Site Loader

Содержание

Соединения конденсаторов. Энергия электрического поля конденсатора.

Соединения конденсаторов .

Параллельное соединение конденсаторов

 

Обкладки конденсаторов соединяют попарно, т.е. в системе остается два изолированных проводника, которые и представляют собой обкладки нового конденсатора

 

Вывод: При параллельном соединении конденсаторов

  • заряды складываются,
  • напряжения одинаковые,
  • емкости складываются.

Т.о.,  общая емкость больше емкости любого из параллельно соединенных конденсаторов

Последовательное соединение конденсаторов

 

Производят только одно соединение, а две оставшиеся обкладки — одна от конденсатора С1 другая от конденсатора С2 — играют роль обкладок нового конденсатора.

 

Вывод: При последовательном соединении конденсаторов

  • напряжения складываются,
  • заряды одинаковы,
  • складываются величины, обратные емкости.

   Т.о.,  общая емкость меньше емкости любого из последовательно соединенных конденсаторов.

Энергия электрического поля конденсатора.

Под  энергией электрического поля конденсатора будем понимать энергию одной его обкладки, находящейся в поле, созданном другой  обкладкой. Тогда: 

 Формулы справедливы для любого конденсатора.

Пример: С=2мкФ; U=1000В.

t=10-6c.W=1 Дж  — опасно для жизни!

Плотность энергии.

  — плотность энергии (энергия единицы объема).

Формула справедлива для полей любых конденсаторов и, кроме того, для полей, меняющихся со временем (неэлектростатических).

Соединение конденсаторов: последовательное, параллельное и смешанное

В электротехнике существуют различные варианты подключения электрических элементов. В частности, существует последовательное, параллельное или смешанное соединение конденсаторов, в зависимости от потребностей схемы. Рассмотрим их.

Параллельное соединение

Параллельное соединение характеризуется тем, что все пластины электрических конденсаторов присоединяются к точкам включения и образовывают собой батареи. В таком случае, во время заряда конденсаторов каждый из них будет иметь различное число электрических зарядов при одинаковом количестве подводимой энергии

Схема параллельного крепления

 

Емкость при параллельной установке рассчитывается исходя из емкостей всех конденсаторов в схеме. При этом, количество электрической энергии, поступающей на все отдельные двухполюсные элементы цепи, можно будет рассчитать, суммировав сумму энергии, помещающейся в каждый конденсатор. Вся схема, подключенная таким образом, рассчитывается как один двухполюсник.

Cобщ = C1 + C2 + C3

Схема — напряжение на накопителях

 

В отличие от соединения звездой, на обкладки всех конденсаторов попадает одинаковое напряжение. Например, на схеме выше мы видим, что:

VAB = VC1 = VC2 = VC3 = 20 Вольт

Последовательное соединение

Здесь к точкам включения присоединяются контакты только первого и последнего конденсатора.

Схема — схема последовательного соединения

 

Главной особенностью работы схемы является то, что электрическая энергия будет проходить только по одному направлению, значит, что в каждом из конденсаторов ток будет одинаковым. В такой цепи для каждого накопителя, независимо от его емкости, будет обеспечиваться равное накопление проходящей энергии. Нужно понимать, что каждый из них последовательно соприкасается со следующим и предыдущим, а значит, емкость при последовательном типе может воспроизводиться энергией соседнего накопителя.

Формула, которая отражает зависимость тока от соединения конденсаторов, имеет такой вид:

i = ic1 = ic2 = ic3 = ic4, то есть токи проходящие через каждый конденсатор равны между собой.

Следовательно, одинаковой будет не только сила тока, но и электрический заряд. По формуле это определяется как:

Qобщ= Q1 = Q2 = Q3

А так определяется общая суммарная емкость конденсаторов при последовательном соединении:

1/Cобщ = 1/C1 + 1/C2 + 1/C3

Видео: как соединять конденсаторы параллельным и последовательным методом


Смешанное подключение

Но, стоит учитывать, что для соединения различных конденсаторов необходимо учитывать напряжение сети. Для каждого полупроводника этот показатель будет отличаться в зависимости от емкости элемента. Отсюда следует, что отдельные группы полупроводниковых двухполюсников малой емкости будут при зарядке становиться больше, и наоборот, электроемкость большого размера будет нуждаться в меньшем заряде.

Схема: смешанное соединение конденсаторов

Существует также смешанное соединение двух и более конденсаторов. Здесь электрическая энергия распределяется одновременно при помощи параллельного и последовательного подключения электролитических элементов в цепь. Эта схема имеет несколько участков с различным подключением конденсирующих двухполюсников. Иными словами, на одном цепь параллельно включена, на другом – последовательно. Такая электрическая схема имеет ряд достоинств сравнительно с традиционными:

  1. Можно использовать для любых целей: подключения электродвигателя, станочного оборудования, радиотехнических приборов;
  2. Простой расчет. Для монтажа вся схема разбивается на отдельные участки цепи, которые рассчитываются по отдельности;
  3. Свойства компонентов не изменяются независимо от изменений электромагнитного поля, силы тока. Это очень важно при работе с разноименными двухполюсниками. Ёмкость постоянна при постоянном напряжении, но, при этом, потенциал пропорционален заряду;
  4. Если требуется собрать несколько неполярных полупроводниковых двухполюсников из полярных, то нужно взять несколько однополюсных двухполюсника и соединить их встречно-параллельным способом (в треугольник). Минус к минусу, а плюс к плюсу. Таким образом, за счет увеличения емкости изменяется принцип работы двухполюсного полупроводника.

Формула расчета последовательного соединения конденсатора

Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом.

Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей.

Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения.

Параллельное включение конденсаторов в цепь

Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей.

Параллельное соединение конденсаторов:


Параллельное соединение конденсаторов

Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока. В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии.

Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

При параллельном соединении конденсаторов емкость равняется:


Формула и расшифровка

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Конденсаторы, соединенные параллельно, имеют напряжение:


Формула

Последовательное включение конденсаторов в цепь

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.

Последовательное соединение конденсатора:


Формула

При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния.

По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак.

Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Формула нахождения заряда на конденсаторе, схема подключения конденсатора:


Последовательное соединение конденсаторов

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости.

Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки.

Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.

Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:


Основные моменты

Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:


Формула

Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:


Формула

Смешанное включение емкостных накопителей в схему

Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением.

Участок цепи подсоединенных смешанным включением накопителей емкости:


Схема подключения конденсаторов

Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:

  • разбивается схема на простые для вычисления участки, это последовательное и параллельное соединение конденсаторов;
  • вычисляем эквивалентную емкость для группы конденсаторов, последовательно включенных на участке параллельного соединения;
  • проводим нахождение эквивалентной емкости на параллельном участке;
  • когда эквивалентные емкости накопителей определены, схему рекомендуется перерисовать;
  • рассчитывается емкость получившейся после последовательного включения эквивалентных накопителей электрической энергии.


Последовательное, параллельное и смешанное соединение конденсаторов

Накопители емкостей (двухполюсники) включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:

  1. Использование для подключения электрических двигателей и другого оборудования в цехах, в радиотехнических устройствах.
  2. Упрощение вычисления величин электросхемы. Монтаж выполняется отдельными участками.
  3. Технические свойства всех элементов не меняются, когда изменяется сила тока и магнитное поле, это применяется для включения разных накопителей. Характеризуется постоянной величиной емкости и напряжения, а заряд пропорционален потенциалу.

Вывод

Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников.

В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу (треугольником). В этой схеме минус соединяется с минусом, а плюс — с плюсом.

Происходит увеличение емкости накопителя, и меняется работа двухполюсника.

Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

Источник: https://domelectrik.ru/baza/komponenty/soedinenie-kondensatorov

Соединения конденсаторов. Энергия электрического поля конденсатора

Соединения конденсаторов .
Параллельное соединение конденсаторов
Обкладки конденсаторов соединяют попарно, т.е. в системе остается два изолированных проводника, которые и представляют собой обкладки нового конденсатора
Вывод: При параллельном соединении конденсаторов
  • заряды складываются,
  • напряжения одинаковые,
  • емкости складываются.

Т.о.,  общая емкость больше емкости любого из параллельно соединенных конденсаторов

Последовательное соединение конденсаторов
Производят только одно соединение, а две оставшиеся обкладки — одна от конденсатора С1 другая от конденсатора С2 — играют роль обкладок нового конденсатора.

Вывод: При последовательном соединении конденсаторов
  • напряжения складываются,
  • заряды одинаковы,
  • складываются величины, обратные емкости.

   Т.о.,  общая емкость меньше емкости любого из последовательно соединенных конденсаторов.

Энергия электрического поля конденсатора.

 Формулы справедливы для любого конденсатора.
Пример: С=2мкФ; U=1000В.
t=10-6c.W=1 Дж  — опасно для жизни!
Плотность энергии.

Формула справедлива для полей любых конденсаторов и, кроме того, для полей, меняющихся со временем (неэлектростатических).

Источник: https://www.eduspb.com/node/1763

Соединение конденсаторов — Основы электроники

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.

Рисунок 1. Способы соединения конденсаторов.

Параллельное соединение конденсаторов

Если группа конденсаторов включена в цепь таким обра­зом, что к точкам включения непосредственно присоединены пластины всех конденсаторов, то такое соединение называется параллельным соединением конденсаторов (рисунок 2.).

Рисунок 2. Параллельное соединение конденсаторов.

При заряде группы конденсаторов, соединенных параллель­но, между пластинами всех конденсаторов будет одна и та же разность потенциалов, так как все они заряжаются от одного и того же источника тока.

Общее же количе­ство электричества на всех конденсаторах будет равно сумме количеств электричества, помещающихся на каждом из кон­денсаторов, так как заряд каждого их конденсаторов проис­ходит независимо от заряда других конденсаторов данной группы.

Исходя из этого, всю систему параллельно соединен­ных конденсаторов можно рассматривать как один эквива­лентный (равноценный) конденсатор. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.

Обозначим суммарную емкость соединенных в батарею конденсаторов бук­вой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:

Последний знак + и многоточие указывают на то, что этой формулой можно пользоваться при четырех, пяти и во­обще при любом числе конденсаторов.

Последовательное соединение конденсаторов

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным (рисунок 3).

Рисунок 2. Последовательное соединение конденсаторов.

При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заря­жаются через влияние. При этом заряд пла­стины 2 будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.

Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов.

Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость.

А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:

Последовательно-параллельное (смешанное) соединение конденсаторов

Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.

На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.

Рисунок 4. Последовательно-параллельное соединение конденсаторов.

При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:

1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.

2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.

3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.

4. Рассчитывают емкость полученной схемы.

Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.

Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.

  • Подробнее о расчетах соединения конденсаторов можно узнать в мультимедийном учебнике по основам электротехники и электроники:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/soedinenie-kondensatorov.html

Параллельное и последовательное соединение конденсаторов, схемы, расчет

Радиоэлементы можно соединить между собой тремя способами. Существует   параллельное и последовательное соединение конденсаторов, а также смешанный тип. Всегда можно точно определить емкость равноценного конденсатора по этому показателю.

Его можно поменять на ряд соединенных в цепь других, более мелких по емкости конденсаторов.

Для равнозначного конденсаторы должно быть выполнено некоторое условие, а именно подключенное напряжение к конденсатору равно напряжению на зажимах этой группы этих.

Таким же образом подключается все радиоэлементы, существующие на данный момент. Главным образом используются параллельное и последовательное соединение конденсаторов.   В данной статьи рассмотрены все типы соединений конденсаторов. В качестве бонуса. в статье есть видеоролик и статья, посвященные этой теме.

Виды соединения конденсаторов в обмотке.

Последовательное и параллельное соединение конденсаторов

Соединение конденсаторов в электрической цепи может быть последовательным, параллельным и последовательно-пареллельным (смешанным).

 Если провести аналогию между соединением конденсаторов и соединением резисторов, то стоит отметить, что формулы расчета общей емкости и общего сопротивления идентичны, только между разными типами соединений: Формула Cобщ при параллельном соединении конденсаторов = формула Rобщ при последовательном соединении резисторов.

  • Cобщ — общая емкость.
  • Rобщ — общее сопротивление.

При последовательном соединении конденсаторов (рис. 3) на обкладках отдельных конденсаторов электрические заряды по величине равны:  Q1 = Q2 = Q3 = Q.

 Действительно, от источника питания заряды поступают лишь на внешние обкладки цепи конденсаторов, а на соединенных между собой внутренних обкладках смежных конденсаторов происходит лишь перенос такого же по величине заряда с одной обкладки на другую (наблюдается электростатическая индукция), поэтому и на них по- являются равные и разноименые электрические заряды.

Соединения конденсаторов.

Напряжения между обкладками отдельных конденсаторов при их последовательном соединении зависят от емкостей отдельных конденсаторов: U1 = Q/C1, U1 = Q/C2, U1 = Q/C3, а общее напряжение U = U1 + U2 + U3.

 Общая емкость равнозначного (эквивалентного) конденсатора C = Q / U = Q / (U1 + U2 + U3), т. е. при последовательном соединении конденсаторов величина, обратная общей емкости, равна сумме обратных величин емкостей отдельных конденсаторов.

 Формулы эквивалентных емкостей аналогичны формулам эквивалентных проводимостей.

Материал в тему: все о переменном конденсаторе.

Параллельное соединение конденсаторов

Параллельное соединение конденсаторов — это соединение при котором конденсаторы соединяются собой обоими контактами. В результате к одной точке может быть присоединено несколько конденсаторов.

При параллельном соединении формируется один большой конденсатор с площадью обкладок, равной сумме площадей обкладок всех отдельных компонентов.

Поскольку емкость конденсаторов прямо пропорциональна площади обкладок, общая емкость Собщ при параллельном соединении равняется сумме емкостей всех конденсаторов в цепи.

Напряжение при параллельном соединении

На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов (напряжение). Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения. Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:

  • ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVC/Δt – Скорость изменения напряжения

Будет интересно➡  Несколько фактов об электролитических конденсаторах

При параллельном соединении через каждый конденсатор потечет одельный ток, в зависимости от емкости конденсатора:

Последовательное соединение конденсаторов

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным.

 При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины, а остальные пластины заря­жаются через влияние.

При этом заряд пла­стины будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения.

Типы соединений конденсаторов.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы. Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Последовательное соединение конденсаторов – это соединение двух или более конденсаторов в форме цепи, в которой каждый отдельный конденсатор соединяется с другим отдельным конденсатором только в одной точке. Ток (iC), заряжающий последовательную цепь конденсаторов, будет одинаковым для всех конденсаторов, поскольку у него есть только один возможный путь прохождения.

Вследствие того что через все последовательно соединенные конденсаторы течет одинаковый ток, количество накопленого электрического заряда для каждого конденсатора будет одинаковым, независимо от его емкости.

Так происходит, потому что электрический заряд, накапливаемый на обкладке любого конденсатора, должен прийти с обкладки примыкающего конденсатора.

Таким образом, последовательно соединенные конденсаторы имеют одинаковый электрический заряд.

Стоит почитать: все об электолитических конденсаторах.

Правая обкладка первого конденсатора С1 соединяется с левой второго конденсатора С2, у которого правая обкладка соединяется с левой третьего конденсатора С3. Это означает, что в режиме постоянного тока конденсатор С2 электрически изолирован от общей цепи. В итогое эффективная площадь обкладок уменьшается до площади обкладок самого маленького конденсатора. Это объясняется тем, что как только обкладки наименшей площади заполнятся электрическим зарядом, данный конденсатор перестанет пропускать ток. В результате ток прекратиться во всей цепи, и процесс зарядки остальных конденсаторов также прекратится. При последовательном соединении общее расстояние между обкладками увеличивается до суммы расстояний между обкладками всех конденсаторов.

Будет интересно➡  Формула расчёта сопротивления конденсатора

Таким образом, последовательная цепь формирует один большой конденсатор с площадью обкладок элемента с наименьшей емкостью, и расстоянием между обкладками, равному сумме всех расстояний в цепи.

 На каждый отдельный конденсатор в последовательной цепи падает разное напряжение. Поскольку емкость обратно пропрциональна напряжению (С = Q/V), то чем меньше емкость конденсатора, тем большее напряжение на него упадет.

Применим закон Кирхгофа для напряжения в последовательной цепи из трех конденсаторов.

Емкость конденсатора прямо пропорциональна его заряду и обратно пропорциональна его напряжению — C = Q/V. Как уже упоминалось выше, последовательно соединенные конденсаторы имеют одинаковый электрический заряд — Qобщ = Q1 = Q2 = Q3. Из данного уравнения можно легко вывести формулу общей емкости для любого частного случая последовательного соединения.

Источник: https://ElectroInfo.net/kondensatory/chem-otlichajutsja-parallelnoe-i-posledovatelnoe-soedinenie-kondensatorov.html

Последовательное соединение конденсаторов

Последовательное соединение конденсаторов – батарея, образованная цепочкой конденсаторов. Отсутствует ветвление, выход одного элемента подключается к входу следующего.

Физические процессы при последовательном соединении

При последовательном соединении конденсаторов заряд каждого равноценен. Обусловлено природным принципом равновесия. С источником соединены только крайние обкладки, другие заряжаются путем перераспределения меж ними зарядов. Используя равенство, находим:

q = q1 = q2 = U1 C1 = U2 C2, откуда запишем:

U1/U2 = C2/C1.

Напряжения меж конденсаторами распределяются обратно пропорционально номинальным емкостям. В сумме оба составляют вольтаж питающей сети. При разряде конструкция способна отдать заряд q вне зависимости от того, сколько конденсаторов включено последовательно. Емкость батареи найдем из формулы:

C = q/u = q/(U1 + U2), подставляя выражения, приведенные выше, приводя к общему знаменателю:

1/С = 1/С1 + 1/С2.

Вычисление общей емкости батареи

При последовательном соединении конденсаторов в батарею складываются величины, обратные номинальным емкостям. Приводя последнее выражение к общему знаменателю, переворачивая дроби, получаем:

С = C1C2/(C1 + C2).

Выражение используется для нахождения емкости батареи. Если конденсаторов более двух, формула усложняется. Для нахождения ответа номиналы перемножаются меж собой, выходит числитель дроби. В знаменатель ставят попарные произведения двух номиналов, перебирая комбинации. Практически иногда удобнее вести вычисление через обратные величины. Полученным результатом разделить единицу.

Соединение последовательное конденсаторов

Формула сильно упрощается, если номиналы батареи одинаковы. Требуется просто цифру поделить общим числом элементов, получая результирующее значение. Напряжение распределится равномерно, следовательно, достаточно номинал питающей сети разбить поровну на общее число. При питании аккумулятором 12 вольт, 4-х емкостях, на каждой упадет 3 вольта.

Одно упрощение сделаем для случая, когда номиналы равны, одна емкость включена переменная, чтобы подстраивать результат.

Тогда максимальное напряжение каждого элемента удастся приближенно найти, разделив вольтаж источника уменьшенным на единицу количеством. Получится результат с заведомым запасом.

Что касается переменной емкости, требования намного жёстче. В идеале рабочее значение перекрывает вольтаж источника.

Необходимость в последовательном соединении

На первый взгляд идея соединения конденсаторов батареей последовательным образом покажется лишенной смысла. Первое преимущество очевидно: падают требования к максимальному напряжению обкладок. Больше рабочий вольтаж, дороже изделие. Подобным образом мир видит радиолюбитель, владеющий рядом низковольтных конденсаторов, желающий применить железо составной частью высоковольтной цепи.

Рассчитывая по приведенным выше формулам действующие напряжения элементом, можно легко решить поставленную задачу. Рассмотрим для пущей наглядности пример:

Пусть установлены аккумулятор напряжением 12 вольт, три емкости номиналами 1, 2 и 4 нФ. Найдем напряжение при последовательном соединении элементов батареей.

Решение:

Для нахождения трех неизвестных потрудитесь составить равное количество уравнения. Известно из курса высшей математики. Результат будет выглядеть следующим образом:

  1. U1 + U2 + U3 = 12;
  2. U1/U2 = 2/1 = 2, откуда запишем: U1 = 2U2;
  3. U2/U3 = 4/2 = 2, откуда видно: U2 = 2U

Не сложно заметить, последние два выражения подставим первому, выразив 12 вольт через вольтаж третьего конденсатора. Получится следующее:

4U3 + 2U3 + U3 = 12, откуда находим, напряжение третьего конденсатора составляет 12/7 = 1,714 вольта, U2 – 3,43 вольта, U1 – 6,86 вольта. Сумма чисел дает 12, каждое меньше напряжения питающего аккумулятора.

Причем тем больше разница, чем меньший номинал у соседей. Из этого правила следует: в последовательном соединении конденсаторы низкой емкости показывают большее рабочее напряжение.

Найдем для определенности номинал составленной батареи, заодно проиллюстрируем формулу, поскольку выше описана чисто словесно:

С = С1С2С3/(С1С2 + С2С3 + С1С3) = 8/(2 + 8 + 4) = 8/14 = 571 пФ.

Результирующий номинал меньше каждого конденсатора, составляющего последовательное соединение. Из правила видно: максимальное влияние на суммарную емкость оказывает меньший. Следовательно, при необходимости подстройки полного номинала батареи должен быть переменный конденсатор. В противном случае поворот винта не окажет большого влияния на конечный результат.

Видим очередной подводный камень: после подстройки распределение напряжений по конденсаторам изменится. Просчитайте крайние случаи, дабы вольтаж не превысил рабочее значение для составляющих батарею элементов.

Программные пакеты исследования электрических цепей

Помимо онлайн- калькуляторов расчета последовательного соединения конденсаторов присутствуют и инструменты помощнее.

Большой минус общедоступных средств объясняется нежеланием сайтов проверять программный код, значит, содержат ошибки. Плохо, если одна емкость выйдет из строя, сломленная процессом испытаний неправильно собранной схемы.

Не единственный недостаток. Иногда схемы гораздо сложнее, разобраться комплексно невозможно.

В отдельных приборах встречаются фильтры высокой частоты, использующие конденсатор, включенные каскадами. Тогда на схеме помимо замыкания через резистор на землю образуется последовательное соединение емкостей.

Обычно не применяют формулу, показанную выше. Принято считать, каждый каскад фильтра существует отдельно, результат прохождения сигнала описывается амплитудно-частотной характеристикой.

Графиком, показывающим, как сильно обрежет на выходе спектральную составляющую сигнала.

Желающим провести ориентировочные расчеты рекомендуется ознакомиться с программным пакетом персонального компьютера Electronics Workbench.

Конструктив выполнен по английским стандартам, потрудитесь учитывать нюанс: обозначение резисторов на электрической схеме изломанным зигзагом. Номиналы, названия элементов будут изложены на иностранный манер.

Не мешает пользоваться оболочкой, предоставляющей оператору гору источников питания различного толка.

И главное – Electronics Workbench позволит задать контрольные точки на каждой, в режиме реального времени посмотреть напряжение, ток, спектр, форму сигнала. Полагается дополнить проект амперметром, вольтметром, прочими аналогичного толка приборами.

При помощи такого программного пакета смоделируете ситуацию, посмотрите, сколько падает напряжения на элементе батареи. Уберегает от громоздких расчетов, намного ускоряя процесс проектирования схемы. Одновременно исключаются ошибки. Легко и просто становится добавлять, удалять конденсаторы с немедленной оценкой результата.

Рабочий пример

Скрин показывает рабочий стол Electronics Workbench 5.12 с собранной электрической схемой последовательного соединения конденсаторов. Каждый емкостью 1 мкФ, одинаковые элементы взяты для целей демонстрации. Чтобы каждый мог без труда проверить правильность.

Последовательная батарея конденсаторов

Обратим вначале внимание на источник. Переменное напряжение частотой 60 Гц. В стране разработчика действует иной стандарт, нежели российские. Рекомендуется правой кнопкой мыши щелкнуть источник, посетить свойства, выставить:

  1. Частоту (frequency) 50 Гц вместо 60 Гц.
  2. Действующее значение напряжения (voltage) 220 вольт вместо 120.
  3. Фазу (phase – имитация реактивности) взять согласно своим нуждам.

Для буквоедов будет полезно полистать свойства элементов цепи. У источника вольны задать допустимое отклонение напряжения (voltage tolerance) в процентах.

Достаточно добавить один резистор размером 1 кОм, цепь становится фильтром верхних частот. Рекомендуется не упрощать действия. Поставить правильно знак заземления, убедиться: схема полностью тривиальна.

В противном случае результаты заставят надолго поломать голову.

Построение графиков

Проиллюстрированный скрином фильтр верхних частот обнаруживает подъем амплитудно-частотной характеристики в районе 1 кГц.

При нахождении полосы пропускания необходимо учесть: вертикальная шкала логарифмическая. Посему срез на уровне 70% максимума не соответствует семи десятым высоты пологой части пика.

Заядлым любителям будет интересна фазочастотная характеристика, в окне расположенная снизу.

Тот и другой график строятся из меню Analysis раздел AC Frequency. А еще тут… Fourier. Доступно посмотреть спектр выходного сигнала. В нашем случае не будет ничего интересного, поскольку собрали унылый пассивный фильтр, колебание на входе гармоническое. Гораздо интереснее наблюдать спектр импульсного сигнала.

График отклика

Раздел Transient показывает отклик на подачу фронта питающего напряжения. На графике фактически представлен процесс заряда батареи, откуда найдем постоянную времени по уровню 0,7 максимума. Тонкости понятны желающим собрать сглаживающий фильтр амплитудного детектора. Как видно из графика, значение составляет 250 мкс. Параметр определяется из окна следующим образом:

  1. Считается, за три постоянные времени цепи заряд конденсаторов, разряд производится приблизительно на 95%.
  2. Легко заметить, точка находится в районе 800 мкс.
  3. Следует разделить значение на три, получится постоянная времени батареи последовательно соединенных конденсаторов.

По-другому постоянная времени вычисляется произведением сопротивления на общую емкость батареи. Пользуясь приведенными выше формулами, вычислим: С = 1 мкФ / 4 = 250 нФ. Осталось умножить значение на 1000 Ом, получится 250 мкс. Программный пакет Electronics Workbench 5.12 при умелом использовании высвобождает уйму свободного времени.

Версия ПО

Раздобыть программный пакет расчета электрики

В интернете бытует мнение: автором Electronics Workbench выступает дочерняя компания корпорации National Instruments, разрабатывающая программное обеспечение. Неправда. Из окна авторских прав упомянутого приложения видно: разработка выполнена отделом Interactive Image Technologies.

Вышеозначенное подразделение обрело самостоятельность в 1995 году. Отдел направленно занимался рекламными и обучающими материалами. Electronics Workbench разработан для целей обучения студентов Канады. Потом программный продукт распространился всемирно, с некоторых пор именуется Multisim.

Обновленный программный продукт продают официальные дилеры, перечень представлен официальным сайтом компании National Instruments: russia.ni.com/contact. На момент исследования счастливчиками, получившими право купить ПО не выезжая за город, назовем жителей Москвы, Санкт-Петербурга. Удачи решившимся связаться с официальными представителями, в Multisim добавлены новые фишки:

  1. Более 36000 схемных элементов.
  2. Возможность разработки печатных плат на основе собранной электрической схемы.
  3. Продвинутые опции анализа вместо убогости, демонстрируемой скринам, версии 20-летней давности.

Источник: https://VashTehnik.ru/enciklopediya/posledovatelnoe-soedinenie-kondensatorov.html

Как правильно соединять конденсаторы? Параллельное и последовательное соединение конденсаторов

КатегорииСправочная Статьи для новичков

Всем привет. Этот маленький пост посвящу теме соединения конденсаторов.

На практике,  часто бывает так, что в наличии нет конденсатора нужного номинала для установки, а технику нужно срочно отремонтировать.  Как раз для таких случаев нам необходимы знания о правилах соединения конденсаторов.

Способов соединения конденсаторов существуют всего два. Это последовательное и параллельное соединение. Сейчас более детально рассмотрим оба способа.

Параллельное  соединение конденсаторов.

Это наиболее частый вид соединения конденсаторов.  При подключении параллельно, емкость конденсатора увеличивается, а напряжение остается прежним.

Формула параллельного соединения конденсаторов: С= С1+С2+С3…

Рассмотрим на примере. Предположим, что необходим конденсатор 100 мкф 50в, а у Вас в наличии только 47мкф на 50в.

Если соединить эти конденсаторы параллельно (плюс к плюсу а  минус к минусу) то общая емкость  получившегося конденсатора будет ровняться  около 94 мкф на 50в.

Это допустимое отклонение, так что можно свободно устанавливать  в технику.

Параллельное соединение конденсаторов

Последовательное  соединение конденсаторов.

При подключении, таким образом, общая емкость уменьшается, а напряжение работы конденсатора растёт.

Рассчитывается последовательное  подключение конденсаторов по такой формуле:

Формула расчета последовательного соединения конденсаторов

Для примера подключим  3 конденсатора номиналом  100мкф на 100в последовательно. Согласно формуле, делим единицу, на емкость конденсаторов. Потом суммируем . Далее единицу делим на результат.

(1:100)+(1:100)+(1:100) = 0,01 + 0,01 + 0,01 = 0,03  далее 1 : 0,03 = 33 мкф на 300вольт (напряжение суммируем  100+100+100 = 300в). Итого 33мкф на 300в.

  • В работе, последовательное соединение использую редко, но иногда бывает.
  • Рекомендую ознакомиться со статей  о ESR конденсаторов.
  • Всем спасибо за просмотр.


Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме . (9

Источник: https://my-chip.info/kak-pravilno-soedinyat-kondensatory-parallelnoe-i-posledovatelnoe-soedinenie-kondensatorov/

Последовательное и параллельное соединение проводников, резисторов, конденсаторов и катушек индуктивности. Онлайн расчёты

В«- РЇ тебе как электрику РѕР±СЉСЏСЃРЅСЏСЋ: Надя СЃРїРёС‚ СЃ мужиками последовательно, Р° Света параллельно. Кто РёР· РЅРёС… шмара вавилонская? — РќСѓ, Света наверное.

— Р’РѕС‚! Рђ РјРЅРµ, как кладовщику, видится немного РґСЂСѓРіРѕРµ: «РїРѕР±Р»СЏРґСѓС€РєР° обыкновенная» — 2 штуки! В» В«- Рђ теперь скажи РјРЅРµ отрок, как течёт электричество РїРѕ проводам электрическим, Рё цепям рукотворным, последовательным РґР° параллельным, РѕС‚ плюса Рє РјРёРЅСѓСЃСѓ СЃРѕ скоростью света РІ вакууме? — РЎ Божьей помощью, батюшка! РЎ Божьей помощью…В» РќСѓ РґР° ладно, достаточно! Шутки — штуками, Р° РїРѕСЂР° Р±С‹ уже дело делать. Так что «Копайте РїРѕРєР° здесь! Рђ СЏ тем временем схожу узнаю — РіРґРµ надо…В», Р° заодно набросаю пару-тройку калькуляторов РЅР° заданную тему. Р�так.

При последовательном соединении проводников сила тока во всех проводниках одинакова, при этом общее напряжение в цепи равно сумме напряжений на концах каждого из проводников.

РџСЂРё параллельном соединении падение напряжения между РґРІСѓРјСЏ узлами, объединяющими элементы цепи, одинаково для всех элементов, Р° сила тока РІ цепи равна СЃСѓРјРјРµ СЃРёР» токов РІ отдельных параллельно соединённых проводниках. РџРѕСЏСЃРЅРёРј СЂРёСЃСѓРЅРєРѕРј СЃ распределением напряжений, токов Рё формулами. Р РёСЃ.1 Расчёт проведём для 4 резисторов (РїСЂРѕРІРѕРґРЅРёРєРѕРІ), соединённых последовательно или параллельно. Если элементов РІ цепи меньше, то оставляем лишние поля РІ таблице РЅРµ заполненными. Заодно, РїСЂРё желании узнать распределение значений токов Рё напряжений РЅР° каждом РёР· элементов РїСЂРё последовательном Рё параллельном соединениях, есть возможность ввести величину общего напряжения РІ цепи U. Рђ есть возможность РЅРµ вводить… Короче, РІСЃРµ вводные, помеченные * — Рє заполнению РЅРµ обязательны.

РАСЧЁТ СОПРОТ�ВЛЕН�Й ПР� ПАРАЛЛЕЛЬНОМ � ПОСЛЕДОВАТЕЛЬНОМ СОЕД�НЕН�� проводников

Теперь, что касается последовательных и параллельных соединений конденсаторов и катушек индуктивности.

Схема, приведённая РЅР° Р РёСЃ.1 для РїСЂРѕРІРѕРґРЅРёРєРѕРІ Рё резисторов, остаётся РІ полной силе Рё для катушек СЃ конденсаторами, распределение напряжений Рё токов тоже РЅРёРєСѓРґР° РЅРµ девается, трансформируется лишь осмысление того, что токи эти Рё напряжения обязаны быть переменными. Почему переменными? Рђ потому, что для постоянных значений этих величин — сопротивление конденсаторов составляет РІ первом приближении бесконечность, Р° катушек — ноль, соответственно Рё токи Р±СѓРґСѓС‚ равны либо нулю, либо бесконечности, Р° для переменных значений иметь СЏСЂРєРѕ выраженную зависимость РѕС‚ частоты.

Поэтому, для желающих рассчитать величины напряжений Рё токов РІ последовательных или параллельных цепях, состоящих РёР· конденсаторов Рё катушек индуктивности, имеет полный смысл выяснить РЅР° странице ссылка РЅР° страницу значения реактивных сопротивлений данных элементов РїСЂРё интересующей Вас частоте Рё подставить эти значения РІ таблицу для расчёта РїСЂРѕРІРѕРґРЅРёРєРѕРІ Рё резисторов. Рђ РІ качестве общего напряжения РІ цепи — подставлять действующее значение амплитуды переменного тока.

Ну а теперь приведём таблицы для расчёта значений ёмкостей и индуктивностей при условии последовательного и параллельного соединений конденсаторов и катушек в количестве от 2 до 4 штук.

Расчёт поведём на основании хрестоматийных формул:

РЎ = РЎ1+ РЎ2+….+ РЎn   Рё   1/L = 1/L1+ 1/L2 +…+ 1/Ln    для параллельных цепей Рё

L = L1 + L2 +….+ Ln   Рё   1/РЎ = 1/РЎ1+ 1/РЎ2+…+ 1/РЎn    для последовательных. Как Рё РІ предыдущей таблице вводные, помеченные * — Рє заполнению РЅРµ обязательны.

  • РАСЧЁТ РЃРњРљРћРЎРўР� РџР Р� ПАРАЛЛЕЛЬНОМ Р� ПОСЛЕДОВАТЕЛЬНОМ СОЕДР�НЕНР�Р� конденсаторов
  • РАСЧЁТ Р�НДУКТР�Р’РќРћРЎРўР� РџР Р� ПАРАЛЛЕЛЬНОМ Р� ПОСЛЕДОВАТЕЛЬНОМ СОЕДР�НЕНР�Р� катушек

Ну и в завершении ещё одна таблица. Тут важно заметить, что приведённые в последней таблице расчёты верны только для индуктивно не связанных катушек, то есть для катушек, намотанных на разных каркасах и расположенных на значительных расстояниях друг от друга, во избежание, пересечения взаимных магнитных полей.

Источник: https://vpayaem.ru/information12.html

Электричество и магнетизм

Решение. Емкость  прежнего конденсатора, чьими обкладками были сферы  радиусами    дается  формулой (2.18):

 

Как видно из рисунка, новый конденсатор представляет собой после­довательное соединение двух сферических конденсаторов: образованного сферами радиусами  (его емкость обозначим как ) и  (его емкость будет ). Имеем по той же формуле:

(2.30)

Для емкости   последовательно соединенных конденсаторов получаем теперь

 

Емкость нового конденсатора оказалась больше емкости первоначального.

Аналитическая формула для емкости такой батареи имеет вид: 

(2.31)

 При бесконечно тонкой внутренней сфере  заряды на ее поверхностях скомпенсируют друг друга, и мы должны получить формулу для емкости конденсатора  без внутренней оболочки. Так оно и следует из формулы (2.31) при . В обратном предельном случае, когда стенки внутренней оболочки близки к обкладкам первоначального конденсатора, получается формула для емкости двух последовательно со­единенных плоских конденсаторов.

Конденсаторы нашли широкое практическое применение, особенно в радиотехнике. Некоторые типы конденсаторов показаны на рис. 2.18.

Рис. 2.18. Различные типы конденсаторов, применяемых в технике: 1 —  конденсаторы постоянной емкости; 2 — конденсатор переменной емкости

  

Дополнительная информация

http://www.elektropolus.com/condensator/type.php — типы конденсаторов;

http://gete.ru/post_1212414212.html — классификация и маркировка конденсаторов;

http://www.chipdip.ru/video.aspx?vid=ID000274696&tag=dielectric   — видео «Конструкция электролитического алюминиевого конденсатора»;

http://www.symmetron.ru/articles/tantalum_replacement.shtml — керамические конденсаторы большой емкости;

http://radiobooka.ru/radio_nach/kak_sdelat_kondensator.phtml — как сделать конденсатор своими руками;

http://chipinfo.ru/literature/radio/194701/p54-57.html  — статья «Переменные конденсаторы»;

http://www.eham.net/articles/5217  — переменный конденсатор своими руками;

http://www.kpsec.freeuk.com/components/capac.htm — коденсаторы, переменные конденсаторы;

http://qrx.narod.ru/arhn/e_d.htm  — бесконтактные емкостные датчики;

http://www.lionprecision.com/capacitive-sensors/index.html   — обзор емкостных датчиков;

http://pda-reader.ru/93  — принципы работы сенсорных экранов;

http://pcavto.ru/kak-eto-rabotaet/printscipyi-rabotyi-sensornyix-ekranov-touch-screen.html — как работают сенсорные экраны разных типов.

Как увеличить вольтаж конденсатора — MOREREMONTA

Последовательное и параллельное соединение конденсаторов применяют в зависимости от поставленной цели. При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов.
Емкость набора при последовательном соединении конденсаторов будет вычисляться по формуле:

1 = 1 + 1 + 1 + .
C C1 C2 C3

А общее напряжение будет равняться сумме напряжений всех конденсаторов.
Например: мы имеем три конденсатора по 30 мкФ x 100 В каждый. При их последовательном соединении общий конденсатор будет иметь следующие данные: 10 мкФ x 300 В.

При параллельном соединении общая емкость конденсаторов складывается, а допустимое напряжение всего набора будет равно напряжению конденсатора, имеющего самое низкое значение допустимого напряжения из всего набора.

C = C1 + C2 + C3 + C4 + .

Например: мы имеем три конденсатора 30 мкФ x 100 В, соединённые параллельно. Параметры всего набора конденсаторов в этом случае будут следующие: 90 мкФ x 100 В.

Соединение более двух конденсаторов последовательно редко встречается в реальных схемах. Хотя для увеличения общего напряжения такой набор может встретиться в высоковольтных источниках питания. А вот в низковольтных источниках довольно часто встречается параллельное соединение нескольких конденсаторов для сглаживания пульсаций после выпрямления при больших токах потребления.

Обратите внимание, формулы вычисления емкости последовательного и параллельного соединения конденсаторов в точности обратны формулам вычисления сопротивления при последовательном и параллельном соединении резисторов.

Как правильно соединять конденсаторы?

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение


Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.


Параллельное соединение электролитов


Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.


Последовательное соединение электролитов


Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Если нужно срочно отремонтировать технику, а нужного конденсатора нет, то можно увеличить емкость конденсатора, как известно из школьной программы, соединив несколько приборов в одну цепь.

Такая проблема может также возникнуть, если, например, нужного номинала нет в продаже, то есть для нестандартных подключений, например, в радиотехнических опытах.

Электрическая емкость

При соединении приборов для конденсации заряда, как правило, техника интересует электрическая емкость, которая получится в итоге.

Электроемкость показывает способность двухполюсника накапливать в себе заряд и измеряется в фарадах. Может показаться, что чем выше это значение, тем лучше, но на практике не существует возможности создать все возможные на свете емкости, более того, часто это и не нужно, так как во всех приборах, использующихся повседневно, применяются стандартные приборы для конденсации.

Можно соединить несколько приборов для конденсации в цепь, создав одну конденсирующую емкость, при этом значение характерной величины будет зависеть от типа подключения, и для его расчета есть давно известные формулы.

Параллельное соединение

Существует два типа подключения приборов в цепь: последовательное и параллельное. Каждый из них обладает своими свойствами, но, как правило, используется параллельное соединение конденсаторов.

Параллельное соединение обладает такими свойствами:

  1. Емкость составного двухполюсника увеличивается по сравнению с каждым отдельным прибором.
  2. Напряжение в сети не изменяется.

Соединить конденсаторы для увеличения емкости, как показывают свойства, лучше этим способом. Для этого нужно соединить выводы с каждого двухполюсника по группам: у каждого из них два вывода. Нужно создать две группы: в одну соединить все конденсаторы с одного вывода, а во вторую с оставшегося.

При таком соединении приборы для конденсации образуют одну емкость, поэтому верна такая формула: С=С1+С2+…СN, где N — количество конденсаторов в цепи.

Например, если имеются номинальные значения 50мкф, 100мкф и 150мкф, то при последовательном подключении общее значение в цепи будет 300мкф.

В жизни это подключение используют довольно часто, например, если при расчетах оказалось, что требуется такой двухполюсник, которого в продаже точно не найти. С помощью этого способа можно варьировать емкость конденсатора так, как это потребуется, при этом не изменяя напряжение в сети.

Последовательное включение конденсаторов

Свойства последовательного включения конденсаторов:

  1. Емкость последовательно соединенных приборов для конденсации заряда в отличие от емкости параллельно соединенных конденсаторов уменьшается.
  2. Напряжение на приборах растет.

Для такого подключения нужно просто соединять выводы двухполюсников один с другим, образуя цепочку: вывод первого будет соединен с выводом второго, оставшийся вывод второго с выводом третьего и так далее.

Формула подключения: 1/(1/С1+1/С2+…+1/СN), где N — это количество приборов в соединении.

Например, есть три конденсатора по 100мкф. 1/100+1/100+1/100=0,03мкф. 1/0,03=33мкф.

Заряды распределятся с чередующимся знаком, а емкостное значение будет ограничено только им же для самого слабого звена в цепи. Как только он получит свой заряд, передача тока в цепи прекратится.

Для чего тогда нужен подобный способ подключения? Такая цепь более устойчива и может выдержать большее напряжение при подключении в схему при меньшем емкостном номинале конденсатора. Однако в продаже имеются приборы, которые и без того обладают нужными свойствами, поэтому-то такое подключение в жизни практически не используется, а если используется, то для специфических задач.

Смешанный способ

Сочетает в себе параллельное и последовательное подключения.

При этом для участков с последовательным соединением характерны свойства последовательного соединения, а для участков с параллельным — свойства параллельного.

Оно используется, когда ни электроемкость, ни номинальное напряжение приборов, имеющихся в продаже, не подходят для задачи. Обычно такая проблема возникает в радиотехнике.

Чтобы определить общее значение электроемкости, нужно будет сначала определить это же значение для параллельно соединенных двухполюсников, а потом для их последовательного соединения.

Сравнение различных вариантов

Емкость Напряжение
Параллельное Увеличивается Не изменяется
Последовательное Уменьшается Увеличивается
Смешанное Изменяется Увеличивается

Для выбора соединения можно воспользоваться такой таблицей. Слева тип соединения приборов, сверху свойства прибора для конденсации заряда.

Если требуется увеличить емкость, то нужно использовать параллельное соединение, а если увеличить напряжение — то последовательное. Если же требуется и то, и то, то нужно будет рассчитывать смешанное подключение конденсаторов в цепь.

Схемы соединения конденсаторов

При проектировании и построении различных электрических цепей широко используются конденсаторы (емкости). В разрабатываемых схемах они могут соединяться как с другими электронными компонентами, так и между собой. Во втором случае такие соединения подразделяются на последовательные, параллельные, и последовательно-параллельные. Нужно еще отметить, что последовательно-параллельные соединения конденсаторов иначе называются смешанными.

Последовательное соединение конденсаторов

Это способ соединения конденсаторов ( электрических емкостей ) используется тогда, когда то напряжение, которое к ним подводится, выше чем то, на которое они рассчитаны. Используется оно в подавляющем большинстве случаев для того, чтобы избежать пробоев этих элементов устанавливаемых в электронных схемах.

Конденсаторы, соединенные между собой последовательно – это, по сути дела, цепочка. В ней вторая обкладка первого элемента соединяется с первой обкладкой второго; первая обкладка третьего – со второй второго и так далее.

Последовательное соединение конденсаторов

 

Напряжение на конденсаторах обратно пропорционально ёмкостям конденсаторов.

 

Cобщ =

C1 × C2 × C3

C1 + C2 + C3

 

Наибольшее напряжение будет на конденсаторе с наименьшей ёмкостью.

Параллельное соединение конденсаторов

Этот способ соединения конденсаторов используется тогда, когда необходимо существенно увеличить их общую емкость. Суть такого наращивания состоит в том, что значительно возрастает общая площадь пластин по сравнению с той, которую имеет каждый конденсатор в отдельности. Что касается общей емкости всех конденсаторов, соединенных друг с другом параллельно, то она равняется сумме емкостей каждого из них.

Параллельное соединение конденсаторов

 

 

 

  • Cобщ = C1 + C2 + C3
  • Uобщ = U1 = U2 = U3
  • qобщ = q1 + q2 + q3

Смешанное соединение конденсаторов

Как нетрудно догадаться из самого названия, этот тип соединения конденсаторов представляет собой ни что иное, как некую комбинацию описанных выше. То есть, смешанное соединение конденсаторов – это сочетание их соединения параллельного и последовательного.

На практике в большинстве случаев оно используется тогда, когда отдельные элементы по таким характеристикам, как емкость и рабочее напряжение, не соответствуют тем параметрам, которые нужны для функционирования электротехнической установки. Когда конденсаторы соединяются между собой именно по такой схеме, то в первую очередь определяются те эквивалентные емкости, которые имеют их параллельные группы, а затем та емкость, которую имеет соединение последовательное.

Смешанное соединение конденсаторов

 

 

C2;3 = C2 + C3

 

 

Cобщ =

C1 × C2;3

C1 + C2;3

Параллельное соединение конденсаторов: необходимость и схема

Параллельное соединение конденсаторов – это батарея, где конденсаторы находятся под одинаковым напряжением, а суммарный ток равен полной алгебраической сумме токов указанных элементов.

Основные тезисы

При параллельном включении конденсаторов их ёмкости складываются, позволяя быстро вычислить результат. Рабочее напряжение конденсаторов одинаковое, а заряды складываются воедино. Это следует из формулы, выведенной Вольтой в XVIII веке:

C = q/U, тогда C1 + C2 + … = q1 + q2 + …/U.

Параллельное включение конденсаторов превращается в единственный конденсатор большой ёмкости.

Зачем включать конденсаторы параллельно

  • В радиоприёмниках подстройка под частоту волны выполняется коммутацией блоков конденсаторов, обеспечивая ввод резонансного контура в резонанс.
  • В фильтрах мощных блоков питания за рабочий цикл предстоит запасать массу энергии. Строить его на индуктивностях экономически нецелесообразно. Применяют параллельный набор из больших электролитических конденсаторов.
  • Параллельное включение конденсаторов встречается в измерительных схемах. Эталоны ответвляют на себя часть тока, по величине оценивается номинал – размер ёмкости исследуемого конденсатора.
  • Параллельно периодически устанавливаются компенсаторы реактивной мощности. Это устройства, блокирующие выход лишней энергии в питающую сеть. Что предотвращает образование помех, перегрузку генераторов, трансформаторов и избыточный нагрев проводки.

Реактивная мощность сети

Когда работает асинхронный двигатель, происходит расхождение тока и напряжения по фазе. Это отмечается по причине наличия обмотки, показывающей индуктивное сопротивление. Как результат, часть мощности отражается обратно в цепь. Эффект возможно устранить, если индуктивное сопротивление компенсировать ёмкостным. Иной способ – использование синхронных двигателей, эффективен при напряжениях 6 – 10 кВ.

По возможности предприятия должно потреблять всю произведённую собственную реактивную мощность. Но синхронные двигатели не всегда подходят условиям технологических процессов. Тогда ставят конденсаторные установки. Их реактивное сопротивление предвидится равным индуктивностям двигателей. Конечно, в идеале, ведь на производстве условия постоянно меняются и сложно отыскать золотую середину.

Если использовать параллельное соединение конденсаторов и коммутировать при помощи реле должным образом, задача просто решается. Отдельные предприятия за отражённую реактивную мощность тоже платят. При неиспользовании предвидятся экономические потери. Поставщиков энергии можно понять: реактивная мощность забивает линию ЛЭП, нагружает трансформаторы и тогда оборудование не способно выдавать полную нагрузку. Если каждое предприятие станет загружать канал лишним током, экономическое положение энергетиков немедленно пошатнётся.

Реле реактивной мощности массово распространены и помогут определить, какую часть конденсаторов включить в работу. Пример графика расчёта затрат приведён на рисунке. Имеется оптимальная точка, перешагивать которую экономически нецелесообразно. Но допускается сделать из-за иных мотивов.

Схема соединения компенсирующих установок

В трёхфазных сетях компенсирующие конденсаторы ставят тройками по двум общеизвестным схемам:

  1. Звезда.
  2. Треугольник.

Реактивная мощность в этих случаях вычисляется по формулам, представленным на рисунке. Через греческую омегу обозначена круговая частота сети (2 х Пи х 50 Гц). Из соотношений получается, что схема включения конденсаторов треугольником выгоднее: мощность выросла в 3 раза. Объяснение – звезда использует фазное напряжение, в 1,73 раза меньше линейного. Компенсируемая реактивная мощность зависит от квадрата этого параметра.

Из этих соображений трёхфазные конденсаторы всегда изготавливаются треугольником, а под звезду нужно выпросить индивидуальный заказ (три однофазных конденсатора). Есть оборотная сторона медали: на вольтаж 1,05; 3,15; 6,3; 10,5 кВ все конденсаторы однофазные. Допустимо соединять, как заблагорассудится. У звезды, к примеру, меньше рабочее напряжение, значит, каждый конденсатор в отдельности выйдет дешевле. Обе схемы нельзя отнести к параллельным включениям, подобные тройки, впрочем, объединяются в:

  • группы;
  • секции;
  • установки.

И внутри объединений однофазные конденсаторы могут включаться последовательно и параллельно, а трёхфазные – исключительно параллельно. Рекомендуется номиналы всех отдельных элементов выбирать одинаковы. Это упрощает расчёт, уравнивает нагрузку по частям электрической схемы. Известны установки, где присутствует смешанное соединение по каждой фазе. Образуются параллельные ветви последовательного включения конденсаторов.

Установки выполняют однофазными или трёхфазными. В сетях с напряжением 380 В всегда применяется параллельное соединение конденсаторов. Исключением признаётся случай использования оборудования с одной фазой на 220 В (фазное) и 380 В (линейное). Тогда под прибор ставится индивидуальная установка (или группа), компенсирующая реактивную мощность. В осветительных сетях конденсаторы по большей части ставят уже после выключателя по очевидным причинам. В прочих случаях – в зависимости от особенностей функционирования объекта.

Для напряжений 3, 6 и 10 кВ однофазные конденсаторы включаются обычной или двойной звездой (см. рис.). Один вывод бывает заземлен (глухозаземленная нейтраль). По этой причине допускается использование однофазных конденсаторов, включая с единственным изолированным выводом. В последнем случае нужно убедиться, что нулевой проводник выходит на корпус изделия.

Главный выключатель ставится в определённой секции защищаемого оборудования (территориально) и управляет цепью компенсации в общем, задействует или убирает дополнительное реактивное сопротивление. Если в конкретном секторе технологическое оборудование простаивает, главный выключатель разорвёт цепь компенсации. Конденсаторные установки обычно стоят в выделенном помещении вместе, электрически соединены параллельно. Перед каждой стоит выключатель цепи релейной регуляции для повышения или уменьшения общей ёмкости компенсаторов.

В зависимости от оборудования, используемого предприятием, объем реактивной мощности обусловливает помощь конденсаторных установок, гибко подстраиваемых под имеющиеся нужды. В итоге:

  1. Секции оборудования включены параллельно. Это легко понять, если представить бытовые приборы, питаемые одним удлинителем. Все включены параллельно. Но установлены, к примеру, в разных цехах, секторах и пр. Встречаются случаи, когда одна крупная энергетическая установка (допустим, генератор ГЭС) делится на сравнительно независимые секции.
  2. Конденсаторные установки включены параллельно, но, как правило, в одном месте, чтобы удавалось автоматически или вручную легко регулировать общую ёмкость посредством коммутации выключателей облегчённого типа. Один конденсатор может работать для компенсации реактивной мощности любой из секций либо сразу обеих.

Особенности конденсаторной защиты

Главные выключатели, как правило, используются при авариях и вырубают сразу целую секцию оборудования. Конденсаторные установки набираются в секции параллельным включением. Тогда главный выключатель сразу вырубит подобную «батарею». А прочие секции конденсаторных установок останутся в действии. Важно понять, что защитное оборудование, как и защищаемое, удаётся группировать разными методами. В зависимости от удобства и экономической обоснованности.

Облегчённые выключатели применяются, как правило, в цепях регуляции. Управляются через реле и повышают или понижают общую ёмкость конденсаторных установок. В качестве главного выключателя выбирается вакуумный или элегазовый.

Особенностью цепей выше 10 кВ считается использование однофазных конденсаторов, собираемых по схеме звезды или треугольника, в каждой ветви которых стоит параллельно-последовательная группа ёмкостей (см. рис.). При наличии изделий с высоким рабочим напряжением допустимо делать наоборот, применять последовательно-параллельно включение. Тогда рабочие напряжения конденсаторов выбираются так, чтобы количество групп, включенных друг за другом оказалось минимальным. Напряжение на каждом из элементов, естественно, увеличивается. Для справки: последовательное соединение конденсаторов.

Если сделать все по описанному распорядку, при выходе из строя любого элемента цепи компенсации реактивной мощности прочие продолжат работать в относительно щадящем режиме. Разумеется, параметры цепи нужно контролировать, а эксплуатирующий персонал, согласно методикам, ведёт проверку конденсаторных установок на исправность. При проектировании нужно учесть небольшую особенность:

Чем больше в цепи компенсации последовательных групп конденсаторов, тем сложнее для каждой обеспечить равномерное распределение напряжения. В частности, возможны частые перегрузки определённого сегмента.

Вдобавок сложные электрические соединения непросто проверять обслуживающему персоналу. Витиеватая схема плохо поддаётся монтажу, часты ошибки. Идеальным считается параллельное соединение конденсаторных блоков по каждой фазе. Тогда и монтировать легко, и методика проверки упрощается максимально.

Разряд конденсаторов

Включенные параллельно конденсаторы обладают большой ёмкостью, при прекращении работы на них остаётся заряд. Это возможно прочувствовать, если коснуться штекера только что выключенной старенькой дрели. В новых моделях фильтр устроен так, что цепь разряжается через резистор, и подобного не наблюдается.

Для снижения напряжения допустимо использовать и индуктивности, включенные параллельно конденсаторам. В этом случае сопротивление заземления переменному току весьма велико, а для постоянного – несложно преодолеть этот участок. В период работы оборудования ток здесь мал, потери невелики. После останова технологической линии заряд понемногу сливается через высокоомный резистор или индуктивность. Разумеется, не запрещено поставить в цепи заземления реле, замыкающее контакты только после выключения всех устройств. Конструкция дороже и требует автоматизации.

Процесс разряда цепи важен с точки зрения обеспечения безопасности. Представим: конденсатор, заряжённый от розетки, долго хранит разность потенциалов и представляет опасность для окружающих. В однофазных сетях с напряжением 220 В разряд выполняется через входные фильтры при условии, что корпус правильно заземлён. Сопротивление в цепи, включенной параллельно конденсаторам, определяется по формуле, представленной ниже.

Под Q подразумевается реактивная мощность установки в варах (ВАР), а Uф – фазное напряжение. Легко показать, что формула дана из расчёта времени разряда: Q зависит линейно от ёмкости, будучи перенесена в левую часть формулы, даст постоянную времени RC. За три таких периода батарея разряжается на 97%. Исходя из указанных условий можно найти и параметры индуктивности. А лучше – последовательно с нею включить резистор, как часто и делается в реальных схемах.

Объяснение пускового и рабочего конденсатора

— HVAC How To


Что такое пусковые конденсаторы?
Двигатели, используемые в системах отопления, вентиляции и кондиционирования воздуха, такие как двигатели вентиляторов конденсатора или двигатели нагнетательных вентиляторов, иногда нуждаются в помощи, чтобы начать движение и продолжать работать в стабильном темпе, без резких скачков вверх и вниз.

Для этого в установках HVAC используются так называемые пусковые и пусковые конденсаторы.

  • Пусковой конденсатор имеет дополнительную плату для запуска двигателя.
  • Рабочий конденсатор обеспечивает плавную работу двигателя без скачков вверх и вниз.
  • Не все двигатели имеют пусковой или рабочий конденсатор, некоторые могут запускаться и работать сами по себе.




    Конденсаторы в HVAC могут быть отдельными с двумя конденсаторами или могут быть в одном корпусе.

    Когда они разделены, они просто называются «одиночными», а когда они объединены в одну упаковку, они называются «двойными раундами».

    Вот двойной круглый конденсатор



    Вот одинарный конденсатор

    Двойные круглые конденсаторы — это просто способ, которым инженеры пытаются сэкономить место и затраты.

    Они могли бы разместить два отдельных конденсатора в блоке HVAC, но объединить их в один корпус.

    Двойной конденсатор чаще всего имеет одну сторону для запуска компрессора (Herm), а другую — для запуска двигателя вентилятора конденсации. Третья одиночная ветвь сдвоенного конденсатора является общей общей ветвью.

    Как они работают в системе HVAC?
    Пусковой или рабочий конденсатор можно объединить в один конденсатор, называемый двойным конденсатором, с тремя выводами, но его можно разделить между двумя отдельными конденсаторами.Пусковой конденсатор дает двигателю вентилятора крутящий момент, необходимый для начала вращения, а затем останавливается; в то время как рабочий конденсатор продолжает давать двигателю дополнительный крутящий момент, когда это необходимо.




    При выходе из строя пускового конденсатора двигатель, скорее всего, не включится. Если рабочий конденсатор выходит из строя, двигатель может включиться, но рабочая сила тока будет выше, чем обычно, что приведет к перегреву двигателя и короткому сроку службы.

    После замены неисправного двигателя вентилятора конденсатора необходимо всегда устанавливать новый пусковой конденсатор.

    Двойной конденсатор имеет три подключения: HERM, FAN и COM.

  • HERM, подключается к герметичному компрессору.
  • FAN, подключается к двигателю вентилятора конденсатора.
  • COM, подключается к контактору и обеспечивает питание конденсатора.
  • Если устройство имеет два конденсатора, то один из них является рабочим конденсатором, а другой — пусковым. Имейте в виду, что компрессору также часто требуется конденсатор, который будет HERM (компрессор).

    Покупка нового конденсатора HVAC
    Новый конденсатор всегда следует устанавливать вместе с новым двигателем. Конденсатор можно купить в компании-поставщике систем отопления, вентиляции и кондиционирования воздуха, обычно их по крайней мере несколько даже в небольшом городке, также хорошее место для поиска — онлайн-магазин Amazon.

    Вот два обычных конденсатора, один слева — это двойной круглый конденсатор, а тот, что справа, — это конденсатор Run Oval.

    Двойной конденсатор — это не что иное, как два конденсатора в одном корпусе; в то время как овал хода представляет собой один конденсатор, а в системе отопления, вентиляции и кондиционирования воздуха обычно их два.

    Конденсаторы измеряются микрофарадами, иногда обозначаемыми буквами uf и Voltage. В любом блоке HVAC конденсатор должен соответствовать двигателю.

    Напряжение может быть выше, если необходимо, но никогда не понижаться, в то время как MFD (uf) всегда должен быть одинаковым. На картинке это двойной рабочий конденсатор, показывающий 55 + 5 MFD (мкФ) 440 В переменного тока. Большее число 55 MFD соответствует компрессору, а меньшее число 5 MFD (uf) соответствует двигателю вентилятора. Меньшее число всегда будет для двигателя вентилятора.Затем напряжение 440 Вольт переменного тока.

    (+ -5 после MFD показывает, насколько допустимый допуск конденсатора будет повышаться или понижаться.)

    Чтобы заказать замену для этого конденсатора, это будет 55 + 5 MFD (мкФ) и двойной рабочий конденсатор переменного тока на 440 Вольт.

    Пример сдвоенного конденсатора HVAC на Amazon
    MAXRUN 55 + 5 MFD uf 370 или 440 VAC Конденсатор двойного действия с круглым двигателем для конденсатора кондиционера переменного тока — 55/5 uf MFD 440V с прямым охлаждением или тепловым насосом — будет работать с двигателем переменного тока и вентилятором — 1 год гарантии


    Тестирование конденсатора HVAC
    Тестирование конденсатора HVAC выполняется с помощью мультиметра HVAC, мультиметр должен иметь кабель для считывания диапазона, который может иметь конденсатор HVAC.Многие небольшие электронные счетчики не имеют этого диапазона.

    Здесь я использую мультиметр Fieldpeice HS36 с зажимом усилителя.

    Этот тест проводится на двойном рабочем конденсаторе 55 + 5 MFD (мкФ). Мультиметр находится на Фарадах, а провода на C и FAN (положительный и отрицательный не имеют значения). Нижнее число соответствует двигателю вентилятора, который рассчитан на 5 MFD (мкФ), и он читается как 5,3 MFD (мкФ), так что это хорошо. Также можно прочитать выводы C к Herm, которые предназначены для компрессора.

    Чтобы проверить рабочий овальный конденсатор, просто коснитесь двух выводов.Он показывает 4,5 MFD (мкФ) и рассчитан на 5 MFD (мкФ), так что он плохой и требует замены.



    Как заменить пусковой конденсатор
    При установке нового двигателя всегда следует устанавливать новый конденсатор вентилятора. Всегда полезно сфотографировать или записать расцветку проводов и соединения.

    1. Выключите питание блока HVAC и убедитесь, что оно отключено с помощью измерителя.
    2. Найдите боковую панель, где электричество подводится к устройству, и снимите панель.
    3. Найдите конденсатор статического хода, если это конденсатор двойного хода, то он будет только один. Если их два, то нужно будет заменить только конденсатор двигателя вентилятора.
    4. Проверьте MFD и напряжения, затем подключите новые соединения от старого конденсатора к новому конденсатору по одной ножке за раз, чтобы убедиться, что соединения правильные.
    5. (Если у вас два конденсатора, один предназначен для компрессора, а другой — для двигателя вентилятора.)





    Соединение конденсаторов звездой и треугольником — нарушение напряжения

    Силовые конденсаторы в 3-фазных соединениях конденсаторных батарей соединяются треугольником или звездой (звезда).Между этими двумя типами соединений существуют различия в их применениях, номинальном значении кВАр, обнаружении неисправных конденсаторов и т. Д. В этой статье обсуждается разница между конденсаторами, соединенными звездой и треугольником, а также преимущества конденсаторных батарей, соединенных звездой и треугольником.

    Калькулятор, представленный ниже, можно использовать для расчета эффективных кВАр, произведенных для конденсатора при соединении треугольником или звездой.

    Конденсаторы высокого напряжения

    Блок конденсаторов с подключением по схеме треугольника Конденсаторы

    , соединенные треугольником, чаще всего используются при низком напряжении, хотя их можно применять и при более высоких напряжениях.Каждый конденсатор будет иметь полное фазное напряжение, приложенное к его клемме. Почему низковольтные конденсаторные батареи соединяются треугольником? Помните, что генерируемая кВАр изменяется как квадрат приложенного напряжения. Формула для VAR, генерируемого в конденсаторной батарее, имеет следующий вид:

    Подключение конденсаторной батареи по схеме треугольника дает больше VAR по сравнению с подключением по схеме звезды. Это связано с тем, что при соединении звездой на конденсатор подается только напряжение фаза-нейтраль, а в случае соединения треугольником — полное фазное напряжение.

    Соединение конденсаторов треугольником

    Соединение конденсаторов треугольником требует двух вводов. Поскольку нет соединения с землей, конденсаторная батарея не может быть «стоком» для любых токов заземления или токов нулевой последовательности. . Отдельную ветвь конденсатора, соединенного треугольником, необходимо защитить от межфазного короткого замыкания с помощью токоограничивающего предохранителя.

    Блок конденсаторов с подключением звездой

    При соединении звездой напряжение на каждом конденсаторе в 1 / sqrt (3) раз больше напряжения фаза-фаза. Следовательно, полученная VAR также будет соответственно меньше по сравнению с соединением треугольником . Соединение звездой в основном используется в системах среднего напряжения (> 1 кВ). Одним из основных преимуществ использования соединения звездой является то, что конденсатор должен быть рассчитан только на напряжение фаза-нейтраль системы по сравнению с номиналом фаза-фаза в системе треугольником. Следовательно, отдельные конденсаторы среднего напряжения будут подвергаться нагрузке только при более низком уровне напряжения, что увеличивает срок их службы. Есть и другие преимущества использования звездообразного соединения на конденсаторах среднего напряжения.Существует два основных типа соединения звездой:

    Заземленная звезда (звезда)

    При соединении «звезда» или «звезда» нейтральная точка батареи надежно заземлена. Это означает, что нейтраль не нужно изолировать до уровня BIL всей системы. Следовательно, при использовании этого соединения может быть достигнута некоторая экономия средств. Кроме того, в этой связи переходное восстанавливающееся напряжение (TRV) может быть менее серьезным. Неисправность одной фазы конденсаторной батареи не приведет к повышению напряжения на других исправных ветвях батареи.Как показано ниже, неисправность конденсатора фазы B не приведет к повышению напряжения на других исправных фазах.

    Подключение конденсатора звездой с заземлением

    Недостатком заземленного соединения звездой является то, что заземленная нейтраль может пропускать токи заземления и гармонические токи нулевой последовательности . Это может вызвать помехи от телефона. Кроме того, заземленная звездочка также вносит ток короткого замыкания в систему во время замыкания фазы на землю. Из-за заземленного соединения может протекать высокий ток между фазой и землей, когда конденсатор не замыкается на землю.Это требует использования токоограничивающих предохранителей для этого приложения.

    Незаземленная звезда (звезда)

    При подключении незаземленной звездой нейтраль конденсаторной батареи , а не , подключенная к земле. Следовательно, это соединение не допускает протекания токов заземления и гармонических токов нулевой последовательности. При замыкании фазы на землю в системе незаземленная звездочка не вносит тока замыкания.

    Недостатком этого подключения является то, что нейтраль батареи должна быть полностью изолирована от фазного напряжения системы.Нейтральная точка может находиться под потенциалом фаза-фаза во время переключения или во время неисправности. Для банков выше 15 кВ это может стать дорогим.

    Еще одним недостатком этого подключения является то, что при выходе из строя конденсатора на одной фазе нейтральная точка смещается. Напряжение на исправных (исправных фазах) повышается до полного фазо-фазного потенциала. Ток через неисправные конденсаторы достигает 1,732 о.е., а максимальный ток на поврежденной фазе будет 3 о.е. Такое увеличение напряжения и тока в банке могло привести к дополнительным сбоям.

    Как показано ниже, неисправность конденсатора фазы B приведет к повышению напряжения в 1,732 (квадрат 3) раз от номинального напряжения между фазой и нейтралью, которое является полным фазным напряжением на других исправных фазах. Следовательно, исправные конденсаторы будут перенапряжены, и защитное реле должно будет быстро устранить неисправность, чтобы предотвратить повреждение исправных конденсаторов.

    Звезда незаземленного подключения конденсатора

    Существуют и другие варианты этого соединения, например, незаземленная тройная звезда и заземленная звездочка .

    Дополнительное чтение:

    кВАр в амперах Расчет

    Калькулятор преобразования дельта-звезда

    Векторная диаграмма соединения звездой и треугольником

    Пусковой конденсатор двигателя | Приложения

    Конденсаторы моторные

    Асинхронные двигатели

    переменного тока, также известные как асинхронные двигатели, используют вращающееся магнитное поле для создания крутящего момента. Трехфазные двигатели получили широкое распространение, поскольку они надежны и экономичны. Вращающееся магнитное поле легко достигается в трехфазных асинхронных двигателях, поскольку сдвиг фазового угла между отдельными фазами составляет 120 градусов.Однако однофазные двигатели переменного тока требуют внешней схемы, которая создает сдвиг фазового угла для создания вращающегося магнитного поля. Эта схема может быть реализована с использованием усовершенствованной силовой электроники или, проще говоря, с использованием конденсатора двигателя.

    На видео ниже показано простое для понимания объяснение принципа работы асинхронного двигателя переменного тока.

    Однофазные асинхронные двигатели переменного тока

    Однокатушечные асинхронные двигатели переменного тока

    Асинхронные двигатели

    переменного тока обычно используют две или более катушек для создания вращающегося магнитного поля, которое создает крутящий момент на роторе.Когда используется одна катушка, она генерирует пульсирующее магнитное поле, которого достаточно для поддержания вращения, но недостаточно для запуска двигателя с места. Двигатели с одной катушкой должны запускаться с использованием внешней силы и могут вращаться в любом направлении. Направление вращения зависит от внешней силы. Если двигатель был запущен по часовой стрелке, он продолжит вращаться и набирает скорость по часовой стрелке, пока не достигнет максимальной скорости, которая определяется частотой источника питания.Точно так же он продолжит вращение против часовой стрелки, если первоначальное вращение было против часовой стрелки. Эти двигатели непрактичны из-за невозможности самостоятельно надежно начать вращение.

    Пусковой конденсатор асинхронных двигателей переменного тока

    Одним из способов улучшения конструкции с одной катушкой является использование вспомогательной катушки последовательно с пусковым конденсатором двигателя. Вспомогательная катушка, также называемая пусковой катушкой, используется для создания начального вращающегося магнитного поля. Чтобы создать вращающееся магнитное поле, ток, протекающий через основную обмотку, должен быть в противофазе по отношению к току, протекающему через вспомогательную обмотку.Роль пускового конденсатора заключается в том, чтобы задерживать ток во вспомогательной обмотке, выводя эти два тока в противофазе. Когда ротор достигает достаточной скорости, вспомогательная катушка отключается от цепи с помощью центробежного переключателя, а двигатель остается запитанным от одной катушки, создающей пульсирующее магнитное поле. В этом смысле вспомогательную катушку в этой конструкции можно рассматривать как пусковую катушку, поскольку она используется только во время запуска двигателя.

    Асинхронные двигатели переменного тока с конденсаторными пусковыми / рабочими конденсаторами

    Еще одним способом дальнейшего улучшения конструкции однофазного асинхронного двигателя с одной катушкой является введение вспомогательной катушки, которая остается под напряжением не только во время фазы запуска двигателя, но и во время нормальной работы.В отличие от двигателя переменного тока, использующего только пусковой конденсатор двигателя, который создает пульсирующее магнитное поле во время нормальной работы, двигатели переменного тока, использующие пусковой конденсатор двигателя и рабочий конденсатор двигателя, создают вращающееся магнитное поле во время нормальной работы. Функция пускового конденсатора двигателя остается такой же, как и в предыдущем случае — он отключается от цепи после того, как ротор достигает заданной скорости с помощью центробежного переключателя. После этого вспомогательная обмотка остается запитанной через рабочий конденсатор двигателя.На рисунке ниже показан этот тип конструкции.

    Конденсаторы запуска и работы двигателя

    Пусковые конденсаторы

    Пусковые конденсаторы двигателя используются во время фазы запуска двигателя и отключаются от цепи, когда ротор достигает заданной скорости, которая обычно составляет около 75% максимальной скорости для этого типа двигателя. Эти конденсаторы обычно имеют емкость более 70 мкФ. Они бывают разных номиналов напряжения, в зависимости от области применения, для которой они предназначены.

    Рабочие конденсаторы

    В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем. Эти конструкции работают, создавая вращающееся магнитное поле. Конденсаторы для работы двигателя предназначены для непрерывного режима работы и остаются под напряжением при включении двигателя, поэтому вместо электролитических конденсаторов используются полимерные конденсаторы с низкими потерями. Значение емкости рабочих конденсаторов обычно ниже, чем емкость пусковых конденсаторов, и часто находится в диапазоне 1.От 5 мкФ до 100 мкФ. Выбор неправильного значения емкости для двигателя может привести к неравномерному магнитному полю, что может проявляться как неравномерная скорость вращения двигателя, особенно под нагрузкой. Это может вызвать дополнительный шум от двигателя, падение производительности и повышенное потребление энергии, а также дополнительный нагрев, который может вызвать перегрев двигателя.

    Приложения

    Пусковые и пусковые конденсаторы двигателя используются в однофазных асинхронных двигателях переменного тока. Такие двигатели используются, когда однофазный источник питания более практичен, чем трехфазный, например, в бытовых приборах.Однако они не так эффективны, как трехфазные асинхронные двигатели переменного тока. Фактически, однофазные двигатели переменного тока в 2-4 раза менее эффективны, чем трехфазные двигатели переменного тока, поэтому они используются только для менее мощных двигателей. Типичные области применения, в которых используются конденсаторы пускового и рабочего двигателя, включают электроинструменты, стиральные машины, сушильные барабаны, посудомоечные машины, пылесосы, кондиционеры и компрессоры.

    Установка конденсатора автомобильной аудиосистемы

    Часто возникает путаница в том, как подключить автомобильный аудиоконденсатор. (А.к.а. силовой конденсатор или конденсатор жесткости). Есть два терминала на автомобильном аудиоконденсаторе. Положительный и отрицательный. Отрицательный терминал подключен к земле. Положительный вывод подключается «в линию». с автомобильным усилителем звука клемма +12 вольт. См. Схему ниже. ПРИМЕЧАНИЕ. Если у вас есть третий терминал меньшего размера, вероятно, это дистанционное включение цифрового дисплея.

    Обратите внимание, что обе клеммы не подключаются к проводу питания +12 В.Это приведет к отключению питания вашего усилителя. Силовой конденсатор действует как небольшая батарея (накопитель энергии), поэтому он подключается, как показано на схеме. Обратной стороной этого типа подключения является то, что вы не знаете, выйдет ли из строя силовой конденсатор, поскольку усилитель продолжит работать с работающим силовым конденсатором или без него.

    В идеале силовой конденсатор должен быть как можно ближе к усилителю. В пределах пары футов приемлемо.Это сводит к минимуму любые потери в кабеле. Чтобы узнать больше о том, как работают автомобильные аудиоконденсаторы, щелкните здесь.

    Вот как подключить два конденсатора в систему. На схеме оба конденсатора имеют клеммы заземления, соединенные вместе, но вы также можете заземлить их независимо. Вы даже можете изготовить или купить шины, которые представляют собой цельные металлические части, которые соединяют конденсаторы как физически, так и электрически. Эти шины, как правило, изготовлены из чистого металла, поэтому при неправильной установке они могут быть опасны.Соблюдайте осторожность, если выбираете этот маршрут.

    ВНИМАНИЕ: Силовые конденсаторы хранятся большое количество энергии и они заряжаются очень быстро. Вы должны сначала «зарядите» свой силовой конденсатор перед подключением это напрямую на +12 вольт. Это делается с помощью резистора и вольтметр. Точное значение резистора не критично, но я бы держите его в диапазоне 500-1кОм. Это увеличит время зарядки, и вы можете использовать значения, составляющие 1/10 от того, что вам больше нравится (50-100 Ом).Я бы порекомендовал приобрести резистор на 1 ватт если возможно (в вашем конденсаторе может быть резистор для зарядки). Резистор меньшей мощности нагревается слишком быстро. Также не держите резистор голой рукой. Ток, протекающий через резистор вызовет нагрев резистора, что может привести к ожогам. Хорошее место Вставить резистор стоит в держателе предохранителя основного провода питания (тот, что установлен рядом с аккумулятором). Просто замените резистор для предохранителя.Схема установки заряда конденсатора показано ниже. Вам нужно будет поместить вольтметр на конденсатор. следить за напряжением. Как только вольтметр покажет 12 вольт (или близко к нему), вы можете удалить вольтметр и замените резистор силовым предохранителем. В качестве альтернативы вы можете измерить напряжение на зарядном резисторе. Он должен начинаться с 12 вольт и медленно снижаться до 0 вольт. Когда напряжение перестанет меняться, вы полностью зарядите конденсатор.

    Другой метод зарядки заключается в использовании испытательной лампы старого образца вместо резистора. Подключение аналогично (зажим «крокодил» с одной стороны, зонд — с другой), но вам не нужен вольтметр для контроля напряжения. Когда лампочка гаснет, конденсатор заряжается (потому что напряжение на лампе упало с 12 вольт до 0 вольт).


    Справочный DVD-каталог по автомобильной аудиосистеме включает пять различных видеороликов, охватывающих многие области установки автомобильной аудиосистемы и изготовления на заказ.Темы варьируются от базовой установки системы (головные устройства, усилители, динамики и т. Д.) И мобильной безопасности (автомобильная сигнализация и дистанционный запуск) до конструкции корпуса сабвуфера и изготовления стекловолокна. Если вас интересуют изготовление на заказ и установка автомобильной аудиосистемы, обязательно ознакомьтесь с нашими предложениями.

    Щелкните здесь, чтобы увидеть пакеты DVD со скидкой


    Вперед Страница —> Руководства по установке автосигнализации

    Часто задаваемые вопросы о конденсаторах двигателя

    Часто задаваемые вопросы о конденсаторах двигателя
    Обзор

    Напряжение
    Емкость
    Частота (Гц)
    Тип соединительной клеммы
    Форма корпуса
    Размер корпуса
    Пуск vs.Рабочие конденсаторы

    Пусковые конденсаторы

    Приложения
    Технические характеристики
    Как узнать, неисправен ли мой пусковой конденсатор?
    Мой мотор медленно заводится. Мой пусковой конденсатор плохой?
    На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?
    Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

    Рабочие конденсаторы

    Как заменить пробку в кондиционере? Приложения

    Технические характеристики
    Когда заменять
    Почему вышел из строя рабочий конденсатор?
    Как долго должен работать мой рабочий конденсатор?
    Двойные рабочие конденсаторы
    Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

    Обзор

    Напряжение

    Конденсатор будет иметь обозначенное напряжение, указывающее его допустимое пиковое напряжение, а не рабочее напряжение.Следовательно, вы можете выбрать конденсатор с номинальным напряжением, равным или выше исходного конденсатора. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт, хотя на самом деле блок на 440 вольт прослужит дольше. Однако вы не можете заменить конденсатор на 440 В на конденсатор на 370 В без значительного сокращения срока его службы.

    Емкость

    Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору. Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.

    Частота (Гц)

    Выберите конденсатор с номинальной частотой Гц оригинала. Почти все конденсаторы будут иметь маркировку 50/60.

    Тип соединительной клеммы

    Почти каждый конденсатор будет использовать вставной соединитель «типа флажка. При замене конденсатора вам необходимо знать, сколько клемм на клеммную колодку требуется для вашего двигателя. Большинство пусковых конденсаторов имеют две клеммы на клемму, и большинство из них работают Конденсаторы будут иметь 3 или 4. Клеммы на каждую стойку.Убедитесь, что заменяемые клеммы имеют по крайней мере такое же количество клемм на каждую клемму, что и у оригинального конденсатора двигателя.

    Форма корпуса (круглая или овальная)

    Практически все пусковые конденсаторы имеют круглый корпус. Круглые корпуса являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию. С точки зрения электричества разницы нет. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.

    Размер корпуса

    Как и форма корпуса, электрические габариты не имеют значения. Выберите конденсатор, который поместится в отведенном для этого месте.

    Старт vs.Конденсаторы рабочие

    Пусковые конденсаторы дают большое значение емкости, необходимое для пуска двигателя в течение очень короткого периода времени (обычно секунд). Они предназначены только для прерывистой работы и катастрофически выйдут из строя, если будут слишком долго находиться под напряжением. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.

    В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов.Номинальные значения емкости и напряжения должны соответствовать исходным характеристикам пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно.

    Просмотрите наш видеоурок ниже, чтобы узнать больше о различиях между пусковыми и рабочими конденсаторами.


    Пусковые конденсаторы

    Приложения

    Пусковые конденсаторы

    используются для кратковременного сдвига фазных пусковых обмоток в однофазных электродвигателях с целью увеличения крутящего момента.Они обладают очень большими значениями емкости для своего размера и номинального напряжения. В результате они предназначены только для периодического использования. По этой причине пусковые конденсаторы выйдут из строя после слишком долгого пребывания под напряжением из-за неисправной пусковой цепи двигателя.


    Характеристики

    Большинство пусковых конденсаторов рассчитаны на 50–1200 мкФ и 110/125, 165, 220/250 или 330 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов.Концевые заделки обычно представляют собой нажимные клеммы ¼ «с двумя клеммами на каждый соединительный столб.


    Как узнать, неисправен ли мой пусковой конденсатор?

    Большинство отказов пускового конденсатора бывает одного из двух типов. Катастрофический отказ обычно возникает из-за того, что пусковая цепь электродвигателя задействована слишком долго для номинальной кратковременной работы пускового ограничения. Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены. Точно так же на стартовой крышке может быть разорванного блистера сброса давления .В любом случае легко сказать, что стартовый колпачок нуждается в замене.


    Мой мотор медленно заводится. Мой пусковой конденсатор плохой?

    Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя. Чтобы выяснить это, вам нужно измерить емкость пускового конденсатора.


    На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?

    Большинство заменяемых пусковых крышек не имеют резистора. Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора — сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя.Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.


    Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

    Да. Щелкните здесь для получения более подробной информации.


    Рабочие конденсаторы

    Приложения

    Рабочие конденсаторы используются для непрерывной регулировки тока или фазового сдвига обмоток двигателя с целью оптимизации крутящего момента двигателя и эффективности.Они предназначены для непрерывного режима работы и, как следствие, имеют гораздо меньшую частоту отказов, чем пусковые конденсаторы. Они обычно используются в установках HVAC.


    Характеристики

    Большинство рабочих конденсаторов рассчитаны на 2,5–100 мкФ (микрофарад) при номинальном напряжении 370 или 440 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса имеют круглую или овальную форму, чаще всего используются стальной или алюминиевый корпус и крышка. Концевые заделки обычно представляют собой нажимные-дюймовые клеммы с 2–4 клеммами на каждую клемму подключения.


    Когда заменять

    Как правило, рабочий конденсатор намного дольше, чем пусковой конденсатор того же двигателя. Пробка также выйдет из строя или изнашивается иначе, чем стартовая, что немного усложняет поиск и устранение неисправностей.

    Когда рабочий конденсатор начинает работать за пределами допустимого диапазона, это чаще всего обозначается падением значения номинальной емкости (значение микрофарад уменьшилось). Для большинства стандартных двигателей рабочий конденсатор будет иметь «допуск», описывающий, насколько близко к номинальному значению емкости может быть фактическое значение.Обычно это от +/- 5 до 10%. Для большинства двигателей, пока фактическое значение находится в пределах 10% от номинального значения, вы в хорошей форме. Если он выходит за пределы этого диапазона, вам необходимо заменить его.

    В некоторых случаях из-за дефекта в конструкции конденсатора или иногда из-за неисправности двигателя, не связанной с конденсатором, рабочий конденсатор выпирает из-за внутреннего давления. Для большинства современных конструкций рабочих конденсаторов это приведет к размыканию цепи и отключению внутренней спиральной мембраны в качестве защитной меры, чтобы предотвратить вскрытие конденсатора.

    Если она вздулась, пора заменить. Если вы не измерили целостность клемм, пришло время заменить.


    Почему вышел из строя рабочий конденсатор?

    Ниже приведены некоторые распространенные причины выхода из строя рабочих конденсаторов, но в зависимости от того, насколько близок рабочий конденсатор к его расчетному сроку службы, может быть трудно определить причину по одному фактору.

    Время — Все конденсаторы имеют расчетный срок службы. Несколько факторов можно поменять местами или объединить, чтобы увеличить или уменьшить срок службы рабочего конденсатора, но после того, как расчетный срок службы превышен, внутренние компоненты могут начать более быстро разрушаться и снижаться производительность.Проще говоря, отказ можно отнести к тому, что он «просто старый».

    Heat — Превышение расчетного предела рабочей температуры может иметь большое влияние на ожидаемый срок службы рабочего конденсатора. Как правило, у двигателей, которые работают в жарких условиях или с недостаточной вентиляцией, срок службы конденсаторов значительно сокращается. То же самое может быть вызвано излучением тепла от обычно горячего двигателя, которое приводит к перегреву конденсатора. В общем, если вы можете держать свой рабочий конденсатор холодным, он прослужит намного дольше.

    Ток — Когда двигатель перегружен или имеет сбой в обмотках, это вызывает нарастание тока, что может привести к перегрузке конденсаторов. Этот сценарий встречается реже, поскольку обычно сопровождается частичным или полным отказом двигателя.

    Напряжение — Напряжение может иметь экспоненциальный эффект, сокращая расчетный срок службы конденсатора. Рабочий конденсатор должен иметь указанное номинальное напряжение, которое нельзя превышать. Например, конденсатор рассчитан на 440 вольт.При 450 вольт срок службы может сократиться на 20%. При 460 вольт срок службы может сократиться на 50%. При 470 вольт срок службы сокращается на 75%. То же самое можно применить и в обратном порядке, чтобы увеличить расчетный срок службы за счет использования конденсатора с номинальным напряжением, значительно превышающим необходимое, хотя эффект будет менее драматичным.


    Как долго должен работать мой рабочий конденсатор?

    Срок службы послепродажного рабочего конденсатора хорошего качества (который не входит в комплект поставки вашего двигателя) составляет от 30 000 до 60 000 часов работы.Установленные на заводе рабочие конденсаторы иногда имеют гораздо меньший расчетный срок службы. В отраслях с высокой конкуренцией, где каждая деталь может иметь значительное влияние на стоимость или где предполагаемое использование двигателя, вероятно, будет прерывистым и нечастым, можно выбрать рабочий конденсатор более низкого класса с расчетным сроком службы всего 1000 часов. Кроме того, все факторы из раздела выше («Почему мой рабочий конденсатор вышел из строя?») Могут резко изменить разумный ожидаемый срок службы рабочего конденсатора.


    Конденсаторы двойного действия

    Двойные рабочие конденсаторы — это два рабочих конденсатора в одном корпусе. У них нет ничего, что делало бы их электрически особенными. Обычно они имеют соединения, отмеченные буквой «C» для «общего», «H» или «Herm» для «герметичного компрессора» и «F» для «вентилятора». У них также будет два разных номинала конденсатора для двух разных частей. Вы можете увидеть 40/5 MFD, что означает, что одна сторона составляет 40 микрофарад (измерение емкости), а другая сторона — 5 микрофарад. Меньшее значение всегда будет подключено к вентилятору.Соединение большего размера всегда будет подключено к компрессору.


    Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

    Единственное преимущество конструкции двойного рабочего конденсатора состоит в том, что он поставляется в небольшом корпусе всего с 3 подключениями. Другой разницы нет. Если места для монтажа достаточно, использование двух отдельных рабочих конденсаторов вместо исходного двойного рабочего конденсатора является приемлемой практикой.

    Физика для науки и техники II

    5.Подключение конденсаторов серии 8 от Office of Academic Technologies на Vimeo.

    • Демонстрация: энергия, запасенная в конденсаторе
    • Пример: подключение конденсаторов

    Подключение конденсаторов серии 5.08

    Хорошо. Теперь займемся последовательным соединением конденсаторов. В этом случае, опять же, давайте рассмотрим три конденсатора с емкостью C1, C2 и C3. А для того, чтобы соединить их последовательно, соединяем их друг за другом.Чтобы конденсаторы были установлены последовательно, сумма разностей потенциалов на каждом конденсаторе должна быть равна разности потенциалов, приложенной ко всей комбинации. Поэтому мы говорим, что конденсаторы соединены последовательно, если сумма разностей потенциалов на каждом конденсаторе равна разности потенциалов, приложенной к комбинации.

    Итак, как я упоминал ранее, в этом случае мы подключаем конденсаторы C1, C2 и C3 один за другим, как это. Подобно сцепке вагонов поезда на одном рельсе или пути.Затем мы применяем разность потенциалов к комбинации, подключая эти два конца к клеммам источника питания, скажем, батареи, которая вырабатывает разность потенциалов V вольт, и вводим здесь переключатель. Здесь у нас есть конденсатор с емкостью C1, конденсатор 2 с емкостью C2 и C3 для третьего конденсатора.

    Как только мы замкнем здесь переключатель, опять же, как и в предыдущем случае, так как эти заряды постоянно отталкивают друг друга на выводах источника питания батареи, скажем, и положительные заряды пройдут через этот доступный путь чтобы как можно дальше уйти друг от друга.И они будут собраны на левой пластине конденсатора C1 как q1 плюс q1. Точно так же отрицательные будут продолжаться по этому пути и собираться на выводах правой пластины конденсатора C3 как минус, скажем, q.

    Но поскольку они подключены, эти пластины подключены к клеммам источника питания, поэтому эти заряды, величина заряда q1, и если вы назовете его как q3, все они будут равны друг другу, и все они будут быть равным заряду q, скажем так.Поэтому, давайте обозначим этот вот здесь как плюс q, а другой как минус q. Опять же, они напрямую подключены к клеммам этого источника питания.

    Итак, как мы помним из конструкции конденсатора, мы сказали, что это устройство, которое состоит из двух проводящих пластин, разделенных изолирующей средой. Таким образом, эти среды между пластинами каждого из этих конденсаторов являются изолирующими средами. Другими словами, они не являются средой для легкого перемещения зарядов.Они изоляторы. Итак, когда мы смотрим на эту схему в целом, на самом деле это разомкнутая цепь. Другими словами, у нас нет полностью замкнутого пути для движения зарядов.

    Тогда мы можем легко задать вопрос, хорошо, мы можем понять, почему пластина конденсатора C1 заряжается положительно, и почему пластина конденсатора C3 получает отрицательный заряд, потому что они напрямую подключены к клеммам источника питания. тогда как эта пластина, другая пластина C3 и затем другая пластина C1, а также конденсатор C2 будут заряжаться во время этого процесса, потому что они не имеют прямой проводящей связи с клеммами источника питания.

    Что ж, когда мы посмотрим — давайте рассмотрим вот это устройство. Как мы видим, эта единица здесь — пластина конденсатора C2 и эта пластина конденсатора C3, и почему вся эта область здесь является проводящей средой. Он разделен этими изолирующими точками. Эта проводящая среда, кусок проволоки и, скажем, металлические пластины этих конденсаторов, имеют большое количество свободных электронов. Итак, как только эта другая пластина заряжена до значения минус q, эти отрицательные заряды будут отталкивать эти свободные электроны в этой среде от самих себя.Таким образом, эти свободные электроны будут двигаться как можно дальше для них, и это другая граница этой области, и они будут собираться и собираться, следовательно, на правой боковой пластине конденсатора C2.

    Следовательно, поскольку мы собираемся иметь это избыточное количество отрицательного заряда, свободных электронов, отталкиваемых этим минусом q, мы получим минус q заряда, который будет собираться на этой пластине, на правой боковой пластине. этот конденсатор С2. Поскольку эти заряды будут перемещаться от этого конца к этой области, то на другом конце здесь не будет такого большого количества отрицательного заряда.Следовательно, эта пластина будет заряжена положительным q.

    И, конечно же, аналогичный тип зарядки будет иметь место и для другого устройства. Этот отрицательный заряд будет отталкивать такое же количество свободных электронов как можно дальше от этой области. Таким образом, эта пластина будет заряжена минус q, и поскольку, следовательно, они покинут другую область, не имеющую такого большого отрицательного заряда, эта пластина будет заряжаться положительно q. Следовательно, другие пластины и конденсаторы, которые не подключены напрямую к источнику питания, будут заряжаться в результате индукции.

    Итак, в качестве первого свойства этого соединения или комбинации мы можем сказать, что заряды, накопленные на каждом конденсаторе в последовательной комбинации, будут равны друг другу. Другими словами, q1 будет равно q2, что будет равно q3, и все они будут равны количеству заряда, полученному от источника питания, то есть q. Опять же, это напрямую связано с принципом сохранения заряда.

    И если вы посмотрите на второе свойство, и оно напрямую проистекает из общей характеристики последовательной комбинации, как мы заявили здесь выше, разность потенциалов по всей комбинации будет равна сумме разностей потенциалов на каждом конденсаторе.Другими словами, если вы просто возьмете наш вольтметр и измеряете разность потенциалов во всей комбинации, подключив наш вольтметр к этим двум точкам, через комбинацию, мы собираемся считывать V вольт независимо от напряжения, подаваемого источником питания. Так что это будет считывать нас вольт.

    А затем, если мы измеряем разность потенциалов на первом конденсаторе, мы получим V1 вольт. На C2 мы будем читать V2 вольт, а на C3 мы будем читать V3 вольт. И мы увидим, что разность потенциалов во всей комбинации, которая составляет V вольт, будет равна V1 плюс V2 плюс V3.И это общее свойство последовательного соединения. Разность потенциалов по всей комбинации равна сумме разностей потенциалов по каждому компоненту в последовательном соединении.

    Теперь, как мы это сделали в случае параллельного соединения, мы собираемся упростить эту схему, заменив все эти 3 конденсатора при последовательном соединении одним конденсатором. И давайте назовем это эквивалентом C, так что этот единственный конденсатор будет выполнять ту же работу в цепи, которую эти три выполняли в последовательной комбинации.Опять же, давайте представим здесь наш переключатель. Та же батарея обеспечивает такую ​​же разность потенциалов в вольт, что и в предыдущем случае, и как только мы включим переключатель, как только мы его закроем, эти положительные заряды снова будут двигаться по этому пути и собираться вдоль левой боковой пластины. эквивалентного конденсатора. А положительные будут двигаться по другому пути и собираться на правой боковой пластине эквивалента C. И, конечно же, зарядка будет продолжаться до тех пор, пока мы не достигнем высокой плотности заряда, чтобы они создавали достаточно сильную силу отталкивания для входящих зарядов.И в это время конденсатор будет полностью заряжен.

    Если мы запишем эквивалент конденсатора C, емкость этого конденсатора, эквивалентного C, по его определению, она будет равна общему заряду, хранящемуся на месте конденсатора, который равен q, деленному на разность потенциалов между пластинами. этого конденсатора. И это будет равно любой разности потенциалов, генерируемой этой батареей. А это V.

    Отсюда, если вы решите для разности потенциалов, мы можем записать это выражение как q в эквиваленте C, количество заряда, хранящегося в конденсаторе, деленное на емкость конденсатора.Конечно, мы можем записать аналогичные выражения для конденсаторов C1, C2 и C3. Разность потенциалов относительно C1, которая была V1, будет равна q1 над C1. Но поскольку в последовательной комбинации количество заряда, хранящегося в каждом конденсаторе, одинаково, q1 равно q. Следовательно, для V1 у нас будет q над C1. И аналогично, V2 будет равно q2 над C2, и это тоже будет равно q над C2, так как снова q2 равно q. В дальнейшем V3 будет равно q3 над C3. И снова, поскольку q3 равно q из свойства 1, у нас будет q больше C3 для этого конденсатора.

    Используя свойство 2 из свойства 2, поскольку V равно V1 плюс V2 плюс V3, а в терминах заряда и емкости, мы можем записать V как q в эквиваленте C. Это будет равно для V1. У нас будет q над V1, плюс для V2 у нас будет q над C2, плюс для V3 у нас будет q над C3. Поскольку заряд является общим для каждого из этих членов, делящих обе части уравнения на q, мы можем исключить qs и получить окончательное выражение, в котором 1 по сравнению с эквивалентом C равняется 1 по C1 плюс 1 по C2 плюс 1 по C3 .

    Теперь мы можем легко увидеть тенденцию. Если мы соединим конденсаторы последовательно, то мы увидим, что обратное значение эквивалентных конденсаторов становится суммой обратных значений конденсаторов или емкостей в последовательной комбинации. Мы можем обобщить это для числа N конденсаторов, подключенных последовательно, один по сравнению с эквивалентом C, эквивалентная емкость всей комбинации становится равной сумме инверсий каждой емкости в комбинации или последовательной комбинации. Здесь также легко увидеть, что после последовательного соединения конденсаторов результирующая емкость становится меньше наименьшей емкости в комбинации.Другими словами, общая емкость цепи уменьшается, когда мы соединяем конденсаторы последовательно.

    Одна вещь, которую вы всегда должны быть очень осторожны, используя это уравнение для вычисления эквивалентной емкости цепи, это выражение дает вам обратную величину эквивалентной емкости. Таким образом, чтобы получить эквивалент C или эквивалентную емкость, после вычисления правой части этого уравнения вы должны сделать обратное, чтобы получить эквивалентную емкость этих конденсаторов.

    Подключения и состав конденсаторных батарей низкого / среднего / высокого напряжения

    Компенсационные конденсаторы

    Компенсационные конденсаторы устанавливаются во многих местах электроустановок. Их можно найти в системах передачи и распределения высокого напряжения, на трансформаторных подстанциях, а также на различных уровнях в установках низкого напряжения. Поэтому конденсаторы должны изготавливаться в соответствии с самыми разными техническими характеристиками для мощности от нескольких квар до нескольких Мвар.

    Подключения и состав конденсаторных батарей низкого / среднего / высокого напряжения

    Установка конденсаторов в электрические системы выполняет несколько функций. Хотя наиболее известной является компенсация коэффициента мощности, они также улучшают регулирование напряжения линий передачи за счет уменьшения падения напряжения и увеличения емкостной составляющей в линиях, которые по своей природе являются индуктивными.

    Конденсаторные батареи состоят из конденсаторных блоков, подключенных, защищенных и соединенных вместе в соответствии с различными режимами подключения, подходящими для каждого типа использования.У каждого из этих режимов есть свои преимущества и недостатки.

    Следует также отметить, что многочисленных систем обнаружения (реле тока или напряжения, контроллеры и т. Д.) Используются с конденсаторными батареями для обнаружения (порог срабатывания сигнализации) и устранения опасных ситуаций, которые могут возникнуть, например, небаланс, каскадное повреждение и т. Д. .

    Содержание:

    1. Соединения конденсаторных батарей
      1. Соединение треугольником
      2. Соединение звездой, нейтраль не подключена
      3. Соединение двойной звездой, нейтраль не подключена
      4. Соединение звездой и двойной звездой, нейтраль заземлена
      5. H подключение
    2. Внутренние неисправности в конденсаторных батареях
      1. Защита с помощью устройства контроля давления
      2. Защита с помощью внутренних предохранителей
      3. «Полностью пленочные» высоковольтные конденсаторы
    3. Состав низковольтных конденсаторных батарей
      1. Фиксированные конденсаторные батареи
      2. Шаговые конденсаторные батареи с автоматическим регулированием
      3. Конденсаторная батарея s с отдельным управлением
      4. Условное правило выбора технологии конденсаторной батареи

    1.Подключение конденсаторных батарей

    1.1 Соединение треугольником

    Это наиболее часто используемый режим подключения конденсаторных батарей с напряжением ниже 12 кВ . Эта конфигурация, которая используется, в частности, в распределительных установках, обеспечивает максимальную реактивную мощность при минимальных размерах. Компенсация уравновешивается «естественным образом», если есть дисбаланс тока или фазовый сдвиг одной фазы относительно другой (наличие мощных однофазных приемников).

    Однако у этого режима подключения есть ограничение. Он не позволяет фильтровать компоненты нулевой последовательности (гармоники 3-го порядка и их кратные).

    Конденсаторы должны быть изолированы на полное напряжение (соединение между фазами), и в случае пробоя последствием является высокий ток короткого замыкания, поскольку он является результатом межфазного короткого замыкания.

    Рисунок 1 — Соединение конденсаторной батареи треугольником

    Вернуться к таблице содержания ↑


    1.2 Соединение звездой, нейтраль не подключена

    Соединение звездой имеет ряд технических преимуществ по сравнению с соединением треугольником, но на оно менее выгодно с экономической точки зрения . Помимо прочего, он может блокировать токи нулевой последовательности. Поскольку на конденсаторы действует напряжение между фазой и нейтралью, их значение необходимо умножить на 3, чтобы получить ту же реактивную мощность, что и при соединении треугольником.

    Их изоляционное напряжение, тем не менее, должно быть обеспечено для межфазного напряжения, чтобы избежать пробоя одной ветви, вызывающей поломку другой ветви.

    Это главный недостаток этой схемы , где потеря конденсаторных элементов не может быть обнаружена, что приводит к дисбалансу нагрузки и отсутствию компенсации . По этой причине предпочтительнее соединение двойной звездой.

    Рисунок 2 — Соединение звездой, нейтраль не подключена, конденсаторная батарея

    Вернуться к таблице содержания ↑


    1.3 Двойное соединение звездой, нейтраль не подключена

    Этот тип проводки подходит для всех мощностей и всех напряжений конденсаторов.Он сохраняет преимущества соединения звездой и добавляет режим защиты, позволяющий обнаруживать внутренние неисправности.

    Помимо увеличения емкости батареи, он также позволяет использовать конденсаторы , изолированные только для фазного напряжения .

    Устройство защиты от дисбаланса (трансформатор и реле тока) непрерывно контролирует ток небаланса между двумя нейтральными точками и при необходимости запускает отключение батареи.

    Рисунок 3 — Двойное соединение звездой, нейтраль не подключена. Конденсаторная батарея

    Высоковольтная конденсаторная батарея состоит из элементарных конденсаторов, обычно соединенных в несколько последовательно-параллельных групп, обеспечивающих требуемые электрические характеристики для устройства.

    Номинальное напряжение изоляции батареи зависит от количества групп в серии , а мощность зависит от количества элементарных конденсаторов, включенных параллельно в каждой группе .

    Вернуться к таблице содержания ↑


    1.4 Соединения звездой и двойной звездой, заземленная нейтраль

    Соединения с заземленной нейтралью обеспечивают лучшую защиту от переходных перенапряжений (молния) и от электромагнитных помех в целом.Тем не менее, резонансы и токи нулевой последовательности могут возникать, если есть неисправность в результате внутреннего пробоя или потери фазы питания.

    Эти конфигурации требуют защиты от перенапряжений и дисбаланса.

    Рисунок 4 — Соединение звездой, конденсаторная батарея с заземлением нейтралью
    Рисунок 5 — Соединение двойной звездой, конденсаторная батарея с заземлением нейтрали

    Вернуться к таблице содержания ↑


    Соединение 1,5 H

    Соединение

    H можно использовать для однофазного подключения треугольником или звездой или трехфазные подключения.На схеме ниже представлена ​​ветвь между двумя фазами или между фазой и нейтралью .

    Этот тип подключения предназначен для высоковольтных конденсаторных батарей большой мощности. Для трехфазных конденсаторных батарей дисбаланс отслеживается на каждой фазе. Он обеспечивает более высокую чувствительность измерения дисбаланса тока.

    Рисунок 6 — Н-соединение конденсаторной батареи

    Вернуться к таблице содержания ↑


    2. Внутренние неисправности в конденсаторных батареях

    2.1 Защита с помощью устройства контроля давления

    В дополнение к предохранителям или вместо предохранителей и в зависимости от требуемых В условиях защиты конденсаторы также можно защитить с помощью реле давления, которое обнаруживает повышенное давление в корпусе, вызванное пробоем элементарных емкостей.

    Контакт возвращает измеренное состояние, чтобы вызвать отключение устройства защиты.

    Рисунок 7 — Поперечное сечение конденсаторной батареи, показывающее расположение реле давления (кредит: avnet.com)

    Вернуться к таблице содержания ↑


    2.2 Защита с помощью внутренних предохранителей

    Когда внутренняя неисправность затрагивает один или несколько элементарных конденсаторов , важно обнаружить эту неисправность и устранить ее как можно быстрее, чтобы избежать лавинообразного обрушения банка. В случае неисправности элементарного конденсатора соответствующий внутренний предохранитель устраняет неисправный элемент.

    Учитывая большое количество элементарных конденсаторов, из которых состоит устройство, результирующая потеря мощности незначительна (менее 2%).

    Срабатывание внутреннего предохранителя может быть вызвано перенапряжением или избыточным током, возникающим извне , который превышает пределы, установленные для продукта, или если имеется нарушение внутренней изоляции.

    Используется с предохранителями, защита, основанная на поддержании симметрии (см. Рисунок 8), позволяет обнаруживать небаланс, который соответствует количеству неисправных конденсаторов.Порог регулировки, точно определенный производителем, устанавливает максимальные рабочие условия с целью обеспечения максимальной надежности и непрерывности.

    Рисунок 8 — Внутренний вид «полностью пленочного» высоковольтного конденсатора с внутренними предохранителями

    Где:

    1. Разрядный резистор
    2. Внутренний предохранитель
    3. Элементарная емкость

    Вернуться к таблице содержания ↑


    2.3 “Вся пленка Конденсаторы высокого напряжения

    Каждая элементарная емкость изготовлена ​​из двух алюминиевых фольг, образующих арматуру, изолированную полипропиленовой пленкой высокого диэлектрического качества .

    После сушки, обработки и пропитки под вакуумом нехлорированным, нетоксичным, биоразлагаемым жидким диэлектриком все соединенные между собой элементы помещают в корпус из нержавеющей стали с фарфоровыми клеммами или изолированными вводами вверху, для подключение устройства.

    Рисунок 9 — Состав «полностью пленочного» высоковольтного конденсатора

    Эта технология «полностью пленочного» конденсатора имеет высшие качественные характеристики: отличное сопротивление электрическим полям, очень низкие омические потери, ограничивающие повышение температуры, гораздо более длительный срок службы, чем при использовании предыдущих технологий с использованием бумаги, и отличная устойчивость к кратковременным перегрузкам по току и перенапряжениям.

    В случае полипропиленовой пленки жидкий диэлектрик, который имеет исключительно высокую химическую стабильность, высокую способность поглощения газа и высокую способность гасить частичный разряд (температура вспышки приблизительно 150 ° C), обеспечивает полную изоляцию между электродами.

    Таблица 1 — Технические характеристики

    24422
    Средний коэффициент потерь при включении питания: 0,15 Вт / квар
    после 500 часов работы: 0.10 Вт / квар
    Среднее изменение емкости в зависимости от температуры 2 × 10 -4 ° C
    Рабочая частота Стандарт: 50 Гц
    По запросу : 60 Гц
    Допустимые перегрузки Постоянно: 1,3 In
    Допустимые перенапряжения 12 ч / 24 ч: 1,1 Un
    30 мин .15 Un
    5 мин / 24 ч: 1,2 Un
    1 мин / 24 ч: 1,3 Un

    Вернуться к таблице содержания ↑


    3. Состав низковольтного конденсатора батареи

    Различают конденсаторных батарей постоянной емкости и «ступенчатые» (или автоматические) конденсаторные батареи , которые имеют систему регулировки, которая адаптирует компенсацию к изменениям в потреблении энергии установки.


    3.1 Батареи конденсаторов постоянной мощности

    При постоянной мощности они подходят для индивидуальной компенсации на клеммах приемников (двигатели, трансформаторы и т. Д.) Или, в более общем случае, для установок, где нагрузка постоянна и очень мало колеблется.

    Рисунок 10 — Фиксированные конденсаторные батареи

    Вернуться к таблице содержания ↑


    3.2 Ступенчатые конденсаторные батареи с автоматическим регулированием

    Этот тип устройства позволяет адаптировать подаваемую реактивную мощность к изменениям потребления, таким образом, поддерживает компенсацию на своем уровне. оптимальное значение .Он используется в ситуациях, когда потребляемая реактивная мощность значительно варьируется и высока по сравнению с мощностью трансформатора. Такие ситуации встречаются на клеммах главных распределительных щитов низкого напряжения или в начале отходящих линий большой мощности.

    Ступенчатые конденсаторные батареи состоят из комбинации ступеней, включенных параллельно . Ступенька состоит из конденсатора (или комбинации конденсаторов) и контактора.

    Включение и выключение всей или части конденсаторной батареи контролируется встроенным контроллером коэффициента мощности.

    Рисунок 11 — Ступенчатые конденсаторные батареи с автоматическим регулированием

    Таким образом, конденсаторы активируются только после запуска двигателя. Точно так же они могут быть отключены до выключения двигателя.

    Достоинством этой системы является способность полностью компенсировать реактивную мощность двигателя при полной нагрузке . Дополнительный демпфирующий реактор должен быть предусмотрен, если несколько конденсаторных батарей этого типа установлены в одной системе.

    Рисунок 12 — Конденсаторные батареи с раздельным управлением

    Вернуться к таблице содержимого ↑


    3.3 Конденсаторные батареи с раздельным управлением

    Во избежание перенапряжений может потребоваться отдельная коммутация конденсаторной батареи из-за самовозбуждения или запуска двигателя с помощью специального устройства:

    • Реостат,
    • Изменение муфты,
    • Реакторы,
    • Автотрансформатор,
    • и т. Д.

    Вернуться к таблице содержимого ↑


    3.4 Обычное правило выбора технологии конденсаторной батареи

    Фиксированная компенсация имеет риск чрезмерной компенсации, которая увеличивает эксплуатационные напряжение ненормально.Автоматическая компенсация позволяет избежать постоянных перенапряжений, возникающих из-за чрезмерной компенсации, когда система имеет очень низкую нагрузку, таким образом поддерживается стабильное рабочее напряжение, избегая дополнительных затрат на выставляемую за счет реактивной энергии.

    Если мощность конденсаторов (в квар) составляет менее 15% мощности трансформатора (в кВА), выбор батареи фиксированных конденсаторов определенно обеспечит наилучший компромисс между стоимостью и экономией .

    Если мощность конденсаторов (в квар) превышает 15% мощности трансформатора, следует выбрать ступенчатую батарею конденсаторов с автоматическим регулированием .

    Вернуться к таблице содержания ↑

    Источник: Электроснабжение Legrand

    .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *