Электроника НТБ — научно-технический журнал — Электроника НТБ
ОСОБЕННОСТИ КОНДЕНСАТОРОВ С НИЗКИМ ESRДо последнего времени четкое определение конденсатора с низким ESR отсутствовало. Такие стандарты, как JIS5141 и EIA395, касаются только процедур испытаний конденсаторов. Отсутствие стандартов заставило отдельных производителей самостоятельно определять, что же значит конденсатор с низким ESR. В итоге большинство поставщиков установили согласованный критерий, определяющий такие конденсаторы как элементы, у которых:
· срок службы больше, чем у стандартных конденсаторов;
· максимальный импеданс задается на частоте 100 кГц и остается неизменным в диапазоне температур +20…-10°С;
· пульсирующий ток определяется на частоте 100 кГц;
· повышенная температурная стабильность (температурный коэффициент импеданса).
Конденсаторы с низким ESR одного и того же номинала могут монтироваться в корпуса различных размеров.
Для лучшего понимания того, что же представляют собой конденсаторы с низким ESR и каковы их характеристики, необходимо сначала понять, что же значит низкое ESR и как оно влияет на рабочие характеристики схемы. Эквивалентная схема конденсатора содержит четыре основных элемента (рис.1), причем значения трех – импеданса конденсатора (Z), эквивалентного последовательного сопротивления (ESR), эквивалентной последовательной индуктивности (ESL) – зависят от частоты. Значение Rp зависит от постоянного тока. Рассмотрим лишь зависящие от частоты характеристики конденсатора – ESL, ESR и Z.
ESR, подобно ESL, – сумма всех резистивных элементов конденсатора. ESR = DF/(2PIЧfЧC)ЧХс, где DF – коэффициент рассеяния,
…
Z – импеданс конденсатора. Z = Ц(ESR)2 + (ESL – Xc)2.
Зависимости этих параметров от частоты приведены на рис.2.
Частотные зависимости параметров всех конденсаторов имеют одинаковый характер. Таким образом, для уменьшения ESR следует использовать конденсатор либо большей емкости, либо с меньшим коэффициентом рассеяния. Уменьшение ESR с увеличением емкости конденсатора хорошо понятно и не требует объяснений. Уменьшение ESR за счет применения диэлектрика с меньшим коэффициентом рассеяния наглядно иллюстрирует табл.1, из которой можно сделать несколько важных выводов.
Во-первых, если обратить внимание на частоты, для которых рассчитывалось значение ESR, можно отметить, что с увеличением частоты значение ESR уменьшается. Поэтому при задании в технических условиях на конденсатор с низким ESR требуемого значения эквивалентного последовательного сопротивления необходимо также указывать частоту, на которой ESR измеряется, в противном случае велика вероятность неправильного выбора конденсатора. На рис.3 приведена типовая зависимость ESR от частоты для танаталового конденсатора емкостью 22 мкФ на напряжение 25 В.
ОБЛАСТИ ПРИМЕНЕНИЯ
Различны и значения ESR для пленочных и алюминиевых электролитических конденсаторов. Эти различия определяют предпочтительные области применения каждого типа. К достоинствам пленочных конденсаторов относятся, в первую очередь, независимая полярность конструкции, высокое рабочее напряжение, малые значения емкости, жесткие допуски на значение емкости, самовосстановление (только металлизированная конструкция), высокая безотказность, стойкость к большому току пульсации, разнообразие форм выводов и корпусов. Применяются пленочные конденсаторы, как правило, в системах, где требуется низкое ESR для подавления электромагнитных и радиопомех.
Таким образом, если в схеме необходимо использовать конденсаторы с низким ESR, в первую очередь следует определить допустимые пределы значения эквивалентного сопротивления и выбрать компоненты, «соответствующие» требованиям. При этом важно знать условия, при которых производитель проводил испытания, поскольку их характеристики существенно влияют на работу конденсатора в схеме. Серьезную техническую поддержку при выработке требований и рекомендаций по выбору нужного типа конденсатора оказывают разработчикам такие изготовители, как Teapo Electronics и Illinois Capacitor.
ЗАКЛЮЧЕНИЕ
Ведущие мировые компании по производству конденсаторов уделяют очень большое внимание конденсаторам с низким ESR. Например, Teapo Electronic Corporation, специализирующаяся на выпуске высококачественных алюминиевых электролитических и пленочных конденсаторов, предлагает алюминиевые электролитические низкоимпедансные конденсаторы с низким ESR на рабочую температуру до 105°C серий SC (срок службы 3 тыс. ч при температуре 105°C ) и SX (5 тыс. ч при температуре 105°C ).
Тел.: (095) 967-0591; www.poliset.ru; [email protected]
Литература
www.yageo.com
www.teapo.com.tw
www.sem.samsung.com/
Aluminium Electrolytic Capacitors Catalogue, 2001, Teapo Electronic Corporation.
R.W. Franklin, Equivalent Series Resistance of Tantalum Capacitors, AVX Limited, 2001
Passive Component Industry, September/October 2001
Пролезет ли конденсатор в игольное ушко?
В конце октября 2001 года фирма Samsung Electro-Mechanics выпустила самый миниатюрный в мире многослойный керамический конденсатор для поверхностного монтажа (SMD MLCC) марки 0603MLCC. Размер конденсатора 0,6х0,3 мм, а объем составляет всего лишь одну пятую от объема его предшественника. Конденсатор столь мал, что практически не виден невооруженным глазом. Поэтому производственный процесс полностью автоматизирован. Фирма выпускает конденсатор двух типов: X7R (стандартный) и NPO (с низким эквивалентным последовательным сопротивлением).
Сейчас Samsung Electro-Mechanics ежемесячно выпускает около 30 млн. конденсаторов, в 2002 году объем их производства будет увеличен. Сегодня фирма Samsung Electro-Mechanics контролирует около 30% мирового рынка многослойных керамических конденсаторов и в ближайшее время намерена стать их крупнейшим производителем.
www.poliset.ru; www.sem.samsung.com
«Другой» анодный материал конденсаторы фирмы Vishay
Vishay Intertechnology выпустила новое семейство конденсаторов, в которых анод выполнен из ниобия, а не тантала. Переход к новому материалу был не прост. Пленки оксида ниобия более чувствительны к тепловым и электрическим воздействиям. К тому же, токи утечки ниобиевых компонентов до сих пор были выше, чем танталовых. Но в отличие от тантала, ниобий достаточно распространен в природе и, кроме того, он легче тантала, благодаря чему уменьшается масса конденсатора. Эти соображения и стимулировали разработку ниобиевых компонентов.
www.e-insite.net/edmag
Скорость передачи 10 Гбайт/с
По медным проводам
Утверждение, что скорость передачи 10 Гбайт/с доступна лишь для оптического волокна, опровергает соединитель модели Connector–X фирмы Winchester Electronics, способный поддерживать передачу 12 различных пар сигналов с такой скоростью. Это в три-четыре раза выше, чем у современных соединителей медных проводов. Плавкие кнопочные контакты соединителя, напоминающие миниатюрные стальные подушечки для чистки кастрюль, выдерживают 250 циклов сочленения. Для обеспечения контакта соединителя с токопроводящими линиями печатной платы (которая может выполняться на достаточно дешевом материале FC-4) не нужны отверстия, достаточны лишь две крепежные точки. Это позволяет снизить стоимость сборки, улучшить выход годных и предотвратить сбои в передаче сигнала. Цена соединителя длиной 1 дюйм (25,4 мм) – 250–300 долларов.
www.litton-wed.com
Процесс восстановления пластин GaAs
Старые не хуже новых
Фирма Exsil разработала процесс восстановления арсенидгаллиевых пластин для их повторного использования в производстве активных приборов и микросхем. Возможность применения таких пластин весьма перспективна, особенно если вспомнить, что стоимость “первичных” GaAs-пластин на порядок выше, чем кремниевых, – 350–450 долл. при диаметре150 мм. За восстановленную пластину нужно заплатить всего 85–100 долл. Линия фирмы предназначена для восстановления пластин GaAs диаметром 100 и 150 мм, которые по своим параметрами не уступают, а в некоторых случаях превосходят первичные пластины.
Electronic News, 2001, Nov.15.
Электроника движет ростом затрат на НИОКР
По данным отделения технологической политики Министерства торговли США, затраты на НИОКР в 2000 году (самые последние точные данные на сегодня) составили 162,7 млрд. долл., что на 9,3% больше, чем в предыдущем году (145, 6 млрд. долл.). Затраты на НИОКР могут служить серьезным индикатором потенциального роста экономики страны и тенденций развития технологии. Большая часть инвестиций (67%) сосредоточена в двух областях – производство и услуги информационной и электронной технологии и медицинские средства и устройства. При этом на НИОКР в области информационной и электронной технологии было затрачено 47,2% общих корпоративных средств, что на 16,3% больше, чем в 1999 году (в остальных секторах американской экономики рост составил всего 3,7%). Сократились затраты на НИОКР в области аэрокосмических исследований и химической промышленности.
www.e-insite.net
ESL и LOW ESR конденсаторы.Как их определить и где их применяют. | Электронные схемы
low esr конденсаторыlow esr конденсаторы
На материнских платах,в импульсных блоках питания и т.д. для фильтрации питания применяют электролитические конденсаторы.Но у этих конденсаторов есть определенные характеристики,которые их отличают от других подобных конденсаторов.Такие конденсаторы именуются аббревиатурой ESR,что в переводе означает эквивалентное последовательное сопротивление.
esr конденсаторы на материнской платеesr конденсаторы на материнской плате
Конденсаторы ESR на материнской плате и зарядном устройстве телефона.
esr конденсатор в зарядном устройстве смартфонаesr конденсатор в зарядном устройстве смартфона
Если разобрать конденсатор,то можно увидеть две полоски фольги и между ними бумага пропитанная определенным раствором.Эти две полоски,между собой и сами по себе обладают сопротивлением,правда очень большим.Конденсатор на низкой частоте обладает большим сопротивлением и ничего особенного с ним не происходит.Но импульсные блоки питания работают на частотах десятки и сотни кГц,с большими импульсами тока.Сопротивление конденсатора на этих частотах падает до значения ESR,его как раз и измеряют на этих частотах.Чем меньше ESR,тем лучше.Если ESR будет большое,то конденсатор нагреется и электролит начнет закипать или испаряться,теряется емкость,фильтрация питания плохая.
конденсатор внутриконденсатор внутри
Помимо емкостного сопротивления,у конденсатора есть еще и индуктивность.С повышением частоты эта индуктивность тоже оказывает сопротивление.Индуктивность указана как LOW Impedance ESL.
Где узнать характеристики на конденсаторы?
конденсатор sanyoконденсатор sanyo
На корпусе указана фирма Sanyo,на другой стороне серия WG.Набираете в поисковике и смотрите характеристики в даташите.Там будет указан импульсный ток,температура,ток утечки,esr или esl конденсатора,максимальное сопротивление на частоте 100кГц и др.
На фото конденсатор CapXon серии GL.Это конд. с низким эквивалентным последовательным сопротивлением.
конденсатор capxonконденсатор capxon
Конденсатор Rubycon серии MBZ.Это ультра низкий esr конд.применяемый на материнских платах.
конденсатор Rubyconконденсатор Rubycon
Следует учитывать подделки под эти фирмы,подделки стоят очень дешево и могут не соответствовать характеристикам.
ESR конденсатора — что это?
ESR — Equivalent Series Resistance — один из параметров конденсатора, характеризующий его активные потери в цепи переменного тока. В эквиваленте его можно представить, как включенный последовательно с конденсатором резистор, сопротивление которого определяется, главным образом, диэлектрическими потерями, а так же сопротивлением обкладок, внутренних контактных соединений и выводов. В русскоязычной аббревиатуре — Эквивалентное Последовательное Сопротивление — ЭПС.
Потери в диэлектрике, обусловленные особенностями его поляризации, составляют основную часть потерь в конденсаторе и определяются материалом, а так же толщиной слоя диэлектрика.
Поляризация — ограниченное смещение связанных зарядов диэлектрика в электрическом поле.
Рассматривать детально процессы всех видов поляризации здесь нет необходимости, но вкратце это можно пояснить следующим образом:
Частицы диэлектрика, обладающие зарядом, под воздействием переменного электрического поля вынуждены совершать непроизвольные механические колебания,
обусловленные их переориентацией и смещением (поляризацией).
В слоях диэлектрика, близких к обкладкам, заряды, не покидая своих связей,
активно участвуют во всех процессах формирования напряжения и тока в конденсаторе, как и проводники. По сути, уменьшается толщина слоя реального диэлектрика.
В результате существенно повышается ёмкость конденсатора но, по причине инертности и внутреннего трения связанных частиц,
процессы сопровождаются выделением тепла и потерями энергии в токопроводящих слоях диэлектрика. То есть, эти поляризованные слои обладают активным сопротивлением электрическому току.
С увеличением частоты, диэлектрические потери пропорционально возрастают по той же причине — механической инертности поляризованных зарядов.
Сопротивление токопроводящих слоёв диэлектрика последовательно складывается с сопротивлением обкладок, выводов и контактных соединений. В итоге образуется общее активное сопротивление R — Equivalent Series Resistance (ESR). По сути оно представляет собой резистор, включенный последовательно с конденсатором.
В этом случае угол сдвига фаз между током и напряжением будет не 90°, как в идеальном конденсаторе, а несколько меньше.
Тангенс угла δ, составляющего эту разницу с 90°, называют тангенсом угла потерь.
Тангенс угла определится отношением активного сопротивления к реактивному R/Xc, как тригонометрическая функция отношения двух катетов треугольника сопротивлений, показанного на рисунке выше.
В электролитических конденсаторах значимой частью ESR является сопротивление жидкого электролита,
который используется в качестве одной из обкладок для обеспечения максимальной площади соприкосновения с диэлектриком.
Активное сопротивление электролита в реальных конденсаторах обычно соизмеримо с десятыми или даже с сотыми долями Ома при 20°C, но для конденсаторов большой ёмкости, используемых в фильтрах выпрямителей ИИП на рабочей частоте порядка 100 кГц,
когда его реактивное сопротивление измеряется тысячными долями Ома, эта величина может составлять основные потери, и будет значительно уменьшаться по мере прогрева.
При рабочей температуре величина диэлектрических потерь на таких частотах обычно оказывается в несколько раз больше.
Сопротивление электролита зависит от температуры по причине изменения степени его вязкости и подвижности ионов.
В процессе работы происходит нагрев диэлектрика и электролита переменным током, в связи с чем существенно уменьшается сопротивление электролита,
тогда ESR конденсатора будет определяться преимущественно его диэлектрическими потерями, которые продолжат греть конденсатор в допустимых расчётами пределах.
Но, в случаях разогрева до температуры кипения, электролит утрачивает свои первоначальные свойства и при последующем охлаждении становится
более вязким, что ухудшает подвижность ионов и повышает активное сопротивление. Дальнейшая эксплуатация будет вызывать ещё больший разогрев и ухудшение качества электролита, что в последствии приведёт к непригодности конденсатора для дальнейшей работы.
Неисправные конденсаторы, в которых кипел электролит, обычно определяются визуально по вздувшемуся и разгерметизированному корпусу.
Для надёжности работы электролитических конденсаторов очень важен правильный выбор его типа,
номинала и максимального напряжения в зависимости от режимов и условий эксплуатации.
Для фильтров выпрямителей в преобразователях, работающих на частотах десятков или сотен килогерц, производители выпускают специальные конденсаторы с малым ESR и указывают полное сопротивление переменному току (импеданс Z) для всех номиналов в таблицах.
Тип таких конденсаторов сопровождается пометкой в технической документации — Low impedance или Low ESR.
Для анализа состояния электролита и внутренних соединений электролитических конденсаторов применяются измерители или пробники ESR,
которые могут быть выполнены исходя из разных принципов измерений и требований к погрешностям.
Большая часть простых ESR-пробников и тестеров основана на принципе измерения импеданса. У них есть свой существенный плюс — низкоомный вход, что позволяет проверять конденсаторы, не выпаивая их из платы.
Подробнее о способах измерения можно ознакомиться на страничке — измерение ESR.
Наряду с ухудшением качества электролита, часто активное сопротивление в конденсаторах возрастает по причине ухудшения контактов обкладок с выводами, вплоть до полного обрыва. В электролитических это происходит чаще, в металлокерамических реже, телевизионным мастерам все эти случаи хорошо знакомы. А ремонтники старшего поколения, кто застал советские ламповые телевизоры, хорошо помнят бумажные конденсаторы, которые иногда поджимали пассатижами для уплотнения контактных соединений внутри, и они какое-то время ещё работали.
Для чего нужна таблица?
Большинство пробников и тестеров, обычно светодиодные или стрелочные, измеряют импеданс — общее сопротивление конденсатора (активное и реактивное). Активное отдельно замерить сложнее, но оно и есть потери — значение ESR.
При измерении ёмкостей менее 100 микрофарад, реактивная составляющая уже оказывается соизмеримой, а иногда больше значения ESR, и существенно влияет на результат. А в конденсаторах менее 10 мкф и вовсе значение ESR во много раз меньше и его доля незначительна в общем показании. Точно замерить ESR у них невозможно такими пробниками, но выявить неисправные конденсаторы можно.
Другими словами, реактивное сопротивление в показаниях таких приборов — неудобная погрешность, зависимая от ёмкости конденсатора. Её надо учитывать при оценке качества конденсатора для разных ёмкостей.
К тому же ESR зависит от толщины слоя электролита и диэлектрика. Для высоковольтных и крупногабаритных конденсаторов эти значения учитываются производителями в зависимости от области применения.
Никакой пропорциональной зависимости ESR от других параметров конденсатора не существует, поэтому для оценки его качества в практике используются таблицы.
Все существующие таблицы — условны и не всегда объективно определяют допустимые значения для всех измерителей. Публикуют их часто для популяризации сайтов, поэтому важно понимать суть значений в таблицах.
Тем более, разные пробники работают на разных принципах или частотах (от 10 до 100 кГц), разница показаний в 5 или 10 раз может отличаться от табличных лишь по этой причине.
Очень полезно самому замерить значения ESR у новых конденсаторов разных производителей и составить свою таблицу для своего пробника. Это уже будут реальные показатели. Тогда их можно сравнить с неисправными конденсаторами и со значениями их реактивных сопротивлений, чтоб сделать какие-то выводы о критичности.
В преобразователях блоков питания греют конденсатор паразитные десятые, иногда сотые доли Ома и, если их сможет показать Ваш измеритель, уже неплохо.
Импульсный ток в конденсаторах достигает десятков Ампер и активные десятые доли Ома для 10 Ампер — это уже реальные Ватты — нагрев.
Габариты конденсатора тоже имеют существенное значение, они будут охлаждать электролит, это надо учитывать при выборе типа конденсатора в мощных преобразователях.
Практика показала, тонкие конденсаторы Low ESR, установленные при замене в блоках питания вместо крупногабаритных обычных, частенько долго там не живут, перегреваются, закипают и вздуваются иногда уже через несколько месяцев работы.
Для самого популярного в ИИП конденсатора 1000мкф x 25в часто в таблицах указывают 0.08 Ом, как норму. А в других таблицах 0.8 Ом. Какой прибор что мерит, кто и для каких цепей определил ему норму — загадки.
Проверьте для сравнения своим прибором этот конденсатор новый от разных производителей, в том числе с пометкой Low ESR, тогда оценка будет объективнее.
Таблица Боба Паркера для ESR-метра K7214
uF\V | 10V | 16V | 25V | 35V | 50V | 160V | 250V |
1 uF | 14 | 16 | 18 | 20 | |||
2.2 uF | 6 | 8 | 10 | 10 | 10 | ||
4.7 uF | 15 | 7.5 | 4.2 | 2.3 | 5 | ||
10 uF | 6 | 4 | 3.5 | 2.4 | 3 | 5 | |
22uF | 5.4 | 3.6 | 2.1 | 1.5 | 1.5 | 1.5 | 3 |
47 uF | 2.2 | 1.6 | 1.2 | 0.5 | 0.5 | 0.7 | 0.8 |
100 uF | 1.2 | 0.7 | 0.32 | 0.32 | 0.3 | 0.15 | 0.8 |
220 uF | 0.6 | 0.33 | 0.23 | 0.17 | 0.16 | 0.09 | 0.5 |
470 uF | 0.24 | 0.2 | 0.15 | 0.1 | 0.1 | 0.1 | 0.3 |
1000 uF | 0.12 | 0.1 | 0.08 | 0.07 | 0.05 | 0.06 | |
4700 uF | 0.23 | 0.2 | 0.12 | 0.06 | 0.06 |
Рассчитаем округлённо реактивное сопротивление для популярных номиналов при усреднённой частоте пробников 20 кГц, чтобы иметь представление хотя бы о порядке их идеальных значений.
Ещё раз напомню, никакой пропорции между ESR и этими значениями быть не может. Тем более, с учётом конструктивных особенностей электролитических конденсаторов для разных габаритов и вольтажа.
Повторюсь. Это лишь реактивное сопротивление, которое имеет большее значение при измерении конденсаторов меньшей ёмкости, как реальная погрешность для пробников, основанных на измерении импеданса.
То есть, чистое значение ESR у конденсатора 100 мкф и 1 мкф может быть одинаковым, а прибор покажет разницу в десятки раз, ибо добавит ёмкостное значение, которое будет решающим для показаний прибора на измеряемой частоте у малых ёмкостей.
Реактивное сопротивление конденсаторов, частота 20кГц:
1000 мкф — 0.008 Ом.
470 мкф — 0.017 Ом.
220 мкф — 0.036 Ом.
100 мкф — 0.08 Ом.
47 мкф — 0.17 Ом.
22 мкф — 0.36 Ом.
10 мкф — 0.8 Ом.
4.7 мкф — 1.7 Ом.
2.2 мкф — 3.6 Ом.
1 мкф — 8 Ом.
0.47 мкф — 17 Ом.
Поможет калькулятор расчёта реактивного сопротивления конденсаторов.
Более сложные цифровые приборы способны замерить точные значения во время заряда конденсатора постоянным током, рассчитать его ёмкость и ESR без реактивной составляющей.
Но измерение постоянным током не учитывает диэлектрические потери, которые напрямую зависят от частоты. Кроме того, конденсаторы нужно выпаивать из платы для таких замеров.
Пробниками обычно быстро проверяют конденсаторы на неисправность, не выпаивая их, а это существенный выигрыш в оперативности для мастера — ремонтника. Ему не всегда нужны точные показания сложных приборов, чаще бывает важно своевременно и правильно выявить неисправную деталь в устройстве. К погрешностям на реактивность в практике мастера просто привыкают, когда годами пользуются одним и тем же пробником.
Спасибо за внимание!
Замечания и предложения принимаются и приветствуются!
Питание электролитические конденсаторы 10000ОФ 250V с низким esr
Функции
*Высокая пульсирующего тока да здравствует 105ºC5000HR
*Для балласта использовать etc
*Подходит для светодиодного и электронных выпрямителя.
*Высокой температуры сопротивление&пульсирующего тока высокой частоты
* Стандартные:CE RoHS охвата доклада
Размеры
Согласно спецификации
Ассортимент продукции
Серия | Пункты |
Вертикальный чип конденсаторы серии | Жгут проводов клапанов транспортера, SV, ZV |
Общий тип серии конденсаторы | SK, SE, SH |
Низкий профиль серии конденсаторы | S5, H5, D7, H7 |
Серия Non-Polar конденсаторы | RN, SN. |
Низкий уровень LC и конденсаторы серии импеданса | SB SC, SJ, SZ |
Тонкий конденсаторы конденсаторы серии | — TG, TP |
— В серии конденсаторы | Левый, LG, LF, LJ |
Сравнение пленочных конденсаторов с электролитическими
В статье рассматриваются особенности конструкции и основные характеристики пленочных конденсаторов. Приводятся области использования пленочных и электролитических конденсаторов. Показано, что алюминиевые электролитические конденсаторы предпочтительно использовать в схемах, где требуется запасать энергию, а пленочные конденсаторы успешнее справляются с задачами в сильноточных и высоковольтных цепях.
Конденсаторы в схемах силовой электроники, как правило, выполняют две функции. Первая из них состоит в сглаживании пульсаций напряжения, а вторая – в фильтрации помех для обеспечения электромагнитной совместимости. Причем, в последнем случае задача разделяется на две подзадачи. Для решения одной из них конденсаторы используются в сетевых помехоподавляющих фильтрах, а для решения другой от конденсаторов требуется «умение» подавлять помехи и всплески напряжения длительностью от десятков наносекунд до нескольких микросекунд, вызванные процессами коммутации силовых ключей.
В настоящей статье акцент сделан на конденсаторах, используемых для сглаживания напряжения. Мы рассмотрим, в основном, пленочные конденсаторы, сравним их с алюминиевыми электролитическими конденсаторами и постараемся определить границы применения каждого типа.
Бесспорным преимуществом алюминиевых электролитических конденсаторов является высокая удельная емкость на единицу объема – по этому показателю они превосходят конденсаторы всех других типов. К сожалению, у электролитических конденсаторов немало и недостатков: срок их службы заметно зависит от температуры, у них большое эквивалентное последовательное сопротивление (ESR), что приводит к саморазогреву от токов пульсаций. Кроме того, у них плохие частотные свойства. Перечисленные недостатки электролитических конденсаторов можно в какой-то степени компенсировать за счет корректного их выбора для конкретных приложений, но полностью от них избавиться не удается, что и дает шанс пленочным конденсаторам.
Пленочные конденсаторы имеют меньшую плотность емкость, чем электролитические, но у них заметно меньше ESR при том же значении произведения CV (C – емкость конденсатора, V – номинальное напряжение конденсатора, указанное изготовителем), что позволяет увеличить допустимый ток пульсаций. Пленочные конденсаторы более терпимы к всплескам перенапряжения.
Конденсаторы этого типа в течение ограниченного интервала времени выдерживают перегрузку по напряжению до 100%, в то время как для алюминиевых электролитических конденсаторов перенапряжение, как правило, не должно превышать 20%. В промышленном оборудовании перенапряжение – не редкость: оно может возникать при разрядах молнии и коммутации мощных токоприемников.
Если накопление энергии не является главной задачей, то пленочные конденсаторы выигрывают у электролитических. Например, на низковольтной шине постоянного тока требуется устанавливать конденсаторы, способные пропускать ток пульсаций величиной в сотни, а иногда и тысячи ампер. В этом случае низкое значение ESR является ключевым параметром.
Кроме того, пленочные конденсаторы хорошо подходят для применения в высоковольтном оборудовании. Их максимально допустимое напряжение достигает нескольких тысяч вольт, тогда как для электролитических конденсаторов этот показатель ограничен в пределах 500–550 В. С помощью последовательного соединения конденсаторов можно увеличить указанный диапазон, но при этом уменьшится эквивалентная емкость соединения, да и выравнивание напряжения на последовательно соединенных конденсаторах едва ли можно назвать легкой задачей.
Ну и, конечно, еще одним несомненным преимуществом пленочных конденсаторов над электролитическими является их неполярность, т. е. они могут работать в цепи переменного тока. В таблице приведены основные параметры различных типов пленочных конденсаторов.
Параметр | Полиэфирные (PET) | Полипропиленнафталатовые (PEN) | Полипропиленсульфидные | Полипропиленовые (PP) | |
Относительная диэлектрическая проницаемость при частоте 1 кГц | 3,3 | 3 | 3 | 2,2 | |
Толщина пленки (мин.), мкм | 0,7–0,9 | 0,9–1,4 | 1,2 | 1,9–3,0 | |
Влагопоглощение, % | низкое | 0,4 | 0,05 | менее 0,1 | |
Напряженность поля пробоя, В/мкм | 580 | 500 | 230 | 400 | |
Рабочие напряжения постоянного тока (ном.), В | 50–1000 | 16–250 | 16–100 | 40–2000 | |
Емкость | 100 пФ…22 мкФ | 100 пФ…1 мкФ | 100 пФ…0,47 мкФ | 100 пФ…10 мкФ | |
Диапазон рабочей температуры, °С | –55…125/150 | –55…150 | –55…150 | –55…150 | |
Изменение емкости в диапазоне рабочей температуры, % | ±5 | ±5 | ±1,5 | ±2,5 | |
Фактор рассеивания мощности (коэффициент потерь) (10–6) | 1 кГц | 50–200 | 42–80 | 2–15 | 0,5–5 |
10 кГц | 110–150 | 54–150 | 2,5–25 | 2–8 | |
100 кГц | 170–300 | 120–300 | 12–60 | 2–25 | |
1 МГц | 200–350 | – | 18–70 | 4–40 | |
Постоянная времени RC, с | 25°С | более 10 тыс. | более 10 тыс. | более 10 тыс. | более 100 тыс. |
85°С | – | – | – | – | |
Остаточная поляризация (диэлектрическая абсорбция) | 0,2–0,5 | 1–1,2 | 0,05–1 | 0,01–0,1 | |
Способность к самовосстановлению | средняя | средняя–низкая | низкая | высокая |
Не менее важным для конденсаторов, работающих в силовых цепях, является фактор рассеивания мощности DF (коэффициент потерь). Чем меньше этот коэффициент, тем меньше потери мощности, и соответственно, меньше нагрев. Напомним формулу (1) для вычисления DF:
DF = ESR/XC = tgσ, (1)
где XC – емкостное сопротивление конденсатора равное 1/(2πfC).
На рисунке 1 показана зависимость коэффициента рассеяния DF от температуры и частоты. Как видно из рисунка, эта зависимость невелика. Заметим, что коэффициент рассеяния DF у пленочных конденсаторов существенно ниже, чем у электролитических.
Рис. 1. Зависимость коэффициента рассеяния DF от температуры и частотыНа рисунке 2 схематично показано устройство пленочного конденсатора. При их производстве применяются две технологии. В первой из них используется металлизированная фольга, а во второй – напыление металлов. В первой технологии металлическую фольгу толщиной 5 мкм, играющую роль обкладки конденсаторов, помещают между слоями диэлектриков. Вторая технология предполагает напыление алюминия, цинка или сплавов цинка, разогретых примерно до 1200°C, на полипропиленовую пленку толщиной 20–50 нм.
Рис. 2. Устройство пленочного конденсатораПри использовании металлической фольги обеспечиваются высокие значения допустимых токов, но в таких конденсаторах отсутствует или крайне слабо проявляется эффект самовосстановления. У конденсаторов, изготовленных путем напыления металлов, имеется способность самовосстанавливаться после некоторых аварийных ситуаций, что повышает надежность системы в целом. При пробое такого конденсатора возникает электрическая дуга, причем температура в месте пробоя может достигать 6000°C. В этом случае металл испаряется в течение примерно 10 мкс, благодаря чему исчезает проводящий тракт и восстанавливается диэлектрическая прочность поврежденного участка. После процесса самовосстановления может немного уменьшиться емкость конденсатора.
Иногда область металлизации разбивается на множество участков (вплоть до нескольких миллионов), которые соединяются между собой узкими проводниками, играющими роль предохранителей. В этом случае несколько уменьшается максимально допустимый ток, но увеличивается запас прочности, позволяющий повысить допустимое напряжение. Иногда совмещают обе технологии изготовления для получения компромиссных характеристик между максимальным пиковым током и способностью к самовосстановлению.
Рис. 3. Типичная топология системы питанияПриведем несколько примеров использования конденсаторов. На рисунке 3 показана типичная топология системы питания. Рассмотрим случай, когда конденсатор С1 используется для накопления энергии. Допустим, мощность DC/DC-преобразователя составляет P = 1 кВт, а его КПД = 0,9. При этом требуется, чтобы при пропадании входного напряжения в течение t = 20 мс (один период питающего напряжения) величина напряжения на конденсаторе не стала бы менее 300 В. В таком случае емкость конденсатора С1 можно определить из выражения (2):
P ∙ t/КПД = С ∙ (VN2 – VD2)/2, (2)
где VN = 400 В – начальное напряжение конденсатора С1; VD = 300 В – конечное напряжение конденсатора в момент времени t = 20 мс.
Подставляя принятые в примере значения, получим С = 654 мкФ. При этом номинальное напряжение конденсатора должно составить 450 В. В ассортименте известных производителей, выпускающих оба типа конденсаторов, например компании TDK, имеется электролитический конденсатор B43508, который вполне удовлетворяет предъявленным требованиям: его емкость составляет 680 мкФ, и он рассчитан на напряжение 450 В.
Эта же компания производит пленочные конденсаторы серии B32678. Их максимальная емкость с нормированным напряжением составляет 180 мкФ. Таким образом, если мы выберем этот конденсатор, нам потребуется соединить четыре компонента параллельно. Разумеется, это решение не является удовлетворительным – оно не экономично и его габариты велики. Следовательно, в данном случае счет 1:0 в пользу электролитических конденсаторов.
Рассмотрим еще один пример системы питания, но большей мощности. В тяговых системах также используется шина питания 400 В, но конденсатор С1 в таком случае предназначен только для сглаживания пульсаций. Допустим, требуется, чтобы пульсации не превышали 4 В при среднеквадратичном значении токе пульсации 80 А и частоте пульсаций f = 20 кГц. Тогда емкость конденсаторов вычисляется из (3):
С = IСКЗ/(2πfVП) = 160 мкФ. (3)
Максимально допустимый ток пульсаций электролитического конденсатора равен примерно 3,5 А (используем известное эмпирическое правило для электролитических конденсаторов: 20 мА/мкФ). Таким образом, потребуется примерно 23 электролитических конденсатора, включенных параллельно. В то же время с этой же задачей способен справиться один-единственный пленочный конденсатор серии B32678. В данном случае бесспорное преимущество уже не на стороне электролитического компонента, и счет становится 1:1. Следует добавить, что из-за меньшего ESR и коэффициента потерь DF полипропиленового конденсатора уменьшится и рассеяние тепла.
Мы привели этот простой пример с единственной целью – показать, что нельзя однозначно вынести суждение о том, какой из рассмотренных конденсаторов лучше или хуже: каждый из них хорош в разных условиях. Для подтверждения этой «умной мысли» бросим на чашу весов еще экономические соображения.
В [1] приводятся следующие данные по конденсаторам, рассмотренным в примере выше. Удельная стоимость энергоемкости алюминиевого электролитического конденсатора составляет 0,47 долл./Дж, а у пленочного конденсатора этот показатель заметно больше и достигает 3 долл./Дж. Однако если обратиться к удельным показателям на единицу пульсирующего тока, то ситуация изменится на противоположную: удельная стоимость электролитических конденсаторов составит 2,68 долл./А, а пленочных – 0,42 долл./А.
Приведем пример использования пленочных конденсаторов, в котором проявляется их другая сильная сторона – неполярность. На рисунке 4 показано типовое использование этих компонентов в цепи переменного тока на выходе инвертора. Неполярные конденсаторы других типов проигрывают пленочным в данном случае практически по всем параметрам.
Рис. 4. Использование пленочных конденсаторов в цепи переменного тока на выходе инвертораЛитература
- Rudy Ramos. Film capacitors: Characteristics and uses in power applications
| ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
OZON.ru
Москва
- Ozon для бизнеса
- Мобильное приложение
- Реферальная программа
- Зарабатывай с Ozon
- Подарочные сертификаты
- Помощь
- Пункты выдачи
Каталог
ЭлектроникаОдеждаОбувьДом и садДетские товарыКрасота и здоровьеБытовая техникаСпорт и отдыхСтроительство и ремонтПродукты питанияАптекаТовары для животныхКнигиТуризм, рыбалка, охотаАвтотоварыМебельХобби и творчествоЮвелирные украшенияАксессуарыИгры и консолиКанцелярские товарыТовары для взрослыхАнтиквариат и коллекционированиеЦифровые товарыБытовая химия и гигиенаOzon ExpressМузыка и видеоАлкогольная продукцияАвтомобили и мототехникаOzon УслугиЭлектронные сигареты и товары для куренияOzon PremiumOzon GlobalТовары в РассрочкуПодарочные сертификатыУцененные товарыOzon CardСтрахование ОСАГОРеферальная программаOzon TravelРегулярная доставкаОzon ЗОЖДля меняDисконтOzon MerchOzon для бизнесаOzon КлубOzon LiveМамам и малышамТовары Ozon Везде 0Войти 0Заказы 0Избранное0Корзина- TOP Fashion
- Premium
- Ozon Travel
- Ozon Express
- Ozon Card
- LIVE
- Акции
- Бренды
- Магазины
- Электроника
- Одежда и обувь
- Детские товары
- Дом и сад
- Dисконт
Такой страницы не существует
Вернуться на главную Зарабатывайте с OzonВаши товары на OzonРеферальная программаУстановите постамат Ozon BoxОткройте пункт выдачи OzonСтать Поставщиком OzonЧто продавать на OzonEcommerce Online SchoolSelling on OzonО компанииОб Ozon / About OzonВакансииКонтакты для прессыРеквизитыАрт-проект Ozon BallonБренд OzonГорячая линия комплаенсПомощьКак сделать заказДоставкаОплатаКонтактыБезопасностьOzon для бизнесаДобавить компаниюМои компанииПодарочные сертификаты © 1998 – 2021 ООО «Интернет Решения». Все права защищены. OzonИнтернет-магазинOzon ВакансииРабота в OzonOZON TravelАвиабилетыOzon EducationОбразовательные проектыLITRES.ruЭлектронные книги% PDF-1.3 % 15 0 объект > эндобдж xref 15 92 0000000016 00000 н. 0000002188 00000 п. 0000002633 00000 н. 0000002841 00000 н. 0000003420 00000 н. 0000004234 00000 н. 0000004282 00000 п. 0000004330 00000 н. 0000004654 00000 н. 0000004702 00000 н. 0000004741 00000 н. 0000005059 00000 н. 0000005490 00000 н. 0000006291 00000 п. 0000006996 00000 н. 0000007700 00000 н. 0000007748 00000 н. 0000007796 00000 н. 0000008086 00000 н. 0000008134 00000 п. 0000008182 00000 н. 0000008696 00000 п. 0000009406 00000 п. 0000009454 00000 п. 0000009476 00000 н. 0000010791 00000 п. 0000010813 00000 п. 0000011907 00000 п. 0000012092 00000 п. 0000012444 00000 п. 0000012514 00000 п. 0000012735 00000 п. 0000013019 00000 п. 0000013041 00000 п. 0000014193 00000 п. 0000014215 00000 п. 0000015376 00000 п. 0000015681 00000 п. 0000016471 00000 п. 0000016733 00000 п. 0000017531 00000 п. 0000018328 00000 п. 0000018574 00000 п. 0000018627 00000 п. 0000019415 00000 п. 0000019727 00000 п. 0000019749 00000 п. 0000020948 00000 н. 0000020969 00000 п. 0000022021 00000 н. 0000022818 00000 п. 0000023164 00000 п. 0000023964 00000 п. 0000024317 00000 п. 0000024338 00000 п. 0000025039 00000 п. 0000025061 00000 п. 0000026215 00000 п. 0000028693 00000 п. 0000028918 00000 п. 0000034000 00000 п. 0000034125 00000 п. 0000034487 00000 п. 0000036131 00000 п. 0000036311 00000 п. 0000036537 00000 п. 0000036658 00000 п. 0000036830 00000 н. 0000039451 00000 п. 0000039965 00000 н. 0000040630 00000 п. 0000046495 00000 п. 0000048282 00000 п. 0000051262 00000 п. 0000053530 00000 п. 0000053832 00000 п. 0000054673 00000 п. 0000057606 00000 п. 0000268509 00000 н. 0000274179 00000 н. 0000276858 00000 н. 0000281324 00000 н. 0000283072 00000 н. 0000288251 00000 н. 0000288766 00000 н. 0000292631 00000 н. 0000293191 00000 п. 0000298701 00000 н. 0000306290 00000 н. 0000306430 00000 н. 0000002273 00000 н. 0000002611 00000 н. трейлер ] >> startxref 0 %% EOF 16 0 объект > эндобдж 105 0 объект > транслировать Hb«b`x ؞ @ Bz0h4r \ ca 9 @) [6 «\: F ,,, ̌6xT
Что такое ESR в электролитических конденсаторах
СОЭ зависит от частоты, температуры и изменяется по мере старения компонентов.Обычно это лишь важный фактор при выборе электролитических конденсаторов.
Конструкция конденсатора
«Влажные» алюминиевые электролитические конденсаторы имеют анодную пластину, содержащую электрохимически вытравленную алюминиевую фольгу, диэлектрик, сформированный в виде оксидного слоя на этой фольге, бумажную прокладку для удерживания проводящей жидкости, которая образует катод, и вторая фольга, соединяющая электролит и вывод устройства.
Жидкий электролит проникает в поры окисленной анодной фольги, поэтому площадь контакта и, следовательно, емкость максимальны.
Этот процесс «высыхания» зависит от температуры и ускоряется в компонентах, используемых при более высоких температурах или подверженных более высоким токам пульсации, которые рассеивают больше тепла как часть их функции цепи.
В алюминиевых электролитах ESR падает при повышении температуры — его эффекты уменьшаются при нагревании сборки.
Сушка не имеет отношения к твердым алюминиевым электролитам или «гибридным» конденсаторам, где полимеризованный органический полупроводниковый материал заменяет жидкий электролит.Эта технология демонстрирует удельную проводимость примерно в 10 000 раз больше, чем у жидкого электролита. Как показано на Рисунке 2 (выше), общее эквивалентное последовательное сопротивление существенно снижается, особенно при низких температурах.
Танталовая технология
Танталовые электролиты имеют танталовые аноды из спеченного порошка, простой или протравленной фольги. Изолятор представляет собой оксидный слой на поверхности анода. В устройствах из фольги второй проводник представляет собой электролит, удерживаемый в прокладке.Отложение диоксида марганца покрывает оксидный слой в твердом исполнении.
Концевые заделки компонента вносят существенный вклад в ESR. В твердотельных конденсаторах диоксид марганца обычно покрывается углеродом, а затем металлом, например серебром, который припаивается к отрицательному выводу или корпусу. В стиле фольги положительное соединение представляет собой сварную никелевую или стальную проволоку, соединенную с танталовой проволокой на аноде. Такие устройства также содержат вторую танталовую фольгу, контактирующую с электролитом.
На низких частотах потери в оксиде наиболее значительны. Но их вклад уменьшается обратно пропорционально частоте, в конечном итоге становясь малым по сравнению с сопротивлением контактного материала (рисунок 3 ниже).
Рисунок 3: Типичное соотношение между ESR и частотой для танталовых конденсаторов (AVX)
Почему так важно СОЭ?
Электролитические конденсаторы используются в качестве входных буферов для подачи энергии при слишком низком входном сетевом напряжении, для хранения энергии, пока преобразователь переменного / постоянного тока адаптируется к новому уровню мощности, и предотвращения коммутационного шума от преобразователя до источника питания.На выходе преобразователя они действуют как фильтр и приемник тока для индуктивных элементов, а при преобразовании постоянного / постоянного тока действуют как буфер энергии при изменении потребности в выходной мощности.
В обоих случаях потери из-за ESR будут препятствовать способности конденсатора быстро генерировать или поглощать заряд. На входе увеличение ESR увеличивает высокочастотный шум на конденсаторе, снижая эффективность фильтрации. На выходе более высокое значение ESR вызывает большую пульсацию, влияющую на стабильность контура управления.
ESR особенно важен в приложениях с малой продолжительностью включения и высокочастотными импульсами тока. Здесь пульсации напряжения из-за ESR будут больше, чем ожидалось, основываясь только на емкости, хотя отрицательная корреляция ESR с температурой означает, что пульсации уменьшаются по мере нагрева сборки.
Кроме того, введение резистивного элемента в то, что разработчики могут предположить, является чисто реактивной схемой, может привести к неожиданным сдвигам в фазовой характеристике, снова влияя на стабильность.
Что можно сделать?
Некоторые конденсаторы разработаны специально для низкого ESR, но производители алюминиевых электролитических конденсаторов не указывают ESR последовательно. Обычно указывается значение при 25 ° C и 100 кГц с формулой для расчета значения на рабочей частоте. Некоторые поставщики указывают на 120 Гц; другие оставляют проектировщика для расчета значения на интересующей частоте из коэффициента рассеяния (tan∂) и указанного максимального тока пульсаций.Кроме того, для конденсаторов сравнимого размера и CV устройство с более высокой емкостью и более низким номинальным напряжением будет иметь более низкое ESR, а ESR имеет тенденцию быть ниже для алюминиевых электролитических устройств с длинными тонкими корпусами, потому что сопротивление фольги уменьшается. Более крупные габариты корпуса также могут снизить СОЭ.
Кроме того, несколько компонентов меньшей стоимости можно использовать параллельно для достижения более низкого высокочастотного ESR за счет места на плате. Анализ некоторых из наиболее популярных компонентов с низким СОЭ можно найти на Рисунке 4 (см. Ниже), который включает ссылки на полные серии продуктов и таблицы данных.Выбор разнообразен и требует подробного анализа таблиц данных или консультации специалиста, такого как Avnet Abacus, для того, чтобы сделать осознанный выбор.
Производитель | серии | Стиль | Технологии | Низкое ESR до [mR @ 20C / 100 кГц | Дополнительная информация |
AVX | TCM | Чип | Полимерный танталовый мультианод | 10 | Посмотреть серию |
AVX | TPS | Чип | Тантал | 30 | Посмотреть серию |
KEMET | A700 | Чип | Полимерный алюминий | 6 | Посмотреть серию |
KEMET | T510 | Чип | Танталовый мультианод | 18 | Посмотреть серию |
Мурата | ECAS | Чип | Полимерный алюминий | 6 | Посмотреть серию |
Nichicon | CD | SMD | Алюминий электролитический | 35 | Посмотреть серию |
Nichicon | НЕ | Радиальный | Алюминий электролитический | 12 | |
Nichicon | CK | SMD | Полимерный алюминий | 8 | Посмотреть серию |
Панасоник | футов | SMD | Алюминий электролитический | 60 | Посмотреть серию |
Панасоник | FR | Радиальный | Алюминий электролитический | 12 | Посмотреть серию |
Панасоник | SP-крышка | Чип | Полимерный алюминий | 6 | |
Панасоник | ZA | SMD | Полимерный гибрид | 20 | Посмотреть серию |
Панасоник | ZC | SMD | Полимерный гибрид | 20 | Посмотреть серию |
Рубикон | ZLH | Радиальный | Алюминий электролитический | 12 | Посмотреть серию |
Рубикон | PC-CON | Чип | Полимерный алюминий | 4.5 | |
Вишай | 146 РТИ | Радиальный | Алюминий электролитический | 18 | Посмотреть серию |
Другие достижения
Некоторые производители комбинируют твердые и жидкие электролиты для производства гибридных компонентов со сверхнизким ESR (низкие десятки миллиомов), с минимальными колебаниями температуры, увеличивая выдерживаемое напряжение и обеспечивая высокий пульсирующий ток.
Поскольку ESR меняется в зависимости от площади внешней поверхности, производители танталовых конденсаторов производят многоанодные устройства для рынков с высокой надежностью, что может указать путь к разработкам для более распространенных приложений.
Но низкое ESR не всегда является основным соображением, и, помимо электролитических устройств, Murata фактически увеличила ESR некоторых из своих многослойных керамических конденсаторов микросхемы, чтобы контролировать нежелательные резонансы, которые могут снизить эффективность развязки на пиковых частотах.
Заключение
Инженерам никогда не было более разнообразного диапазона электролитических технологий. В частности, для энергетических приложений данных, напечатанных на компоненте, редко бывает достаточно, чтобы сделать осознанный выбор. Обращение к независимому специалисту, который может предложить компоненты от ряда крупнейших мировых производителей конденсаторов, — это самый надежный и быстрый путь к поиску наиболее подходящего устройства для любого конкретного применения.
Каковы частотные характеристики импеданса конденсаторов? / Что такое ESR / ESL конденсаторов? | Q&A Corner
Каковы частотные характеристики импеданса конденсаторов?
Что такое ESR / ESL конденсаторов?
Импеданс конденсаторов зависит от емкости и частоты.В идеальном конденсаторе полное сопротивление становится ниже, чем емкость. больше. Кроме того, сопротивление становится ниже с увеличением частоты.
На самом деле конденсатор имеет сопротивление и индуктивность. В простом выражении эти характеристики могут быть записаны как модель последовательной эквивалентной схемы C, R, L.Этот R называется «эквивалентным последовательным сопротивлением (ESR)», а L называется «эквивалентной последовательной индуктивностью (ESL)».
В отличие от идеального конденсатора, полное сопротивление реального конденсатора меняет свою тенденцию при определенном частота из-за ESL. Эта частота называется «Саморезонансная частота (SRF)». В более высоком частотном диапазоне, чем SRF, импеданс становится больше при увеличении частоты. потому что ESL влияет на импеданс.В SRF емкость и ESL взаимно стирают каждое сопротивление. Следовательно, на уровне SRF остается только сопротивление ESR.
Таким образом, импеданс конденсатора зависит от частоты. Это частотные характеристики импеданса в конденсаторах.
ESR и ESL вызывают снижение производительности.Вообще говоря, конденсаторы с более низким ESR и ESL работают лучше, чем более высокие. Если ESR конденсатора велико, это может вызвать выделение тепла и падение напряжения во время работы ИС. Если ESL конденсатора большой, это может вызвать звон сигнала. ESR и ESL также варьируются в зависимости от частоты реальных конденсаторов.Поэтому важно знать значение СОЭ и ESL на той частоте, которая вас интересует. См. Также этот документ для более подробной информации.
Многослойные керамические конденсаторы обычно превосходят по характеристикам ESR и ESL. к другим типам конденсаторов. Мы можем предоставить Реверсивные развязывающие конденсаторы LW (LWDC TM ) с еще более низким ESR и ESL чем обычные керамические конденсаторы.Пожалуйста, попробуйте их в своем приложении.
|
Алюминиевые электролитические конденсаторы — Промышленные устройства и решения
Продукты, описанные на этом веб-сайте, были разработаны и изготовлены для стандартных приложений, таких как общая электроника, офисное оборудование, оборудование для передачи данных и связи, измерительные приборы, бытовая техника и аудио-видео оборудование.Для специальных применений, в которых требуется качество и надежность, или если отказ или неисправность продуктов могут напрямую угрожать жизни или вызвать угрозу травм (например, для самолетов и аэрокосмического оборудования, дорожного и транспортного оборудования, оборудования для сжигания, медицинского оборудования , устройства для предотвращения несчастных случаев и защиты от кражи, а также защитное оборудование), пожалуйста, используйте только после того, как ваша компания в достаточной степени проверит пригодность наших продуктов для этого применения.
Независимо от области применения, при использовании наших продуктов в оборудовании, для которого ожидается высокий уровень безопасности и надежности, убедитесь, что схемы защиты, схемы резервирования и другие устройства установлены для обеспечения безопасности оборудования при оценке области применения путем независимой проверки безопасности. тесты.
Обратите внимание, что продукты и технические характеристики, размещенные на этом веб-сайте, могут быть изменены без предварительного уведомления в целях улучшения. Независимо от области применения, пожалуйста, подтвердите последнюю информацию и спецификации до окончательного этапа проектирования, покупки или использования.
Техническая информация на этом веб-сайте содержит примеры типичных операций и схем применения продуктов. Он не предназначен для гарантии ненарушения или предоставления лицензии на права интеллектуальной собственности этой компании или любой третьей стороны.
Если какие-либо продукты, спецификации продуктов и техническая информация на этом веб-сайте подлежат экспорту или предоставлению нерезидентам, необходимо соблюдать законы и правила страны-экспортера, особенно те, которые касаются безопасного экспортного контроля.
Информация, содержащаяся на этом веб-сайте, не может быть перепечатана или воспроизведена полностью или частично без предварительного письменного разрешения Panasonic Corporation.
Инструменты и программы, представленные на этом веб-сайте, должны использоваться по вашему усмотрению.Panasonic не гарантирует каких-либо результатов от использования этих инструментов и программ и не несет ответственности за любые убытки, возникшие в результате использования вами.
<о письме для получения сертификата соответствия директиве ЕС RoHS>
Дата перехода на продукт, соответствующий требованиям RoHS, зависит от номера детали или серии.
При использовании инвентаря, в котором неясно соответствие требованиям RoHS, выберите «Запрос на продажу».
в форме веб-запроса.
Извещение о передаче полупроводникового бизнеса
Полупроводниковый бизнес Panasonic Corporation (далее именуемой «Компания») будет передан 1 сентября 2020 года Nuvoton Technology Corporation (далее именуемой «Nuvoton»). Соответственно, Panasonic Semiconductor Solutions Co., Ltd., которая управляла полупроводниковым бизнесом Panasonic, перейдет под эгидой Nuvoton Group с новым названием Nuvoton Technology Corporation Japan (далее именуемой «NTCJ»).
В соответствии с этой передачей, полупроводниковая продукция, размещенная на этом веб-сайте, после 1 сентября 2020 года будет считаться продукцией, произведенной NTCJ. Однако такая продукция будет постоянно продаваться через Компанию.
Обратите внимание, что при запросе о полупроводниковых продуктах, размещенных на этом веб-сайте, клиенты должны перейти на веб-сайт, управляемый NTCJ (далее «веб-сайт NTCJ»), и подтвердить, что NTCJ является компанией, ответственной за управление личной информацией, предоставляемой клиентами на ее веб-сайте.Мы ценим ваше понимание по этому поводу.
Электролитические конденсаторы Panasonic FM / FR с низким ESR и крышкой — FPVCycle
Конденсаторы серии FM / FR являются промышленным стандартом для мультикоптеров FPV. Они являются одними из самых низких вариантов ESR на рынке для данного размера и при правильном использовании хорошо справляются с устранением электрических шумов. (Серия FR предпочтительна для систем с большей мощностью)
Если у вас есть случайное дрожание, тикание или дрожание / дрожание квадрокоптера при дроссельной заслонке или резких движениях, у вас может быть электрический шум в системе, и вы можете попробовать применить конденсатор, чтобы увидеть, будет ли он помощь.Использование конденсатора по умолчанию является хорошей практикой и повысит общую надежность большинства аппаратов.
Для правильного использования любого конденсатора припаяйте провода диаметром не менее 18 AWG как можно ближе к основанию конденсатора и подключите их к контактным площадкам на плате ESC / AIO с длиной не более 1,3 дюйма или ~ 35 мм. Провод 18AWG. Более толстый провод не помогает увеличить расстояние до аккумулятора в колодках. В идеале предпочтительно менее 30 мм. Мы настоятельно рекомендуем использовать Cap Cap для облегчения использования.
Правильный размер зависит от вашей трансмиссии и напряжения. Обычно для 2S-4S используется 25 В, а для 6S — 35 В. Ни одному квадроциклу в диапазоне 2–6 дюймов не требуется более 1000 мкФ емкости. Если нужно больше, ваш ESC не подходит для комбинации мотор / винт. Чем ниже мощность квадроцикла, тем меньше емкость вам может сойти с рук.
35 В 1000 мкФ Серия FM с колпачком и проводом
Заглушка V3 с предварительно припаянным проводом 38 мм 18 AWG
Это максимальная рекомендуемая длина провода
5.1 г со всей проволокой
длиной 25 мм (колпачок в комплекте), диаметр 12,5 мм
25 В 1000 мкФ Серия FM с колпачком и проводом
Колпачок V3 с предварительно припаянным проводом 18 AWG 38 мм
Это максимальная рекомендуемая длина провода
3,9 г со всем проводом
Длина 25 мм (колпачок в комплекте), 12,5 диаметр мм
25 В 1000 мкФ — Серия FR
3,6 г
Длина 21 мм, диаметр 13 мм
25 В 330 мкФ — Серия FR
1.3g
13 мм в длину, 10 мм в диаметре
35 В 330 мкФ — Серия FR
1,7 г
Длина 22 мм, диаметр 8 мм
25 В 1000 мкФ — Серия FR
3,6 г
Длина 21 мм , Диаметр 13 мм
35v 1000 мкФ — Серия FM
3,7 г
Длина 21 мм, диаметр 12,5 мм
Логотип бренда | Ссылка | Страна | Банкноты | |
Arcon (без ссылки) | TW | |||
Asiacon | TW | Бренд Hermei | ||
CapXon | TW | CapXon отлично подойдет для блоков питания. | ||
Чси (сайт мертв) | TW | |||
Чойо (без ссылки) | TW | |||
CTC (без ссылки) | TW | |||
DST (без ссылки) | TW | |||
Элит | TW | |||
Evercon | TW | |||
Фу Инь | TW | |||
Fuhjyyu | TW | Плохой опыт работы с БП | ||
Fujitsu | JP | Надежный, хотя отмечены незначительные недостатки. | ||
Fujicon | TW | |||
Глория | TW | |||
G-Люксон | TW | |||
GL (без ссылки) | TW | |||
GSC | TW | Старый сайт мертв | ||
HEC (нет сайта) | TW | Город Дунгуань Dongyangguang Capacitor Co | ||
Hermei | TW | |||
И.Q. | TW | An Ost Brand | ||
Джеккон | TW | |||
JDEC (нет сайта) | TW | |||
JEE (нет сайта) | TW | |||
Jpcon | TW | |||
июн Фу | TW | |||
Кошин | HK | |||
Лелон | TW | |||
Ликон | TW | Бренд Fujicon | ||
Ltec | TW | |||
Nichicon | JP | В целом надежный, за исключением массовых отказов материнских плат серий HN и HM на материнских платах Dell, Intel и Apple из-за ошибок при изготовлении.Возможная подделка. | ||
Nkcon (нет сайта) | TW | |||
Новер | TW | |||
Ост | TW | |||
Panasonic | JP | Надежно.Возможная подделка. | ||
Партсник | KR | Ранее Daewoo | ||
Pce-tur (нет сайта) | TW | |||
Raycon (нет сайта) | TW | |||
Рубикон | JP | Надежно.Возможная подделка. | ||
Rubysun | CN | |||
Руликон (нет сайта) | TW | Поддельный Rubycon | ||
Samxon | HK | Надежно.Возможная подделка. | ||
Sanyo | JP | Надежно. Возможная подделка. | ||
Skywell | TW | |||
Камень | TW | |||
Supacon (нет сайта) | TW | |||
Загар | HK | |||
Su’scon | TW | |||
Taicon | TW | Компания Nichicon, но некоторые сбои наблюдались на платах Asrock и Asus. | ||
Tayeh (нет сайта) | TW | |||
Чайник | TW | Чайники часто отлично подходят для блоков питания. | ||
TMS (нет сайта) | TW | |||
Токон | TW | |||
Тошин Когио | JP | БрендТК, дистрибьютор Ост | ||
Юникон | TW | |||
United Chemicon | JP | Некоторые неисправности серии КЗГ на материнской плате. |