Site Loader

Электролитические конденсаторы | Основы электроакустики

Электролитические конденсаторы 

 

В электролитических конденсаторах имеются две обкладки. В качестве одной, называемой анодом, служит фольга или таблетка, а в качестве другой, называемой катодом, — жидкий электролит или твердый полупроводник, диэлектриком — оксидная тонкая пленка, электрохимически создаваемая на аноде. 

 

 

 

Преимущество электролитических конденсаторов перед конден­саторами с другими диэлектриками состоит в их большой удельной емкости, недостаток — в значитель­ном ее снижении при низкой темпе­ратуре и увеличении тока утечки при высокой температуре.

Электролитические конденсаторы разделяют на

  • полярные, работа­ющие только в цепях с постоянным или пульсирующим напряжением,
  • неполярные, используемые в це­пях переменного тока.

Полярные конденсаторы работо­способны при условии, что на их по­ложительный электрод (анод) пода­ется положительный потенциал источ­ника.

Если полярность подключения источника нарушается, возможен пробой и выход из строя конденса­тора (иногда сопровождаемый взры­вом). Электролитические конденса­торы выпускают с большим интерва­лом емкости (от десятых долей до десятков тысяч микрофарад) и напряжением от 3 до 500 В.

По конструкции, виду обкладок и диэлектрика различают три типа электролитических конденсаторов:

  • алюминиевые (сухие), обкладки которых изготовляют из алюминиевой фольги, а диэлект­рик — из бумажных или тканевых прокладок, пропитанных электро­литом;
  • танталовые (жидкие) с таблеточным танталовым ано­дом, поверхность которого покрыта оксидной пленкой диэлектрика, и с жидким . электролитом в качестве катода;
  • оксидно-полу­проводниковые (твердые) е таблеточным танталовым или алюминиевым анодом и нанесенной пленкой диэлектрика. Электро­литом служит полупроводник (двуоксид марганца), наносимый на оксидную пленку анода.

Краткая характеристика некоторых из на­иболее современных электролитических конденсаторов приведена ниже. Конденсаторы К50-6 , представляющие серию малога­баритных алюминиевых конденсаторов, предназначены для широ­ковещательной аппаратуры (транзисторных приемников, телевизо­ров и др.), с, проволочными выводами — для схем с печатным мон­тажом.

Конденсаторы больших размеров (емкостью 1000, 2000, 4000 мкФ с номинальным напряжением 10; 15; 25 В) используются для рабо­ты в цепях постоянного и пульсирующего тока, имеют лепестковые выводы и крепятся к корпусу с помощью хомута.

Неполярные конденсаторы К50-6 применяют в цепях со знако­переменным напряжением, причем это напряжение должно быть значительно ниже номинального. Номинальные емкости и напряже­ния конденсаторов К50-6 приведены в табл. 25.

Номинальное напряжение, В

Номинальная емкость. мкФ

6

50; 100; 200; 500

10

10; 20; 50; 100; 200; 500; 1000; 2000; 4000

15

1; 5; 10; 20; 30; 50; 100; 200; 500; 1000; 2000; 4000

25

50 100

1; 5; 10; 20; 50; 100; 200; 500; 1000; 2000; 4000 1; 2; 5; 10; 20; 50; 100; 200 1; 2; 5; 10; 20

160

1; 2; 5; 10

15*

5; 10; 20; 50

25*

10

* Неполярные конденсаторы.

 

Действительные емкости конденсаторов К50-6 при нормальных условиях (температуре +25 °С) могут отличаться от номинальных на — 20-+80%. При работе конденсаторов в цепях пульсирующе­го тока частотой 50 Гц амплитуда напряжения переменной состав­ляющей не должна превышать значений, указанных в табл. 26, а сумма амплитуды и постоянной составляющей напряжения — но­минального напряжения. Ток утечки (мкА) конденсаторов К50-6 в нормальных условиях Iут=0,05 С U+3, где С — номинальная ем­кость, мкФ; U — номинальное напряжение, В. Эти~конденсаторы выпускают с диапазоном рабочих температур от — 10 до +70С. Срок их службы 5000 ч.

Таблица 26

Пределы номинальных емкостей,

МКФ

Номинальное напряжение, В

Амплитуда переменной составляющей, % Uaou

Пределы номинальных емкостей, мкФ

Номинальное напряже­ние, В

Амплитуда переменное составляющей, % Uном

50—200

6

 

2000

10 И 15

 

10—100 1—50

10 15

25

500—1000 50—200

25

50

15

1—20

25

 

1—5

100

 

500

6

 

 

 

 

200—1000

10

 

2000

25

 

100—1000

15

20

10—20

100

10

50—200

25

 

1—10

160

 

1—20

50

 

4000

10—25

5

Конденсаторы К50-7  дополняют серию малогабарит­ных алюминиевых конденсаторов в интервале напряжений от 160 до 450 В и емкостей от 5 до 500 мкФ. Значения номинального и ам­плитудного напряжений и емкости конденсаторов К50-7 приведены в табл. 27.

Номинальное напряжение, В

Амплитудное напряжение, В

Номинальная емкость, мкФ

50

58

100+300*; 300+300

160

185

20; 50; 100; 200; 500

250

290

10; 20; 50; 100; 200; 100+100; 150+150

300

345

5; 10; 20; 50; 100; 200; 50+50; 100+ 100

350

400

5; 10; 20; 50; 100; 20+20; ЪО+50; 30+

 

 

+ 150

450

495

5; 10; 20; 50; 100; 10+10; 20+20; 50+, +50

* Рассчитаны на две емкости.

 

Конденсаторы К50-7 выпускают с допустимыми отклонениями действительной емкости от номинальной на — 20-+80%. При их использовании в цепях с частотой рыше 50 Гц амплитуда напряже­ния переменной составляющей должна уменьшаться, как и у всех электролитических конденсаторов, обратно пропорционально часто­те. Значения амплитуды напряжения переменной составляющей пульсирующего тока Um~ частотой 50 Гц, при которой могут быть использованы конденсаторы, приведены в табл. 28.

Во избежание перегрева конденсаторов амплитуда напряжения переменной составляющей не должна превышать напряжения по» — стоянного тока. Ток утечки (мкА) этих конденсаторов Iут = 0,05СU+ +30. Тангенс угла потерь конденсаторов с номинальным напряже­нием 50 В может быть до 0,25, с напряжением 160 — 450В — до 0,15. Срок службы К50-7 — 5000 ч.

Конденсаторы К50-12 (см. рис. 7), отличающиеся от рассмот­ренных меньшими габаритными размерами, выпускают 67 типономи-налов емкостью от 1 до 5000 мкФ и напряжением от 6 до 450 В Их используют для работы в цепях постоянного и пульсирующего токов в диапазоне рабочих температур, от — 20 до +70 °С. Срок службы 5000 ч, а хранения 5 лет.

Конденсаторы К50-14, используемые в цепях постоянного и пульсирующего токов в диапазоне рабочих температур от — 10 до + 85 °С, выполняют в виде многосекционных блоков, в которых в од­ном корпусе содержится несколько емкостей. Анодная лента таких конденсаторов разделена на четыре отрезка (каждый с отдельным выводом). Выводы анодов равномерно распределены по торцу сек­ции. Катод в секции конденсатора — обший. Номинальные емкости и напряжения конденсаторов К50-14 приведены в табл. 29. Дейст­вительные емкости могут отличаться от номинальных на — 20 -ь +50%.

Таблица 28

Номинальная емхость, мкФ

Номинальное напряжение, В

Амплитуда переменной составляющей % Uном

Номинальная емкость, мкФ

Номинальное напряжение, В

Амплитуда переменной составляющей, % UНО||

5

300

 350

450

20

 15

15

200

160

250

 300

15

 10

7

10

 

 

250

 300

350

450

20

20

15

15

500

160

10

10+10

 

 

450

 

 

10

 

 

20

 

 

 

160

 250

300

350

450

20

20

15

10

10

20+20

350

450

10

 5

30+150

350

5

50

 

 

 

160

250

300

350

450

20

15

10

5

5

 

 

 

 

 

50+50,

300

 350

450

10

10

 5

100+100

 

 

250

300

10

 7

100

 

 

 

 

160

 250

300

350

450

 

15

 10

7

5

5

150+150

250

10

300+100

50

20

300+300

50

15

Таблица 29

 

Номинальное напряжение,

В

 

 

Номинальное пи­ковое напряжение, В

 

Номинальная емкость С, мкФ,

на выводах 

1

2

3

4

40

45

5000

5000

1000

1000

350

400

150

150

50

50

350

400

200

200

50

50

450

495

50

50

30

30

При работе в цепях пульсирующего тока амплитуда напряже­ния переменной составляющей частотой 50 Гц яе должна превышать 5 % для конденсаторов с номинальным напряжением 350 В и 3 % — с напряжением 450 В. Ток утечки Iут=0,02 С UНОм. Срок службы конденсаторов 5000 ч, хранения — 5 лет.

Конденсаторы К50-15 выпускают полярными и неполярными. Последние допускают периодическое, непродолжительное включение их в цепь переменного тока. Полярные конденсаторы изготовляют с номинальными напряжениями от 6,3 до 250 В и емкостями от 2,2 до 680 мкФ|, неполярные — от 25 до 100 В и от 4,7 до 100 мкФ соот­ветственно. Диапазон рабочих температур этих конденсаторов от — 60 до + 85 °С, срок службы 10000 ч, хранения — 12 лет.

Конденсаторы К50-16 аналогичны конденсаторам К50-6, но име­ют меньшие габаритные размеры при тех же номинальных напря­жениях и емкостях. Их выпускают с пределами номинальных напря­жений от 6,3 до 160 В и емкостей от 0,5 до 5000 мкФ с отклонением последних на — 20-+80 %. Диапазон рабочих температур этих кон­денсаторов от — 20 до +70°С, срок службы — 5000 ч.

Конденсаторы К53-4 оксидно-полупроводникового типа с табле­точными ниобиевыми анодами применяют для работы в цепях по­стоянного и пульсирующего токов-в диапазоне рабочих температур от — 60 до + 85°С и выпускают с пределами номинальных напряже­ний 6 — 20 В и емкостей 0,47 — 100 м~кФ с допустимым отклонением последних от ±10 до +30%. Срок службы конденсаторов 5000 ч, хранения — 11 лет.

Конденсаторы К53-8 алюминиевые оксидно-полупроводникового типа. Электролит у таких конденсаторов заменен твердым полупро­водником (двуоксидом марганца МпО2, нанесенным на оксидную пленку алюминия). Их используют для работы в цепях постоянного и пульсирующего токов в диапазоне рабочих температур от — 60 до +85°С и выпускают с пределами номинальных напряжений 1,5 — 15 В и емкостей 0,5 — 20 мкФ. Срок службы конденсаторов 5000 ч, хранения — 12 лет.

Вся правда о конденсаторах: волшебные свойства загадочных баночек — Обзоры и статьи

Было ли лучшее время для энтузиастов и любителей Hi-Fi, чем конец 1970-х и начало 1980-х годов? С одной стороны, так много всего происходило с развитием цифрового аудио, а с другой — наблюдался рост субъективизма. Внезапно проигрыватели и усилители стали оценивать не по уровню детонации, выходной мощности и гармоническим искажениям, а по их звучанию! И можно было даже всерьёз говорить о звучании кабелей. В этой новой атмосфере всё, что когда-то считалось само собой разумеющимся в области Hi-Fi, стало кандидатом на переоценку.

Пристальному изучению подверглось и влияние на звук пассивных электронных компонентов — резисторов, индуктивностей и конденсаторов. В особенности, конденсаторов. Знающие люди начали обсуждать такие явления как эквивалентное последовательное сопротивление (ESR) и диэлектрическое поглощение.

Сегодня мы нечасто слышим об этой теме, но не потому, что проблема была исчерпана. Скорее всего, разработчики нынче уделяют столь же пристальное внимание используемым пассивным компонентам, как и схемам, в которых они применяются, так что общественный фурор несколько стих.

Азы

В простейшем виде конденсатор состоит из двух металлических пластин, разделённых воздухом (или, ещё лучше, вакуумом) и схематично изображён на рис. 1. Поскольку между пластинами нет проводящего пути, конденсатор блокирует постоянный ток (например, от батареи). При этом конденсатор, напротив, пропускает сигналы переменного тока — как раз такие как звуковые волны.

Рис. 1. Компоненты, из которых состоит конденсатор — две проводящие пластины, разделённые слоем диэлектрика.

Проверенное решение

Мы нечасто сталкиваемся с воздушными конденсаторами, но если вы заглядывали внутрь старого лампового радиоприемника и видели элемент, отвечающий за настройку, который состоит из чередующихся металлических пластин, это как раз воздушный конденсатор переменной ёмкости. В большинстве конденсаторов, с которыми мы сталкиваемся в аудиотехнике и прочей электронике, в качестве изолирующего материала (диэлектрика), разделяющего пластины, не используется воздух, поскольку он имеет низкую диэлектрическую постоянную (1,0), а это означает, что воздушные конденсаторы большой емкости слишком громоздкие, чтобы быть практичными. По этой причине используются, в основном, твёрдые диэлектрики, с более высокими диэлектрическими свойствами, в том числе из керамики и различных видов пластмасс (например, ПВХ с диэлектрической проницаемостью 4,0). Именно здесь история становится особенно интересной, поскольку для всех этих диэлектриков характерны те или иные компромиссы в плане влияния на звук, в то время как воздух практически идеален.

Простые фильтры

Для начала, узнаем побольше о том, как ведут себя конденсаторы и для чего они используются. Конденсаторы блокируют постоянный ток и пропускают переменный, однако они не пропускают переменный ток с разной частотой одинаково. Это объясняется тем, что конденсаторы обладают реактивным сопротивлением, которое снижается с увеличением частоты (к слову, катушки индуктивности тоже обладают реактивным сопротивлением, которое, наоборот, увеличивается с ростом частоты).

Таким образом, конденсаторы пропускают высокочастотные сигналы легче, чем низкочастотные, что делает их крайне полезными в частотно-селективных цепях (то есть, в фильтрах), а также для устранения нежелательных сигналов (например, гул или шум с шины питания постоянного напряжения).

Простые фильтры верхних и нижних частот показаны на рис.2. В фильтре верхних частот (рис. 2а) последовательно включенный конденсатор подключен к шунтирующему резистору. В фильтре нижних частот (рис. 2b) конденсатор и резистор меняются местами.

Рис. 2. RC-фильтр первого порядка верхних (2a) и нижних (2b) частот.

Итак, конденсаторы зачастую используются для объединения цепей, отделения нежелательного шума в цепях постоянного напряжения и в частотно-селективных цепях (фильтрах). Поскольку конденсаторы накапливают электрический заряд, большие из них также применяются в качестве резервуаров в источниках питания переменного и постоянного тока. На рис. 3 показан типовой источник питания, включающий в себя понижающий трансформатор (он понижает напряжение сети), мостовой выпрямитель (который преобразует переменный ток из трансформатора в импульсный постоянный ток) и пару конденсаторов-резервуаров (сглаживающих пульсации после выпрямления переменного тока).

Рис.3. Принципиальная схема двухполупериодного источника питания, состоящего из понижающего трансформатора, двухполупериодного мостового выпрямителя и двух резервуарных конденсаторов.

Подобные схемы встречаются во многих твердотельных аудиокомпонентах. Аналогичные решения используются и в ламповом оборудовании, но из-за высоких напряжений, требуемых для работы ламп, трансформатор здесь обычно повышает напряжение сети.

Ёмкость резервуарных конденсаторов, используемых в транзисторных усилителях мощности, может достигать 50 000 мкФ и более, тогда как в других случаях в схеме могут использоваться конденсаторы емкостью 1 НФ (одна тысячная микрофарада) или даже меньше. Таким образом, очевидно, что некоторые типы конденсаторов лучше подходят под определённые задачи, чем другие.

Важное уточнение

Как правило, самые большие резервуарные конденсаторы являются электролитическими, ведь они обеспечивают высокую ёмкость в сравнительно небольшом объёме. Такие конденсаторы содержат электролит (жидкость или гель), который химически реагирует с металлической фольгой внутри банки, образуя слой диэлектрика. Подобные электролитические конденсаторы, а также некоторые другие — например, танталовые, называются полярными, а несоблюдение полярности подключения может привести к их выходу из строя.

Другая разновидность — неполярные конденсаторы, которые можно подключать без учёта полярности. Подобные электролиты иногда использовались в пассивных кроссоверах акустических систем, однако такая практика сегодня устарела, поскольку плёночные конденсаторы справляются с этой задачей лучше, хоть и занимают больше места.

Конденсаторы также могут иметь различное расположение выводов — аксиальное (осевое) или радиальное. Преимущество радиальных электролитов заключается в том, что они занимают меньше площади на плате, однако их минус — в том, что они увеличивают её высоту. В больших электролитических конденсаторах обычно отказываются от выводов под пайку — в пользу винтовых клемм.

Что скрывают конденсаторы

Настоящие конденсаторы, как и настоящие политики, ведут себя не идеально, и именно здесь кроется причина их влияния на качество звука. Во-первых, на практике ни один конденсатор не является только ёмкостью — он также имеет индуктивность и сопротивление. На принципиальной схеме конденсатор обычно обозначается одним из символов на рис. 4 (все они визуально отсылают к двум разделенным пластинам), однако в реальности он представляет собой что-то вроде схемы, представленной на рис. 5. Резистор обозначенный на рисунке как ESR (эквивалентное последовательное сопротивление) может быть не постоянным — сопротивление может зависеть от частоты. В случае с электролитическими конденсаторами, ESR обычно уменьшается с частотой.

Рис. 4. Варианты обозначения конденсаторов на схеме

Одним из последствий того, что у конденсаторов есть индуктивность (ESL или эквивалентная последовательная индуктивность на рис. 6), является то, что они, по сути, являются электрически резонансными. Если проанализировать импеданс конденсатора в зависимости от частоты, он не будет продолжать уменьшаться с ростом частоты. На рис. 6 показано, что импеданс достигает минимума (эквивалентного значению ESR) на резонансной частоте, а затем, по мере увеличения частоты, он снова начинает расти из-за ESL.

Рис. 5. Схематичный эквивалент реального конденсатора демонстрирует паразитное сопротивление (ESR) и индуктивность (ESL) Рис. 6. Паразитная индуктивность приводит к тому, что у конденсаторы имеют электрический резонанс, иногда — в пределах слышимого диапазона частот.

У больших электролитических конденсаторов частоты электрического резонанса обычно находятся в пределах звукового диапазона. У небольших конденсаторов частоты электрического резонанса могут превышать 1 МГц. Для увеличения частоты электрического резонанса для заданной емкости следует уменьшить ESL — последовательную индуктивность.

Для достижения этой цели, при разработке электролитических конденсаторов, где такая проблема стоит наиболее остро, применяются различные методы. Например, в конденсаторах DNM T-Network для снижения индуктивности используются специальные Т-образные соединения из фольги — таким образом, их резонансная частота более чем в два раза выше по сравнению со стандартной конструкцией (от 28 кГц до 75 кГц — в примере, который приводит компания DNM на своём веб-сайте).

ESR оказывает потенциально благотворное влияние на демпфирование электрического резонанса конденсатора, однако, в отличие от индуктивности или ёмкости, сопротивление генерирует тепло в то время, когда через конденсатор проходит ток. В больших ёмкостных конденсаторах, где проходящие через них токи велики, этот эффект внутреннего нагрева ограничивает безопасные условия эксплуатации. Тем не менее, электролитические конденсаторы лучше всего работают именно тёплыми.

Микрофонный эффект

Не секрет, что ламповое оборудование чувствительно к вибрации. Внутри вакуумированной стеклянной оболочки лампы находятся тонкие металлические электроды, расстояние между которыми влияет на работу лампы. Таким образом, если встряхнуть лампу достаточно сильно, это отразится на её электрической мощности — эффект, который называют «микрофонным», поскольку лампа в таком случае ведёт себя подобно микрофону.

Твердотельная электроника меньше подвержена этому эффекту, однако приведём в пример некий крайний случай: разработчики первых систем управления двигателем в гоночных автомобилях вскоре научились не прикреплять электронные блоки к двигателю, либо использовать хорошую изоляцию, иначе вибрации от двигателя могли нарушить её работу. Уровни вибрации, которые испытывает Hi-Fi оборудование при повседневном использовании, гораздо ниже, однако некоторые производители, среди которых, например, Naim Audio, по-прежнему прилагают большие усилия, чтобы свести к минимуму вероятное воздействие микрофонного эффекта.

Способность конденсатора накапливать заряд (его ёмкость) пропорциональна площади пластин и обратно пропорциональна расстоянию между ними, а «пластины» обычно представляют собой тонкую фольгу с тонкими слоями диэлектрика между ними. Это приводит к тому, что конденсаторы подвержены воздействию микрофонного эффекта, поскольку из-за вибрации расстояние между пластинами и, следовательно, значение ёмкости может меняться.

Таким образом, физические свойства материалов, из которых изготовлен конденсатор, могут быть столь же важны, как и электрические параметры. Но что ещё интереснее, вибрация извне не является необходимым условием для того, чтобы конденсаторы страдали от её воздействия, ведь силы, формируемые напряжениями и токами внутри самого конденсатора, также могут вызывать механические резонансы. Из-за этого эффекта можно даже услышать, как некоторые конденсаторы издают звук, когда через них проходит сигнал. В кроссовере акустической системы, где уровни вибраций, напряжения и токи высоки, присутствует «идеальный шторм» факторов, которые делают выбор подходящего конденсатора особенно важной задачей.

Ключевые слова

Проблема микрофонного эффекта и механических резонансов конденсаторов активно обсуждалась на протяжении многих лет, однако исследований по этому вопросу было достаточно мало. Во всяком случае, мало опубликованных исследований. Но те, что существуют, подтверждают мнение, что данный эффект может оказывать заметное влияние качества звучания.

К тому же, в некоторых случаях конденсаторы могут приводить к необычайно высоким уровням гармонических и интермодуляционных искажений. Понимание того, как и почему это происходит, позволяет разработчикам сосредоточить свои усилия на доработке электронной схемы и тщательном выборе электронных компонентов — таким образом, чтобы это принесло наибольшую пользу.

ЧИТАТЬ ДРУГИЕ СТАТЬИ


Поделитесь статьей с друзьями

EBU/EBT Aluminum Capacitors Axial Non-Polar Capacitor Styles

Aluminum Capacitors Axial Non-Polar Capacitor Styles

  Datasheet

Non-polarized aluminum electrolytic capacitors

EBU with small dimensions

EBT with low ESR values ​​over большой диапазон частот


Отказ от ответственности:

Пожалуйста, внимательно прочтите приведенный ниже отказ от ответственности, прежде чем продолжить и использовать эти данные. Использование вами этих данных означает ваше согласие с условиями, изложенными ниже. Нажмите на ссылку Я СОГЛАСЕН, чтобы продолжить и принять эти условия.

Эти данные предоставляются вам бесплатно для вашего использования, но остаются исключительной собственностью Vishay Intertechnology, Inc. («Vishay»), Samacsys/Supplyframe Inc. или Ultra Librarian/EMA Design Automation®, Inc. ( совместно именуемые «Компания»). Эти данные предоставляются для удобства и только в информационных целях. Размещение ссылок на эти данные на веб-сайте Vishay не означает одобрения или одобрения Vishay каких-либо продуктов, услуг или мнений Компании. Несмотря на то, что Vishay and Company приложила разумные усилия для обеспечения точности данных, Vishay and Company не гарантирует, что данные будут безошибочными. Vishay and Company не делает никаких заявлений и не гарантирует, что данные полностью точны или актуальны. В некоторых случаях данные могут быть упрощены, чтобы удалить проприетарные детали, но при этом сохранить важные геометрические детали интерфейса для использования клиентами. Vishay и Компания прямо отказываются от всех подразумеваемых гарантий в отношении данных, включая, помимо прочего, любые подразумеваемые гарантии или товарную пригодность или пригодность для определенной цели. Ни одна из вышеперечисленных сторон не несет ответственности за какие-либо претензии или убытки любого характера, включая, помимо прочего, упущенную выгоду, штрафные или косвенные убытки, связанные с данными.

Обратите внимание, что нажатие кнопки «Я СОГЛАСЕН» приведет к тому, что вы покинете веб-сайт Vishay и посетите внешний веб-сайт. Vishay не несет ответственности за точность, законность или содержание внешнего веб-сайта или последующих ссылок. Пожалуйста, свяжитесь с владельцем внешнего веб-сайта для получения ответов на вопросы, касающиеся его содержания.


  • Документы
  • Образец запроса
  • Технические вопросы

Показать 2550100 записей

Тип документов Название Описание Share
DataShiet

ABU/EBT

9002. Aluminum Capacits Axial Axial Axial Ascials Axials Axials

.

Значения для серии E

Значения стандартной серии за десятилетие для сопротивлений и емкостей

Общая информация

ВВЕДЕНИЕ

ВВЕДЕНИЕ, Основные концепции и определения: алюминиевые конденсаторы, Vishay Roederstein

100 VOLT Axial Axial Coperaled. Неполярные / био-полевые электролеточные капиты (для осевой аксионеры.

100-вольтовые неполярные/биполярные электролитические конденсаторы с осевыми выводами (для кроссовера аудио/динамиков) .
.
.
Неполярные (биполярные) аксиальные электролитические конденсаторы
(для кроссовера аудио/динамиков)
. .
.

Характеристики и характеристики

:
  • Разработан специально для кроссовера колонок.
  • Все электролиты — новые «свежие с завода». Мы не продаем NOS (новый старый запас).
  • Номинальное напряжение (В постоянного тока) составляет 100 Вольт. (Совершенно нормально заменить более низкое напряжение, такое как 25 В, 50 В, 63 В и т. д., на 100 В).
  • Допуск емкости: +/- 10% при 1 кГц / 20C.
  • Коэффициент рассеивания
  • : 10% при 1 кГц / 20°C.
  • Ток утечки: I=0,03 л.с. или 4 мкА, в зависимости от того, что больше после 5 минут работы при номинальном напряжении
  • Идеально подходит для: приложений музыкальной индустрии / аудио / кроссоверных сетей для динамиков.
  • Прямые длинные луженые провода из CP (медного слоя) (идеально подходят для схем с ручной разводкой).
  • мкФ Размеры: 1 мкФ; 1,5 мкФ; 2,2 мкФ; 3,3 мкФ; 4,7 мкФ; 6,8 мкФ; 10 мкФ; 15 мкФ; 22 мкФ; 33 мкФ; 47 мкФ, 68 мкФ; 100 мкФ; 150 мкФ и 220 мкФ. Размеры корпуса конденсатора. Размеры также указаны в таблице ниже.
  • Вентиляционное отверстие и изоляция из ПВХ-рукава синего цвета.
  • Диапазон рабочих температур: от -40°C до +85°C.
  • Сертификат ISO 9001:2000
  • 100% соответствует требованиям RoHS
  • Серия
  • Richey MDIN(L) (с опцией 10% DF и опцией с допуском 10%). Заводская спецификация

Другие высоковольтные конденсаторы для ламповых радиоприемников

:

Металлизированные полипропиленовые конденсаторы — 630 В и 1000 В Осевые Трубчатые
Металлизированные полиэфирные пленочные конденсаторы — 630 В и 1000 В Осевой Трубчатый

jb JFX Premium Metallized Polypropylene Capacitors — 630V & 400V Axial Tubulars

Metal-Foil Polypropylene Capacitors — 630V Orange Dips
Metallized Polyester Film Capacitors — 630V Orange Dips
Metallized Polypropylene Capacitors- 1600V Orange Dips

Серебряные конденсаторы MICA — 500 Вольт

Пленочные майларовые конденсаторы — 630 Вольт
Дисковые керамические конденсаторы — 1600 В

Высоковольтные электролитические конденсаторы — Радиальные
Высоковольтные электролитические конденсаторы — Осевые

Двойная секция Банка Электролитические конденсаторы — 500 В
Зажимы для конденсаторов для электролитических конденсаторов

X1/Y2 Диск Защитные конденсаторы — 250 В переменного тока
Y2 Пленочные Защитные / помехоподавляющие конденсаторы — 250 В переменного тока
X2 Пленочные Конденсаторы безопасности/подавления помех — 275 В переменного тока

Конденсаторы и схемы для старинных ламповых радиоприемников

В настоящее время доступны для продажи неполярные (то же самое, что и биполярные) электролитические конденсаторы с осевыми выводами на 100 В, разработанные специально для сетевых кроссоверов громкоговорителей. Эти неполярные электролитические конденсаторы имеют жесткие допуски и низкое рассеивание для оптимизации качества звука/динамиков. Эти неполярные Е-колпачки имеют конструкцию с односторонним резиновым уплотнением для обеспечения максимальной надежности. Неполярные электролитические конденсаторы с односторонним резиновым уплотнением наиболее надежны в условиях вибрации, так как один конец имеет полоску фольги и приварен к алюминиевому корпусу с помощью ультразвуковой волны. Этот тип конструкции конденсатора обеспечивает лучшую защиту от разрыва CP (медного) провода от алюминиевой фольги, что приведет к нулевой емкости (и отсутствию звука). Эти Ecaps имеют более низкий D.F. (коэффициент рассеяния) и более точный допуск, чем у обычных электролитов (производство которых стоит дороже). При более высокой цене/цене они лучше всего подходят для применения в аудио/музыкальной индустрии. Эти неполярные электролиты производятся компанией Richey Electronics (REL). Richey, ведущий производитель электролитических конденсаторов, производит высококачественные электролитические конденсаторы уже почти 50 лет (с момента регистрации в Нэшвилле, штат Теннесси, в 1965).

Мы предлагаем эти неполярные электролитические конденсаторы популярного размера на 100 вольт. Биполярные электролитические конденсаторы с более высоким напряжением можно использовать вместо электронных конденсаторов с более низким напряжением.

Ссылки:
Конденсатор ГЛАВНАЯ СТРАНИЦА
$ Прайс-лист/форма заказа
Бланк заказа в «Excel»
Наконечники конденсаторов
JustRadios Конденсаторы и резисторы:
Адрес: Адрес доставки USPS (все почтовые отправления в США и за границу): Дэвид Кантелон (JustRadios), Unit 5 — 2045 Niagara Falls Boulevard, Niagara Falls, Нью-Йорк, США, 14304
Электронная почта: justradios@yahoo. com
. .
.
мкФ/МФД при напряжении и типе проводов Размер в дюймах Размер в миллиметрах Темп. Рейтинг
1 мкФ при 100 В Неполярный Осевой электролитический конденсатор 5/16 на 5/8 8 на 16 85С
1,5 мкФ при 100 В Биполярный Осевой электролитический конденсатор 5/16 на 5/8 8 на 16 85С
2,2 мкФ при 100 В Неполярный Осевой электролитический конденсатор 5/16 на 5/8 8 на 16 85С
3,3 мкФ при 100 В Биполярный Осевой электролитический конденсатор 7/16 по 7/8 10 на 21 85С
4,7 мкФ при 100 В Неполярный Осевой электролитический конденсатор 7/16 по 7/8 10 на 21 85С
6,8 мкФ при 100 В Биполярный Осевой электролитический конденсатор 16. 07 по 08.07 10 на 21 85С
10 мкФ при 100 В Неполярный Осевой электролитический конденсатор 7/16 по 7/8 10 на 21 85С
15 мкФ при 100 В Биполярный Осевой электролитический конденсатор 7/16 по 7/8 10 на 21 85С
22 мкФ при 100 В Неполярный Осевой электролитический конденсатор 1/2 на 1 13 на 26 85С
33 мкФ при 100 В Биполярный Осевой электролитический конденсатор 1/2 на 1 13 на 26 85С
47 мкФ при 100 В Неполярный Осевой электролитический конденсатор 1/2 на 1 3/16 13 на 26 85С
68 мкФ при 100 В Неполярный осевой электролитический конденсатор 1/2 на 1 3/16 13 на 31 85С
100 мкФ при 100 В Неполярный Осевой электролитический конденсатор 5/8 на 1 3/8 16 на 35 85С
150 мкФ при 100 В Биполярный Осевой электролитический конденсатор 5/8 на 1 1/2 16 на 39 85С
220 мкФ при 100 В Неполярный Осевой электролитический конденсатор 5/8 на 1 11/16 18 на 39 85С
Неполярный — это то же самое, что и Биполярный .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *