Site Loader

Содержание

«В чем разница между подключением звезда и треугольник?» – Яндекс.Кью

Четыре провода выводятся из люстры, которую на фабрике проекировали под «раздельное включение».

Если в люстре несколько цоколей (ламп, рожков), то их, чаще всего, можно включать раздельно. Принято разделять на две группы включения. Например, одна лампа отдельно, две — отдельно на трёхламповой люстре. Или две лампы отдельно, три — отдельно — на пятиламповой.

Очень важно! Категорически нельзя сразу проверять работоспособность люстры путём подключения выходящих проводов, не убедившись, что они не подключены правильно внутри корпуса люстры.

В люстрах обычно есть специальное место, где коммутируются провода. Так в рожковых люстрах — это специальная полость в которую сходятся все рожки. Внутри неё подключение производится следующим образом: 1) все синие провода, выходящие из рожков соединяются с общим синим проводом;

2) общий жёлто-зелёный заземляющий провод соединяется с корпусом;

3) часть коричневых проводов, выходящих из рожков, соединются с коричневым общим;

4) оставшаяся часть коричневых проводов из рожков — с чёрным общим.

Иногда производители используют провода других цветов. Но этот вариант принято считать универсальным.

Второй шаг — подключение на потолке.

Обычно здесь либо три, либо четыре провода.

Варианты с тремя проводами: фаза-ноль-земля (новые проводки), фаза1-фаза2-ноль (старые проводки).

Варианты с четыремя проводами: фаза1-фаза2-ноль-земля (новые проводки), фаза1-ноль-фаза2-ноль (старые проводки). Изредка, правда, попадаются нестандартные варианты проводки в т.ч. с ошибками.

Там необходимо определить какие провода фазные, какие — ноль и заземление. Эта процедура достойна отдельной статьи

Теперь соединяем !!при отключенном напряжении!! жёлто-зелёный из люстры на заземление, синий — на ноль, коричневый — на одну фазу, чёрный — на другую. Если на потолке фаза одна, значит коричневый и чёрный из люстры соединяем вместе на неё.

Только после всего этого можно вкручивать лампы и подавать напряжение на светильник.

Но мы настоятельно рекомендуем обратиться к квалифицированному электрику, вместо самостоятельного подключения.

СОЕДИНЕНИЯ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ — это… Что такое СОЕДИНЕНИЯ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ?


СОЕДИНЕНИЯ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ

способы соединений элементов электрич. цепей, при к-рых ветви цепи образуют соответственно трёхлучевую звезду и треугольник. Наибольшее распространение С. з. и т. получили в трёхфазных электрич. цепях. При соединении звездой концы обмоток трёх фаз генератора (трансформатора, электродвигателя) объединяются в общую нейтральную точку, а начала обмоток присоединяются к трём отходящим проводам («линейные провода»). При соединении треугольником конец каждой фазы соединяется с началом следующей и к полученным трём узлам присоединяются линейные провода. Если и генератор и приёмник электроэнергии соединены звездой, то нейтр. точки могут быть связаны четвёртым (нейтр.) проводом. У симметричных приёмников, соединённых звездой или треугольником, сопротивления всех трёх фаз одинаковы. В симметричной трёхфазной цепи, соединённой треугольником, напряжения U

л между линейными проводами равны напряжениям Uф на фазах приёмника, а силы тока в линейных проводах в корень из 3 раз больше, чем в фазах приёмника. При соединении звездой линейные напряжения больше фазных в корень из 3 раз, а силы тока в линейных проводах и в фазах одинаковы. См. рис.

Схемы соединений звездой и треугольником трёхфазной (симметричной) цепи: а - звездой; б - треугольником; Uл - линейное напряжение; Uф - фазное напряжение; Iл - сила линейного тока; Iф - сила фазного тока

Схемы соединений звездой и треугольником трёхфазной (симметричной) цепи: а — звездой; б — треугольником; Uл — линейное напряжение; Uф — фазное напряжение; Iл — сила линейного тока; Iф — сила фазного тока

Большой энциклопедический политехнический словарь. 2004.

  • СОЕДИНЕНИЯ
  • СОЕДИНИТЕЛЬНАЯ ЛИНИЯ

Смотреть что такое «СОЕДИНЕНИЯ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ» в других словарях:

  • СОЕДИНЕНИЕ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ — способы соединений, применяемые в трехфазной электрической цепи (рис. С 15). При соединении звездой концы обмоток трех фаз генератора (трансформатора, электродвигателя) соединяют в общую нейтральную точку, а начала обмоток присоединяют к трем… …   Металлургический словарь

  • Треугольником и звездой соединения —         в электротехнике, способы соединения элементов электрических цепей (См. Электрическая цепь), при которых ветви цепи образуют соответственно треугольник и трехлучевую звезду (см. рис.). Наибольшее распространение Т. и з. с. получили в… …   Большая советская энциклопедия

  • Трёхфазная цепь —         трёхфазная система, совокупность трёх однофазных электрических цепей переменного тока (См. Переменный ток) (называемых фазами), в которых действуют три переменных напряжения одинаковой частоты, сдвинутых по фазе друг относительно друга;… …   Большая советская энциклопедия

  • Электродвигатели

    — Попытки применить электричество как двигательную силу были сделаны еще в начале прошлого столетия. Так, после того как (1821 г.) Фарадеем было открыто явление вращения магнитов вокруг проводников с токами и наоборот, Sturgeons и Barlow построили… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Сельсин — (англ. selsyn, от англ. self сам и греч. sýnchronos одновременный, синхронный)         Электрическая машина, позволяющая осуществлять угловое перемещение вала какого либо устройства или механизма в соответствии с угловым перемещением другого вала …   Большая советская энциклопедия

  • Электрическая канализация

    — Э. канализация представляет собой ряд приспособлений и сооружений для распределения Э. энергии от данного источника к приемникам, расположенным в разных пунктах данной местности. Главной частью Э. канализации являются провода, по которым… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Трансформатор — У этого термина существуют и другие значения, см. Трансформатор (значения). Трансформатор силовой ОСМ 0,16 Однофазный сухой многоцелевого назначения мощностью 0.16 кВт …   Википедия

  • Выпрямитель — У этого термина существуют и другие значения, см. Выпрямитель (значения) …   Википедия

  • Диодный выпрямитель — Выпрямитель электрического тока механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.[1] [2] Большинство… …   Википедия

  • Трёхфазная система электроснабжения — Трёхфазная система электроснабжения  частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый… …   Википедия

Основные сведения о трехфазном токе. Соединение звездой и треугольником

Переменный ток, рассмотренный ранее, называется однофазным. Трехфазным называется ток, представляющий собой совокупность трех однофазных токов, сдвинутых друг относительно друга по фазе.

Простейший генератор трехфазного тока отличается от генератора однофазного тока тем, что имеет три обмотки. При вращении либо этих обмоток в поле постоянного магнита (рис.164), либо самого магнита (рис.165) в обмотках возникают переменные ЭДС  одинаковой частоты, сдвинутые друг относительно друга по фазе так, что сумма трех фазных углов составляет .

Если амплитуды ЭДС равны, а сдвиг фаз между двумя любыми смежными ЭДС равен

, то трехфазная система называется симметричной. В этом случае на обмотках возникают

одинаковые по величине, но сдвинутые по фазе напряжения: , , .

Использование несвязанных между собой обмоток эквивалентно трем отдельным генераторам и требует для передачи электроэнергии потребителю три пары проводов.

Соединение обмоток между собой позволяет уменьшить количество проводов при передаче энергии и поэтому широко используется в технике.

При соединении обмоток звездой (рис.166) они имеют одну общую точку. Напряжение на каждой обмотке называется фазным. Проводник, соединенный с точкой общего потенциала, называется нулевым проводом. Проводники, соединенные со свободными концами обмоток, называются фазными проводами.

Фазные напряжения, в этом случае, это напряжения между фазными проводами и нулевым проводом. Напряжение между фазными проводами называется линейным. Ток, текущий через обмотки, называется фазным током, а ток текущий в линии, — током линии.


Из векторной диаграммы, при соединении звездой, следует, что

. Кроме того при этом фазные токи равны токам в линии.

РИС.166 РИС.167 РИС.168 РИС.169 РИС.170

Если каждую обмотку замкнуть на одинаковую нагрузку R, то суммарная сила тока по нулевому проводу

, так как из векторной диаграммы .

Соединение обмоток генератора звездой позволяет использовать при передаче энергии четыре провода вместо шести.

При соединении обмоток треугольником (рис.168) они образуют замкнутый контур с весьма малым сопротивлением. Линейный провод отходит от общих точек начала одной фазы и конца другой и, поэтому фазные напряжения равны линейным (рис.169).

Из векторной диаграммы токов (рис.170) следует, что

, На практике используется не только соединение обмоток генератора, но и соединение между собой нагрузок звездой или треугольником. Таких комбинаций возможного соединения генератора и нагрузок – четыре.


РИС.171 РИС.172 РИС.173 РИС.174

При соединении звезда – звезда (рис.171) на всех нагрузках разное напряжение, но если сопротивление нагрузок приблизительно равно, то ток по нулевому проводу практически равен нулю.

Тем не менее, нулевой провод нельзя убирать или ставить в него предохранители потому, что без него на каждую из пар нагрузок действует линейное напряжение, причем оно распределяется в соответствии с сопротивлением нагрузок. Получается, что напряжение, подаваемое на нагрузку, зависит от ее сопротивления, что неэффективно и опасно.

Если генератор и нагрузки соединены звезда – треугольник (рис.172), то на каждой нагрузке, независимо от ее сопротивления, одинаковое напряжение, равное линейному.

При соединении треугольник – треугольник (рис.173) на всех нагрузках фазное напряжение, независимо от их сопротивления.

Если генератор и нагрузки соединены треугольник – звезда (рис.174), то на каждой нагрузке напряжение равно .

Трехфазный ток используется для получения вращающегося магнитного поля. В этом случае трехфазный ток подводится к трем обмоткам, расположенным на неподвижной станине – статоре. Внутри статора помещен стальной барабан – ротор, вдоль образующих которого в пазах уложены провода, соединенные между собой на обоих торцах кольцами.

Обмотки статора создают магнитный поток одинаковой величины, но сдвинутый по фазе, т.е. он как бы вращается относительно ротора. В обмотках ротора возникают индукционные потоки, которые, в свою очередь, взаимодействуют с вращающимся магнитным потоком, что приводит ротор во вращение, т.е. получается электродвигатель достаточно простого устройства.

При увеличении скорости ротора уменьшается относительная скорость движения его проводников относительно магнитного поля. Если бы он достиг той же скорости вращения, что и магнитный поток статора, то индукционный ток равнялся бы нулю и, соответственно, вращающий момент стал бы равным нулю.

Следовательно, при наличии тормозного момента магнитный поток и ротор не могут вращаться с той же скоростью, что и поток статора (синхронно), — скорость вращения ротора всегда несколько меньше. Поэтому двигатели такого типа называются асихронными (несинхронными).

Трехфазная система, изобретенная русским инженером М.О. Доливо-Добровольским в XIX, применяется во всем мире для передачи и распределения энергии. Доливо-Добровольский первым получил вращающееся магнитное поле с помощью трехфазного тока и построил первый асинхронный двигатель. Трехфазная система обеспечивает наиболее экономичную передачу энергии и позволяет создать надежные в работе и простые по устройству электродвигатели, генераторы и трансформаторы.

На практике, например, электрические лампы изготавливаются на номинальные напряжения 127 и 220В. Способ их включения в цепь трехфазного тока зависит от величины линейного напряжения трехфазной сети.

Лампы с номинальным напряжением 127 В включаются звездой с нейтральным проводом при линейном напряжении сети 220 В или треугольником при линейном напряжении сети 127 В.

Лампы с номинальным напряжением 220 В соответственно включаются звездой в сеть с линейным напряжением 380 В и треугольником в сеть с напряжением 220 В.

Обмотки трехфазных двигателей изготавливаются на номинальные фазные напряжения 127, 220 и 380 В. Каждый трехфазный двигатель может быть включен или звездой в трехфазную сеть с линейным напряжением, превышающим его фазное в раз, или треугольником, если линейное напряжение сети равно фазному напряжению его обмотки. Обычно на паспорте двигателя указано, например: треугольник -220В, звезда – 380В.

Линейные цепи. Правила Кирхгофа. Методы анализа линейных цепей. Переходные процессы в цепи с конденсатором.

Элемент электрической цепи называется линейным, если его параметры не зависят от напряжения и силы тока, т.е. вольт-амперная характеристика прямая.

Электрическая цепь называется линейной если она состоит из линейных элементов.

Применение закона Ома для расчета сложных разветвленных цепей, содержащих несколько источников довольно сложно. Для расчетов таких цепей используют два правила немецкого физика Г. Кирхгофа, первое из которых вытекает из закона сохранения заряда, а второе является обобщением закона Ома на произвольное число источников сторонних ЭДС в изолированном замкнутом контуре.

Для того чтобы использовать правила Кирхгофа необходимо ввести несколько понятий.

Электрическая схема – графическое изображение электрической цепи.

Ветвь электрической цепи – один или несколько последовательно соединенных элементов цепи, по которым течет один и тот же ток.

Узел – соединение трех или большего количества ветвей. Ток, входящий в узел, считается положительным, а ток, выходящий из узла, — отрицательным.

Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю:

Например, для узла на рис.64 I1-I2+I3-I4-I5=0

Контур – любой замкнутый путь, проходящий по нескольким ветвям. Положительное направление обхода контура выбирается произвольно, но одно и то же для всех контуров электрической цепи. Токи совпадающие по направлению с направлением обхода контура, считаются положительными, не совпадающие с направлением обхода – отрицательными. ЭДС считаются положительными, если они создают ток, направленный в сторону обхода контура.

Рассмотрим цепь, содержащую три источника (рис.65). Пусть R1, R2, R3 общие сопротивления ветвей АВ, ВС, СА соответственно. Положительное направление обхода примем по часовой стрелке. Применим к каждой ветви закон Ома для неоднородного участка цепи.

Сложив почленно эти уравнения, получим

Второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС, встречающихся в этом контуре:

При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов выяснится при решении: если искомый ток получится положительным, то его направление было выбрано правильно, а если отрицательным, то его истинное направление противоположно выбранному;

2. Выбрать направление обхода контуров и строго его придерживаться; записывая со соответствующими знаками токи и ЭДС;

3. Составить количество уравнений равное количеству искомых величин (в систему уравнений должны входить все сопротивления и ЭДС рассматриваемой цепи).

Соединение обмоток генератора «звездой » и «треугольником»

Пусть, мы имеем генератор переменного тока с тремя отдельными обмотками, расположенными под углом $120^0$ относительно друг друга. В этих обмотках создается трехфазный ток. Напряжения на обмотках равно:

В том случае, если данный генератор использовать без связи друг с другом, то генератор трехфазного тока становится просто совокупностью отдельных генераторов однофазного тока. В том случае, если обмотки соединяются определенным способом, то у трехфазного тока возникают специальные свойства, которые используют в технике. Используют два вида соединений обмоток генератора: «звездой» и «треугольником».

Соединение «звезда»

Рассмотрим схему соединения обмоток генератора «звездой». В ней концы трех обмоток соединяют в один узел, а начала служат для подключения нагрузок.

Схема соединения звездой показана на рис.1 (а). Такое соединение обмоток генератора позволяет использовать для передачи электроэнергии вместо шести проводов только четыре. Точка $O$ на схеме — точка общего потенциала (проводник, который соединен с точкой $О$ — нулевой провод). Такое соединение подобно соединению трех источников тока, которое показано на рис.1 (б).

Готовые работы на аналогичную тему

Рисунок 1.

При таком способе соединения напряжение между фазой и нулевым проводом называют фазным напряжением. Напряжение между фазами $A-B$, $B-C$, $C-A$ называют линейным. Для того, чтобы определить как соотносятся фазное и линейное напряжения необходимо брать геометрическую (векторную) разность.

Допустим, что генератор разомкнут, то есть $R_1=\ R_2=R_3=\infty ,\ $найдем связь между фазным напряжением (существующим в каждой из обмоток $О_1,\ О_2,О_3$) и линейными напряжениями (между проводами $0,1,2,3$). Линейное напряжение между проводом $О$ и любым другим проводом равно фазному и его амплитуда $U_m.\ $Линейное напряжение между любой парой проводов $1,2$ и $3$ будет отличаться. Найдем напряжение между проводами $1$ и $3$, которое равно разности потенциалов между свободными концами обмоток $О_1,\ О_2$:

Из формулы (2) видно, что линейное напряжение имеет такую же частоту, что и фазное. Однако, амплитуда линейного напряжения в $\sqrt{3}$ больше, чем фазного.

Допустим, что генератор имеет симметричную нагрузку ($R_1=\ R_2=R_3$). В таком случае амплитуда токов в проводах $1,2,3$ одинакова ($I_m$). Сила тока будет изменяться в соответствии с:

В нулевом проводе сила тока ($I$) равна сумме линейных токов:

Так как:

${sin \left(\omega t-120{}^\circ \right)\ }+{sin \left(\omega t-240{}^\circ \right)\ }=2{sin \left(\omega t-180{}^\circ \right)\ }cos60{}^\circ ={sin \left(\omega t-180{}^\circ \right)\ }$=-${sin \left(\omega t\right)\ }.$

Мы получили, что при симметричной нагрузке сила тока в нулевом проводе всегда равна нулю. В таком случае (при симметричной нагрузке!) нулевой провод можно удалить совсем и линия будет работать (однако, надо помнить, что при этом на каждую из пар нагрузок будет действовать линейное напряжение в $\sqrt{3}$ раз больше фазного).

Соединение треугольник

Определение 1

Обмотки трехфазного генератора и трехфазные нагрузки могут соединяться еще одним способом. В этом случае конец первой обмотки соединяется с началом второй, конец второй — с началом третьей, конец третьей с началом первой. При этом узлы соединений служат отводами. Такой способ соединения называют треугольником.

Схема соединения треугольник изображена на рис.2(а). Для основной гармоники при соединении обмоток генератора по схеме треугольник ток замыкания в обмотке равен нулю. Обмотки мощных генераторов обычно по такой схеме не соединяют. Эта схема соответствует соединению источников напряжения, которая изображена на рис. 2 (б).

Рисунок 2.

Если бы ток был постоянным, то все обмотки при таком соединении были бы замкнуты накоротко. Но, если мы имеем дело с переменными напряжениями, которые имеют разность фаз, то дело коренным образом изменяется. Результирующее напряжение в треугольнике (см. схему вычисления (4)) равно:

Мы получаем, что если генератор не имеет нагрузки, то в обмотках нет тока. Из рис. 2 очевидно, что линейные напряжения равны фазным напряжениям. При разомкнутом генераторе амплитуда линейных напряжений равна амплитуде напряжения в одной обмотке $U_m.$

В соединении треугольником нет нулевого провода, неравномерность нагрузки существеннее сказывается на работе генератора, чем в случае соединения звездой. Из-за этой особенности соединение треугольник чаще всего применяют в силовых установках, например, трехфазных двигателях, где можно получить близкие по величине нагрузки фаз.

Предполагалось, что генератор и нагрузки соединялись одинаково (звездой или треугольником), конечно, возможны комбинации схем. Например, потребитель соединяется звездой, генератор треугольником.

Пример 1

Задание: Объясните, что произойдет в схеме, которая изображена на рис.1 (а), если оборван провод $1$? Что случится, если перегорел нулевой провод?

Решение:

Допустим, что в схеме соединения звезда (рис.1(а)) оборван провод $1$. Тогда нагрузка $R_1$ , будет выключена. Нагрузки $R_2\ и\ R_3$ будут нормально работать, так как на них будут присутствовать фазные напряжения.

Пусть перегорел нулевой провод. В этом случае каждая пара сопротивлений, например $R_1\ и\ R_2$ будут соединены последовательно и попадут под напряжение в $\sqrt{3}$ раз больше фазного. Это напряжение распределится в соответствии с правилами последовательного соединения, пропорционально сопротивлениям (в данном случае $R_1\ и\ R_2$). Так, если $R_1=R,\ R_2=\frac{1}{10}R$, то на ветке $R_2$ мы получим $0,1U$, а на ветке $R_1$ будет $0,9 U$, где $U$- полное напряжение. Допустим, что напряжение в сети (фазное) $220В$, тогда:

\[U=\sqrt{3}\cdot 220=380\ \left(B\right)\left(1.1\right).\]

Из $380В$ на сопротивление $R_1$ придется $342 В$, тогда как на $R_2$ придется $38В$. Поэтому, если в качестве $R_1$ будет, например бытовая лампочка, она перегорит и ток в обеих ветвях прервётся.

Пример 2

Задание: Объясните, почему соединение звездой применяют в технике освещения?

Решение:

Необходимость применения соединения «звезда», которая имеет нулевой провод, существует в технике освещения, так как при работе осветительных приборов невозможно добиться симметрии в нагрузках. В таких сетях все три фазы и нулевой (нейтральный) провод подводят, например, к жилым домам, внутри дома пытаются примерно одинаково нагрузить каждую фазу, так чтобы общая нагрузка была наиболее симметричной. При этом к каждой квартире приходит нулевой провод и одна из фаз. На распределительный щит, через который проходят две или три фазы, в нулевой провод предохранитель не ставят, так как его перегорание ведет асимметрии напряжений.

27. Трехфазные цепи переменного тока. Соединение приемников звездой и треугольником. Основные определения

   Трехфазная  цепь  является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые относительно друг друга по фазе на 120o, создаваемые общим источником. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой.

   Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными.

     Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена обмотка, состоящая из трех частей или фаз, пространственно смещенных относительно друг друга на 120o. В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на 120o. Запишем мгновенные значения и комплексы действующих значений ЭДС.

     Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю.

       Соответственно                 

     На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита ( А, В, С ), а концы — последними буквами ( X, Y, Z ). Направления ЭДС указывают от конца фазы обмотки генератора к ее началу.       Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: прямым и обратным. Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником.

2. Соединение в звезду. Схема, определения

     Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.

Рис. 6.1

     Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом.      Напряжения  между началами фаз  или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями.        Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

Iл = Iф.

ZN — сопротивление нейтрального провода.

     Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

     (7.1)

     На рис. 6.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

Рис. 6.2

       Из векторной диаграммы видно, что

       При симметричной системе ЭДС источника линейное напряжение больше фазного  в √3 раз.

Uл = √3 Uф

 

Разница между соединением звездой и треугольником

Сравнение соединений звездой и треугольником

Мы в основном используем термины звезда и треугольник в электрических системах при обсуждении трехфазных цепей переменного тока и электродвигателей. Ниже приведена таблица, в которой сравниваются соединения «звезда» и «треугольник», показывающая точную разницу между соединениями «звезда» (Y) и треугольник (Δ) . Difference between Star and Delta Connections Difference between Star and Delta Connections

Соединение ЗВЕЗДА (Y) Соединение ДЕЛЬТА (Δ)
В соединении ЗВЕЗДЫ начальные или конечные концы (аналогичные концы) трех катушек соединяются вместе, образуя нейтральная точка.Общий провод выводится из нейтральной точки, которая называется Neutral . В соединении DELTA противоположные концы трех катушек соединены вместе. Другими словами, конец каждой катушки соединяется с начальной точкой другой катушки, а из соединений катушек выводятся три провода.
Имеется нейтраль или Star Point . Нет нейтральной точки в соединении треугольником.
Трехфазная четырехпроводная система получена из Star Connections (3-фазная, 4-проводная система ).Мы также можем получить 3-фазную 3-проводную систему от Star Connection Трехфазная трехпроводная система получена из Delta Connections (3-фазная, 3-проводная система) . т.е. трехфазная, проводная система невозможна при соединении треугольником.
Линейный ток равен фазному току. то есть

Линейный ток = Фазный ток

I L = I PH

Линейный ток равен √3 -кратному фазному току.т.е.

I L = √3 I PH

Напряжение сети в √3 раз больше фазного напряжения. т.е.

В L = √3 В PH

Напряжение сети равно фазному напряжению. т.е.

Линейное напряжение = фазное напряжение

В L = В PH

При соединении звездой полную мощность трех фаз можно определить по формуле:

P = √3 x V L x I L x CosФ….Или

P = 3 x V PH x I PH x CosФ

P = √3 V x 1

При соединении треугольником полную мощность трех фаз можно определить по формуле:

P = √3 x V L x I L x CosФ… Или

P = 3 x V PH x I PH x CosФ

P = 3 x V (1 / √3)

Двигатели, подключенные звездой, имеют низкую скорость, поскольку они получают напряжение 1 / √3 . Скорости двигателей, подключенных по схеме треугольника, высоки, потому что каждая фаза получает общее линейное напряжение.
При соединении звездой, плавном пуске и работе с номинальной мощностью может быть достигнута нормальная работа без перегрева. При соединении треугольником двигатель получает максимальную выходную мощность.
При соединении звездой фазное напряжение составляет 1 / √3 от линейного напряжения. Следовательно, ему нужно небольшое количество витков, что позволяет сэкономить на меди. При соединении треугольником фазное напряжение равно линейному напряжению, следовательно, требуется большее количество витков, что увеличивает общую стоимость.
Необходима низкая изоляция, так как фазное напряжение низкое по сравнению с Delta. Требуется высокая изоляция, так как фазное напряжение = линейное напряжение.
Звездное соединение — это общая и общая система, которая используется при передаче электроэнергии. Delta Connection — типичная система, используемая в системах распределения и промышленности.

Та же самая таблица, показывающая различия между конфигурациями звезды и треугольника, может быть увидена ниже, если у вас возникнут какие-либо трудности при чтении текста.

Щелкните изображение, чтобы увеличить

Main Difference between Star and Delta Connections Main Difference between Star and Delta Connections Основное различие между соединением «звезда» и «треугольник»

Связанные сообщения:

.

Разница между соединением звезды и треугольника

Разница между соединением звездой и треугольником объясняется с учетом различных факторов, таких как базовое определение соединений, наличие нейтральной точки, соединение клемм, соотношение между линейным током и фазным током, а также между линейным напряжением и фазным напряжением, скорость, уровень изоляции, количество витков, тип системы и использования сети и т. д.

Различия между соединением «звезда» и «треугольник» приведены ниже в таблице , форма .

ОСНОВАНИЕ СОЕДИНЕНИЕ ЗВЕЗДА СОЕДИНЕНИЕ ТРЕУГОЛЬНИКОМ
Базовое определение Клеммы трех ветвей подключены к общей точке. Образованная сеть известна как Star Connection Три ветви сети соединены таким образом, что образуется замкнутый контур, известный как Delta Connection
Подключение клемм Начальная и конечная точки, которые являются одинаковыми концами трех катушек, соединены вместе Конец каждой катушки подключен к начальной точке другой катушки, что означает, что противоположные клеммы катушек подключены друг к другу. соединены вместе.
Нейтраль Нейтраль или звезда имеется в соединении звездой. Нейтральная точка не существует в соединении треугольником.
Соотношение между линейным и фазным током Линейный ток равен фазному току. Линейный ток равен трехкратному корню фазного тока.
Соотношение между линейным и фазным напряжением Линейное напряжение равно трехкратному корню фазного напряжения Линейное напряжение равно фазному напряжению.
Скорость Двигатели, подключенные звездой, имеют низкую скорость, так как они получают 1 / √3 напряжения. Скорость электродвигателей, подключенных по схеме треугольника, высокая, потому что каждая фаза получает общее напряжение сети.
Фазовое напряжение Фазовое напряжение ниже в 1/3 раза от линейного напряжения. Фазное напряжение равно линейному напряжению.
Число витков Требуется меньшее число витков Требуется большое число витков.
Уровень изоляции Требуемая изоляция низкая. Требуется высокая изоляция.
Тип сети В основном используется в сетях передачи электроэнергии. Используется в сетях распределения электроэнергии.
Полученное напряжение При соединении звездой каждая обмотка получает 230 вольт. При соединении треугольником каждая обмотка получает 414 вольт.
Тип системы Как трехфазная четырехпроводная, так и трехфазная трехпроводная система могут быть соединены звездой. Трехфазная четырехпроводная система может быть получена из соединения треугольником.

В этой статье объясняется разница между соединением «звезда» и «треугольник». В трехфазной цепи есть два типа соединений. Один известен как Star Connection, а другой — Delta Connection. Соединение звездой имеет общую точку или звезду, к которой подключены все три клеммы, образующие звезду, как показано ниже.

DIFFERENECE-BETWEEN-STAR-AND-DELTA-FIG-1

При соединении треугольником все три клеммы соединены вместе, образуя замкнутый контур.В нем нет общей или нейтральной точки, и она используется для передачи энергии на короткие расстояния. Схема подключения представлена ​​ниже.

DIFFERENECE-BETWEEN-STAR-AND-DELTA-FIG-2

Разница между соединением звезда и треугольник заключается в следующем: —

  • Клеммы трех ветвей подключены к общей точке. Образованная сеть известна как Star Connection . Три ветви сети соединены таким образом, что образуется замкнутый контур, известный как Delta Connection .
  • При соединении звездой концы начальной и конечной точек трех катушек соединены вместе с общей точкой, известной как нейтральная точка . Но при соединении треугольником нейтральной точки нет. Конец каждой катушки соединен с начальной точкой другой катушки, что означает, что противоположные клеммы катушек соединены вместе.
  • При соединении звездой линейный ток равен фазному току, тогда как при соединении треугольником линейный ток равен трехкратному корню фазного тока.
  • При соединении звездой линейное напряжение равно трехкратному корню фазного напряжения, тогда как при соединении треугольником линейное напряжение равно фазному напряжению.
  • Скорость двигателей, подключенных по схеме «звезда», низкая, поскольку они получают 1 / √3 напряжения, но скорость двигателей, подключенных по схеме «треугольник», высокая, потому что каждая фаза получает сумму сетевого напряжения.
  • При соединении звездой фазное напряжение в 1 / √3 раз меньше линейного напряжения, тогда как при соединении треугольником фазное напряжение равно линейному напряжению.
  • Соединения звездой в основном требуются для сети передачи электроэнергии на большие расстояния, тогда как соединение треугольником в основном в распределительных сетях и используется для более коротких расстояний.
  • При соединении звездой каждая обмотка получает 230 вольт, а при соединении треугольником каждая обмотка получает 415 вольт.
  • При соединении звездой можно получить как 3-фазную, 4-проводную, так и 3-фазную 3-проводную системы, тогда как при соединении треугольником можно получить только 3-фазную 4-проводную систему.
  • Уровень изоляции, требуемый при соединении звездой, низкий, а при соединении треугольником требуется высокий уровень изоляции.
.

Обзор соединения трансформатора звезда-треугольник

General Electric power transformer nameplate (50 MVA Substation Power Transformer with Load Tap Changer) Паспортная табличка силового трансформатора General Electric (силовой трансформатор подстанции 50 МВА с переключателем ответвлений)

Обзор соединения звезда-треугольник

При этом типе подключения трансформатора первичная обмотка соединяется звездой, а вторичная подключается по схеме «треугольник», как показано ниже на рис. 1 .

Transformer Connection - Star-Delta Рисунок 1 — Подключение трансформатора — звезда-треугольник

Напряжения на первичной и вторичной сторонах могут быть представлены на векторной диаграмме, как показано на Рисунок 2 ниже.

Phasor diagram with voltages on primary and secondary sides Рисунок 2 — Фазорная диаграмма с напряжениями на первичной и вторичной сторонах

Ключевые моменты

  1. Как первичный в соединении звездой
  2. Линейное напряжение на первичной стороне = √3 X Фазное напряжение на первичной стороне. Итак,
  3. Фазное напряжение на первичной стороне = Линейное напряжение на первичной стороне / √3
  4. Коэффициент преобразования сейчас (K) = Напряжение вторичной фазы / Напряжение первичной фазы
  5. Напряжение вторичной фазы = K X Напряжение первичной фазы.
  6. Как вторичная обмотка, подключенная треугольником:
  7. Линейное напряжение на вторичной стороне = фазное напряжение на вторичной стороне.
  8. Напряжение вторичной фазы = K X Напряжение первичной фазы. = K X (Напряжение линии на первичной стороне / √3)
  9. Напряжение вторичной фазы = (K / √3) X Напряжение сети на первичной стороне.
  10. Существует сдвиг фазы на +30 или -30 градусов между вторичным фазным напряжением и первичным фазным напряжением

Преимущества соединения звезда-треугольник

  1. Первичная сторона подключена звездой. Следовательно, требуется меньшее количество оборотов.Это делает подключение экономичным для больших высоковольтных понижающих силовых трансформаторов.
  2. Нейтраль первичной обмотки может быть заземлена, чтобы избежать искажений.
  3. Нейтральная точка позволяет работать с обоими типами нагрузок (однофазной или трехфазной).
  4. Можно удовлетворительно справляться с большими неуравновешенными грузами.
  5. Соединение Y-D не имеет проблем с составляющими третьей гармоники из-за циркулирующих токов inD. Он также более устойчив к несбалансированным нагрузкам, поскольку D частично перераспределяет любой возникающий дисбаланс.
  6. Обмотка, соединенная треугольником, пропускает ток третьей гармоники, благодаря которому потенциал нейтральной точки стабилизируется. Некоторая экономия в стоимости изоляции достигается, если сторона ВН соединена звездой. Но на практике сторона ВН обычно подключается по схеме треугольника, так что трехфазные нагрузки, такие как двигатели, и однофазные нагрузки, такие как осветительные нагрузки, могут питаться от стороны НН по трехфазной четырехпроводной системе.
  7. В качестве заземляющего трансформатора: в энергосистеме Заземленный в основном трансформатор Y- ∆ используется только для обеспечения хорошего источника заземления в незаземленной системе треугольником.Возьмем, к примеру, систему распределения, питаемую от подключенного (т.е. незаземленного) источника питания .
    .
    Если требуется подключить нагрузку между фазой и землей к этой системе, к системе подключается блок заземления, как показано в Рисунок 3 ниже: Y-D Grounding transformer Рисунок 3 — Трансформатор заземления YD
  8. Эта система является заземляющим блоком подключен к системе, как показано на Рисунок 3 . Обратите внимание, что подключенная обмотка не подключена к какой-либо внешней цепи в Рисунок 3 .
  9. При токе нагрузки, равном 3-кратному i, каждая фаза заземленной обмотки Y обеспечивает одинаковый ток i, а вторичная обмотка заземляющего банка, подключенная к сети, обеспечивает количество ампер-витков, необходимых для компенсации ампер-витков первичной обмотка. Обратите внимание, что батарея заземления не подает на нагрузку никакой реальной мощности; он нужен только для того, чтобы обеспечить наземный путь. Вся мощность, необходимая для нагрузки, обеспечивается двумя фазами незаземленного источника питания.

Недостатки соединения звезда-треугольник

В этом типе соединения вторичное напряжение не совпадает по фазе с первичным.Следовательно, невозможно использовать это соединение параллельно с трансформатором, подключенным по схеме звезда-звезда или треугольник.

Одна проблема, связанная с этим подключением, заключается в том, что вторичное напряжение сдвигается на 30 0 относительно первичного напряжения. Это может вызвать проблемы при параллельном подключении 3-фазных трансформаторов, поскольку вторичные напряжения трансформаторов должны быть синфазными для параллельного включения. Поэтому мы должны обращать внимание на эти сдвиги.

Если вторичная обмотка этого трансформатора должна быть параллельна вторичной обмотке другого трансформатора без сдвига фаз, возникнет проблема.


Приложение

Обычно используется для трансформаторов питания. Этот тип подключения обычно используется на стороне подстанции линии передачи. Основное использование этого соединения — понижение напряжения. Нейтраль на первичной стороне заземлена. Видно, что между напряжениями первичной и вторичной линии существует разность фаз 30 °.

Обычно используется в понижающем трансформаторе , Y-соединение на стороне ВН снижает затраты на изоляцию. Нейтральная точка на стороне ВН может быть заземлена, что обеспечивает устойчивость по отношению к несимметричным нагрузкам.Как, например, в конце ЛЭП. Нейтраль первичной обмотки заземлена.

В этой системе коэффициент линейного напряжения составляет 1 / √3 кратности поворота трансформатора, а вторичное напряжение отстает от первичного на 30 °. Также в нем протекают токи третьей гармоники, чтобы получить синусоидальный поток.

.

Пускатель электродвигателя звезда-треугольник, объяснение подробно

Введение в устройство пуска электродвигателя звезда-треугольник

Большинство асинхронных электродвигателей запускаются непосредственно от сети, но когда очень большие электродвигатели запускаются таким образом, они вызывают нарушение напряжения в линиях питания. к большим скачкам пускового тока.

Star-delta motor starter panel Панель пускателя двигателя звезда-треугольник

Чтобы ограничить скачок пускового тока, большие асинхронные двигатели запускаются при пониженном напряжении, а затем снова подключаются к полному напряжению питания, когда они набирают скорость, близкую к скорости вращения.

Star-delta starter Панель пускового устройства звезда-треугольник

Для снижения пускового напряжения используются два метода: Пуск звезда-треугольник и Пуск автотрансформатора .


Принцип работы пускателя звезда-треугольник

Это метод пуска при пониженном напряжении. Снижение напряжения при пуске со звезды на треугольник достигается за счет физического изменения конфигурации обмоток двигателя, как показано на рисунке ниже. Во время пуска обмотки двигателя соединяются звездой, что снижает напряжение на каждой обмотке 3.Это также снижает крутящий момент в три раза.

Scheme - Working Principle of Star-Delta Starter Схема — принцип работы пускателя звезда-треугольник

Через некоторое время обмотка переконфигурируется как треугольник, и двигатель работает нормально. Пускатели звезда / треугольник, вероятно, являются наиболее распространенными пускателями пониженного напряжения. Они используются в попытке уменьшить пусковой ток, подаваемый на двигатель во время пуска, как средство уменьшения помех и помех в электроснабжении.

Традиционно во многих регионах поставок было требование устанавливать пускатель пониженного напряжения на все двигатели мощностью более 5 л.с. (4 кВт).Пускатель звезда / треугольник (или звезда / треугольник) является одним из самых дешевых электромеханических пускателей пониженного напряжения, которые могут быть применены.

Пускатель звезда / треугольник состоит из трех контакторов, таймера и устройства защиты от тепловой перегрузки. Контакторы меньше, чем одиночный контактор, используемый в пускателях прямого включения, поскольку они регулируют только токи обмоток. Токи через обмотку составляют 1 / корень 3 (58%) тока в линии.

Есть два контактора, которые замыкаются во время работы, часто называемые главным подрядчиком и контактором треугольника.Это AC3, рассчитанный на 58% номинального тока двигателя. Третий контактор — это контактор звезды, который пропускает ток звезды только тогда, когда двигатель подключен звездой.

Ток в схеме звезды составляет одну треть тока в треугольнике, поэтому этот контактор может быть рассчитан на AC3 на одну треть (33%) номинальной мощности двигателя.


Пускатель звезда-треугольник Состоит из следующих блоков:

  1. Контакторы (главные, звездообразные и треугольные контакторы) 3 НР (для пускателя с разомкнутым состоянием) или 4 НР (пускатель с переходным включением).
  2. Реле времени (с задержкой срабатывания) 1 №
  3. Трехполюсный тепловой расцепитель максимального тока 1 №
  4. Плавкие элементы или автоматические выключатели для главной цепи 3 №
  5. Плавкий элемент или автоматический выключатель для цепь управления 1

Цепь питания стартера звезда-треугольник

Главный автоматический выключатель служит главным выключателем источника питания, который подает электричество в силовую цепь.

Главный контактор подключает опорный источник напряжения R , Y , B к первичной клемме двигателя U1 , V1 , W1 .

Во время работы главный контактор ( KM3 ) и контактор звезды ( KM1 ) сначала замыкаются, а затем, через некоторое время, размыкается контактор звезды, а затем контактор треугольника ( KM2 ) закрыто. Управление контакторами осуществляется таймером ( K1T ), встроенным в пускатель. Звезда и Дельта электрически взаимосвязаны и предпочтительно механически взаимосвязаны.

Power circuit of Star-Delta starter Силовая цепь пускателя звезда-треугольник

Фактически, существует четыре состояния:

Контактор звезды служит для первоначального замыкания вторичной клеммы двигателя U2, V2, W2 для последовательности запуска во время начального пуска. мотора с места.Это обеспечивает одну треть прямого прямого тока двигателя, тем самым снижая высокий пусковой ток, свойственный двигателям большой мощности при запуске.

Управление переключающимся соединением звезды и треугольника асинхронного двигателя переменного тока осуществляется с помощью схемы управления звезда-треугольник или звезда-треугольник. Схема управления состоит из кнопочных переключателей, вспомогательных контактов и таймера.


Цепь управления пускателем звезда-треугольник (разомкнутый переход)

Схема Scheme - Control Circuit of Star-Delta Starter (Open Transition) — цепь управления пускателем звезда-треугольник (разомкнутый переход)

Кнопка ON запускает цепь путем первоначального включения катушки контактора звезды (KM1) звезды цепь и цепь катушки таймера (KT).Когда на катушку контактора звезды (KM1) подается питание, главный и вспомогательный контакторы звезды меняют свое положение с NO на NC.

Когда вспомогательный контактор звезды (1) (который помещен в цепь катушки главного контактора) становится нормально разомкнутым на нормально замкнутый, это завершается. Цепь катушки главного контактора (KM3) включается, поэтому на катушку главного контактора подается напряжение, а главный и вспомогательный контакторы главного контактора меняют свое положение с НЕТ в НЗ. Эта последовательность происходит во времени.

После нажатия кнопочного переключателя ON вспомогательный контакт катушки главного контактора (2), который подключен параллельно к кнопке ON, станет нормально разомкнутым на нормально замкнутый, тем самым обеспечивая защелку для удержания катушки главного контактора в активном состоянии. что в конечном итоге поддерживает цепь управления в активном состоянии даже после отпускания кнопочного переключателя ON.

Когда главный контактор звезды (KM1) замыкает свое соединение, двигатель подключается к STAR, и он подключается к STAR до тех пор, пока вспомогательный контакт KT (3) с выдержкой времени не станет нормально замкнутым.

По достижении заданного времени задержки вспомогательные контакты таймера (KT) (3) в цепи звездообразной катушки изменят свое положение с NC на NO, и в то же время вспомогательный контактор (KT) в цепи катушки Delta (4 ) измените свое положение с NO на NC, чтобы катушка Delta была под напряжением, а главный контактор Delta стал NO на NC.Теперь клеммы двигателя меняются со звезды на треугольник.

Нормально замкнутый вспомогательный контакт от контакторов звезды и треугольника (5 и 6) также размещается напротив катушек контактора как звезды, так и треугольника, эти контакты блокировки служат в качестве предохранительных выключателей для предотвращения одновременной активации катушек контакторов как звезды, так и треугольника, так что одна не может быть активирован, если сначала не будут деактивированы другие. Таким образом, катушка контактора треугольником не может быть активна, когда катушка контактора звезды активна, и аналогично катушка контактора звезды не может быть активной, пока катушка контактора треугольника активна.

Цепь управления выше также имеет два прерывающих контакта для отключения двигателя. Кнопочный переключатель OFF отключает цепь управления и двигатель при необходимости. Контакт тепловой перегрузки представляет собой защитное устройство, которое автоматически размыкает цепь управления STOP в случае, когда ток перегрузки двигателя обнаруживается тепловым реле перегрузки, это необходимо для предотвращения возгорания двигателя в случае чрезмерной нагрузки, превышающей номинальную мощность двигатель обнаружен тепловым реле перегрузки.

В какой-то момент во время запуска необходимо переключиться с обмотки, соединенной звездой, на обмотку, соединенную треугольником. Цепи питания и управления могут быть организованы для этого одним из двух способов — открытый переход или закрытый переход.


Что такое запуск открытого или закрытого перехода

1. Стартеры открытого перехода

Обсудите, что упомянутое выше называется переключением с открытым переходом, потому что существует открытое состояние между состоянием звезды и состоянием треугольника.

При открытом переходе питание двигателя отключается, а конфигурация обмотки изменяется с помощью внешнего переключения.

Когда двигатель приводится в действие источником питания, на полной или частичной скорости, в статоре возникает вращающееся магнитное поле. Это поле вращается с линейной частотой. Поток от поля статора индуцирует ток в роторе, что, в свою очередь, приводит к магнитному полю ротора.

Когда двигатель отключен от источника питания (открытый переход), внутри статора находится вращающийся ротор, и ротор имеет магнитное поле. Из-за низкого импеданса цепи ротора постоянная времени довольно велика, и действие поля вращающегося ротора внутри статора является действием генератора, который генерирует напряжение с частотой, определяемой скоростью ротора.

Когда двигатель снова подключается к источнику питания, он переключается на несинхронизированный генератор, и это приводит к очень высоким переходным процессам по току и крутящему моменту. Величина переходного процесса зависит от соотношения фаз между генерируемым напряжением и линейным напряжением в точке замыкания. может быть намного выше, чем прямой ток и крутящий момент, и может привести к электрическим и механическим повреждениям.

Запуск открытого перехода является наиболее простым для реализации с точки зрения стоимости и схемотехники, и если время переключения хорошее, этот метод может работать хорошо.На практике, однако, сложно установить необходимое время для правильной работы, и отключение / повторное включение источника питания может вызвать значительные переходные процессы напряжения / тока.

В открытом переходе есть четыре состояния:

  1. Состояние ВЫКЛ. : Все контакторы разомкнуты.
  2. Состояние звезды: Главный контактор [KM3] и контактор звезды [KM1] замкнуты, а контактор треугольника [KM2] разомкнут. Двигатель подключен по схеме звезды и будет производить одну треть крутящего момента прямого тока при одной трети прямого тока.
  3. Открытое состояние: Этот тип операции называется переключением с открытым переходом, потому что существует открытое состояние между состоянием звезды и состоянием треугольника. Главный подрядчик закрыт, а контакторы Delta и Star разомкнуты. На одном конце обмотки двигателя есть напряжение, но другой конец открыт, поэтому ток не может течь. Мотор имеет вращающийся ротор и ведет себя как генератор.
  4. Delta State: Главный и треугольный контакторы замкнуты. Контактор звезды разомкнут.Двигатель подключен к полному линейному напряжению, и доступны полная мощность и крутящий момент.

2. Пускатель звезда / треугольник с замкнутым переходом

Существует методика уменьшения амплитуды переходных процессов переключения. Это требует использования четвертого контактора и набора из трех резисторов. Резисторы должны иметь такие размеры, чтобы в обмотках двигателя мог протекать значительный ток, пока они включены в цепь.

Вспомогательный контактор и резисторы подключаются через контактор треугольника.Во время работы, непосредственно перед размыканием контактора звездой, вспомогательный контактор замыкается, в результате чего через резисторы протекает ток через звезду. Как только контактор звезды размыкается, ток может проходить через обмотки двигателя к источнику питания через резисторы. Затем эти резисторы замыкаются контактором треугольником.

Если сопротивление резисторов слишком велико, они не будут подавлять напряжение, генерируемое двигателем, и не будут служить никакой цели.

При закрытом переходе питание на двигатель поддерживается все время.

Это достигается за счет установки резисторов, принимающих ток во время переключения обмотки. Четвертый подрядчик должен вставить резистор в цепь перед размыканием контактора звезды и затем удалить резисторы после замыкания контактора треугольника.

Эти резисторы должны быть рассчитаны на ток двигателя. В дополнение к необходимости большего количества переключающих устройств, схема управления более сложна из-за необходимости выполнять переключение резистора

При закрытом переходе есть четыре состояния:

  1. Состояние ВЫКЛ. Все контакторы разомкнуты
  2. Star State. Главный контактор [KM3] и контактор звезды [KM1] замкнуты, а контактор треугольника [KM2] разомкнут. Двигатель подключен по схеме звезды и будет производить одну треть крутящего момента прямого тока при одной трети прямого тока.
  3. Звездное переходное состояние. Двигатель подключен звездой, а резисторы подключаются к контактору треугольником через вспомогательный контактор [KM4].
  4. Закрытое переходное состояние. Главный контактор [KM3] замкнут, а контакторы треугольника [KM2] и звезды [KM1] разомкнуты.Ток протекает через обмотки двигателя и переходные резисторы через KM4.
  5. Штат Дельта. Контакторы Main и Delta замкнуты. Короткое замыкание переходных резисторов. Контактор звезды разомкнут. Двигатель подключен к полному линейному напряжению, и доступны полная мощность и крутящий момент.

Эффект переходного процесса в пускателе (разомкнутый переходный пускатель)

Важно, чтобы пауза между выключением контактора звезды и контактором треугольника была включена правильно.Это связано с тем, что контактор звезды должен быть надежно отключен до включения контактора треугольника. Также важно, чтобы пауза переключения была не слишком длинной.

Для 415 В, напряжение соединения звездой эффективно снижено до 58% или 240 В. Эквивалент 33%, который получается при запуске Direct Online (DOL).

Если соединение звездой имеет достаточный крутящий момент для работы со скоростью до 75% или 80% от полной скорости нагрузки, то двигатель можно подключить в режиме треугольника.

При подключении по схеме «треугольник» фазное напряжение увеличивается на V3 или на 173%.Фазные токи увеличиваются в таком же соотношении. Линейный ток увеличивается в три раза по сравнению с его значением при соединении звездой.

Во время переходного периода переключения двигатель должен работать свободно с небольшим замедлением. В то время как это происходит «выбегом», он может генерировать собственное напряжение, и при подключении к источнику питания это напряжение может произвольно складываться или вычитаться из приложенного сетевого напряжения. Это известно как переходный ток . Всего в течение нескольких миллисекунд он вызывает скачки и скачки напряжения.Известен как переходный процесс переключения.


Размер каждой части пускателя звезда-треугольник

1. Размер реле перегрузки

Для пускателя звезда-треугольник есть возможность разместить защиту от перегрузки в двух положениях: в строке или в обмотки .

Реле перегрузки в линии:

В линии аналогично установке перегрузки перед двигателем, как с прямым пускателем.

Рейтинг перегрузки (линейный) = FLC двигателя.

Недостаток: Если перегрузка установлена ​​на FLC, то она не защищает двигатель, пока он находится в треугольнике (значение x1,732 слишком велико).

Реле перегрузки в обмотке:

В обмотках означает, что перегрузка находится после точки, где проводка к контакторам разделена на основную и треугольную. В этом случае перегрузка всегда измеряет ток внутри обмоток.

Настройка реле перегрузки (в обмотке) = 0,58 X FLC (линейный ток).

Недостаток: мы должны использовать отдельные защиты от короткого замыкания и перегрузки.

2. Размер главного подрядчика и подрядчика треугольника

Есть два контактора, которые замыкаются во время работы, часто называемые основным подрядчиком и контактором треугольника. Это AC3, рассчитанный на 58% номинального тока двигателя.

Размер главного контактора = IFL x 0,58

3. Размер Star Contractor

Третий контактор — это контактор звезды, который пропускает ток звезды только тогда, когда двигатель подключен звездой.Ток в звездочке составляет 1 / √3 = (58%) тока в треугольнике, поэтому этот контактор может быть рассчитан на AC3 на одну треть (33%) номинала двигателя.

Размер контактора звезды = IFL x 0,33


Пусковые характеристики двигателя пускателя звезда-треугольник

  • Доступный пусковой ток: 33% тока полной нагрузки.
  • Пиковый пусковой ток: от 1,3 до 2,6 тока полной нагрузки.
  • Пиковый пусковой крутящий момент: 33% крутящего момента при полной нагрузке.

Преимущества пускателя звезда-треугольник

  • Метод звезда-треугольник прост и надежен.
  • Он относительно дешев по сравнению с другими методами пониженного напряжения.
  • Хорошие характеристики крутящего момента / тока.
  • Он потребляет пусковой ток в 2 раза превышающий ток полной нагрузки подключенного двигателя.

Недостатки пускателя со звезды на треугольник

  1. Низкий пусковой момент (крутящий момент = (квадрат напряжения) также уменьшается).
  2. Обрыв питания — возможные переходные процессы
  3. Требуется шестиконтактный двигатель (соединение треугольником).
  4. Требуется 2 комплекта кабелей от стартера к двигателю.
    .
  5. Он обеспечивает только 33% пускового момента, и если нагрузка, подключенная к соответствующему двигателю, требует более высокого пускового момента во время пуска, возникают очень тяжелые переходные процессы и напряжения при переходе со звезды на треугольник, а также из-за этих переходных процессов и напряжений. происходит много электрических и механических поломок.
    .
  6. При этом способе пуска сначала двигатель подключается по схеме «звезда», а затем после переключения двигатель подключается по схеме «треугольник». Дельта двигателя формируется в пускателе, а не на клеммах двигателя.
    .
  7. Высокая передача и пики тока: Например, при запуске насосов и вентиляторов момент нагрузки низкий в начале пуска и увеличивается пропорционально квадрату скорости. При достижении прибл. 80-85% номинальной скорости двигателя, момент нагрузки равен крутящему моменту двигателя, и ускорение прекращается.Для достижения номинальной скорости необходимо переключение в положение треугольник, что очень часто приводит к сильным токам передачи и пикам. В некоторых случаях текущий пик может достигать значения, даже большего, чем для запуска D.O.L.
    .
  8. Приложения с крутящим моментом нагрузки, превышающим 50% номинального крутящего момента двигателя, не смогут запускаться с использованием пускателя по схеме треугольник.
    .
  9. Низкий пусковой крутящий момент: Метод пуска звезда-треугольник (звезда-треугольник) определяет, будут ли выводы электродвигателя настроены на электрическое соединение звездой или треугольником.Первоначальное соединение должно быть выполнено по схеме звезды, что приведет к снижению линейного напряжения на коэффициент 1 / √3 (57,7%) для двигателя, а ток уменьшится до 1/3 от тока при полном напряжении, но пусковой момент также уменьшается с 1/3 до 1/5 пускового момента прямого тока.
    .
  10. Переход от звезды к треугольнику обычно происходит при достижении номинальной скорости, но иногда выполняется на уровне 50% от номинальной скорости, что вызывает кратковременные искры.

Особенности пуска со звезды на треугольник

  1. Для трехфазных двигателей малой и большой мощности.
  2. Пониженный пусковой ток
  3. Шесть соединительных кабелей
  4. Пониженный пусковой момент
  5. Пик тока при переключении со звезды на треугольник
  6. Механическая нагрузка при переключении со звезды на треугольник

Применение пускателя звезда-треугольник

Звезда- Дельта-метод обычно применяется только к двигателям низкого и среднего напряжения и двигателям с малым пусковым моментом.

Полученный пусковой ток составляет примерно 30% пускового тока при прямом пуске от сети, а пусковой крутящий момент снижается примерно до 25% крутящего момента, доступного при D.О.Л. старт. Этот метод запуска работает, только если приложение слегка загружено во время запуска.

Если двигатель слишком нагружен, крутящего момента не хватит для разгона двигателя до скорости до переключения в положение треугольника.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *