсы SMD компонентов

Самыми большим плюсом SMD компонентов являются их маленькие габариты. На фото ниже простые резисторы и  SMD резисторы:

Благодаря малым габаритам SMD компонентов, у разработчиков появляется возможность размещать большее количество компонентов на единицу площади, чем простых выводных радиоэлементов. Следовательно, возрастает плотность монтажа и в результате этого уменьшаются габариты электронных устройств. Так как вес SMD компонента в разы легче, чем вес того же самого простого выводного радиоэлемента, то и масса радиоаппаратуры будет также во много раз легче.

У простых радиоэлементов  всегда есть паразитные параметры. Это может быть паразитная индуктивность или емкость. Вот, например, эквивалентная   схема простого конденсатора, где сопротивление диэлектрика между обкладками, R – сопротивление выводов, L – индуктивность между выводами.

В SMD компонентах эти параметры минимизированы, потому как их габариты очень малы. Вследствие этого улучшается качество передачи слабых сигналов, а также возникают меньшие помехи  в высокочастотных схемах, благодаря меньшим значениям паразитных параметров.

SMD компоненты намного проще выпаивать. Для этого нам потребуется паяльная станция с  феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье как правильно паять SMD. Запаивать их намного труднее. На заводах их располагают на печатной плате специальные роботы. Вручную на производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.

[quads id=1]

Основные виды SMD компонентов

Давайте рассмотрим основные SMD элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом, предохранители, диоды  и другие компоненты выглядят как обычные маленькие прямоугольники, а точнее, параллелепипеды))

На платах без схемы невозможно узнать, то ли это резистор, то ли конденсатор то ли вообще катушка. Китайцы метят как хотят. На крупных SMD элементах все-таки ставят код или цифры, чтобы определить их принадлежность и номинал.  На фото ниже в красном прямоугольнике помечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также их номинал.

Типоразмеры SMD компонентов могут быть разные. Вот здесь есть описание типоразмеров для резисторов и конденсаторов. Вот, например, прямоугольный SMD конденсатор желтого цвета. Еще их называют танталовыми или просто танталами:

А вот  так выглядят SMD транзисторы:

Есть еще и такие виды SMD транзисторов:

Катушки индуктивности, которые обладают большим номиналом, в SMD исполнении выглядят вот так:

Ну и конечно, как же без микросхем в наш век микроэлектроники! Существует очень много SMD типов корпусов микросхем, но я их делю  в основном на две группы:

1) Микросхемы, у которых выводы параллельны печатной плате и находятся с двух сторон или по периметру.

2) Микросхемы, у которых выводы находятся под самой микросхемой. Это особый класс микросхем, называется BGA (от английского  Ball grid array  – массив из шариков). Выводы таких микросхем представляют из себя простые припойные шарики одинаковой величины.

На фото ниже BGA микросхема и обратная  ее сторона, состоящая из шариковых выводов.

Микросхемы BGA удобны производителям тем, что они очень сильно экономят место на печатной плате, потому что таких шариков под какой-нибудь микросхемой BGA могут быть тысячи. Это значительно облегчает жизнь производителям, но нисколько не облегчает жизнь ремонтникам.

Многослойные платы

Так как  в аппаратуре с SMD компонентами очень плотный монтаж, то и дорожек в плате должно быть больше. Не все дорожки влезают на одну поверхность, поэтому печатные платы делают многослойными.  Если аппаратура сложная и имеет очень много SMD компонентов, то и в плате будет больше слоев. Это как многослойный торт из коржей. Печатные дорожки, связывающие SMD компоненты, находятся прямо внутри платы и их никак нельзя увидеть. Пример многослойных плат – это платы мобильных телефонов, платы компьютеров или ноутбуков (материнская плата, видеокарта, оперативная память и тд).

На фото ниже синяя плата – Iphone 3g, зеленая плата – материнская плата компьютера.

Все ремонтники радиоаппаратуры знают, что если перегреть многослойную плату, то она вздувается пузырем. При этом межслойные связи рвутся и плата  приходит в негодность. Поэтому, главным козырем при замене SMD компонентов является правильно подобранная температура.

На некоторых платах используют обе стороны печатной платы, при этом плотность монтажа, как вы поняли, повышается вдвое. Это еще один плюс SMT технологии. Ах да, стоит учесть еще и тот фактор, что материала для производства SMD компонентов уходит в разы меньше, а себестоимость их при серийном производстве в миллионах штук обходится, в прямом смысле, в копейки.

Рекомендую видео к просмотру – “Что такое SMD компоненты и как их паять”:

Прикольный набор радиолюбителя по ссылке <<<

SMD компоненты — обзор элементов и особенностей поверхностного монтажа

Прошли времена вводных радиодеталей, при помощи которых радиолюбитель ремонтировал ламповые телевизоры и старые радиоприемники. В нашу жизнь прочно вошли SMD-элементы, намного более компактные и высокотехнологичные. Что же представляет из себя этот SMD-компонент? Если говорить словами тех, кто начинал сборку и ремонт приборов во времена транзисторных приемников – это «мелкие темные штучки с надписями, которые совсем не понять». А если серьезно, то расшифровав термин «SMD-component» и переведя его на русский язык, мы получим «монтирующиеся на поверхности».

Что же это означает? Поверхностный монтаж (планарный монтаж) – это такой способ изготовления, при котором детали размещены на печатной плате с одной стороны с контактными дорожками. Для расположения радиодеталей не требуется высверливаний. Такой способ в наши дни наиболее распространен и считается самым оптимальным. В промышленных масштабах печатные платы на основе SMD-компонентов с большой скоростью «штампуются» роботами. Человеку остается лишь то, что машине пока не под силу. Необходимо разобраться, чем же так хороши SMD-компоненты и есть ли у них минусы.

Преимущества монтажа

Пример платы с SMD-компонентами

Естественно, что при невероятно малых размерах, которые имеют SMD-элементы, готовые печатные платы очень компактны, из чего можно сделать вывод, что готовый прибор на основе такой платформы будет очень небольшого размера. При печати требуется меньшее количество стеклотекстолита и хлорного железа, что существенно повышает экономию. К тому же времени на изготовление требуется значительно меньше, т. к. не нужно высверливать отверстия под ножки различных элементов.

По этой же причине такие платы легче поддаются ремонту, замене радиодеталей. Возможно даже изготовление печатной платы при установке SMD-элементов с двух сторон, чего нельзя было даже представить раньше. И, естественно, намного более низка цена чип-компонентов.

Конечно, имеются кроме преимуществ и недостатки (куда уж без них). Платформы на SMD-компонентах не переносят перегибов и даже небольших механических воздействий (таких, как удары). От них, как и при перегреве в процессе пайки, могут образоваться микротрещины на резисторах и конденсаторах. Сразу такие проблемы не дают о себе знать, а проявляются уже в процессе работы.

Ну и, конечно, тем, кто в первый раз сталкивается с чипами, непонятно, как же можно их различить. Какой из них является резистором, а какой конденсатором или транзистором, или какие размеры могут быть у SMD-компонентов? Во всем этом предстоит разобраться.

Виды корпусов SMD-элементов

Все подобные элементы можно разделить по группам на основании количества выводов на корпусе. Их может быть два, три, четыре-пять, шесть-восемь. И последняя группа – более восьми. Но существуют чипы без видимых ножек-выводов. Тогда на корпусе будут либо контакты, либо припой в виде маленьких шишек. Еще различаться SMD-компоненты могут размерами (к примеру, высотой).

Виды SMD-элементов

Вообще маркировка проставляется только на более крупных чипах, да и то ее очень трудно разглядеть. В остальных же случаях без схемы разобраться, что за элемент перед глазами, невозможно. Размеры SMD-компонентов бывают разными. Все зависит от их производительности. Чаще всего, чем больше размер чипа, тем выше его номинал.

SMD-дроссели

Такие дроссели могут встретиться в разных видах корпуса, но типоразмеры их будут подобны. Делается это для облегчения автоматического монтажа. Да и простому радиолюбителю так проще разобраться. Любой дроссель или катушка индуктивности называется «моточным изделием». Возможно, для более старого оборудования такой элемент схемы можно было намотать и своими руками, но с SMD-компонентом такой номер не пройдет. Тем более что чипы оборудованы магнитным экранированием, они компактны и обладают большим диапазоном рабочей температуры.

Подобрать подобный чип можно по каталогу на основании необходимого типоразмера. Задан этот параметр при помощи 4 цифр (к примеру, 0805), где 08 – длина чипа, а 05 – его ширина в дюймах. Следовательно, размер SMD-катушки составит 0.08 × 0.05 дюймов.

SMD-диоды и SMD-транзисторы

SMD-диоды

SMD-диоды бывают либо в форме цилиндра, либо прямоугольными. Распределение типоразмеров такое же, как и у дросселей.

Мощность SMD-транзисторов бывает малая, средняя и большая, разница в корпусах зависит как раз от этого параметра. Из них выделяют две группы – это SOT и DPAK. Интересно, что в одном корпусе может быть несколько компонентов, к примеру – диодная сборка.

Вообще сами по себе SMD-детали представляют огромный интерес не только для профессиональных радиолюбителей, но и для начинающих. Ведь если разобраться, то пайка таких печатных плат – дело не из легких. Тем приятнее научиться разбираться во всех маркировках чипов и научиться, четко следуя схеме, заменять перегоревшие SMD-детали на новые или демонтированные с другой платформы. К тому же многократно повысится и уровень владения паяльником, ведь при работе с чипами необходимо учитывать множество нюансов и соблюдать предельную осторожность.

Нюансы при пайке чипов

Пайку SMD-компонентов оптимальнее осуществлять при помощи специальной станции, температура которой стабилизирована. Но в ее отсутствие остается, естественно, только паяльник. Его необходимо запитать через реостат, т. к. температура нагрева жала таких приборов от 350 до 400 градусов, что неприемлемо для чип-компонентов и может их повредить. Необходимый уровень – от 240 до 280 градусов.

Нельзя не только перегревать SMD-элементы, но и передерживать жало паяльника на контактах. Использовать лучше припои, не содержащие в своем составе свинца, т. к. они тугоплавки и при рекомендованной температуре работать ими проблематично.

Пайка печатной чип-платы

В местах пайки требуется обязательное лужение дорожек. SMD-элемент лучше придерживать при помощи пинцета, а длительность прикосновения жала паяльника к ножке чипа не должна превышать полторы-две секунды. С микросхемами нужно работать еще более аккуратно.

Для начала припаиваются крайние ножки (предварительно необходимо точно совместить все выводы с контактами), а после уже все остальные. В случае если припой попал на две ножки и выводы слиплись между собой, можно использовать заточенную спичку. Ее нужно проложить между контактами и прикоснуться паяльником к одному из них.

Частые ошибки при пайке

Зачастую при пайке SMD-компонентов допускается 3 основных ошибки. Но они не критичны и вполне подлежат исправлению.

  1. Прикосновение к контакту самым концом жала из опасения перегрева. При таком условии температура будет недостаточной, так что нужно стараться паять таким образом, чтобы была максимальная поверхность соприкосновения, только в этом случае получится качественно смонтированная плата.
  2. Использование слишком малого количества припоя, при этом пайка длится очень продолжительное время. В этом случае происходит испарение части флюса. На припое не образуется достаточного защитного слоя, а в результате происходит окисление. Идеальный вариант – одновременное соприкосновение с контактом и паяльника, и припоя.
  3. Очень раннее отведение паяльника от контакта. Хотя и следует действовать аккуратно и не перегревать чипы, все же время прогрева должно быть достаточным для качественной пайки.

Для тренировки имеет смысл взять любую ненужную печатную плату и поучиться пайке.

Пайка чип-платы

Итак, не прилагая чрезмерных усилий, можно начинать пайку печатных плат. Отверстия, которые присутствуют на ней, прекрасно выполняют работу по фиксированию элементов. Немного опыта, конечно, тут не повредит, ведь именно для этого производилась тренировка на ненужной платформе. Изначально к контактам подводится помимо жала еще и припой, и сделать это нужно так, чтобы был равномерный прогрев и вывода, и платформы (места контакта).

Убирать припой следует после того, как контактная точка полностью и равномерно им покрылась. Далее нужно отвести паяльник, а после ждать, пока олово остынет. И только после этого можно производить монтаж SMD-компонентов. После обязательно нужно проверить качество пропаянных контактов при помощи пинцета. Конечно, при первых попытках платформа не будет выглядеть как с завода, а даже наоборот, но со временем, набравшись опыта, появится возможность даже посоревноваться с роботами.

Типоразмеры smd корпусов микросхем. Маркировка SMD

Корпус интегральной микросхемы (ИМС) — это герметичная конструкции, предназначенная для защиты кристалла интегральной схемы от внешних воздействий и для электрического соединения с внешними цепями. Длина корпуса микросхем зависит от числа выводов. Давайте рассмотрим некоторые типы корпусов, которые наиболее часто применяются радиолюбителями.

DIP (Dual In-line Package) — тип корпуса микросхем, микросборок и некоторых других электронных компонентов для монтажа в отверстия печатной платы, является самым распространенным типом корпусов. Имеет прямоугольную форму с двумя рядами выводов по длинным сторонам. Может быть выполнен из пластика или керамики. В обозначении корпуса указывается число выводов. В корпусе DIP могут выпускаться различные полупроводниковые или пассивные компоненты — микросхемы, сборки диодов, ТТЛ-логика, генераторы, усилители, ОУ и прочие… Компоненты в корпусах DIP обычно имеют от 4 до 40 выводов, возможно есть и больше. Большинство компонентов имеет шаг выводов 2.54 миллиметра и расстояние между рядами 7.62 или 15.24 миллиметра.

Одной из разновидностью корпуса DIP является корпус QDIP на таком корпусе 12 выводов и обычно имеются лепестки для крепления микросхемы на радиатор, вспомните микросхему К174УН7.

Разновидностью DIP является PDIP – (Plastic Dual In- line Package) – корпус имеет форму прямоугольника, снабжен выводами, предназначенными преимущественно для монтажа в отверстия. Существуют две разновидности корпуса: узкая, с расстоянием между выводами 7.62 мм и широкая, с расстоянием между выводами 15.24 мм. Различий между DIP и PDIP в плане корпуса нет, PDIP обычно изготавливается из пластика, CDIP — из керамики. Если у микросхемы много выводов, например 28 и более, то корпус может быть широким.

SIP (Single In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы, с одним рядом выводов по длинной стороне. Обычно в обозначении также указывается число выводов. Нумерация выводов данных типов микросхем начинается слева, если смотреть на маркировку спереди.

ТО92 – распространённый тип корпуса для маломощных транзисторов и других полупроводниковых приборов с двумя или тремя выводами, в том числе и микросхем, например интегральных стабилизаторов напряжения. В СССР данный тип корпуса носил обозначение КТ-26.

TO220 — тип корпуса для транзисторов, выпрямителей, интегральных стабилизаторов напряжения и других полупроводниковых приборов малой и средней мощности. Нумерация выводов для разных элементов может отличаться, у транзисторов одно обозначение, у стабилизаторов напряжения другое…

PENTAWATT – Содержит 5 выводов, в таких корпусах выпускаются, например усилители НЧ (TDA2030, 2050…), или стабилизаторы напряжения.

DPAK — (TO-252, КТ-89) корпус для размещения полупроводниковых устройств. D2PAK аналогичен корпусу DPAK, но больше по размеру; в основном эквивалент TO220 для SMD-монтажа, бывают трёх, пяти, шести, семи или восьмивыводные.

SO (Small Outline) пластиковый корпус малого размера. Корпус имеет форму прямоугольника, снабжен выводами, предназначенными для монтажа на поверхность. Существуют две разновидности корпуса: узкая, с шириной корпуса 3.9 мм (0.15 дюйма) и широкая, с шириной корпуса 7.5 мм (0.3 дюйма).

SOIC (Small-Outline Integrated Circuit) — предназначен для поверхностного монтажа, по сути это то же, что и SO. Имеет форму прямоугольника с двумя рядами выводов по длинным сторонам. Как правило, нумерация выводов одинаковых микросхем в корпусах DIP и SOIC совпадает. Помимо сокращения SOIC для обозначения корпусов этого типа могут использоваться буквы SO, а также SOP (Small-Outline Package) и число выводов. Такие корпуса могут иметь различную ширину. Обычно обозначаются как SOxx-150, SOxx-208 и SOxx-300 или пишут SOIC-xx и указывают какому чертежу он соответствует. Данный тип корпусов схож с QSOP.

Также существует версия корпуса с загнутыми под корпус (в виде буквы J) выводами. Такой тип корпуса обозначается как SOJ (Small-Outline J-leaded).

QFP (Quad Flat Package) — семейство корпусов микросхем, имеющих планарные выводы, расположенные по всем четырём сторонам. Форма основания микросхемы — прямоугольная, а зачастую используется квадрат. Корпуса обычно различаются только числом выводов, шагом, размерами и используемыми материалами. BQFP отличается расширениями основания по углам микросхемы, предназначенными для защиты выводов от механических повреждений до запайки.

В это семейство входят корпуса TQFP (Thin QFP) , QFP, LQFP (Low-profile QFP) . Микросхемы в таких корпусах предназначены только для поверхностного монтажа; установка в разъём или монтаж в отверстия штатно не предусмотрена, хотя переходные коммутационные устройства существуют. Количество выводов QFP микросхем обычно не превышает 200, с шагом от 0,4 до 1,0 мм. Габаритные размеры корпусов и расстояние между выводами можно посмотреть .

QFN (Quad-flat no-leads) – у таких корпусов, так же как и у корпусов SOJ, вывода загнуты под корпус. Габаритные размеры и расстояние между выводами корпусов QFN можно посмотреть . Данный корпус схож с типом корпусов MLF, у них вывода расположены по периметрии и снизу.

TSOP (Thin Small-Outline Package) – данные корпуса очень тонкие, низкопрофильные, являются разновидностью SOP микросхем. Применяются в модулях оперативной памяти DRAM и для чипов флеш-памяти, особенно для упаковки низковольтных микросхем из-за их малого объёма и большого количества штырьков (контактов). В более современных модулях памяти такие корпуса уже не применяются, их заменили корпуса типа BGA. Обычно различают два типа корпусов, они представлены ниже на фото.

PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) — представляют собой квадратный корпус с расположенными по краям контактами, предназначенный для установки в специальную панель (часто называемую «кроваткой»). В настоящее время широкое распространение получили микросхемы флэш-памяти в корпусе PLCC, используемые в качестве микросхемы BIOS на системных платах. Габаритные размеры корпусов и расстояние между выводами можно посмотреть .

ZIP (Zigzag-In-line Package) — плоский корпус для вертикального монтажа в отверстия печатной платы со штырьковыми выводами, расположенными зигзагообразно. Бывают ZIP12, ZIP16, ZIP17, ZIP19, ZIP20, ZIP24, ZIP40 цифры означают количество выводов и тип корпуса, кроме этого они различаются габаритами корпусов, а так же расстоянием между выводами. Габаритные размеры корпусов и расстояние между выводами можно посмотреть .

В этой статье мы рассмотрим самые основные корпуса микросхем, которые очень часто используются в повседневной электронике.

DIP (англ. D ual I n-Line P ackage) – корпус с двумя рядами выводов по длинным сторонам микросхемы. Раньше, да наверное и сейчас, корпус DIP был самым популярным корпусом для многовыводных микросхем. Выглядит он вот так:



В зависимости от количества выводов микросхемы, после слова “DIP” ставится количество ее выводов. Например, микросхема, а точнее, микроконтроллер atmega8 имеет 28 выводов:

Следовательно, ее корпус будет называться DIP28.

А вот у этой микросхемы корпус будет называться DIP16.

В основном в корпусе DIP в Советском Союзе производили логические микросхемы, операционные усилители и тд. Сейчас же корпус DIP также не теряет своей актуальности и в нем до сих пор делают различные микросхемы, начиная от простых аналоговых и заканчивая микроконтроллерами.

Корпус DIP может быть выполнен из пластика (что в большинстве случаев) и называется он PDIP , а также из керамики – CDIP . На ощупь корпус CDIP твердый как камень, и это неудивительно, так как он сделан из керамики.

Пример CDIP корпуса.


Имеются также модификации HDIP, SDIP.

HDIP (H eat-dissipating DIP ) – теплорассеивающий DIP. Такие микросхемы пропускают через себя большой ток, поэтому сильно нагреваются. Чтобы отвести излишки тепла, на такой микросхеме должен быть радиатор или его подобие, например, как здесь два крылышка-радиатора посерединке микрухи:


SDIP (S mall DIP ) – маленький DIP. Микросхема в корпусе DIP, но c маленьким расстоянием между ножками микросхемы:


SIP корпус

SIP корпус (S ingle I n line P ackage ) – плоский корпус с выводами с одной стороны. Очень удобен при монтаже и занимает мало места. Количество выводов также пишется после названия корпуса. Например, микруха снизу в корпусе SIP8.


У SIP тоже есть модификации – это HSIP (H eat-dissipating SIP ). То есть тот же самый корпус, но уже с радиатором

ZIP корпус

ZIP (Z igzag I n line P ackage ) – плоский корпус с выводами, расположенными зигзагообразно. На фото ниже корпус ZIP6. Цифра – это количество выводов:


Ну и корпус с радиатором HZIP :


Только что мы с вами рассмотрели основной класс In line Package микросхем. Эти микросхемы предназначены для сквозного монтажа в отверстиях в печатной плате.

Например, микросхема DIP14, установленная на печатной плате


и ее выводы с обратной стороны платы, уже без припоя.


Кто-то все таки умудряется запаять микросхемы DIP, как микросхемы для поверхностного монтажа (о них чуть ниже), загнув выводы под углом в 90 градусов, или полностью их выпрямив. Это извращение), но работает).

Переходим к другому классу микросхем – микросхемы для поверхностного монтажа или, так называемые SMD компоненты . Еще их называют планарными радиокомпонентами.

Такие микросхемы запаиваются на поверхность печатной платы, под выделенные для них печатные проводники. Видите прямоугольные дорожки в ряд? Это печатные проводники или в народе пятачки . Вот именно на них запаиваются планарные микросхемы.


SOIC корпус

Самым большим представителем этого класса микросхем являются микросхемы в корпусе SOIC (S mall-O utline I ntegrated C ircuit ) – маленькая микросхема с выводами по длинным сторонам. Она очень напоминает DIP, но обратите внимание на ее выводы. Они параллельны поверхности самого корпуса:


Вот так они запаиваются на плате:


Ну и как обычно, цифра после “SOIC” обозначает количество выводов этой микросхемы. На фото выше микросхемы в корпусе SOIC16.

SOP (S mall O utline P ackage ) – то же самое, что и SOIC.


Модификации корпуса SOP:

PSOP – пластиковый корпус SOP. Чаще всего именно он и используется.

HSOP – теплорассеивающий SOP. Маленькие радиаторы посередине служат для отвода тепла.


SSOP (S hrink S mall O utline P ackage) – ” сморщенный” SOP. То есть еще меньше, чем SOP корпус

TSSOP (T hin S hrink S mall O utline P ackage) – тонкий SSOP. Тот же самый SSOP, но “размазанный” скалкой. Его толщина меньше, чем у SSOP. В основном в корпусе TSSOP делают микросхемы, которые прилично нагреваются. Поэтому, площадь у таких микросхем больше, чем у обычных. Короче говоря, корпус-радиатор).


SOJ – тот же SOP, но ножки загнуты в форме буквы “J” под саму микросхему. В честь таких ножек и назвали корпус SOJ :

Ну и как обычно, количество выводов обозначается после типа корпуса, например SOIC16, SSOP28, TSSOP48 и тд.

QFP корпус

QFP (Q uad F lat P ackage) – четырехугольный плоский корпус. Главное отличие от собрата SOIC в том, что выводы размещены на всех сторонах такой микросхемы


Модификации:

PQFP – пластиковый корпус QFP. CQFP – керамический корпус QFP. HQFP – теплорассеивающий корпус QFP.

TQFP (T hin Q uad F lat P ack) – тонкий корпус QFP. Его толщина намного меньше, чем у его собрата QFP



PLCC (P lastic L eaded C hip C arrier) и СLCC (C eramic L eaded C hip C arrier) – соответственно пластиковый и керамический корпус с расположенными по краям контактами, предназначенными для установки в специальную панельку, в народе называемую “кроваткой”. Типичным представителем является микросхема BIOS в ваших компьютерах.

Вот так примерно выглядит “кроватка” для таких микросхем

А вот так микросхема “лежит” в кроватке.


Иногда такие микросхемы называют QFJ , как вы уже догадались, из-за выводов в форме буквы “J”

Ну и количество выводов ставится после названия корпуса, например PLCC32.

PGA корпус

PGA (P in G rid A rray) – матрица из штырьковых выводов. Представляет из себя прямоугольный или квадратный корпус, в нижней части которого расположены выводы-штырьки


Такие микросхемы устанавливаются также в специальные кроватки, которые зажимают выводы микросхемы с помощью специального рычажка.

В корпусе PGA в основном делают процессоры на ваши персональные компьютеры.

Корпус LGA

LGA (L and G rid A rray) — тип корпусов микросхем с матрицей контактных площадок. Чаще всего используются в компьютерной технике для процессоров.

Кроватка для LGA микросхем выглядит примерно вот так:


Если присмотреться, то можно увидеть подпружиненные контакты.

Сам микросхема, в данном случае процессор ПК, имеет просто металлизированные площадки:


Для того, чтобы все работало, должно выполняться условие: микропроцессор должен быть плотно прижат к кроватке. Для этого используются разного рода защелки.

Корпус BGA

BGA (B all G rid A rray ) – матрица из шариков.


Как мы видим, здесь выводы заменены припойными шариками. На одной такой микросхеме можно разместить сотни шариков-выводов. Экономия места на плате просто фантастическая. Поэтому микросхемы в корпусе BGA применяют в производстве мобильных телефонов, планшетах, ноутбуках и в других микроэлектронных девайсах. О том, как перепаивать BGA, я еще писал в статье Пайка BGA микросхем .

В красных квадратах я пометил микросхемы в корпусе BGA на плате мобильного телефона. Как вы видите, сейчас вся микроэлектроника строится именно на BGA микросхемах.


Технология BGA является апогеем микроэлектроники. В настоящее время мир перешел уже на технологию корпусов microBGА, где расстояние между шариками еще меньше, и можно уместить даже тысячи(!) выводов под одной микросхемой!

Вот мы с вами и разобрали основные корпуса микросхем.

Ничего страшного нет в том, что вы назовете микросхему в корпусе SOIC SOPом или SOP назовете SSOPом. Также ничего страшного нет и в том, чтобы назвать корпус QFP TQFPом. Границы между ними размыты и это просто условности. Но вот если микросхему в корпусе BGA назовете DIP, то это уже будет полное фиаско.

Начинающим радиолюбителям стоит просто запомнить три самых важных корпуса для микросхем – это DIP, SOIС (SOP) и QFP безо всяких модификаций и стоит также знать их различия. В основном именно эти типы корпусов микросхем радиолюбители используют чаще всего в своей практике.

Современная технология поверхностного монтажа предусматривает следующие требования к электрон-
ным компонентам :

Минимальные масса и габариты, плоскостность, низкий профиль выводов, невысокая стоимость, о6еспечение стандартизации;

Пригодность к автоматизированному монтажу, возможность использования существующих методов пайки;

Высокую термостойкость в условиях длительной тепловой нагрузки в процессе пайки
возможность современного корпусирования.

В настоящее время на рынке ЭК имеется большой
выбор элементов в различных корпусах для поверхно-
стного монтажа. Причем, разработка корпусов для
ЭК приблизилась к такой стадии, кoгда её poль —
становится столь же важной, как и разработка самих компо-
нентов. Основными компонентами для поверхностно-
го монтажа являются большие (БИС) и сверх-большие
(СБИС) интегральные схемы (ИС) и полупроводнико-
вые приборы в малогабаритных корпусах. Существует
большой выбор корпусов для поверхностного
монтажа. Необходимо отметить, что размеры кристалла ИС
продолжают увеличиваться, а размеры элементов в
нем – уменьшаются, поэтому специалисты, занимаю-
щееся вопросами сборки компонентов, столкнулись с
двойной проблемой. Во-первых, необходимо собир-
ать физически большой кристалл,высокая плотность
элементов в котором требует увеличения числа кон
тактных площадок для соединения его с внутренними
выводами корпуса. Во вторых, увеличение размеров и
плотности упаковки элементов в кристаллах БИС и
СБИС требует увеличения числа выводов в корпусах,
в которые они монтируются, что может приводить к
возрастанию их размеров, веса, ухудшению электри-
ческих характеристик и быстродействия микроприбо-
ров.

Поэтому техника корпусирования БИС и СБИС –
динамичная, бурно развивающаяся область микро-
электроники, при этом основной тенденцией является
стремление к минимизации объемов корпуса при —

одновременном росте числа выводов с уменьшением расстояния между ними.

Корпуса классифицируют в зависимости
от конструктивных особенностей и геометрических
pазмеров. Классификация корпусов для поверхност
ного монтажа приведена на рисунке 2.40. B соответствии с
этой классификацией в таблице 2.13 приведены основ-
ные данные о наиболее распространенных и перспективных типах корпусов.

Следует отметить, что некото-
рые изготовители в справочных данных в качестве ос-
новного приводят фирменное обозначение корпуса, а
в комментариях дают сведения о соответствии фирменного
обозначения общепринятому. Кроме того,
часто перед общепринятыми обозначениями корпу-
сов ставят букву, определяющую материал, из которо-
го сделан корпус: P — пластик, С — керамика, М — ме-
таллокерамика.

Рисунок 2.40 — Классификация корпусов микросхем, предназначенных для

поверхностного монтажа

Корпуса с выводами по периметру входят в состав
семейства SOP, SOJ, QFJ, QFP, DIP. Наиболее рас-
пространены корпуса SOP (число выводов от 8 до 100)
и QFP (число выводов от 20 до 304). В корпусах
с большим количеством выводов выпускают цифровые мик-
росхемы средней и высокой степени интеграции, а
корпусах с малым количеством выводов — цифровые
микросхемы малой и средней степени интеграции,
аналоговые микросхемы, диоды и транзисторы.

Микросхемы в исполнении TCP имеют ленточные
выводы из тонкой медной или алюминиевой фольги на
полимерной пленке, прикрепленные к кристаллу пай-
кой или ультразвуковой сваркой. После установки на
плату микросхемы должны герметизироваться в соста-
ве платы. Они поставляются на ленте-носителе и хо-
рошо приспособлены для автоматизированного кон-
троля параметров и монтажа. Этот тип микросхем
применяют в недорогой, не подлежащей ремонту —
аппаратуре с большими объемами выпуска.

Для микросхем высокой и сверхвысокой степени
интеграции в последние годы получили широкое
распространение корпуса BGA, поскольку они от-
носительно недороги и пpи большом количестве вы-
водов занимают мало место на плате. Согласно тех-
нологии ВGА бескорпусные кристаллы (один или не-
сколько) монтируют на поверхность печатной мик-
роплаты и герметизируют полимерным компаундом.

Микросхемы в корпусах BGA паяются на платы с помощью выводов, выполненных в виде массива шариков припоя на контактных площадках микроплаты. Дальнейшее развитие технологии корпусов BGA привело к созданию корпусов типа CSP, в которых отсутствует печатная микроплата, а шариковые выводы размещены непосредственно на контактных площадках в верхнем слое металлизации кристалла. После формирования шариковых выводов кристалл заливают тонким слоем пластмассы и монтируют на печатной плате так же,как корпус BGA. В случае необходимости на верхней стороне микросхемы устанавливают теплоотвод. При эффективности использования площади платы эта технология практически не уступает технологии flip-chip (монтаж на плату перевернутых бескорпусных кристаллов и герметизация их полимерным компаундом в составе платы). Основным тормозом в массовом выпуске микросхем в корпусах типа CSP и широком применении технологии flip-chip является отсутствие надёжного и не
доpогого способа уменьшения напряжений в системе
кристалл-печатная плата, возникающих из-за разли
чия температурных коэффициентов pасширения полупроводникового кристалла (2×10 -6 /°С), меди (16,6×10 -6 /°С)
и диэлектрика типа FR-4 ((15…19)×10 -6 /°С), из которо-
го делают печатные платы.

Поэтому основные усилия
разработчиков направлены на повышение надежнос-
ти таких микросхем путем создания между кристаллом
и платой недорогой переходной структуры, гасящей
температурные напряжения.

Таблица 2.13 — Корпуса микросхем для поверхностного монтажа

Корпус Краткое описание Шаг Выво дов, мм Внешний вид корпуса
Тип Полное название
1. Kopпycа для микросхем низкой, средней и высокой степени интеграции 1.1.С выводами вдоль двух боковых сторон корпуса 1.1.1. Со стандартным шагом расположения выводов
SO, SOP, SOL, SOIC Small Outline Package, Small Outline Integrated Circuit Выводы в виде крыла чайки или в виде буквы «L» 1.27
SOJ Small Outline J-Lead Package Выводы в виде буквы «J» 1.27
TSOP, вариант 2 Thin Small Outline Package Корпус c уменьшенной высотой над платой (не более 1.27 мм), выводы расположены вдоль длинной стороны корпуса 1.27
1.1.2. С уменьшенным шагом расположения выводов
TSOP, вариант 1 Тhin Small Outline Package Корпус с уменьшенной высотой над платой (не более 1.27 мм), выводы расположены вдоль короткой стороны корпуса 0.5
SSOP, SSOL Shrink Small Outline Package Kopпyc SOP c уменьшенным шагом расположения выводов 1.00 0. 80 0.65 0.50
TSSOP Thin Shrink Small Outline Package Корпус SSOP с уменьшенной высотой над платой (не более 1.27 мм). Стандартизован EIAJ, JEDEC 0.65 0.50
TVSOP Thin Very Small Outline Package Миниатюрный корпус SOP 0,10
uSOIC microSOIC Миниатюрный корпус SOIC 0.65
1.2. С выводами вдоль четырех сторон корпуса 1.2.1. Со стандартными размерами корпуса
QFP Quad Flat Package Выводы в виде крыла чайки вдоль четырех сторон корпуса 1.00 0.80 0. 65
PLCC Plastic Leaded Chip Carrier Кристаллоноситель с выводами в виде буквы Г. Стандартизован EIAJ, JEDEC 1.27 0.636

Продолжение таблицы 2.13 — Корпуса микросхем для поверхностного монтажа

Корпус Краткое описание Шаг Выво дов, мм Внешний вид корпуса
Тип Полное название
1.2.2. С уменьшенными размерами корпуса
LQFP, NQFP Low Profile (Thin) Quad Flat Package Корпус OFP с уменьшенной высотой над платой (не более 1.27 мм) 0.80 0.65
MQFP Metric Thin Quad Flat Package Корпус QFP с метрическим шагом выводов и уменьшенной высотой над платой 0.60
FQFP Fine Pitch Quad Flat Package Корпус OFP с малым шагом расположения выводов. Стандартизован EIAJ 0.40
1.3. С матрицей выводов на нижней поверхности корпуса
BGA Ball Grid Array Микросхема или многокристальный модуль на двухслойной печатной микроплате, снабжен массивом шариковых выводов 1.27, 1.00
CPS Chip Scale Package Корпус с размерами, незначительно превышающими размеры кристалла. Снабжен массивом шариковых выводов 1.00, 0.50
2. Корпус а для транзисторов и микросхем низкой степени интеграции 2.1. С низкой рассеиваемой мощностью
SOT-23 Small Outline Transistor Для диодов, транзисторов, микросхем с малым количеством выводов. SOT-23 выпускается также в варианте исполнения с пятью (SOT-5, SOT-23-5) или шестью (SOT-6,S0T-23-6) выводами 0.95
SOT-143 1.90
SOT-323 0.65
SOT-363 0.65
2.2. Со средней рассеиваемой мощностью
SOT-223 Small Outline Transistor Для транзисторов и микросхем с малым количеством выводов (DC/ DC преобразователей, стабилизаторов напряжения) 1.95
DPAC D-package 4.80
2.3. С высокой рассеиваемой мощностью
D 2 PAC D-package Для транзисторов и микросхем с повышенной рассеиваемой мощностью, высокий напряжением питания Как правило это приборы с импульсными токами до 100 А 2.54/ 5.08
D 3 PAC D-package 10.9

Для микросхем, имеющих регулярную структуру,
небольшую потребляемую мощность и малое количе
ство выводов (типичные представители подобных микросхем
– микросхемы памяти) начали развивать тех-
нологию изготовления многоуровневых («этажероч-
ных») модулей 3DМ. Согласно одному из вариантов
этой технологии каждый уровень выполняется анало
гично микросхеме BGA, кристалл устанавливается —
методом flip-chip и заливается слоем полимерного ком-
паунда. Затем микроплаты разных уровней собирают
в столбик, шариковые выводы припаивают для созда-
ния вертикальных соединительных проводников, платы
столбика скрепляют полимерным компаундом. Полу-
ченный модуль монтируют на плату с помощью —
шариковых выводов.

Корпуса семейства SOT первоначально были раз-
работаны для транзисторов и имели три вывода (за ис-
ключением SOT-363, который имел 6 выводов). Одна-
ко впоследствии изготовители начали применять эти
корпуса для микросхем, при необходимости увеличи-
вая количество выводов с сохранением прежних габа
ритов. В частности, выпускаются микросхемы в —
корпусах SOT-23 с пятью выводами и D2PAK – с четырьмя.

С точки зрения конструктора, разнообразие типо-
размеров корпусов незначительно усложняет процесс разработки печатных плат, если их размеры заданы в одной измерительной системе. И наоборот, процесс разработки усложняется, если на плате для части корпусов размеры заданы в дюймах, а для остальных – в
миллиметрах. Поэтому разработчику принципиальной электри
ческой схемы следует стремиться к выбору микросхем, размеры которых заданы в единой измерительной системе.

Тонкопленочные чип-резисторы .

В общем количестве электронных компонентов, используемых при производстве аппаратуры, пассивные составля
ют 70%, причем не менее 50 % из них приходится на резисторы.

Конструкция чип-резисторов показана на рисунке 2.41.

Основанием чип-резисторов служит керамическая
подложка на основе оксида алюминия, на которую наносится резистивный слой. Высокая точность вели
чины сопротивления достигается лазерной подгонкой. Электрический кон
такт с печатной платой обеспечивается трехслойной поверхностью, состоящей из внутреннего слоя выводов палладий- серебро, барьерного
слоя никеля и внешнего слоя выводов олово — свинец или олово. Вв
едение в конструкцию дополнительного
слоя никеля при пайке предотвращает миграцию се
ребра из внутреннего выводного слоя в припой.

На
защитное покрытие из боросиликатного стекла наносится несмываемая кодовая маркировка номинала. Благодаря высокому качеству и стабильности параметров, чип-резисторы являются оптимальным выбором для любой аппаратуры.

Основные характеристики тонкопленочных чип-резисторов приведены в таблице 2.14.

Таблица 2.14 — Характеристики чип-резисторов

Таблица 2.15 — Характеристики чип-конденсаторов

Керамические чип-конденсаторы .

Конденсаторы были первыми ЭК, которые стали выпускать в исполнении, рассчитанном для монтажа на поверхность. Это самый распространенный вид конденсаторов в настоящее время. При малых габаритах они обеспечивают реализацию широкой шкалы ёмкости и заданного температурного коэффициента. Простота технологии изготовления делает керамические конденсаторы массовых серий самым дешевым видом этих компонентов. Конструкция керамического чип-конденсатора приведена на рисунке 2.42.

Рисунок 2.41 — Конструкция чип-резистора

Рисунок 2.42 — Конструкция чип-конденсатора

Такие чип-конденсаторы обладают высокой механической прочностью и выдерживают высокие механические нагрузки, возникающие при изготовлении и эксплуатации. Электрический контакт с печатной платой обеспечивается так же, как и при монтаже чип-резисторов.

Основные преимущества керамических чип-конденсаторов:

Трехслойные контактные поверхности с барьерным слоем никеля;

Высококачественные диэлектрические материалы;

Стойкость ко всем видам пайки.

Основные характеристики керамических конденсаторов приведены в таблице 2.15.

Характеристики диэлектрических материалов:

NPO/SOG – ультрастабильная керамика. Имеет очень малые диэлектрические потери при изменениях температуры и близкие к нулю эффекты старения. Обладает низкой диэлектрической проницаемостью;

X7R – высокая диэлектрическая проницаемость. Средние значения потерь при изменениях температуры и эффектов старения;

Z54, Y5V – высокая диэлектрическая проницаемость.

Необходимо отметить, что развитие элементной базы для поверхностного монтажа характеризуется следующими особенностями:

Дальнейшим повышением степени интеграции полупроводниковых БИС, СБИС с расширением их функциональных возможностей;

Возрастающим разнообразием корпусов для поверхностного монтажа активных и пассивных компонентов;

Появлением для БИС и СБИС корпусов с особо малыми расстояниями между выводами или контактами, число которых возрастает, а также конструкций с использованием технологии flip-chip, безвыводных корпусов и с выводами на нижней стороне корпуса;

Разработкой и выпуском конструкций широкого ряда дискретных элементов (индуктивностей, трансформаторов, переключателей) для монтажа на поверхность КП.

Коммутационные платы

Переход от выводного монтажа к технологии поверхностного монтажа обеспечил уменьшение размеров КП. При этом размеры плат определяются характеристиками материалов, из которых они изготавливаются, так как в процессе пайки электронных компонентов одновременно происходит нагрев плат. Кроме того, необходимость уменьшения размеров плат связана с технологической оснасткой и оборудованием для монтажа и пайки.

Конструкция КП для поверхностного монтажа
должна обеспечивать повышенную плотность монта-
жа (в среднем более восьми компонентов на 1 см 2),
ширину проводящих дорожек и расстояний между ним-
и менее 0,2 мм, минимальную длину межсоединений,
отсутствие навесных перемычек, монтаж компонентов
с двух сторон, возможность более интенсивного теп-
лоотвода, полную автоматизацию сборки и монтажа компонентов, а также контроль качества сборки.

Применение современных компонентов для по-
верхностного монтажа требует особых подходов к
проектированию КП при выборе конфигурации и раз-
меров контактных площадок и соединительных про-
водников, а также допусков на изготовление КП. Следует подчеркнуть, что изготовители в документации на
пассивные и активные электронные компоненты обыч-
но приводят рекомендации по размерам и расположению контактных площадок, а также способу пайки с указанием температурно-временной характеристики процесса.

Для изготовления КП применяют различные органические и неорганические материалы. При этом совершенствуются известные технологические процес-
сы а также появляются новые, позволяющие —
существенно снизить производственные затраты и улучшить
качество КП: лазерное экспонирование рисунка
на шаблонах или самих КП, покрытых резистом; при-
менение неудаляемых резистов, сухих (например, тер-
момагнитных) резистов, способствующих повышению
производительности при получении рисунка
металлизации на КП.

При создании коммутационных проводников пре-
обладают аддитивная и полуаддитвная технологии, о
днако многие зарубежные фирмы используют и субт-
рактивную технологию, которая, как известно, требу-
ет применения фольгированных диэлектрических мате-
риалов, позволяющих получить минимальную ширину
дорожек 50-100 мкм.

Изготовление КП с повышенной плотностью монта-
жа поставило ряд задач, главными из которых являются:


согласование по температурному коэффициенту
расширения платы и монтируемых на ней электрон-
ных компонентов;

Обеспечение теплоотвода при повышенной рассеи-
ваемой мощности;

Оптимизации геометрии элементов коммутации с уче-
том специфики электронных компонентов, а также
свойств применяемых припоев, защитных и клеевых
материалов.

Развитие техники поверхностного монтажа способствовало
появлению новых технических пластмасс, керамических и раз-
личных композиционных материалов, необходимых для опреде-
ленных типов микросборок. При изготовлении простых и отно-
сительно дешевых сборок полностью пригодны традиционные
материалы, такие как слоистые бумажнофенольные и стеклоэпо-
ксидные материалы.

Но поистине вызовом,который бросает технология поверхностного монтажа компонентов (ТПМК) изготовителям
коммутационных плат, являются требования к точности их изготовления:
в ТПМК на всех этапах технологического цикла до
пуски для плат должны составлять от 0,001 до 0,002 дюйма
(0,0254 — 0,0508 мм).

В таблице 2.16 указаны факторы, обусловленные особенностями
ТПМК применительно к изготовлению коммутационных плат.
Они тесно связаны с компромиссом между плотностью монтажа
и эффективным использованием коммутационной платы, а имен-
но: более высокая степень использования плат может служить
как целям уменьшения размеров платы с тем же самым коли-
чеством коммутационных слоев, так и целям повышения функ-
циональной сложности изделий при сохранении размеров плат с одновременным увеличением числа слоев. В обоих случаях в
технологию изготовления плат должны вноситься изменения:
миниатюризация отверстий и коммутационных дорожек, а также
увеличение количества слоев коммутации требуют повышения
точности технологических процессов.

К этому времени уже были разработаны и освоены некоторые компоненты (резисторы, конденсаторы), которые использовались при изгтовлении ГИС и МСБ. Однако ТМП ужесточила требования по устойчивости к воздействию климатических факторов, поскольку чип-резисторы и конденсаторы для ГИС и МСБ изготавливались в незащищённом исполнении для применения внутри корпусов ГИС.

В настоящее время разработана обширная номенклатура компонентов для ТМП, включающая резисторы, конденсаторы (в том числе переменные), катушки индуктивности, микротрансформаторы, реле, кварцевые резонаторы, диоды, транзисторы, микросхемы, микропереключатели и др. Данные компоненты имеют несколько разновидностей корпусов: безвыводные с облуженными торцами, с укороченными выводами типа крыла чайки или J-образными, цилиндрические корпуса с металлизированными торцами. Рассмотрим эти корпуса подробнее.

Чип-корпус — безвыводный корпус прямоугольной формы для про­стых пассивных компонентов типа резисторов, перемычек и конденса­торов (рисунок 2.1) .

Рисунок 2.1 — Корпуса простых чип-компонентов

Чип-резисторы и чип-конденсаторы изготавливаются по групповой технологии на подложках большого размера (обычно 60×48 мм), затем после скрайбирования подложка разламывается на отдельные части (английское слово chip означает осколок). После разламывания на тор­цы чип-компонента наносится многослойная металлизация (толстопле­ночный проводник — барьерный слой никеля — слой припоя) с трех или пяти сторон для каждого торца (последний вариант применяется для высоконадежных компонентов). При изготовлении чип-резисторов обычно применяется толстоплёночная технология. Типовая конструк­ция толстопленочного чип-резистора приведена на рисунке 2.2. Рези­стор состоит из керамического основания (подложка из А1 2 О 3), резистивного слоя (окись рутения), внутреннего контактного слоя (палла­дий-серебро), промежуточного барьерного слоя из никеля, внешнего контактного слоя (сплав олово-свинец). Тело резистора защищается по­крытием из боросиликатного стекла с нанесением несмываемой кодо­вой маркировки номинала.

Рисунок 2.2 — Конструкция толстопленочного чип-резистора

Маркировка резисторов состоит из трёх цифр для простых и четырёх цифр для высокоточных резисторов, причём последняя цифра означает количество нулей, которые необходимо дописать справа к номиналу в Ом. Например: 160-16 Ом, 472-4,7 кОм, 112-1,1 кОм, 106 — 10 МОм, 2741 — 2,74 кОм. Маркировка низкоомных резисторов содержит букву «R», например, 4R7 — 4,7 Ом, 54R9 — 54,9 Ом.

Чип-перемычки, сопротивление которых не должно превышать 0,05 Ом, имеют маркировку 000.

Маркировка конденсаторов обычно наносится на упаковочную тару. Условное обозначение ёмкости: первые две цифры указывают номинал в пикофарадах, третья цифра — количество добавляемых справа нулей. Например: 105 — 1 мкФ, 153 — 0,015 мкФ.

Электролитические конденсаторы, имеющие достаточно большую поверхность, могут содержать кодированное обозначение рабочего на­пряжения и величины емкости. Возможно несколько вариантов коди­ровки:

а) код содержит два или три знака (буквы или цифры). Буквы обо­значают напряжение и емкость, а цифра указывает множитель

Перед буквами может ставиться цифра, указывающая на диапазон рабочих напряжений:

б) код содержит четыре знака (буквы и цифры), обозначающие но­минальную емкость и рабочее напряжение. Первая буква обозначает напряжение, две последующие цифры — емкость в пФ, последняя цифра количество нулей. Например: Е475 — конденсатор емкостью 4,7 мкФ с рабочим напряжением до 25 В. Иногда емкость может указываться с использованием буквы ц: Е4ц7 — обозначение конденсатора, соответст­вующее вышеприведенному примеру.

В общем случае чип-компонент может быть охарактеризован разме­рами L (длина), В (ширина), Н (высота), D или / (ширина контактной площадки) как это показано на рисунке 2.3. Размеры чип-резисторов зависят от рассеиваемой мощности, а размеры чип-конденсаторов — от номинальной емкости и рабочего напряжения.

Форма и размеры корпусов стандартизованы международными и национальными стандартами (МЭК115, МЭК384). В этих стандартах используется система обозначения конструктива КМП в виде двух пар чисел, которые характеризуют длину и ширину корпуса в сотых долях дюйма (типоразмеры от 0101 (0,25×0,25 мм) до 2225 (5,7×6,3 мм). Сопоставительные размеры некоторых типоразмеров резисторов по сравнению со спичечной головкой на фоне сетки 1,27 мм приведены на рисунке 2.4.

Некоторые фирмы обозначения типоразмера корпуса приводят в мм: 1005 — (1,0×0,5) мм, что соответствует вышеприведенному обозначению корпуса 0402; 3216 — (3,2×1,6) мм — соответствует обозначению 1206.

Отечественной промышленностью выпускаются чип-резисторы об­щего применения Р1-12, прецизионные Р1-16, наборы резисторов HP1-29, чип-перемычки Р1-23 . Чип-перемычки используются для обеспече­ния переходов через проводники при разработке топологии. Выпуска­ются с габаритными размерами 3,2×1,6×0,6 мм (1206) и имеют сопротивление не более 0,05 Ом.

Чип-конденсаторы для монтажа на поверхность представлены мно­гослойными керамическими (К10-9М, К10-17-4в, К10-42, К10-43, К10-47, К10-50в, К10-56, К10-57, К10-60в, К10-69, К10-73-6в), танталовы­ми оксидно-полупроводниковыми (К53-25, К53-36, К53-37) и алюми­ниевыми оксидно-полупроводниковыми К53-40.

Корпус типа MELF (Metal Electrode Face Bonded) — цилиндрический корпус с вмонтированными электродами в виде металлизированных торцов (рисунок 2.5). Предназначен для диодов, резисторов, конденса­торов, катушек индуктивности. Диаметр корпуса находится в пределах от 1,25 мм до 2,2 мм, длина — от 2 до 5,9 мм.

MELF-корпус имеет низкую стоимость, однако монтаж его затруд­нён. Получил широкое распространение в Японии в начале развития ТМП. Примерами отечественных компонентов в подобных корпусах являются резисторы Pl-11, P1-30.

Малогабаритный диодный корпус SOD (Small Outline Diode) — пла­стмассовый корпус с двумя выводами типа «крыло чайки» (рисунок 2.6). Предназначен для диодов, светодиодов, варикапов. Наиболее рас­пространенным является корпус SOD-80, отечественным аналогом ко­торого является корпус КД-34 по ГОСТ 18472-88.

Рисунок 2.5 — Корпус типа MELF Рисунок 2.6 — Корпус типа SOD

Малогабаритный транзисторный корпус SOT (Small Outline Transis­tor) имеет от 3 до 6 выводов (рисунок 2.7).

Рисунок 2.7 — Корпуса типа SOT

Корпус имеет пластмассовую оболочку и укороченные выводы типа «крыла чайки». Помимо транзисторов, в него могут монтироваться дио­ды, варикапы, усилители. Является первым корпусом для поверхност­ного монтажа, программа разработки которого была реализована фир­мой Siemens более 25 лет назад. Наиболее распространённый корпус SOT-23 имеет размеры 2,9×1,3×1,1 мм.

Дальнейшим развитием корпусов данного типа являются корпуса SOT-89, SOT-143, S-mini, SS-mini. Последующие разработки характери­зуются уменьшением расстояния между выводами до величины 0,65 -0,5 мм, что позволило уменьшить габариты корпуса до размеров 1,6×1,6×0,75 мм. Отечественные корпуса подобного типа представлены корпусами КТ-46 (SOT-23), KT-47 (SOT-89), KT-48 (SOT-143). Ос­новные геометрические размеры корпусов показаны на рисунке 2.8.

SOT-23 (КТ-46)

SOT-89 (KT-47)

Рисунок 2.8 — Габаритные размеры корпусов типа SOT

Малогабаритные корпуса для микросхем могут быть объединены в несколько групп в зависимости от формы выводов (вывод в форме кры­ла чайки, J-образный), их расположением по двум или четырем сторо­нам корпуса, материала корпуса (пластмассовый или керамический):

— корпуса типа SOIC (Small Outline Integrated Circuit) u SOP (Small Outline Packages) с двусторонним расположением выводов в форме крыла чайки (рисунок 2.9а, 2.9.6). Шаг расположения выводов у этого типа корпусов 1,27 мм, количество выводов — от 6 до 42. Дальнейшим развитием корпусов подобного типа явилось создание корпуса SSOIC (Shrink Small Outline Integrated Circuit) с уменьшенным до 0,635 мм рас­стоянием между выводами при максимальном их количестве 64 (рису­нок 2.9в) и корпуса TSOP (Thin Small Outline Packages) с уменьшенной до 1,27 мм высотой корпуса (рисунок 2.8г) и уменьшенным до 0,3 — 0,4 мм расстоянием между выводами;

— корпуса типа SOJ (Small Outline with «J» leads) с двусторонним рас­положением выводов J-образной формы, загнутых под корпус (рисунок 2.10). Шаг расположения выводов — 1,27 мм, общее их количество — от 14 до 28.

Рисунок 2.9 — Разновидности корпусов микросхем с двусторонним расположением выводов в форме крыла чайки: а-корпус типа SOIC; б-корпус типа SOP; в — корпус типа SSOIC; г — корпус типа TSOP

Рисунок 2.10 — Корпус микросхемы с J-образными выводами: а — общий вид корпуса; б — конструкция выводов

— корпуса типа QFP (Quad Flat Pack) и SQFP (Shrink Quad Flat Pack), имеющие выводы в форме «крыла чайки», равномерно распределенные по четырем сторонам (рисунок 2.11 а). Существует также разновидность корпуса в форме прямоугольника — SQFP-R (рисунок 2.11 б). Шаг рас­положения выводов достаточно мал — всего 0,3 — 0,5 мм, что позволяет создавать корпуса с общим количеством выводов до 440;

Рисунок 2.11 — Разновидности корпусов микросхем с четырех­сторонним расположением выводов в форме крыла чайки: а — корпус типа QFP и SQFP; б-корпус типа SQFP-R

корпуса типа PLCC (Plastic Leaded Chip Carrier) — квадратный пла­стмассовый кристаллоноситель с J-выводами (рисунок 2.12а) и типа PLCC R (Plastic Leaded Chip Carrier Rectangular) — прямоугольный пла­стмассовый кристаллоноситель с J-выводами (рисунок 2.126). Корпуса подобного вида имеют значительный по современным меркам шаг рас­положения выводов — 1, 27 мм и в связи с этим большие геометрические размеры. Количество выводов квадратного корпуса — от 20 до 124, у прямоугольного — от 18 до 32;

Рисунок 2.12 — Корпус микросхемы с J-образными выводами

и четырехсторонним расположением выводов:

а-квадратный PLCC; б-прямоугольный PLCC-R

корпуса типа LCCC (Leadless Ceramic Chip Carrier) — безвыводный керамический кристаллоноситель (рисунок 2.13). На боковых поверхно­стях такого корпуса имеются спе­циальные металлизированные углубле­ния, расположенные с шагом 1,27 мм, которые служат для образования элек­трического соединения с контактными площадками платы при пайке узла дозированным припоем.

Рисунок 2.13- Корпус типа LCCC

Отечественным аналогом корпусов типа SOIC являются корпуса подтипа 43 по ГОСТ 17467-88. Габаритные чертежи и размеры этих корпусов приведены на рисунке 2.14 и в таблице 2.1.

Рисунок 2.14- Габаритные размеры корпусов подтипа 43

Таблица 2.1 — Габаритные размеры корпусов подтипа 43 в миллиметрах

Шифр типо­размера

Число выводов

Отечественным аналогом корпусов типа QFP являются корпуса под­типа 44 по ГОСТ 17467-88. Габаритные чертежи и размеры этих корпу­сов приведены на рисунке 2.15 и в таблице 2.2.

Мировая электронная промышленность около 90% всех ТМП ИС выпускает в пластмассовых корпусах и только 10% в керамических. Керамические корпуса обладают существенно более высокими эксплуа­тационными показателями. Так, температурный диапазон работы мик­росхем в керамических корпусах составляет от -55 до +125°С, а в пластмассовых — от -10 до +85°С. Однако керамические корпуса имеют большую массу и стоимость, поэтому они используются, как правило, в наиболее ответственных случаях.

Рисунок 2.15 — Габаритные размеры корпусов подтипа 44

Таблица 2.2 — Габаритные размеры корпусов подтипа 44

Шифр типоразмера

Число выводов

Нестандартные корпуса для компонентов неправильной формы, на­пример, переключателей, плавких предохранителей, индуктивностей, электролитических конденсаторов, переменных резисторов представле­ны на рисунке 2.16.

Рисунок 2.16- Нестандартные корпуса для КМП

Отечественной промышленностью выпускаются подстроечные рези­сторы в ТМП исполнении следующих типов: РП1-75, РП1-82, РП1-83, РП1-98 . Резисторы имеют диапазон сопротивлений от 10 Ом до 3,3 МОм, допускают мощность рассеяния 0,25 Вт. Габаритные раз­меры не превышают 4,5×4,5×3,5 мм.

В настоящее время по всему миру выпускается невероятное количество микросхем со всевозможными функциями. Насчитывается десятки тысяч различных микросхем от десятков производителей. Но очевидно, что требуется определенная стандартизация корпусов микросхем для того, чтобы разработчики могли удобно их применять для изготовления печатных плат, устанавливаемых в конечных электронных устройствах (телевизоры, магнитофоны, компьютеры и т. д.). Поэтому со временем сформировались формфакторы микросхем, под которые подстраиваются все мировые производители. Все их описать проблематично, да в этом и нет необходимости, поскольку некоторые из них предназначены для специфических задач, с которыми вы можете никогда не столкнуться.

Поэтому ниже приведены только самые распространенные и популярные из известных типов корпусов, которые вы можете встретить в магазинах и использовать в своих проектах.

Аббревиатура DIP расшифровывается как Dual In-line Package, что в переводе означает «пакет из двух линий» Данный тип имеет прямоугольную форму с двумя рядами контактов (ножек), направленных вниз по длинным сторонам корпуса.
Появился такой корпус в 1965 году и стал стандартом для одних из первых промышленно выпускаемых микросхем. Наибольшей популярностью в электронной промышленности пользовался в 1970-х и 1980-х годах. Корпус хорошо подходит для автоматизированной сборки и для установки в макетную плату.

Расстояние между осями соседних ножек по одной стороне — 2,54 мм, что соответствует шагу контактов макетной платы. Поэтому в конструкторах «Эвольвектор» используется именно этот тип микросхем. К настоящему моменту он считается устаревшим. В промышленности для изготовления печатных плат его постепенно вытеснили корпуса, предназначенные для поверхностного монтажа, — например типы PLCC и SOIC.

SOIC — расшифровывается как Small-Outline Integrated Circuit — интегральная схема с малым внешним контуром. Микросхемы с таким типом корпуса предназначены только для поверхностного монтажа на печатную плату и обладают действительно гораздо меньшими размерами по сравнению с типом корпуса DIP. Корпус такого типа имеет форму прямоугольника с двумя рядами выводов по длинным сторонам. Расстояние между ножками составляет 1,27 мм, высота корпуса в 3 раза меньше, чем у корпуса DIP и не превышает 1,75 мм. Микросхемы в корпусе SOIC занимают на 30-50 % меньше площади печатной платы, чем их аналоги в корпусе DIP, благодаря чему имеют широкое распространение и в настоящее время. На концах ножек есть загибы для удобного припаивания к поверхности платы. Установка такого типа микросхем в макетную плату для быстрого прототипирования устройств невозможна.

Обычно нумерация выводов одинаковых микросхем в корпусах DIP и SOIC совпадает. Для обозначения данного типа микросхем может использоваться не только сокращение SOIC, но и буквы SO с указанием после них числа выводов. Например, если микросхема имеет 16 выводов, то может обозначаться SOIC-16 или SO-16.

Корпуса могут иметь различную ширину. Самые распространенные размеры 0,15; 0,208 и 0,3 дюйма. Возможно использование данных микросхем в дополнительных наборах «Эвольвектор» для изучения пайки.

PLCC — расшифровывает как Plastic Leaded Chip Carrier -пластиковый освинцованный держатель чипа. Тип представляет собой квадратный корпус с расположенными по четырем сторонам контактами. Расстояние между контактами — 1,27 мм. Такой корпус предназначен для установки в специальную панель. Как и DIP корпус, в настоящее время распространен не очень широко. Может использоваться для производства микросхем флэш-памяти, используемых в качестве микросхем BIOS на системных платах в персональных компьютерах или других вычислительных системах.

ТО-92 — расшифровывается как Transistor Outline Package, Case Style 92 — как корпус для транзисторов с модификацией под цифровым обозначением 92. Как следует из названия, этот тип корпуса применяется для транзисторов. В нем изготавливаются маломощные транзисторы и другие электронные полупроводниковые компоненты с тремя выводами, в том числе и простые микросхемы, такие как интегральный стабилизатор напряжения. Корпус имеет малый размер, в чем можно убедиться, взяв в руки биполярный транзистор из конструктора «Эвольвектор» . Фактически корпус — это две склеенные между собой пластиковые половинки, между которыми заключен полупроводниковый компонент на пленке. С одной стороны корпуса есть плоская часть, на которую наносится маркировка.

Из корпуса выходят три вывода (ножки), расстояние между которыми может составлять от 1,15 до 1,39 мм. Компоненты, произведенные в таком корпусе, могут пропускать через себя ток до 5 А и напряжения до 600 В, но из-за малого размера и отсутствия теплорассеивающего элемента рассчитаны на незначительную мощность до 0,6 Вт.

Данный тип корпуса является родственником ТО-92. Отличие заключается в дизайне, ориентированном на компоненты и микросхемы более высокой мощности, чем предусматривает формфактор ТО-92. Корпус ТО-220 также предназначен для транзисторов, интегральных стабилизаторов напряжения или выпрямителей. Корпус ТО-220 рассчитан уже на мощность до 50 Вт благодаря наличию металлической теплоотводящей пластины (называется основанием), к которой припаивается кристалл полупроводникового прибора, выводы и герметичный пластиковый корпус.

Обычный «транзисторный» ТО-220 имеет три вывода, однако бывают и модификации с двумя, четырьмя, пятью и бОльшим количеством выводов. Расстояние между осями выводов составляет 2,54 мм. В основании имеется отверстие ∅4,2 мм для крепления дополнительных охлаждающих радиаторов. В силу улучшенных теплоотводящих свойств электронные компоненты в данном корпусе могут пропускать через себя токи до 70 А.

Аббревиатура TSSOP расшифровывается как Thin Scale Small-Outline Package — тонкий малогабаритный корпус. Такой тип корпуса используется исключительно для поверхностного монтажа на печатные платы. Обладает совсем маленькой толщиной, не более 1,1 мм, и очень маленьким расстоянием между выводами микросхемы — 0,65 мм.

Данные корпуса применяются для изготовления микросхем оперативной памяти персональных компьютеров, а также для чипов флеш-памяти. Несмотря на свою компактность, во многих современных устройствах вытеснены более компактными корпусами типа BGA по причине постоянного повышения требований к плотности расположения компонентов.

Аббревиатура QFP расшифровывается как Quad Flat Package — квадратный плоский корпус. Класс корпусов микросхем QFP представляет собой семейство корпусов, имеющих планарные выводы, которые равномерно расположены по всем четырём сторонам. Микросхемы в таких корпусах предназначены только для поверхностного монтажа. Это самый популярный на сегодняшний день тип корпуса для производства различных чипсетов, микроконтроллеров и процессоров. В этом вы сможете убедиться, когда перейдете ко 2-му и 3-му уровню конструкторов «Эвольвектор» . Контроллеры и одноплатные компьютеры указанных конструкторов оснащены процессорами и микроконтроллерами как раз в таких корпусах.

У класса QFP существует множество подклассов:

. BQFP : от англ. Bumpered Quad Flat Package
. CQFP : от англ. Ceramic Quad Flat Package
. HQFP : от англ. Heat sinked Quad Flat Package
. LQFP : от англ. Low Profile Quad Flat Package
. SQFP : от англ. Small Quad Flat Package
. TQFP : от англ. Thin Quad Flat Package
. VQFP : от англ. Very small Quad Flat Package

Но независимо от подкласса принцип «квадратности» и равномерного распределения контактов сохраняется. Отличаются разновидности только материалом, способностью к теплоотведению и конфигурацией корпуса, а также размерами и расстоянием между выходами. Оно составляет от 0,4 до 1,0 мм. Количество выводов у микросхем в корпусе QFP обычно не превышает 200.

Паяемые монтажные элементы SMD Push-to-Fix (P2F)

BJB для светодиодных плат — LED professional Печатные платы

, оснащенные фиксирующими элементами SMD-P2F таким образом, могут быть установлены в корпус светильника за один шаг. Это можно сделать вручную или автоматически — и, конечно же, совершенно без шурупов, заклепок, ленты или клея.

«Наше решение для сборки светодиодных плат упрощает процесс автоматизации, а также ручную сборку», — гарантируют инженеры BJB. «Благодаря предварительной установке гибких пружинных зажимов и с помощью паяльной площадки печатная плата идеально подготовлена ​​к окончательной сборке.Затем ее просто защелкивают в корпусе ». BJB продемонстрирует, насколько быстрым, легким и надежным является этот процесс, с помощью недавно разработанной системы на Light + Building 2018 во Франкфурте.

Но это еще не все. Помимо беспроблемной интеграции в процессы автоматизации, фиксирующие элементы SMD-P2F от BJB обладают и другими положительными характеристиками. Высокопрочные гибкие пружины остаются подвижными, но прикрепляются к печатной плате в обозначенных точках с помощью паяльной площадки. После защелкивания печатной платы в корпусе светильника зажимы обеспечивают надежное, устойчивое к вибрации и ударам соединение.Надежная прочность крепежных элементов поддерживает постоянное давление и механическую фиксацию светодиодной панели на протяжении всего срока службы. И они съемные, если потребуется замена светодиодных плат.

Малая общая высота SMD-P2F над печатной платой также снижает нежелательное затенение, которое отрицательно сказывается на светоотдаче и качестве дизайна. В общем, элементы SMD-P2F от BJB — идеальный способ крепления печатных плат и подходят для всех типов сборки. Однако особенно впечатляет их потенциал рационализации в области автоматизированного производства светильников.

Решение для ускорения процесса сборки светильников

В современном производстве светильников, как и во всех процессах автоматизации, на счету каждая секунда каждой минуты. Таким образом, короткое время цикла при максимальной надежности процесса имеет важное значение для эффективного производства. При использовании крепежных элементов SMD-P2F от BJB весь этап сборки исключается за счет его интеграции в процесс заводского изготовления печатной платы. Поскольку светодиодные платы теперь могут быть установлены без винтов или отдельных элементов, которые должны быть дополнительно прикреплены во время окончательной сборки, стоимость и сложность сборки для производителя освещения снижаются, что помогает максимизировать общую эффективность производства.Все это экономит время и деньги без ущерба для качества и надежности.

Крепежные элементы

SMD-P2F от BJB подходят для пролётов от 1,5 до 2,6 мм (общая толщина корпуса печатной платы и панели корпуса приспособления). Детали поставляются в обычной форме SMT из ленты и катушки. Для автоматической сборки SMD на печатной плате должна быть предусмотрена соответствующая площадь основания, а также вырез 4,5 мм. В каждом случае требуется вырез диаметром 3,0 мм в панели корпуса.

Для получения дополнительной информации посетите www.bjb.com
Для получения дополнительной информации о продукте SMD-P2F или для запроса образцов свяжитесь с нами, используя информацию ниже.

О BJB:

BJB — всемирно известный немецкий производитель и поставщик светотехнических решений, предлагающий широкий спектр продуктов и услуг: светодиодные модули, держатели COB, оптические компоненты, элементы крепления печатных плат, разъемы SMD, решения для тестирования и автоматизации. BJB является лидером в индустрии освещения с 1867 года и в настоящее время является пионером инновационных решений в области технологии твердотельного освещения.

Головной офис компании:

BJB GmbH & Co. KG
Werler Str. 1
59755 Arnsberg
Германия
Тел .: +49 2932 982 0
Эл. Почта: [email protected]
Интернет: www.bjb.com

BJB USA:
BJB Electric, LP
6375 Alabama Highway
Ringgold, GA 30736
USA
Тел .: +1 (706) 965-2526
Эл. Почта: [email protected]
Веб-сайт: www.bjb. com

SMD Push-to-Fix (P2F) от BJB. Паяемые монтажные элементы для светодиодных плат — LED professional

Готовность к щелчку: фиксация светодиодных плат с помощью элемента SMD P2F дает преимущества во многих аспектах.С одной стороны, этот метод позволяет избежать дорогостоящих производственных процессов с использованием винтов, одновременно сводя к минимуму затраты на хранение. Высокопрочные и в то же время упругие пружины SMD P2F обеспечивают надежное защелкивающееся соединение, устойчивое к вибрации и ударам. И последнее, но не менее важное: низкая монтажная высота над доской предотвращает нежелательное образование тени. Таким образом, P2F убеждает множеством полезных функций и возможностей.

Решение для упрощения установки светодиодных панелей в корпуса светильников
Крепежный элемент SMD P2F BJB оптимизирует и упрощает установку светодиодных панелей и снижает потенциальные помехи для качества освещения.Поддерживаются общие толщины от 1,5 до 2,6 мм в расчете на плату и лист корпуса. Компоненты поставляются полностью собранными в виде ленты и катушки. На плате должны быть запланированы соответствующие посадочные места, а также вырез 4,5 мм / ± для автоматического монтажа SMD. В листе корпуса необходимо вырезать ø3,0 мм каждый.

Для получения дополнительной информации посетите www.bjb.com или
http://www.bjb.com/index.php?pid=434442&languageid=4
для получения дополнительной информации о продукте или свяжитесь с нами для получения образцов.

О BJB:
BJB — всемирно известный немецкий производитель и поставщик светотехнических решений, предлагающий широкий спектр продуктов и услуг: светодиодные модули, держатели COB, оптические компоненты, элементы крепления печатных плат, разъемы SMD, решения для тестирования и автоматизации. BJB является лидером в индустрии освещения с 1867 года и в настоящее время является пионером инновационных решений в области технологии твердотельного освещения.

Головной офис компании:

BJB GmbH & Co. KG
Werler Str. 1
59755 Arnsberg
Германия
Тел .: +49 2932 982 0
Эл. Почта: [email protected]
Интернет: www.bjb.com

BJB USA:
BJB Electric, LP
6375 Alabama Highway
Ringgold, GA 30736
USA
Тел .: +1 (706) 965-2526
Эл. Почта: [email protected]
Веб-сайт: www.bjb. com

(PDF) Решения, используемые для длинноволновых термографических камер, предназначенных для наблюдения за элементами в корпусах SMD

2

ITM Web of Conferences 19, 01038 (2018) https: // doi.org / 10.1051 / itmconf / 20181

8

ZKwE’2018

Покрытия

используются со стриктурой алмаза

, называемого твердым углеродом.

Для наблюдения за микроэлементами в электронных системах необходим объектив

, который будет обеспечивать высокое разрешение

(<1 мм) изображений объектов размером несколько миллиметров. Он

должен иметь низкое значение IFOV, соответствующее геометрическое разрешение

, а его фокусный диапазон f не должен превышать

расстояния объект-детектор.Этим требованиям удовлетворяют узкоугольные объективы

с f до 50 мм (например, микроскоп с иммерсионным объективом

).

Большинство термографических камер имеют встроенный объектив

, однако во многих случаях его можно заменить или установить дополнительный объектив

. Кроме того, в современных объективах

используются матрицы вогнутых и выпуклых линз

для устранения таких дефектов, как сферическая аберрация

или кома.[6] Промежуточные кольца также могут использоваться для

уменьшения MOD, минимального расстояния до объекта. К сожалению, нагрев кольца

во время термографического измерения

приводит к увеличению измеренного термографического значения

и искажению изображения, и чем длиннее

кольца, тем сильнее этот эффект. Эффект может быть уменьшен с помощью программного обеспечения коррекции неоднородности

, но для этого требуются предварительные измерения с использованием эталона температуры

[7].

5 Сравнение параметров между

выбранными термографическими камерами

Большинство термографических камер, предназначенных для наблюдения за

микроэлементов, оснащены неохлаждаемой микроболометрической матрицей

, и чаще всего их спектральный диапазон

составляет от 7,5 мкм до 14 мкм. Спектральный диапазон

камер

с детектором QWIP или MTC значительно ниже на

, например камера FLIR Titanium SC7700L

(8.1-8,7 мкм) или камеру FLIR SC7750L (8,0-9,4 мкм),

, что снижает удобство использования камеры для определенных приложений

[8,9]. В то время как спектральный диапазон камер

с охлаждаемым детектором T2SL охватывает как MWIR, так и

как LWIR, с длиной волны нижнего порядка более

, чем 9 мкм (например, Pelican-D LW, 9,3 мкм), и как Такие

могут быть полезны для измерений на границе

средних и длинных волн [10].

Температурная чувствительность имеющихся камер

составляет несколько десятков мК (в среднем 40 мК).

Здесь выделяются только камера VarioCam HD Research 900 (20 мК)

, камеры серии FLIR SC7000 (20-30 мК) или камеры

FLIR SC660 и FLIR T540 (30 мК),

однако разница в NEDT значения не то, что

значимых [8,11,12].

Диапазон измерений для камер с микроболометрическими матрицами

довольно широк, он охватывает

температур от -40 ° C до вплоть до + 2000 ° C.

Здесь обращает на себя внимание камера FLIR ETS320 с более узким диапазоном измерения

(от -20 ° C до + 250 ° C),

, однако с камерой, предназначенной для измерения температурных распределений

в электронных системах (имеет специальный стенд

с регулируемой дистанцией объект — объектив) [11].

Принимая во внимание, что неопределенность измерения для доступных камер

составляет ± 2 ° C или 2% от измеренного значения

(± 1 ° C или только иногда 1%), что

сегодня является своего рода эталоном. когда речь идет о

измерениях с помощью термографической камеры

.

5 Сводка

Термографическая камера с объективом и матрицей

детекторов с соответствующими параметрами должна быть выбрана

для наблюдения за распределением температуры на поверхностях корпуса SMD

. Спектральный диапазон, в котором

детекторов в матрице принимают излучение, должен максимально перекрывать

спектрального диапазона излучения

, испускаемого поверхностями корпусов SMD-элементов.

Кроме того, чем меньше размеры наблюдаемого объекта

, тем больше детекторов должна содержать используемая матрица.

Нельзя упускать из виду значение NEDT — оно должно быть как можно меньше

. С другой стороны, выбор подходящего объектива

влияет как на чувствительность, так и на спектральный диапазон

камеры, а также на разрешение ее изображения

. Материалы, из которых изготовлены линзы

, определяют пропускание ИК-излучения и поглощающую способность VIS

. В то время как фокусное расстояние, параметры FOV

и IFOV определяют минимальный размер наблюдаемой области

и размеры наименьшего объекта

, который камера может различить.

Справочные документы

1. К. Хшановски, К. Фирманти, Й. Барела, PAK 7-8,

34-36 (2005)

2. Б. Веенчек, Wybrane zagadnienia współczesnej

termcózizka w pod ,

Instytut Elektroniki, 2010)

3. http://www.ir-nova.se/t2sl/ [07.01.2016]

4. Х. Мадура, Т. Сосновский, Г. Бещад, Prz.

Elektrotech. 9, 5-8 (2014)

5. Минкина В., Рутковский П., В.А. Вильд, ПАК 1 ,. 11-

14 (2000)

6. М. Фоллмер, К-П. Möllmann, Infrared Thermal

Imaging. Основы, исследования и приложения,

(Willey-VCH, 2018)

7. М. Калужа, PAK 10, 1238-1241 (2011)

8. http://www.flirmedia.com [19.01.2017]

9. http://www.hoskinscientifique.com [19.01.2017]

10. ПК Klipstein, E. Avnon, Y. Benny et al., Proc.

SPIE 9451, 94510K (2015)

11.http://www.flir.com [19.01.2017]

12. http://www.infratec-infrared.com [19.01.2017]

13. A Hulewicz, Elektronika — konstrukcje, technologie,

zastosowania 7, 107-110 (2012)

Температурные чувствительные элементы | Омега Инжиниринг

Добавлено в вашу корзину

Быстрый корабль

Добавлено в вашу корзину

Быстрый корабль

Добавлено в вашу корзину

Быстрый корабль

RTDCAP

Готов к использованию, без стыков или хрупких элементов для соединения, для встраивания, вставки или как часть более крупной сборки.Доступны несколько конфигураций.

Просмотр полных спецификаций

Добавлено в вашу корзину

Быстрый корабль

Добавлено в вашу корзину

Быстрый корабль

Добавлено в вашу корзину

Быстрый корабль

PRTDCAP

Готов к использованию, без стыков или хрупких элементов для соединения, для встраивания, вставки или как часть более крупной сборки.Доступны несколько конфигураций.

Просмотр полных спецификаций

Добавлено в вашу корзину

Быстрый корабль

TFD-RTD
Датчик

имеет монтажное отверстие для болта №4 и стандартно поставляется с кабелем длиной 40 дюймов (1 метр) и 2-, 3- или 4-проводными соединениями. Просмотр полных спецификаций

Добавлено в вашу корзину

Добавлено в вашу корзину

78 долларов.90

Доступно
через 14 недель

Добавлено в вашу корзину

$ 293,59

Доступно
через 8 дней

Добавлено в вашу корзину

Температурные датчики

Используйте эти термочувствительные элементы для изготовления собственных сборок датчиков температуры.Выбирайте из термопары, тонкопленочного или проволочного термометра сопротивления, термистора или твердотельных сенсорных элементов.

Китай SMD 30W50W100W200W Светодиодный прожектор с черным корпусом для поставщиков и производителей наружного освещения — Цена

Характеристика

Угол обзора: 120 градусов

Светодиодные кристаллы изготовлены из материала InGaN

3,50 мм × 2,80 мм × 0,7 мм

Соответствует RoHS Совместимость с бессвинцовой пайкой

● Описание упаковки

Единицы: мм

ПРИМЕЧАНИЯ:

1.Все размеры указаны в миллиметрах;

2. Допуски составляют ± 0,03 мм, если не указано иное.

● Абсолютные максимальные характеристики Ta = 25 ± 3

90 429

Ifp

Параметр

Символ

0 Единица измерения

0 Единица измерения

Рассеиваемая мощность

Pd

0.2

W

Прямой ток

Если

60

1

9045

1 9045

Vr

5

V

Диапазон рабочих температур

850002

Диапазон температур хранения

Tstg

-40 ~ + 100

22

422 Импульсный прямой ток

180

мА

Электростатический разряд

0

0 ESD

0 ESD

904 V

● Электрооптические характеристики Ta = 25 ± 3

Лм

Параметр

9119

Условия испытания 9002 911

Символ

Значение

Ед.

Тип.

Макс.





Прямое напряжение

If = 60 мА

0009

Vf

2,9

V

Сила света

If = 60 мА

Φ

30

30

Угол обзора 50% Iv

If = 60 мА

2θ 1/2

120

120

Deg

Обратный ток

Vr = 5V

Ir

10

мкА

Цветовая температура

3000

K

Цветность CIE

Если = 60 мА

Если = 60 мА


CRI

Если = 60 мА

Ra

≥80



904ES

1.Допуск измерения светового потока: ± 10%

2. Допуск измерения прямого напряжения: ± 0,1 В

3. Допуск измерения цветовой температуры: x, y ± 0,01

4. Допуск измерения CRI: ± 2

T Типичные кривые оптических характеристик

● Предел бункера интенсивности (IF = 60 мА)

2 9042

Код бункера

для эталонного потока

Мин.

Макс.

1

30

31

● Ограничение емкости VF (IF = 60 мА)

904 29

Бин-код

2,7

Мин.(В)

Макс. (В)

1

2,6

2,7

2

3

2,8

2,9

Предел цветности CIE

03

мА

● Требования к применению и пайке оплавлением

Пайка оплавлением

Предварительный нагрев

1600003

-время нагрева

120 с секунд Макс.

Пиковая температура

245 ℃ Макс.

Время пайки

10 секунд Макс.

Состояние

См. Температурный профиль

Следует избегать быстрого охлаждения после пайки оплавлением

Температурный профиль

Температурный профиль

Температурный профиль

следующие условия показаны на рисунке.

<Бессвинцовый припой> <Свинцовый припой>

1. Обратную пайку не следует выполнять более двух раз

2. При пайке не подвергайте светодиоды нагрузке во время нагрева

Меры предосторожности при обращении

По сравнению с эпоксидной смолой, которая является твердой и хрупкой, силикон более мягкий и гибкий. Хотя его характеристики значительно снижают термическое напряжение, он более подвержен повреждению под действием внешней механической силы.В результате необходимо соблюдать особые меры предосторожности при сборке с использованием светодиодных продуктов, заключенных в силиконовый герметик. Несоблюдение этих требований может привести к повреждению и преждевременному выходу из строя светодиода.

♦ Держите компонент вдоль боковой поверхности с помощью щипцов или подходящих инструментов; не прикасайтесь к поверхности силиконовой линзы и не трогайте ее, это может привести к повреждению внутренней схемы.

♦ Не подходит для работы в кислой среде, PH <7.

♦ Рабочая среда светодиодов и состав серных элементов не могут превышать 25 частей на миллион в используемом материале сопряжения светодиодов.

Когда нам нужно использовать внешний клей для светодиодных продуктов, убедитесь, что внешний клей соответствует клею для упаковки светодиодов. Кроме того, поскольку большая часть упаковочного клея светодиодов представляет собой силикагель, он обладает высокой проницаемостью для кислорода, а также высокой проницаемостью для влаги; для предотвращения попадания внешнего материала внутрь светодиодов, что может вызвать неисправность светодиодов, единичное содержание элемента Bromine

должно быть менее 225 частей на миллион, единичное содержание элемента хлора должно быть меньше чем 225 частей на миллион, общее содержание элементов брома и хлора во внешнем клее продуктов нанесения должно быть менее 375 частей на миллион.

♦ Герметичный материал светодиодов — силикон. Поэтому светодиоды имеют мягкую поверхность в верхней части упаковки. Давление на верхнюю поверхность повлияет на надежность светодиодов. Следует принять меры, чтобы избежать сильного давления на герметизированную часть. Поэтому при использовании всасывающей насадки давление на силиконовую смолу должно быть надлежащим.

♦ Статическое электричество или импульсное напряжение повреждают светодиоды. Поврежденные светодиоды будут демонстрировать некоторые необычные характеристики, такие как более низкое прямое напряжение или то, что при слабом токе не горит, даже не горит.Все устройства, оборудование и механизмы должны быть правильно заземлены. В то же время при работе со светодиодами рекомендуется использовать браслеты или антиэлектростатические перчатки, антиэлектростатические контейнеры.

Хранение

♦ Перед тем, как открыть упаковку, светодиоды должны иметь температуру 30 ℃ или ниже и относительную влажность 60% или ниже. Светодиоды следует использовать в течение года.

♦ После вскрытия упаковки продукт следует хранить при температуре не выше 30 ℃ и относительной влажности менее 10%, а также паять в пределах 24 H.Рекомендуется эксплуатировать изделие в условиях мастерской при температуре не выше 30 ℃ и относительной влажности менее 60%. Если неиспользуемые светодиоды остались, их следует хранить во влагонепроницаемых упаковках, например, в герметичных контейнерах с упаковками из влагопоглощающего материала (силикагель). Также рекомендуется вернуть светодиоды в исходную влагонепроницаемую сумку и снова запечатать влагонепроницаемую сумку.

● Надежность

(1) ПУНКТЫ И РЕЗУЛЬТАТЫ ИСПЫТАНИЙ

Тип

Элемент тестирования

Ref.Стандарт

Условия испытаний

Примечание

Количество поврежденных

Окружающая среда
Последовательность

Нагрев при пайке B106

Tsld = 260 ℃ , 5сек

2 раза

0/100

Температурный цикл

℃ ↑
100 ℃ 30мин

100 циклов

0/100

Тепловой удар

JESD22-A106

-40 15мин ↑ 100 ℃ 15 мин.

100 циклов

0/100

Высокотемпературное хранение

JESD22-A103

3

90

3 0/100

Низкотемпературное хранение

JESD22-A119

Ta = -40 ℃

1000 часов

0/100 9034

9042

0/100

Цикл.

JESD22-A105

На 5 мин -40 ℃ > 15 мин
↑ ↓ ↑ ↓ < 15 мин.
Выкл. 5мин. 100 ℃ > 15мин.

100 циклов

0/100

Работа
Последовательность

Испытание срока службы

4 90ES229

4 90ES229 25 ℃
IF = 150 мА

1000 часов

0/100

Высокая влажность тепла
Срок службы

JESD22-A101

80 ℃ RH = 80%
IF = 150 мА

1000 часов

0/100

(2) КРИТЕРИИ ДЛЯ СУДЕБНОГО УЩЕРБА

USL *) × 1,1

942 942 942

0 обратный ток

904

Позиция

Критерии судебного решения

Мин.

Макс.

Напряжение в прямом направлении

VF

IF = 150 мА

USL *) × 1,1

VR = 5V

USL *) × 2,0

Сила света

IV

L.SL **) × 0,7

USL: Верхний стандартный уровень LSL: Нижний стандартный уровень

P Характеристики упаковки

Технические характеристики упаковочной ленты : (14000 шт. / Рулон , 24 бобины в коробке)

Доставка 3-5 дней.

Компания


Патенты

Контактное лицо:

Michele Xiong

Elronic Co., LTD

Мобильный телефон / Wechat : + 86-13712139552

Телефон: 0769-8

60

Факс: 0769-8

58

Электронная почта: [email protected]

Мы были энергичной корпорацией с широким рынком для SMD200 30W50W Светодиодный прожектор с черным корпусом для наружного освещения. От производства, исследований и разработок до испытаний — все проводится профессионалами, чтобы гарантировать надежность, практичность и удобство работы продукта. Мы придерживаемся «целостности» философии бизнеса.

Первый в мире модуль двухканального термобатарейного SMD-датчика

COVID-19 — Существенная роль HEIMANN Sensor в борьбе с пандемией

Кристин де Витт • 01 августа, 2020

В условиях нынешнего мирового кризиса COVID-19 компания HEIMANN Sensor стала одним из ключевых игроков в борьбе с распространением быстро развивающейся пандемии, производя датчики и сенсорные модули, которые используются в термометрах для лихорадки или системах контроля температуры. Не только больницы, медицинские практики и аптеки все чаще используют бесконтактные инфракрасные термометры для индикации потенциальных пациентов с коронавирусом.Даже во все большем количестве компаний и общественных мест по всему миру портативные портативные термометры становятся предпочтительным инструментом для определения повышенной температуры тела. Системы контроля температуры, которые постоянно устанавливаются на входах в аэропорты, компании, общественные здания, школы или другие учреждения, могут автоматически определять повышенную температуру тела с больших расстояний. Во всех этих инструментах продукты HEIMANN Sensor, такие как HMS M21 для бесконтактных термометров или HTPA32x32 и HTPA 80×64 для систем экранирования повышенной температуры тела, являются центральным элементом.Кроме того, HEIMANN Sensor — один из немногих производителей специальных, быстро реагирующих датчиков газа CO2, которые устанавливаются в капнографических устройствах, инкубаторах и респираторном оборудовании. Поскольку у небольшого процента пациентов с коронавирусом возникают серьезные проблемы со здоровьем, включая острые респираторные заболевания, их выживание зависит от постоянного мониторинга функции их легких в отделениях интенсивной терапии. Таким образом, производство газовых датчиков HEIMANN стало решающим в мировом здравоохранении.Следовательно, спрос на продукцию HEIMANN Sensor за последние несколько недель вырос в геометрической прогрессии. Несмотря на то, что удовлетворить растущий спрос в начале 2020 года было непросто, близкая остановка экономики в Малайзии в середине марта, где расположены две основные сборочные линии HEIMANN Sensor, была драматичной. После подтверждения системной значимости для правительства Малайзии компании HEIMANN Sensor было предоставлено специальное разрешение на возобновление работы части сборочной линии.Тем не менее, HEIMANN Sensor продолжает борьбу за полное повторное использование и расширение своих мощностей на основных сборочных линиях. Компания HEIMANN Sensor и ее сотрудники давно осознали, что их ввод и поставка сенсоров и сенсорных модулей в условиях текущего всемирного кризиса, связанного с коронавирусом, превзошли экономические выгоды, но играют важную роль в глобальном сдерживании COVID-19 и спасении жизни пациентов.

Разница между светодиодными лампами DIP и SMD


Значение DIP (двухрядный корпус)

Двухрядный корпус — это корпус электронных компонентов с прямоугольным корпусом и двумя параллельными рядами электрических соединительных контактов .Корпус монтируется через отверстие на печатной плате (PCB) или вставляется в розетку.

Значение SMD (устройства для поверхностного монтажа)

Технология поверхностного монтажа (SMT) — это метод изготовления электронных схем, в которых компоненты устанавливаются или размещаются непосредственно на поверхности печатных плат (PCB). Изготовленное таким образом электронное устройство называется устройством поверхностного монтажа (SMD).

Ниже фото показывая светодиоды DIP и SMD для справки.


Светодиодный экран DIP — одна из старых конструкций светодиодов по сравнению с новой технологией SMD. Но это также одно из самых прочных и стабильных решений для уличных светодиодных дисплеев. Светодиодные дисплеи SMD — это новая технология в эти годы, и сейчас она становится все более и более популярной благодаря лучшему качеству изображения и более высокому разрешению. Ниже приведены их различия, преимущества и недостатки для вашей справки.

Преимущества DIP и недостатки SMD

1.Для DIP каждый пиксель состоит из трех независимых цветных (RGB) светодиодных ламп. У каждой луковицы есть две длинные ножки. Длинные ножки вставляются в контактную площадку печатной платы, поэтому после сквозной пайки проблемы с холодной пайкой возникают редко. Светодиодный дисплей SMD имеет короткие ножки, а светодиодная лампа была установлена ​​на контактной площадке печатной платы, что легче вызвать проблемы с холодной пайкой, чем DIP.

2. Длинные ножки позволяют светодиодным лампам лучше рассеивать тепло. Лучшее рассеивание тепла означает долгий срок службы светодиодных дисплеев.Таким образом, светодиоды DIP будут более долговечными, чем светодиоды SMD при длительной эксплуатации.

3. Размер светодиодной лампы DIP большой, это позволяет светодиодным экранам иметь более высокую яркость. Обычно DIP-светодиодные дисплеи с нормальной яркостью могут достигать 7500 нит, в то время как высокая яркость может достигать более 10 000 нит. Обычно яркость светодиодных экранов SMD для установки вне помещений составляет около 6000 нит.

4. Светодиодные DIP-экраны потребляют меньше энергии по сравнению с SMD с такими же характеристиками. Обычно энергопотребление светодиодных дисплеев DIP на 1/3 меньше, чем у SMD.

Преимущества SMD и недостатки DIP

1. Поскольку размер светодиодной лампы DIP большой, а каждый пиксель состоит из 3 лампочек, нет места, поэтому на светодиодном дисплее DIP нет места, чтобы достичь шага пикселя менее 10 мм. . В настоящее время для светодиодных DIP-дисплеев обычно доступен только шаг пикселя p10mm, p12mm, p16mm и p20mm. Но светодиоды SMD маленькие, и их можно разместить ближе друг к другу. Более близкое размещение приводит к более высокому разрешению. Шаг пикселя светодиодных дисплеев SMD может быть равен 0.9-10мм.

2. Угол обзора у DIP LED дисплея меньше по сравнению с SMD. Он поддерживает только h220 ° и V60 °, в то время как светодиодные дисплеи SMD имеют широкий угол обзора, который может достигать h260 ° и V160 °. Поэтому, если вам нужен острый угол обзора, то светодиодные SMD-экраны будут хорошим вариантом.

3. Эффективность производства и стоимость изготовления выше для DIP, так как на каждый пиксель приходится 3 лампочки, вставка одного пикселя на печатную плату для модуля DIP будет как минимум в 3 раза медленнее, чем работа для модуля SMD.И это много новых продвинутых SMT-машин, которые могут выполнять процессы монтажа SMD намного быстрее, чем DIP. Это одна из причин того, что сейчас все меньше и меньше производителей выпускают светодиодные DIP-дисплеи.

4. Обычно стоимость светодиодного дисплея DIP выше, чем стоимость SMD, если он основан на тех же технических характеристиках и шаге пикселей.

В целом то, что у них обоих есть достоинства и недостатки.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *