Site Loader

Содержание

ПАРАЛЛЕЛЬНОЕ И ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ КОНДЕНСАТОРОВ

Когда в нашем распоряжении нет конденсатора нужной емкости или напряжение на конденсаторе превышает допускаемое, возникает необходимость использовать параллельное и последовательное соединение конденсаторов.

Последовательное соединение конденсаторов

Сообщим равные по величине разноименные заряды крайним обкладкам (внешним электродам) цепочке из двух последовательно соединенных конденсаторов с емкостью С1 и С2.

В результате взаимодействия зарядов на соединенных проводником внутренних обкладках возникнут также равные по величине и обратные по знаку заряды, так что на каждой из четырех обкладок будут одинаковые по величине заряды Q. Согласно формуле C = Q/U напряжения между обкладками каждого конденсатора будут:
U = Q/C1 и U2 = Q/C2,
т. е. при различных значениях емкостей напряжения на конденсаторах будут различны.
Сложив напряжения U1 и U2, мы получим напряжение U между внешними обкладками (напряжение на зажимах цепочки). Таким образом,
U = U1 + U2. (1-9)
Подставив в выражение (1-9) вместо напряжений отношение зарядов к емкостям, получим:

Q/C = Q/C1 + Q/C2
где С — общая или эквивалентная емкость.
Сокращая на Q, будем иметь:
1/C = 1/C1 + 1/C2,                          (1-10)
откуда емкость конденсатора, заменяющая цепочку, или общая емкость двух последовательно соединенных конденсаторов.
1/C = C2 + C1 / C1C2 или C = C1C2 / C1+C2               (1-11)

В случае последовательного соединения трех конденсаторов общую емкость можно найти из формулы, аналогичной (1-10):
1/C = 1/C1 + 1/C2 + 1/C3                   (1-12)
Тем же путем можно вычислить общую емкость любого числа последовательно соединенных конденсаторов.

 

Параллельное соединение конденсаторов

При параллельном соединении, например, трех конденсаторов (рис. 1-11) получаются две группы обкладок разных конденсаторов. Каждая группа обкладок представляет собой равнопотенциальное проводящее тело, поэтому разности потенциалов (или напряжения) между обкладками отдельных конденсаторов будут одинаковы. Заряды на обкладках при неодинаковых емкостях конденсаторов имеют разные значения:

Ql = C1U;  Q2 = C2U;  Q3 = C3U.
Заряд на группе объединенных обкладок
Q = Q1 + Q2 + Q3,
откуда емкость конденсатора, заменяющего три параллельно соединенных конденсатора, или общая емкость
С = Q/U = Q1 + Q2 + Q3/U = C1 + C2 + C3, (1-13)
т. е. равна сумме емкостей отдельных конденсаторов. Это и есть формула при параллельном соединение конденсаторов.

При другом числе параллельно соединенных конденсаторов общая емкость вычисляется аналогично.
Пример:
Определить общую емкость двух конденсаторов при последовательном и параллельном их соединении, если С1 = 2 мкф, а С2 = 4 мкф.
Емкость при последовательном соединении
C = C1C2/C1+C2 = 2×4/2+4 = 1,33 мкф.
Емкость при параллельном соединении
С = С1 + С2 = 2 + 4 = 6 мкф.

Видеофильм о последовательном и параллельном их соединении конденсаторов смотрите ниже:

Параллельное и последовательное соединение конденсаторов

Иногда в наличии нет конденсатора с нужными параметрами. В таком случае, можно соединить несколько конденсаторов так, чтобы полученная система обладала необходимой электрической емкостью. Существуют два основных способа соединений:

  1. параллельный;
  2. последовательный;

Комбинируя эти способы, можно получить смешанное соединение.

Для каждого способа применяют специальные формулы, описывающие распределение заряда и напряжения на конденсаторах, а, так же, получаемую итоговую электроемкость системы.

Параллельное соединение

Этот способ соединения получаем, соединяя каждый вывод одного прибора с соответствующим ему выводом другого (рис. 1).

Рис. 1. Параллельный способ соединения

Емкость для параллельного включения можно определить так:

\[\large \boxed { C_{1} + C_{2} = C_{\text{общ}} } \]

При этом, общая \(\large C_{\text{Общ}} \) электроемкость получится больше самой большой емкости, входящей в соединение.

\(\large C_{1}, C_{2} \left( \text{Ф} \right) \) – электроемкости конденсаторов.

Общая электроемкость включенных параллельно конденсаторов больше емкости большего из них.

Напряжение на конденсаторах

Напряжения, приложенные к параллельно подключенным обкладкам, равны.

\[\large \boxed { U_{1} = U_{2} = U_{\text{общ}} } \]

\(\large U_{1}, U_{2}\left( B\right) \) – напряжения на обкладках.

Рис. 2. Равенство напряжений на параллельно соединенных обкладках

Правило для зарядов

Общий заряд системы разделится на части. Каждая из параллельно соединенных емкостей получит свой заряд.

\[\large \boxed { q_{1} + q_{2} = q_{\text{общ}} } \]

\(\large q_{1}, q_{2}\left( \text{Кл} \right) \) – заряды на конденсаторах.

Рис. 3. Заряды, содержащиеся на каждом параллельно включенном элементе, складываются

При этом, из формулы емкости (ссылка), связывающей ее с напряжением на обкладках и зарядом, следует (рис. 4):

При параллельном соединении меньшая емкость содержит меньший заряд.

Рис. 4. Пример распределения зарядов на конденсаторах при их параллельном включении

Из рисунка 4 следует, в параллельной части цепи конденсатор с наименьшей (0,1 Ф) электроемкостью накапливает меньший (1 Кулон) заряд. А набиольший заряд 4 Кулона содержится на приборе, обладающем максимальной емкостью 0,4 Ф.

Последовательное соединение

Для такого способа соединения складываются величины, обратные емкостям.

\[\large \boxed { \frac {1}{C_{1}} + \frac {1}{C_{2}} = \frac {1}{C_{\text{общ}}} } \]

Примечание: Величина, обратно пропорциональная емкости, измеряется в обратных Фарадах.

\(\large \displaystyle \frac {1}{C} \left( \frac {1}{\text{Ф}} \right) \) – величину, обратную электроемкости в некоторых источниках называют электрической эластичностью (эластансом).

\(\large C_{1}, C_{2}\left( \text{Ф}\right) \) – емкости конденсаторов.

При последовательном включении общая \(\large C_{\text{Общ}} \) электроемкость цепочки окажется меньше самой маленькой емкости включенной в цепочку.

Рис. 5. Последовательный способ соединения емкостей

Общая емкость системы меньше меньшей из включенных последовательно емкостей.

Правило для напряжений

Приложенное к концам последовательной цепочки напряжение распределится между элементами.

\[\large \boxed { U_{1} + U_{2} = U_{\text{общ}} } \]

где \(\large U_{1}, U_{2}\left( B\right) \) — это напряжения на обкладках.

Чем больше емкость конденсатора, тем меньшее напряжение будет наблюдаться на его обкладках при последовательном соединении.

Рис. 6. Способ определить общее напряжение на последовательно включенных емкостях

Общее напряжение разделится на части. Большее напряжение будет на конденсаторе с меньшей электроемкостью.

На рисунке 7 представлена цепочка, состоящая из 4-ех емкостей, соединенных последовательно. На конденсаторе с наименьшей емкостью 0,3 Ф напряжение составляет 4 Вольта.

Рис. 7. Пример распределения напряжений на элементах последовательной цепи

А наименьшее напряжение 1 Вольт, находится на обкладках конденсатора с наибольшей емкостью 1,2 Ф. Общее напряжение на концах цепочки равняется 10-и Вольтам.

Заряд на конденсаторах

Зарядив одну из обкладок конденсатора, мы получим на второй его обкладке такой же (по модулю) заряд противоположного знака. Поэтому, все конденсаторы, соединенные последовательно, будут иметь одинаковые заряды на обкладках.

\[\large \boxed { q_{1} = q_{2} = q_{\text{общ}} } \]

где \(\large q_{1}, q_{2}\left( \text{Кл} \right) \) – заряды, накопленные конденсаторами.

В последовательно включенной цепочке все конденсаторы обладают равными зарядами.

Рис. 8. Равенство зарядов на обкладках последовательно включенных емкостей

Выводы

  1. Правила, приведенные в статье, будут справедливы не только для двух, но и для любого количества включенных конденсаторов.
  2. Связывающие напряжения и заряды формулы для последовательно и параллельно включенных элементов, можно получить из принципа сложения емкостей и обратных емкостей, а, так же, отношения между приложенным напряжением и зарядом.

Рис. 9. Основные формулы для различных способов соединения

 

схемы соединения, расчёт ёмкости, формулы

Чтобы накапливать, хранить и передавать энергию, в электронике используется специальный прибор — конденсатор. В этой статье описано, как выполнить подключение конденсатора своими руками и какие формулы для этого нужны.

Понятие о приборе

Говоря простым языком, конденсаторами называют радиоэлектронные приборы, которые используются для накопления электроэнергии, впоследствии передавая ее на цепь. Эти устройства достаточно часто применяют в разных электрических схемах.

Как выглядит конденсатный прибор

Приборы могут очень быстро накапливать энергию и так же стремительно ее передавать. Эти устройства функционируют циклично. Показатель накопленной энергии и циклы определяется техническими параметрами изделия, они зависят от самой модели устройства. Основные технические параметры указаны в маркировке конденсатора. Принцип действия устройства очень похож на индуктивную катушку.

Ниже можно прочесть про последовательное и параллельное соединение конденсаторов с формулами и вычислениями.

Последовательное соединение приборов

Последовательным подключением называется такое, где все элементы устройства включены в виде цепи и соединены с первым и последним конденсатором с помощью пластины.

Схема для последовательного подключения

При таком виде присоединения на все элементы поступает одинаковое количество электричества, так как именно от источника тока энергия поступает на первое и последнее устройство и передается на другие.

Обратите внимание! Поскольку конденсаторы имеют разную емкость, то и напряжение на каждом из них в цепи будет разным.

Чем ниже емкость прибора, тем выше понадобится напряжение, чтобы получить и передать энергию.

Проще говоря, при подсоединении нескольких устройств сразу, при помощи последовательного способа на устройствах небольшой емкости напряжение будет выше, а на устройствах высокой емкости — ниже.

Также существует метод параллельного подключения. Он выглядит проще предыдущего. Общую емкость приборов можно найти суммированием всех величин.

Смешанное соединение конденсаторов

Также эти устройства можно подключать смешанным способом. Такой метод (последовательно-параллельный) используется, если нужно повысить показатель обеих величин. По такой схеме тяжелее работать, но имея опыт в электрике, можно с ней разобраться. Как соединять приборы стало понятно, теперь необходимо правильно произвести вычисления по формулам.

Как можно рассчитать последовательное подключение

При последовательном подключении двух и более конденсаторов их рабочее напряжение складывается. Очень часто такой метод применяется радиолюбителями, когда не хватает дополнительных элементов на вольтаж.

Для правильного расчета необходимо использовать стандартную формулу:

Uобщ.посл = U1 + U2 + … + Un,

Где U1, U2… — максимальное напряжение каждого отдельно взятого элемента.

Параллельное соединение электролитических конденсаторов

Какая общая емкость при подключении устройств

Формула для общей емкости выглядит следующим образом:

C = Q / U = (Q1 + Q2 + Q3) / U = C1 + C2 + C3;

т. е. при последовательном подключении конденсаторов суммарная емкость равняется сумме показателей каждого элемента.

Как рассчитать емкость одного устройства

Этот показатель является одним из главных характеристик любого прибора. От этого показателя зависит сфера его использования, правила эксплуатации и предназначение. Указывается ёмкость в фарадах.

В России она указывается символом «Ф», в Европе — «F». На самих электронных устройствах можно увидеть такую символьную кодировку, pF, nF или uF. Это означает, что компонент имеет ёмкость 10-11,10-9 и 10-7 фарад.

Показатель можно рассчитать при помощь замеров мультиметром. В конструкции конденсатора имеются металлические пластины. Их поперечные параметры должны быть чуть больше, чем промежуток между ними.

Расшифровка маркировки

В центр такой пластины будет подключаться оболочка диэлектрика. В процессе работы устройства на выводы оболочки подаётся заряд. В итоге электроны начинают перемещаться, но не могут выходить за диэлектрик, и поэтому в пластинах собирается заряд.

Умение прибора накапливать электрическую энергию и будет его ёмкостью. Если провести аналогию с банкой для жидкости, то емкость — это будет объем.

Чтобы правильно рассчитать ёмкость, нужно воспользоваться формулой:

C= ε (A / d),

где:

  • А — площадь самой маленькой пластины;
  • d — промежуток между пластинами;
  • ε — общая проницаемость диэлектрика.

В заключении необходимо отметить, что рассчитать емкость самостоятельно достаточно легко. В интернете много сервисов, которые помогут с расчетами. Эту величину необходимо знать для того, чтобы правильно присоединить конденсатор в цепь.

Последовательное и параллельное соединение конденсаторов

На практике часто используются тела, обладающие малыми (и очень малыми) размерами, которые могут накопить большой заряд, при этом имея небольшой потенциал. Такие объекты называют конденсаторами. Одна из основных характеристик конденсатора – это его емкость. Имея в резерве набор конденсаторов, обладающих разными параметрами, можно расширить спектр величин емкостей и диапазон рабочих напряжений, если применять их соединения. Различают три типа соединений конденсаторов: последовательное, параллельное и смешанное (параллельное и последовательное).

Последовательное соединение конденсаторов

Последовательное соединение из конденсаторов изображено на рис. 1

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды. Электрическая емкость последовательного соединения конденсаторов вычисляется по формуле:

   

где – электрическая емкость i-го конденсатора.

Если емкости конденсаторов при последовательном соединении равны , то емкость последовательного их соединения составляет:

   

где N – количество последовательно соединенных конденсаторов. При этом предельное напряжение (U), которое выдержит подобная батарея конденсаторов составит:

   

где – предельное напряжение каждого конденсатора соединения. При последовательном соединении конденсаторов следует следить за тем, чтобы ни на один из конденсаторов батареи не падало напряжение, превышающее его максимальное рабочее напряжение.

Параллельное соединение конденсаторов

Параллельное соединение N конденсаторов изображено на рис. 2.

При параллельном соединении конденсаторов соединяют обкладки, обладающие зарядами одного знака (плюс с плюсом; минус с минусом). В результате такого соединения одна обкладка каждого конденсатора имеет одинаковый потенциал, например, , а другая . Разности потенциалов на обкладках всех конденсаторов при их параллельном соединении равны.

При параллельном соединении конденсаторов суммарная емкость соединения рассчитывается как сумма емкостей отдельных конденсаторов:

   

При параллельном соединении конденсаторов напряжение равно самой наименьшей величине рабочего напряжения конденсатора из состава рассматриваемого соединения.

Примеры решения задач

Формула расчета последовательного соединения конденсатора

Конденсаторы, наряду с резисторами и диодами, входят в тройку наиболее распространённых электронных компонентов. Различные их соединения встречаются в подавляющем большинстве электробытовых приборов. Их можно встретить в персональных компьютерах, пылесосах, лампочках и даже смартфонах.

Конденсаторы

Как правильно соединять конденсаторы

Чтобы узнать, как подключить конденсатор правильно, нужно разобраться, к какому именно типу он относится. Данных электронных приборов существует огромное множество. Все конденсаторы подразделяются на две группы:

  • полярные (электролитические) – подключая их, необходимо учитывать, где у детали плюсовой, а где минусовой контакт;
  • неполярные (все остальные) – эти конденсаторы способны работать от переменного тока, у них не бывает положительных и отрицательных клемм.

Затем нужно учесть конструкцию электронного компонента. С этой точки зрения конденсаторы могут быть:

  • Выводными. Подключаются к плате с помощью тонких медных ножек, покрытых (лужёных) для защиты слоем припоя.
  • Для поверхностного монтажа (SMD). В основном применяются в компактной электронике. Очень миниатюрны, часто в поперечнике не превышают 1 мм.

Также важно принять во внимание рабочее напряжение конденсатора. Это особенно принципиально для электролитических приборов данного типа, ведь при превышении их номинального вольтажа они, вероятнее всего, взорвутся, разбрызгивая во все стороны кипящий электролит.

Важно! На крышке электролитического конденсатора имеются две насечки. Эти слабые места служат для мгновенной разгерметизации изделия в случае избыточного внутреннего давления. При ремонте и наладке оборудования следует избегать направленности насечек на лицо или одежду. При внештатной ситуации с их стороны может брызнуть горячий электролит.

Не менее критичен порог максимального напряжения и для прочих видов конденсаторов, особенно имеющих мелкие габариты и не способных длительно выдерживать перегрузки.

Последний, но не наименее важный фактор, который следует учесть при соединении конденсаторов, – это их ёмкость. Она измеряется в микрофарадах (в честь Майкла Фарадея). Это их главная характеристика, поэтому конденсаторы часто называют электрическими ёмкостями. В некоторых электронных устройствах этот параметр может существенно отклоняться как в меньшую, так и в большую сторону. В других – недопустимо погрешность и на 1 %.

Схема последовательного соединения

Последовательное соединение конденсаторов подразумевает, что правая ножка каждой предстоящей ёмкости будет подключена к левому выводу последующей. Иными словами, детали объединяются в цепь, в которой они идут друг за другом, как люди в длинной очереди в магазине.

Если подключаются электролитические конденсаторы, то плюс одной детали соединяется с минусом другой, по тому же принципу, как и батарейки в различных портативных гаджетах.

Последовательное включение ёмкостей

В случае с распаянными на плате SMD деталями у каждой детали есть своё место, подключаются они тонкими медными проводниками – дорожками при помощи паяльника (редко) или термофена.

SMD детали

При последовательном соединении двух и более ёмкостей их рабочее напряжение суммируется. Нередко такой подход используется радиолюбителями, когда у них нет детали на нужный вольтаж. Формула для вычисления рабочего напряжения линейки из n конденсаторов выглядит следующим образом:

Uобщ.посл = U1 + U2 + … + Un.

Здесь U1, U2… – максимальный вольтаж каждого отдельно взятого конденсатора.

С ёмкостью линейки последовательно включенных деталей всё обстоит иначе. Она наоборот снижается. Объясняется это конструктивными особенностями этих приборов, а именно виртуальным увеличением расстояния между их обкладками. При последовательном соединении общая ёмкость определяется следующим выражением:

1/Cобщ.посл = (1/С1) + (1/С2) + … + (1/Сn).

Здесь C1, C2… – ёмкости отдельных конденсаторов.

Имеется более простой расчет этого параметра, но он пригоден только в том случае, если подключены два конденсатора, не более:

Cобщ.посл = С1*С2/(С1 + С2).

Параллельное и комбинированное соединение

Выделяются другие способы соединения, а именно комбинированное и параллельное подключение конденсаторов. Для них справедливы иные физические законы.

Параллельные конденсаторы

Напряжение всей группы при параллельном соединёнии конденсаторов равно вольтажу самого наименьшего из них. Т.е., если имеется цепь из трёх конденсаторов на 16, 25 и 50 В, то максимум, который на них можно подать, это 16 В. В такой схеме к каждой отдельной ёмкости будет приложено полное напряжение источника питания.

Ёмкость такой батареи складывается. Вызвано это виртуальным сложением площадей обкладок всех отдельных конденсаторов. На языке физики это выглядит так:

Cобщ.пар = С1 + С2 + … + Сn.

Зачем нужно такое соединение? Оно используется для увеличения ёмкости конденсаторов, например, в высоковольтной части сварочных инверторов и многих мощных блоках питания.

Дополнительная информация. Параллельное соединение позволяет снизить общее внутреннее сопротивление сборки, следовательно, и её нагрев. Тем самым можно увеличить срок службы ёмкости.

Комбинированное (смешанное) соединение наиболее сложное. В нём встречаются как последовательные, так и параллельные элементы. Расчёт параметров таких схем даётся с опытом. Для простоты его принято изучать по треугольнику, разбивая на более простые части.

Смешанное соединение

Из схемы очевидно, что конденсаторы C1 и C2 включены последовательно. Их общую ёмкость можно рассчитать по вышеописанной формуле – Cобщ.посл. Далее схема упрощается. Здесь уже имеются два параллельных конденсатора Cобщ.посл и C3. Вычисляется по вышестоящей формуле Cобщ.пар. В итоге сложный для восприятия элемент цепи превращается в один эквивалентный конденсатор. Данная методика описывает алгоритм упрощения, с помощью которого можно рассчитывать гораздо более сложные конденсаторные фигуры (квадрат, куб и т.п.).

Ток при последовательном соединении конденсаторов

Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.

Конденсатор и постоянный ток

Постоянный ток через конденсатор не проходит вообще. Справедливо это и для линейки из последовательно соединённых ёмкостей. Объясняется такой эффект опять же конструкцией самого электронного прибора. Конденсатор имеет две металлические обкладки. В простых электролитических приборах они сделаны из алюминиевой фольги. Между ними расположен тонкий слой диэлектрика (оксид алюминия). Если приложить к обкладкам разность потенциалов (напряжение), то ток потечёт, но только очень короткое время, пока конденсатор полностью ни зарядится. Далее движение носителей заряда прекратится, т.к. они не смогут пройти через диэлектрик. В этот момент можно сказать, что электрический ток равен нулю, и конденсатор его не пропускает.

Конденсатор и переменный ток

При переменном токе носители заряда периодически меняют своё направление. В случае с бытовой сетью изменение происходит 50 раз в секунду. Поэтому говорят, что частота тока в розетке равна 50 Гц.

Важно! Конденсаторы способны накапливать и длительно удерживать заряд. При работе с ёмкостями, заряженными от сети 220 В, их всегда следует разряжать сопротивлением в 100-1000 ом. Несоблюдение правила однажды приведёт к неприятному удару током.

Конденсатор определённо пропустит переменный ток, но не факт, что весь. Количество носителей заряда, которые смогут пройти через этот электронный прибор, зависит от ёмкости конденсатора, приложенного к нему напряжения и частоты смены направления зарядов. Математически это выражается так:

I = 2pfCU.

Здесь I – это электрический ток с частотой f, проходящий через конденсатор ёмкостью C, если к его обкладкам приложить напряжение U. 2 – просто число, а p = 3.14.

Такая способность конденсаторов ограничивать переменный ток широко применяется в аудиотехнике для построения различных звуковых фильтров. Изменяя ёмкость, можно влиять на частоту сигнала, которую она пропускает.

Фильтр на основе ёмкости

Падение напряженности и общая емкость

Ёмкость конденсатора – это величина, определяющая количество заряда, который он способен в себе сохранить. Выражение имеет следующий вид:

C = q/U.

Здесь q – заряд, накопленный между обкладками конденсатора, U – напряжение к ним приложенное.

Вышеописанная формула представляет общий случай. На практике при расчете ёмкости конденсатора следует учитывать ряд других переменных:

C = E0ES/d,

где:

  • E0 – электрическая постоянная, равная 8,85*10-12 Ф/м,
  • E – диэлектрическая проницаемость среды, в которой располагаются обкладки конденсатора,
  • S – их площадь пересечения,
  • d – расстояние между обкладками.

Стандартная модель конденсатора имеет следующий вид.

Модель конденсатора

Обкладки чаще всего изготовлены из тонкого листового алюминия и скручены в рулон. Делается это для увеличения их площади, ведь так ёмкость конденсатора становится существенно больше.

От выбора диэлектрика, устанавливаемого производителем между обкладками конденсатора, зависит номинальное и максимальное напряжение прибора. Это, в свою очередь, определяет его сферу применения. Если к обкладкам приложить чрезмерную разность потенциалов, то напряжённость поля между ними превысит допустимый уровень, и произойдёт пробой диэлектрика. Подобная ситуация особенно пагубно влияет на электролитические конденсаторы и ионисторы. В случае их пробоя прибор частично или полностью теряет способность накапливать заряд и в дальнейшем становится непригодным для работы.

При последовательном и параллельном включении разных конденсаторов существенно изменяются их характеристики. Данное свойство этих деталей активно используется инженерами-электронщиками и радиолюбителями. Знание принципов подключения позволяет им более продуктивно разрабатывать новые устройства.

Видео

Последовательное соединение конденсаторов распределение напряжений. Последовательное соединение конденсаторов

Содержание:

В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = i c1 = i c2 = i c3 = i c4 .

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Q общ = Q 1 = Q 2 = Q 3 .

Если рассмотреть три конденсатора С 1 , С 2 и С 3 , соединенные в последовательную цепь, то выясняется, что средний конденсатор С 2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/C общ = 1/C 1 + 1/C 2 + 1/C 3 .

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Смешанное соединение

Параллельное соединение конденсаторов

Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, С общ = С 1 + С 2 + С 3 .

Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

Практически все электрические цепи включают в себя емкостные элементы. Соединение конденсаторов между собой выполняют по схемам. Их необходимо знать как при расчетах, так и при выполнении монтажа.

Последовательное соединение

Конденсатор, а в просторечии – «ёмкость», та деталь, без которой не обходится ни одна электрическая или электронная плата. Даже в современных гаджетах он присутствует, правда, уже в измененном виде.

Вспомним, что представляет собой этот радиотехнический элемент. Это накопитель электрических зарядов и энергии, 2 проводящие пластины, между которыми расположен диэлектрик. При прикладывании к пластинам источника постоянного тока через устройство кратковременно потечет ток, и оно зарядится до напряжения источника. Его емкость используют для решения технических задач.

Само это слово произошло задолго до того, как придумали устройство. Термин появился ещё тогда, когда люди считали, что электричество – это что-то типа жидкости, и ею можно наполнить какой-нибудь сосуд. Применительно к конденсатору – он неудачен, т.к. подразумевает, что прибор может вместить только конечное количество электричества. Хотя это и не так, но термин остался неизменным.

Чем больше пластины, и меньше расстояние между ними, тем больше . Если его обкладки соединить с каким-либо проводником, то через этот проводник произойдет быстрый разряд.


В координатных телефонных станциях с помощью этой особенности происходит обмен сигналами между приборами. Длина импульсов, необходимых для команд, таких как: «соединение линии», «ответ абонента», «отбой», регулируется величиной ёмкости установленных в цепь конденсаторов.

Единица измерения ёмкости – 1 Фарад. Т.к. это большая величина, то пользуются микрофарадами, пикофарадами и нанофарадами, (мкФ, пФ, нФ).

На практике, выполнив последовательное соединение, можно добиться увеличения прикладываемого напряжения. В этом случае поданное напряжение получают 2 внешние обкладки собранной системы, а обкладки, находящиеся внутри, заряжаются с помощью распределения зарядов. К таким приемам прибегают, когда под рукой не оказывается нужных элементов, зато есть детали других номиналов по напряжению.


К участку, имеющему 2 последовательно соединенных конденсатора, рассчитанных на напряжение 125 В, можно подключить питание 250 В.

Если для постоянного тока, конденсатор является препятствием за счет своего диэлектрического промежутка, то с переменным – все иначе. Для токов разных частот, подобно катушкам и резисторам, сопротивление конденсатора будет меняться. Токи высокой частоты он пропускает хорошо, а для их собратьев низкой частоты создает барьер.

У радиолюбителей есть способ – через емкость 220-500 пФ к радиоприемнику подключают вместо антенны сеть освещения напряжением 220 В. Ток с частотой 50 Гц он отфильтрует, а токи высокой частоты пропустит. Это сопротивление конденсаторов легко рассчитать по формуле для емкостного сопротивления:RC =1/6*f*C.


  • Rc – емкостное сопротивление, Ом;
  • f – частота тока, Гц;
  • C – емкость данного конденсатора, Ф;
  • 6 – округленное до целой части число 2π.

Но не только прикладываемое напряжение к цепи можно изменить, пользуясь подобной схемой включения. Так добиваются изменений емкостей при последовательных соединениях. Для легкости запоминания придумали подсказку, что общее значение емкости, полученное при выборе подобной схемы, получается всегда меньше меньшей из двух, включенных в цепочку.

Если так соединить 2 детали одинаковой ёмкости, то их общее значение будет вдвое меньше каждой из них. Расчеты последовательных соединений конденсатора можно выполнить по приведенной ниже формуле:

Собщ = С1*С2/С1+С2,

Пусть С1=110 пФ, а С2=220 пФ, тогда Собщ = 110×220/110+220 = 73 пФ.

Не стоит забывать про простоту и удобство монтажа, а также обеспечение качественной работы собранного устройства или оборудования. В последовательных соединениях у емкостей должен быть 1 производитель. А если детали всей цепочки будут одной партии выпуска, то проблем с эксплуатацией созданной цепи не будет.

Параллельное соединение

Накопители электрического заряда постоянной емкости, различают:

  • керамические;
  • бумажные;
  • слюдяные;
  • металлобумажные;
  • электролитические конденсаторы.

Их делят на 2 группы: низковольтные и высоковольтные. Применяют их в фильтрах выпрямителей, для связи между низкочастотными участками цепей, в блоках питания различных устройств и т.д.

Конденсаторы переменной ёмкости тоже существуют. Они нашли свое предназначение в настраиваемых колебательных контурах теле- и радиоприемников. Емкость регулируется за счет изменения положения пластин относительно друг друга.


Рассмотрим соединение конденсаторов, когда их выводы соединятся попарно. Подобное включение подходит для 2 или более элементов, рассчитанных на одно и то же напряжение. Номинальное напряжение, которое указано на корпусе детали, превышать нельзя. В противном случае произойдет пробой диэлектрика, и элемент выйдет из строя. Но в цепь, где присутствует напряжение меньше номинального, конденсатор включать можно.

Параллельным включением конденсаторов можно добиться увеличения общей ёмкости. В некоторых устройствах необходимо обеспечить большое накопление электрического заряда. Существующих номиналов не хватает, приходится выполнять параллели и использовать то, что есть под рукой. Определить общую величину полученного соединения просто. Для этого нужно просто сложить величины всех используемых элементов.


Для вычисления емкостей конденсаторов формула имеет вид:

Собщ = С1+С2, где С1 и С2 – емкость соответствующих элементов.

Если С1=20 пФ, а С2=30 пФ, то Собщ = 50 пФ. Деталей в в параллели может быть n-ое количество.

На практике такое соединение находит применение в специальных устройствах, используемых в энергетических системах, и на подстанциях. Их монтируют, зная, как соединить конденсаторы для увеличения емкости, в целые блоки из батарей.

Для того чтобы поддерживать равновесие реактивной мощности как в энергоснабжающих установках, так и в установках энергопотребителей, существует необходимость включать в работу компенсирующие устройства реактивной мощности (УКРМ). Для снижения потерь и регулировки напряжения в сетях при расчетах устройства необходимо знать величины реактивных сопротивлений конденсаторов, используемых в установке.


Случается, что возникает необходимость вычислить по формуле напряжение на конденсаторах. В этом случае будем исходить из того, что С=q/U, т.е. отношение заряда к напряжению. И если величина заряда – q, а ёмкость – C, можем получим искомое число, подставляя значения. Она имеет вид:

Смешанное соединение

При расчете цепи, представляющей собой совокупность рассмотренных выше комбинаций, поступают так. Сначала ищем в сложной цепи конденсаторы, которые соединены между собой либо параллельно, либо последовательно. Заменив их эквивалентным элементом, получим более простую схему. Потом в новой схеме с участками цепи проводим те же манипуляции. Упрощаем до тех пор, пока не останется только параллельное или последовательное соединение. Их рассчитывать мы уже научились в этой статье.


Параллельно-последовательное соединение применимо для увеличения емкости, батареи или для того, чтобы приложенное напряжение не превышало рабочего напряжения конденсатора.

Практически на любой электронной плате применяются конденсаторы, устанавливаются они и в силовых схемах. Для того чтобы компонент мог выполнять свои функции, он должен обладать определёнными характеристиками. Иногда возникает ситуация, когда необходимого элемента нет в продаже или его цена неоправданно завышена.

Выйти из сложившегося положения можно, используя несколько элементов, а необходимые характеристики получают, применяя параллельное и последовательное соединения конденсаторов между собой.

Немного теории

Конденсатор — пассивный электронный компонент, с переменной или постоянной величиной ёмкости, которое предназначено для накопления заряда и энергии электрического поля.

При выборе этих электронных компонентов руководствуются двумя основными характеристиками:

Условное обозначение неполярного постоянного конденсатора на схеме, показано на рис. 1, а. Для полярного электронного компонента дополнительно отмечают положительный вывод — рис. 1, б.

Способы соединения конденсаторов

Составление батарей конденсаторов позволяет изменить суммарную ёмкость или рабочее напряжение. Для этого могут применяться такие способы соединения:

  • последовательное;
  • параллельное;
  • смешанное.

Последовательное соединение

Последовательное подключение конденсаторов показано на рис. 1, в. Применяют такое соединение в основном для увеличения рабочего напряжения. Дело в том, что диэлектрики каждого из элементов расположены друг за другом, поэтому при таком соединении напряжения складываются.

Суммарная ёмкость последовательно соединённых элементов можно рассчитать по формуле, которая для трёх компонентов будет иметь вид, показанный на рис. 1, е.

После преобразования в более привычную для нас форму, формула примет вид рис. 1, ж.

Если, соединённые последовательно, компоненты имеют одинаковые ёмкости, то расчёт значительно упрощается. В этом случае суммарную величину можно определить, разделив номинал одного элемента на их количество. Например, если требуется определить, какова ёмкость при последовательном соединении двух конденсаторов по 100 мкФ, то эту величину можно рассчитать, разделив 100 мкФ на два, то есть суммарная ёмкость равна 50 мкФ.

Максимально упростить расчёты последовательно соединённых компонентов , позволяет использование онлайн-калькуляторов, которые без проблем можно найти в сети.

Параллельное подключение

Параллельное подключение конденсаторов показано на рис. 1, г. При таком соединении рабочее напряжение не изменяется, а ёмкости складываются. Поэтому для получения батарей большой ёмкости, используют параллельное соединение конденсаторов. Калькулятор для расчёта суммарной ёмкости не понадобится, так как формула имеет простейший вид:

С сум = С 1 + С 2 + С 3.

Собирая батарею для запуска трёхфазных асинхронных электродвигателей, часто применяют параллельное соединение электролитических конденсаторов. Обусловлено это большой ёмкостью этого типа элементов и небольшим временем запуска электродвигателя. Такой режим работы электролитических компонентов допустим, но следует выбирать те элементы, у которых номинальное напряжение минимум в два раза превышает напряжение сети.

Смешанное включение

Смешанное подключение конденсаторов — это сочетание параллельного и последовательного соединений .

Схематически такая цепочка может выглядеть по-разному. В качестве примера рассмотрим схему, изображённую на рис. 1, д. Батарея состоит из шести элементов, из которых С1, С2, С3, соединены параллельно, а С4, С5, С6 — последовательно.

Рабочее напряжение можно определить сложением номинальных напряжений С4, С5, С6 и напряжения одного из параллельно подключённых конденсаторов. Если параллельно соединённые элементы имеют разные номинальные напряжения, то для расчёта берут меньшее из трёх.

Для определения суммарной ёмкости, схему разбивают на участки с одинаковым соединением элементов, производят расчёт для этих участков, после чего определяют общую величину.

Для нашей схемы последовательность вычислений следующая:

  1. Определяем ёмкость параллельно соединённых элементов и обозначаем её С 1-3.
  2. Рассчитываем ёмкость последовательно соединённых элементов С 4-6.
  3. На этом этапе можно начертить упрощённую эквивалентную схему, в которой вместо шести элементов изображаются два — С 1-3 и С 4-6. Эти элементы схемы соединены последовательно. Остаётся произвести расчёт такого соединения и мы получим искомую.

В жизни подробные знания о смешанном соединении могут только пригодится радиолюбителям.

Электрические конденсаторы широко используются в радиоэлектронной аппаратуре. Они лидируют по количеству применения в блоках аппаратуры и по некоторым критериям уступают лишь резисторам. Конденсаторы присутствуют в любом электронном устройстве и их потребность в современной электронике постоянно растет. Наряду с имеющейся широкой номенклатурой, продолжаются разработки новых типов, которые имеют улучшенные электрические и эксплуатационные характеристики.

Что такое конденсатор?

Конденсатором называется элемент электрической цепи, который состоит из проводящих электродов, изолированных друг от друга диэлектриком.

Конденсаторы отличают по емкости, а именно по отношению заряда к разности потенциалов, который передается этим зарядом.

В международной системе СИ за единицу емкости принимают емкость конденсатора с возрастанием потенциала на один вольт при сообщении заряда в один кулон. Эта единица называется фарадой. Она слишком велика для применения в практических целях. Поэтому принято использовать более мелкие единицы измерения, такие как пикофарад (пФ), нанофарад (нФ) и микрофарад (мкФ).

Группы по виду диэлектрика

Диэлектрики применяют для изоляции пластин друг от друга. Они изготавливаются из органических и неорганических материалов. Нередко, в качестве диэлектрика, применяют оксидные пленки металлов.

По виду диэлектрика элементы делят на группы:

  • органические;
  • неорганические;
  • газообразные;
  • оксидные.

Элементы с органическим диэлектриком изготавливают путем намотки тонких лент специальной бумаги или пленки. Также применяют комбинированный диэлектрик с фольговыми или металлизированными электродами. Такие элементы могут быть как высоковольтные (свыше 1600 В), так и низковольтные (до 1600 В).

В изделиях с неорганическим диэлектриком используют керамику, слюду, стекло и стеклокерамику, стеклоэмаль. Их обкладки состоят из тонкого слоя металла, который нанесен на диэлектрик путем металлизации. Бывают высоковольтные, низковольтные и помехоподавляющие.

В качестве газообразного диэлектрика используют сжатый газ (фреон, азот, элегаз), воздух или вакуум. По характеру изменения емкости и выполняемой функции такие элементы бывают постоянными и переменными.

Наибольшее распространение получили элементы с вакуумным диэлектриком. Они имеют большие удельные емкости (по сравнению с газообразным диэлектриком) и более высокую электрическую прочность. Элементы с вакуумным диэлектриком обладают стабильностью параметров при температурных изменениях окружающей среды.

Область применения – передающие устройства, работающие на коротких, средних и длинных волнах диапазонов с частотой до 30-80 МГц.

Элементы с оксидным диэлектриком бывают:

  • общего назначения;
  • пусковые;
  • импульсные;
  • неполярные;
  • высокочастотные;
  • помехоподавляющие.

Диэлектриком является оксидный слой, который наносится на анод электрохимическим путем.

Условные обозначения

Элементы обозначаются по сокращенной и полной системе.

При сокращенной системе наносятся буквы и цифры , где буквой обозначается подкласс, цифрой — группа в зависимости от применяемого диэлектрика. Третий элемент указывает регистрационный номер типа изделия.

При полном условном обозначении указываются параметры и характеристики в следующей последовательности:

  • условное обозначение конструктивного исполнения изделия;
  • номинальное напряжение изделия;
  • номинальная емкость изделия;
  • допустимое отклонение емкости;
  • температурная стабильность емкости изделия;
  • номинальная реактивная мощность изделия.

Подбор номинала

Конденсаторы могут соединяться друг с другом различными способами.

На практике нередко возникают ситуации, когда при монтаже схемы или замене неисправного элемента, приходится использовать ограниченное количество радиодеталей. Не всегда удается подобрать элементы нужного номинала.

В этом случае приходится применять последовательное и параллельное соединение конденсаторов.

При параллельной схеме соединения, их суммарная величина составит сумму емкостей отдельных элементов. При этой схеме подключения все обкладки элементов соединяются по группам. Один из выводов каждого элемента соединяется в одну группу, а другой вывод в другую группу.

При этом напряжение на всех обкладках будет одинаково , потому что все группы подключены к одному источнику питания. Фактически получается одна емкость, суммарной величины всех емкостей в данной цепи.

Чтобы получить большую емкость, применяют параллельное соединение конденсатора.

Например, необходимо подключить двигатель с тремя фазами к однофазной сети 220 В. Для рабочего режима двигателя необходима емкость величиной в 135 мкФ. Ее найти очень трудно, но можно получить, применив параллельное соединение элементов на 5, 30 и 100 мкФ. В результате сложения получаем необходимую единицу в 135 мкФ.

Последовательно соединение конденсаторов

Последовательное соединение конденсаторов используют, если необходимо получить емкость меньшую емкости элемента. Такие элементы выдерживают более высокие напряжения. При последовательном соединении конденсаторов, обратная величина общей емкости равняется сумме обратных величин отдельных элементов. Для получения требуемой величины нужны определенные конденсаторы, последовательное соединение которых даст необходимую величину.

При последовательном соединении конденсаторов каждый его вывод соединяется с одним выводом другого элемента. Получается некая цепочка из последовательно соединенных конденсаторов, где крайние выводы подключаются к источнику питания.

Емкость общей батареи всегда меньше минимальной емкости элементов, входящих в нее. То есть, половина от емкости каждой из этих емкостей.

При последовательном соединении конденсаторов увеличивается расстояние между обкладками элементов.

Например, при последовательном соединении двух элементов напряжением 200 В можно смело включать в схему напряжением до 1000 В.

Данный метод соединения используется гораздо реже , потому что емкости такой величины и рабочего напряжения можно приобрести в магазинах.

Таким образом, зная принцип общего расчета параллельного и последовательного соединения конденсаторов, всегда можно выйти из затруднительного положения, имея под рукой ограниченное количество номиналов.

Под последовательным соединением подразумевают случаи, когда два или больше элемента имеют вид цепи, при этом каждый из них соединяется с другим только в одной точке. Зачем конденсаторы так размещаются? Как это правильно сделать? Что необходимо знать? Какие особенности последовательное соединение конденсаторов имеет на практике? Какая формула результата?

Что необходимо знать для правильного соединения?

Увы, но здесь не всё так легко сделать, как может показаться. Многие новички думают, что если на схематическом рисунке написано, что необходим элемент на 49 микрофарад, то достаточно его просто взять и установить (или заменить равнозначным). Но необходимые параметры подобрать сложно даже в профессиональной мастерской. И что делать, если нет нужных элементов? Допустим, есть такая ситуация: необходим конденсатор на 100 микрофарад, а есть несколько штук на 47. Поставить его не всегда можно. Ехать на радиорынок за одним конденсатором? Не обязательно. Достаточно будет соединить пару элементов. Существует два основных способа: последовательное и параллельное соединение конденсаторов. Вот о первом мы и поговорим. Но если говорить про последовательное соединение катушки и конденсатора, то тут особых проблем нет.

Зачем так делают?

Когда с ними проводятся такие манипуляции, то электрические заряды на обкладках отдельных элементов будут равны: КЕ=К 1 =К 2 =К 3 . КЕ — конечная емкость, К — пропускаемое значение конденсатора. Почему так? Когда заряды поступают от источника питания на внешние обкладки, то на внутренних может быть осуществлен перенос величины, которая является значением элемента с наименьшими параметрами. То есть если взять конденсатор на 3 мкФ, а после него подсоединить на 1 мкФ — то конечный результат будет 1 мкФ. Конечно, на первом можно будет наблюдать значение в 3 мкФ. Но второй элемент не сможет столько пропустить, и он будет срезать всё, что больше необходимого значения, оставляя большую емкость на первоначальном конденсаторе. Давайте рассмотрим, что нужно рассчитать, когда делается последовательное соединение конденсаторов. Формула:

  • ОЕ — общая емкость;
  • Н — напряжение;
  • КЕ — конечная емкость.

Что ещё необходимо знать, чтобы правильно соединить конденсаторы?

Для начала не забывайте, что кроме ёмкости они ещё обладают номинальным напряжением. Почему? Когда осуществляется последовательное соединение, то напряжение распределяется обратно пропорционально их ёмкостям между ними самими. Поэтому использовать такой подход имеет смысл только в тех случаях, когда любой конденсатор сможет предоставить минимально необходимые параметры работы. Если используются элементы, у которых одинаковая емкость, то напряжение между ними будет разделяться поровну. Также небольшое предостережение относительно электролитических конденсаторов: при работе с ними всегда внимательно контролируйте их полярность. Ибо при игнорировании этого фактора последовательное соединение конденсаторов может дать ряд нежелательных эффектов. И хорошо, если всё ограничится только пробоем данных элементов. Помните, что конденсаторы копят ток, и если что-то пойдёт не так, в зависимости от схемы может случиться прецедент, в результате которого из строя выйдут другие составляющие схемы.

Ток при последовательном соединении

Из-за того, что у него существует только один возможный путь протекания, он будет иметь одно значение для всех конденсаторов. При этом количество накопленного заряда везде обладает одинаковым значением. От емкости это не зависит. Посмотрите на любую схему последовательного соединения конденсаторов. Правая обкладка первого соединена с левой второго и так далее. Если используется больше 1 элемента, то часть из них будет изолированной от общей цепи. Таким образом, эффективная площадь обкладок становится меньшей и равняется параметрам самого маленького конденсатора. Какое физическое явление лежит в основе этого процесса? Дело в том, что как только конденсатор наполняется электрическим зарядом, то он перестаёт пропускать ток. И он тогда не может протекать по всей цепи. Остальные конденсаторы в таком случае тоже не смогут заряжаться.

Падение напряженности и общая емкость

Каждый элемент понемногу рассеивает напряжение. Учитывая, что емкость ему обратно пропорциональна, то чем она меньше, тем большим будет падение. Как уже упоминалось ранее, последовательно соединённые конденсаторы обладают одинаковым электрическим зарядом. Поэтому при делении всех выражений на общее значение можно получить уравнение, которое покажет всю емкость. В этом последовательное и параллельное соединение конденсаторов сильно разнятся.

Пример № 1

Давайте воспользуемся представленными в статье формулами и рассчитаем несколько практических задач. Итак, у нас есть три конденсатора. Их емкость составляет: С1 = 25 мкФ, С2 = 30 мкФ и С3 = 20 мкФ. Они соединены последовательно. Необходимо найти их общую емкость. Используем соответствующее уравнение 1/С: 1/С1 + 1/С2 + 1/С3 = 1/25 + 1/30 + 1/20 = 37/300. Переводим в микрофарады, и общая емкость конденсатора при последовательном соединении (а группа в данном случае считается как один элемент) составляет примерно 8,11 мкФ.

Пример № 2

Давайте, чтобы закрепить наработки, решим ещё одну задачу. Имеется 100 конденсаторов. Емкость каждого элемента составляет 2 мкФ. Необходимо определить их общую емкость. Нужно их количество умножить на характеристику: 100*2=200 мкФ. Итак, общая емкость конденсатора при последовательном соединении составляет 200 микрофарад. Как видите, ничего сложного.

Заключение

Итак, мы проработали теоретические аспекты, разобрали формулы и особенности правильного соединения конденсаторов (последовательно) и даже решили несколько задачек. Хочется напомнить, чтобы читатели не упускали из внимания влияние номинального напряжения. Также желательно, чтобы подбирались элементы одного типа (слюдяные, керамические, металлобумажные, плёночные). Тогда последовательное соединение конденсаторов сможет дать нам наибольший полезный эффект.

Как соединить электролитические конденсаторы для увеличения напряжения. Последовательное и параллельное соединение конденсаторов

Конденсаторы, как и резисторы, можно соединять последовательно и параллельно. Рассмотрим соединение конденсаторов: для чего применяются каждая из схем, и их итоговые характеристики.

Эта схема – самая распространенная. В ней обкладки конденсаторов соединяются между собой, образуя эквивалентную емкость, равную сумме соединяемых емкостей.

При параллельном соединении электролитических конденсаторов необходимо, чтобы между собой соединялись выводы одной полярности.

Особенность такого соединения – одинаковое напряжение на всех соединяемых конденсаторах . Номинальное напряжение группы параллельно соединенных конденсаторов равно рабочему напряжению конденсатора группы, у которого оно минимально.

Токи через конденсаторы группы протекают разные: через конденсатор с большей емкостью потечет больший ток.

На практике параллельное соединение применяется для получения емкости нужной величины, когда она выходит за границы диапазона, выпускаемого промышленностью, или не укладываются в стандартный ряд емкостей. В системах регулирования коэффициента мощности (cos ϕ) изменение емкости происходит за счет автоматического подключения или отключения конденсаторов в параллель.

При последовательном соединении обкладки конденсатором соединяются друг к другу, образуя цепочку. Крайние обкладки подключаются к источнику, а ток по всем конденсаторам группы потечет одинаковый.

Эквивалентная емкость последовательно соединенных конденсаторов ограничена самой маленькой емкостью в группе. Объясняется это тем, что как только она полностью зарядится, ток прекратится. Подсчитать общую емкость двух последовательно соединенных конденсаторов можно по формуле

Но применение последовательного соединения для получения нестандартных номиналов емкостей не так распространено, как параллельного.

При последовательном соединении напряжение источника питания распределяется между конденсаторами группы. Это позволяет получить батарею конденсаторов, рассчитанную на большее напряжение , чем номинальное напряжение входящих в нее компонентов. Так из дешевых и небольших по размерам конденсаторов изготавливаются блоки, выдерживающие высокие напряжения.

Еще одна область применения последовательного соединения конденсаторов связана с перераспределением напряжений между ними. Если емкости одинаковы, напряжение делится пополам, если нет – на конденсаторе большей емкости напряжение получается большим. Устройство, работающее на этом принципе, называют емкостным делителем напряжения .

Смешанное соединение конденсаторов


Такие схемы существуют, но в устройствах специального назначения, требующие высокой точности получения величины емкости, а также для их точной настройки.

В электротехнике существуют различные варианты подключения электрических элементов. В частности, существует последовательное, параллельное или смешанное соединение конденсаторов, в зависимости от потребностей схемы. Рассмотрим их.

Параллельное соединение

Параллельное соединение характеризуется тем, что все пластины электрических конденсаторов присоединяются к точкам включения и образовывают собой батареи. В таком случае, во время заряда конденсаторов каждый из них будет иметь различное число электрических зарядов при одинаковом количестве подводимой энергии

Схема параллельного крепления

Емкость при параллельной установке рассчитывается исходя из емкостей всех конденсаторов в схеме. При этом, количество электрической энергии, поступающей на все отдельные двухполюсные элементы цепи, можно будет рассчитать, суммировав сумму энергии, помещающейся в каждый конденсатор. Вся схема, подключенная таким образом, рассчитывается как один двухполюсник.

C общ = C 1 + C 2 + C 3


Схема – напряжение на накопителях

В отличие от соединения звездой, на обкладки всех конденсаторов попадает одинаковое напряжение. Например, на схеме выше мы видим, что:

V AB = V C1 = V C2 = V C3 = 20 Вольт

Последовательное соединение

Здесь к точкам включения присоединяются контакты только первого и последнего конденсатора.


Схема – схема последовательного соединения

Главной особенностью работы схемы является то, что электрическая энергия будет проходить только по одному направлению, значит, что в каждом из конденсаторов ток будет одинаковым. В такой цепи для каждого накопителя, независимо от его емкости, будет обеспечиваться равное накопление проходящей энергии. Нужно понимать, что каждый из них последовательно соприкасается со следующим и предыдущим, а значит, емкость при последовательном типе может воспроизводиться энергией соседнего накопителя.

Формула, которая отражает зависимость тока от соединения конденсаторов, имеет такой вид:

i = i c 1 = i c 2 = i c 3 = i c 4 , то есть токи проходящие через каждый конденсатор равны между собой.

Следовательно, одинаковой будет не только сила тока, но и электрический заряд. По формуле это определяется как:

Q общ = Q 1 = Q 2 = Q 3

А так определяется общая суммарная емкость конденсаторов при последовательном соединении:

1/C общ = 1/C 1 + 1/C 2 + 1/C 3

Видео: как соединять конденсаторы параллельным и последовательным методом

Смешанное подключение

Но, стоит учитывать, что для соединения различных конденсаторов необходимо учитывать напряжение сети. Для каждого полупроводника этот показатель будет отличаться в зависимости от емкости элемента. Отсюда следует, что отдельные группы полупроводниковых двухполюсников малой емкости будут при зарядке становиться больше, и наоборот, электроемкость большого размера будет нуждаться в меньшем заряде.


Схема: смешанное соединение конденсаторов

Существует также смешанное соединение двух и более конденсаторов. Здесь электрическая энергия распределяется одновременно при помощи параллельного и последовательного подключения электролитических элементов в цепь. Эта схема имеет несколько участков с различным подключением конденсирующих двухполюсников. Иными словами, на одном цепь параллельно включена, на другом – последовательно. Такая электрическая схема имеет ряд достоинств сравнительно с традиционными:

  1. Можно использовать для любых целей: подключения электродвигателя, станочного оборудования, радиотехнических приборов;
  2. Простой расчет. Для монтажа вся схема разбивается на отдельные участки цепи, которые рассчитываются по отдельности;
  3. Свойства компонентов не изменяются независимо от изменений электромагнитного поля, силы тока. Это очень важно при работе с разноименными двухполюсниками. Ёмкость постоянна при постоянном напряжении, но, при этом, потенциал пропорционален заряду;
  4. Если требуется собрать несколько неполярных полупроводниковых двухполюсников из полярных, то нужно взять несколько однополюсных двухполюсника и соединить их встречно-параллельным способом (в треугольник). Минус к минусу, а плюс к плюсу. Таким образом, за счет увеличения емкости изменяется принцип работы двухполюсного полупроводника.
Содержание:

В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = i c1 = i c2 = i c3 = i c4 .

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Q общ = Q 1 = Q 2 = Q 3 .

Если рассмотреть три конденсатора С 1 , С 2 и С 3 , соединенные в последовательную цепь, то выясняется, что средний конденсатор С 2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/C общ = 1/C 1 + 1/C 2 + 1/C 3 .

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Смешанное соединение

Параллельное соединение конденсаторов

Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, С общ = С 1 + С 2 + С 3 .

Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

Рис.2 U=U 1 =U 2 =U 3

    Общий заряд Q всех конденсаторов

    Общая емкость С, или емкость батареи, параллельно включенных конденсаторов равна сумме емкостей этих конденсаторов.

Параллельное подключение конденсатора к группе других включенных конденсаторов увеличивает общую емкость батареи этих конденсаторов. Следовательно, параллельное соединение конденсаторов при­меняется для увеличения емкости.

4)Если параллельно включены т одинаковых конденсаторов ем­костью С´ каждый, то общая (эквивалентная) емкость батареи этих конденсаторов может быть определена выражением

Последовательное соединение конденсаторов

Рис.3

    На обкладках последовательно соединенных конденсаторов, подключенных к источнику постоянного тока с напряжением U , появятся заряды одинаковые по величине с противоположными знаками.

    Напряжение на конденсаторах распределяется обратно пропорционально емкостям конденса­торов:

    Обратная величина общей емкости последовательно соединенных конденсаторов равна сумме обратных величин емкостей этих кон­денсаторов.

При последовательном включении двух конденсаторов их об­щая емкость определяется следующим выражением:

Если в цепь включены последовательно п одинаковых конден­саторов емкостью С каждый, то общая емкость этих конденса­торов:

Из (14) видно, что, чем больше конденсаторов п соединено последовательно, тем меньше будет их общая емкость С, т. е. по­следовательное включение конденсаторов приводит к уменьше­нию общей емкости батареи конденсаторов.

На практике может оказаться, что допустимое ра­бочее напряжение U p конденсатора меньше напряжения, на кото­рое необходимо подключить конденсатор. Если этот конденсатор подключить на такое напряжение, то он выйдет из строя, так как будет пробит диэлектрик. Если же последовательно включить не­сколько конденсаторов, то напряжение распределится между ними и на каждом конденсаторе напряжение окажется мень­ше его допустимого рабочего U p . Следовательно, последовательное соединение конденсаторов применяют для того, чтобы напряжение на каждом конденсаторе не превышало его рабочего напряжения U p .

Смешанное соединение конденсаторов

Смешанное соединение (последовательно-параллельное) кон­денсаторов применяют тогда, когда необходимо увеличить ем­кость и рабочее напряжение батареи конденсаторов.

Рассмотрим смешанное соединение конденсаторов на ниже­приведенных примерах.

Энергия конденсаторов


где Q — заряд конденсатора или конденсаторов, к которым при­ложено напряжение U ; С — электрическая емкость конденсатора или батареи соединенных конденсаторов, к которой приложено напряжение U .

Таким образом, конденсаторы служат для накопления и сохра­нения электрического поля и его энергии.

15. Дайте определение понятиям трех лучевая звезда и треугольник сопротивлений. Запишите формулы для преобразования трех лучевой звезды сопротивлений в треугольник сопротивлений и наоборот. Преобразуйте схему к двум узлам (Рисунок 5)

Рисунок 5- Схема электрическая

6.СХЕМЫ ЗАМЕЩЕНИЯ

Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях.

На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в цепи.

1.Схемы замещения элементов электрических цепей

На расчетных схемах источник энергии можно представить ЭДС без внутреннего сопротивления, если это сопротивление мало по сравнению с сопротивлением приемника (рис. 3.13,6).

Приr= 0 внутреннее падение напряженияUо = 0, поэтому

напряжение на зажимах источника при любом токе равно

ЭДС: U = E = const.

В некоторых случаях источник электрической энергии на расчетной схеме заменяют другой (эквивалентной) схемой (рис. 3.14, а), где вместо ЭДСЕ источник характеризуется его током короткого замыканияI K , а вместо внутреннего со­противления в расчет вводится внутренняя проводимостьg =1/ r .

Возможность такой замены можно доказать, разделив равенство (3.1) на r:

U / r = E / r I ,

где U / r = Io -некоторый ток, равный отношению напряжения на зажимах источника к внутреннему сопротивлению;E / r = I K — ток короткого замыкания источника;

Вводя новые обозначения, получим равенство I K = Io + I , которому удовлетворяет эквивалентная схема рис. 3.14,а.

В этом случае при любой величине напряжения на зажимах; источника его ток остается равным току короткого замыкания (рис. 3.14,6):

Источник с неизменным током, не зависящим от внешнего сопротивления, называют источником тока.

Один и тот же источник электрической энергии может быть заменен в расчетной схеме источником ЭДС или источником тока.

Вопрос о том, как соединить конденсаторы может возникнуть у любого человека, интересующегося электроникой и пайкой . Чаще всего, необходимость в этом возникает в случаях отсутствия под рукой устройства подходящего номинала при сборке или ремонте какого-либо прибора.

К примеру, человеку нужно отремонтировать устройство, заменив в нем электролитический конденсатор ёмкостью 1000 микрофарад или больше, на руках подходящие по номиналу детали отсутствуют, но есть несколько изделий с меньшими параметрами. В этом случае есть три варианта выхода из сложившейся ситуации:

  1. Поставить вместо конденсатора на 1000 микрофарад устройство с меньшим номиналом.
  2. Поехать в ближайший магазин или радио-рынок для покупки подходящего варианта.
  3. Соединить несколько элементов вместе для получения необходимой ёмкости.

От установки радиоэлемента меньшего номинала лучше отказаться, так как подобные эксперименты не всегда заканчиваются успешно. Можно съездить на рынок или в магазин, но это требует немало времени. Потому в сложившейся ситуации чаще соединяют несколько конденсаторов и получают необходимую емкость.

Параллельное соединение конденсаторов

Параллельная схема подключения конденсаторов предполагает соединение в две группы всех обкладок приборов. В одну группу соединяются первые выводы, а в другую группу – вторые выводы. На рисунке ниже представлен пример.

Конденсаторы, соединенные параллельно между собой, подключаются к одному источнику напряжения, поэтому на них существует две точки напряжения или разности потенциалов . Следует учитывать, что на всех выводах подключенных параллельно конденсаторов напряжение будет иметь одинаковую величину.

Параллельная схема образует из элементов единую ёмкость, величина которой равняется сумме ёмкостей всех подключенных в группу конденсаторов. При этом через конденсаторы в процессе работы устройства будет протекать ток разной величины. Параметры проходящего через изделия тока зависят от индивидуальной ёмкости устройства. Чем выше ёмкость, тем больший по величине ток пройдет через него. Формула, характеризующее параллельное соединение, имеет следующий вид:

Параллельная схема чаще всего используется в быту, она позволяет собрать необходимую ёмкость из любого числа отдельных, различных по номиналу элементов.

Последовательное соединение конденсаторов

Схема последовательного подключения представляет собой цепочку, в которой первая обкладка конденсатора соединяется со второй обкладкой предыдущего устройства, а вторая обкладка – с первой обкладкой следующего прибора. Первый вывод первого конденсатора и второй вывод последней детали в цепи соединяются с источником электрического тока, благодаря чему между ними осуществляется перераспределение электрических зарядов. Все промежуточные обкладки имеют одинаковые по величине заряды, чередующиеся по знаку.

На рисунке ниже представлен пример последовательного подключения.

Через соединенные в группу конденсаторы протекает ток одинаковой величины. Общая мощность ограничивается площадью обкладок устройства с наименьшим номиналом, так как после зарядки наименьшего по ёмкости устройства, вся цепь перестанет пропускать ток.

Несмотря на явные недостатки, данный способ обеспечивает увеличение изоляции между отдельными обкладками до суммы расстояний между выводами на всех последовательно соединенных конденсаторах. То есть, при последовательном соединении двух элементов с рабочим напряжением 200 В, изоляция между их выводами сможет выдерживать напряжение до 1000 В. Ёмкость по формуле:

Данный способ позволяет получить эквивалент меньшего по ёмкости конденсатора в группе, способной работать при высоких напряжениях. Всего этого можно достичь путем покупки одного единственного элемента подходящего номинала, потому на практике последовательные соединения практически не встречаются.

Эта формула актуальна для расчета общей ёмкости цепи последовательно соединенных двух конденсаторов. Для определения общей ёмкости цепи с большим числом приборов необходимо воспользоваться формулой:

Смешанная схема

Пример смешанной схемы подключения представлен ниже.

Чтобы определить общую ёмкость нескольких устройств, всю схему необходимо разделить на имеющиеся группы последовательного и параллельного соединения и рассчитать параметры ёмкости для каждой из них.

На практике данный способ встречаются на различных платах, с которыми приходиться работать радиолюбителям.

Конденсаторы последовательно | Приложения

Конденсаторы серии

Как и другие электрические элементы, конденсаторы бесполезны, когда используются в цепи по отдельности. Они подключаются к другим элементам цепи одним из двух способов: последовательно или параллельно. В некоторых случаях полезно соединить несколько конденсаторов последовательно, чтобы получился функциональный блок:

Анализ

Когда этот блок подключен к источнику напряжения, каждый конденсатор в блоке сохраняет равное количество заряда, что означает, что общий заряд равномерно распределяется по всем конденсаторам, независимо от их емкости.Количество заряда, накопленного на каждом конденсаторе, равно:

, где Q total — это общая сумма заряда в полном блоке, а от Q 1 до Q n — это заряды на каждом отдельном конденсаторе.

Чтобы объяснить, почему заряды на каждом конденсаторе взаимно равны и равны общему количеству заряда, хранящегося в полном блоке последовательного соединения, давайте предположим, что все конденсаторы были разряжены в один момент времени. Когда напряжение сначала подается на блок, одинаковый ток течет через все конденсаторы, и в результате происходит сдвиг заряда.Электроны переносятся от одной пластины каждого конденсатора к другой, что означает, что заряд, накопленный пластиной любого из конденсаторов, должен исходить от пластины соседнего конденсатора. Это означает, что носители заряда (электроны) просто прошли через все конденсаторы, что является причиной того, что заряды на каждом конденсаторе равны.

При этом следует отметить, что напряжения на каждом конденсаторе не равны и рассчитываются для каждого конденсатора по известной формуле:

, где Q n — количество заряда на каждом конденсаторе в последовательном соединении, C n — емкость конденсатора, а V n — напряжение на конденсаторе.

Применяя закон Кирхгофа к блоку последовательного подключения, напряжение на блоке равно сумме напряжений на отдельных конденсаторах:

Подставляя приведенную выше формулу для напряжения на конденсаторе в это уравнение, имея в виду, что заряд на каждом конденсаторе равен общему заряду, накопленному в последовательном соединении, мы получаем следующую формулу:

, что дает:

, где C eq — эквивалентная емкость, а от C 1 до C n — значения емкости каждого отдельного конденсатора в последовательном соединении.

Другими словами, обратное значение эквивалентной емкости равно сумме значений обратной емкости для каждого конденсатора в последовательном соединении.

Приложения

Емкостной делитель напряжения

Делитель напряжения — это устройство, которое делит приложенное напряжение на два или более выходных напряжения с заданным соотношением. Они могут быть построены с использованием резисторов или реактивных элементов, таких как конденсаторы. Когда конденсаторы соединены последовательно и через это соединение подается напряжение, напряжения на каждом конденсаторе обычно не равны, но зависят от значений емкости.

Точнее, отношение напряжений на отдельных конденсаторах обратно пропорционально отношению значений емкости каждого отдельного конденсатора в серии. Следует отметить, что для практических целей емкостные делители напряжения полезны только в цепях переменного тока, поскольку конденсаторы не пропускают сигналы постоянного тока, а также потому, что они имеют определенную утечку напряжения. На следующем рисунке показан емкостной делитель напряжения:

Повышенное рабочее напряжение

Иногда желательно использовать последовательное соединение конденсаторов, чтобы иметь возможность работать с более высокими напряжениями.Например, предположим, что источник питания 5 кВ необходимо фильтровать с помощью конденсаторов, и что единственные доступные конденсаторы рассчитаны на 1 кВ и имеют одинаковые значения емкости. В этом случае при последовательном соединении пяти или более таких конденсаторов высокое напряжение будет разделено на все конденсаторы, и максимальный номинальный ток не будет превышен.

Другой пример использования последовательно соединенных конденсаторов — возможная замена автомобильного аккумулятора конденсаторной батареей из суперконденсаторов.Поскольку их максимальное номинальное напряжение составляет всего около 2,7 В, при последовательном подключении шести таких суперконденсаторов рабочее напряжение батареи повышается до уровней, приемлемых для использования в автомобилях. Преимущество использования суперконденсаторов по сравнению с батареями — это преимущество в весе, однако эта технология все еще нуждается в улучшении из-за токов утечки и гораздо большей емкости, предлагаемой батареями.

Безопасность

Следует ввести определенный запас прочности при использовании цепи последовательного конденсатора, и для этого примера в хорошей конструкции должно быть использовано более пяти конденсаторов по двум причинам.Первая причина заключается в том, что конденсаторы имеют определенный допуск по емкости, и они не могут иметь одинаковые значения емкости. Как следствие, конденсатор с немного меньшим значением емкости будет подвергаться воздействию немного большего напряжения, чем максимальное номинальное напряжение в этом примере. Вторая причина в том, что в реальности конденсаторы иногда выходят из строя. Если один из конденсаторов выйдет из строя и произойдет короткое замыкание, приложенное напряжение 5 кВ будет разделено между оставшимися 4 конденсаторами номиналом всего 1 кВ, и это вызовет каскад отказов, в конечном итоге закорачивая источник напряжения и приводя к полному разрушение фильтра.

Последовательный и параллельный калькулятор емкости

[1] 2020/11/18 16:33 Моложе 20 лет / Другое / Очень /

Цель использования
Выяснение, какая комбинация конденсаторов у меня под рукой может создать значение, которое мне нужно в данной схеме
Комментарий / Запрос
Возможность добавить более двух конденсаторов

[2] 2020.08.12 18:32 Уровень 30 лет / Инженер / Полезно /

Назначение Используйте
Чтобы проверить мою собственную работу по созданию задач для младших технических специалистов

[3] 2019/11/15 08:26 Уровень 20 лет / Средняя школа / Университет / Аспирант / Полезно /

Цель использования
ДЛЯ ПОНИМАНИЯ
Комментарий / Запрос
ДЛЯ ПОЛУЧЕНИЯ ЗНАНИЙ

[4] 2019/04/10 06:25 Уровень 30 лет / Самозанятые люди / Очень /

Цель использования
Генератор Колпитца на УКВ, рассчитать общую емкость e на двойных варикапных диодах, используемых для настройки, а также общая емкость на делителе обратной связи.

[5] 2019/03/07 22:04 60 лет и старше / Пенсионер / Очень /

Цель использования
Помимо того, что я радиолюбитель, я также занимаюсь изготовлением кристаллических радиоприемников.
Для многих конструкций требуется воздушный конденсатор емкостью 500 пФ, но все, что я смог найти, это 630 пФ.
Итак, используя ваш калькулятор, я смог увидеть, сколько емкости мне нужно было добавить последовательно, чтобы снизить емкость конденсатора 630 пФ до 500 пФ.

Отлично сработало, мои искренние благодарности.

[6] 2018/08/27 12:07 Уровень 40 лет / Другое / Очень /

Цель использования
За исключением правильных значений на двух крышках.Используется для расчета заменяемых колпачков для старой магнитофонной деки.
Комментарий / запрос
Очень полезно

[7] 2018/08/17 04:15 Уровень 40 лет / Самостоятельно занятые люди / Очень /

Цель использования
Рассчитать шину питания для лампового усилителя

[8] 2018/08/11 16:16 Уровень 60 и старше / Офисный работник / Государственный служащий / Полезно /

Цель использования
Устранение неисправностей источника питания. У меня был счетчик, который показывал максимум 10000 мкФ.Итак, мне пришлось последовательно соединить два одинаковых, чтобы проверить значение крышки фильтра.

[9] 2018/08/06 09:40 Уровень 20 лет / Инженер / Очень /

Цель использования
Расчет емкости для настройки антенны

[10] 2018/06/13 07 : 08 Уровень 50 / Средняя школа / Университет / Аспирант / Очень /

Цель использования
Два последовательно соединенных диода общей емкости для проектирования антенны.

Работа конденсаторов в последовательной и параллельной цепях

Конденсаторы — стандартные компоненты электронных схем.В схемах практически используются различные комбинации конденсаторов. В этой статье рассказывается о последовательной и параллельной комбинациях конденсаторов.

Конденсаторы серии

Как подключить конденсаторы последовательно?

«Последовательные конденсаторы» означает два или более конденсатора, соединенных в одну линию. Положительная пластина одного конденсатора соединена с отрицательной пластиной следующего конденсатора.

Здесь,

QT = Q1 = Q2 = Q3 = ———- = Q

IC = I1 = I2 = I3 = ——— = IN

При последовательном подключении конденсаторов Заряд и ток на всех конденсаторах одинаковые.

Почему заряд последовательно соединенных конденсаторов одинаковый?

Для последовательных конденсаторов одинаковое количество электронов будет проходить через каждый конденсатор, потому что заряд на каждой пластине исходит от соседней пластины. Итак, кулоновский заряд такой же. Поскольку ток — это не что иное, как поток электронов, ток такой же.

Какая эквивалентная емкость?

Эквивалентная емкость — это общая емкость конденсаторов. Давайте посмотрим, как рассчитать емкость, когда они включены последовательно.

На рисунке ниже показаны три конденсатора, последовательно подключенные к батарее. Когда конденсаторы соединены последовательно, соседние пластины заряжаются за счет электростатической индукции.

Каждая пластина будет иметь разный потенциал. Но величина заряда на пластинах такая же.

Первая пластина C1 будет иметь потенциал V1, равный напряжению батареи, а вторая пластина будет иметь потенциал меньше V1. Пусть это будет V2.

Теперь первая пластина C2 будет иметь потенциал, равный V2, а вторая пластина будет иметь потенциал меньше V3, пусть это будет V4.
Первая пластина C3 будет иметь потенциал V5 (V5 = V4), а потенциал второй пластины меньше V5. Пусть это будет V6.

Но общая разность потенциалов между пластинами равна ЭДС АКБ.

Итак, VT = V1 + V2 + V3

Но мы знаем, что Q = CV

C = Q / V

Ceq = Q / V1 + Q / V2 + Q / V3 (как заряд такой же)

1 / Ceq = (V1 + V2 + V3) / Q

VT = Q / Ceq = Q / C1 + Q / C2 + Q / C3

Следовательно, 1 / Ceq = 1 / C1 + 1 / C2 + 1 / C3

Если N конденсаторов подключены последовательно, эквивалентная емкость может быть указана ниже.

1 / Ceq = 1 / C1 + 1 / C2 + ……… + 1 / CN

Таким образом, когда конденсаторы включены последовательно, величина, обратная эквивалентной емкости, равна сумме обратных величин индивидуальной емкости конденсаторов в цепи.

Конденсаторы серии

, пример

Рассчитайте эквивалентную емкость, и отдельные падения напряжения на наборе из двух последовательно соединенных конденсаторов имеют 0,1 мкФ и 0,2 мкФ соответственно при подключении к источнику переменного тока 12 В. поставка.

Эквивалентная емкость,

1 / Ceq = 1 / C1 + 1 / C2

Ceq = (C1C2) / (C1 + C2)

Ceq = (0.1 мкФ * 0,2 мкФ) / (0,1 мкФ + 0,2 мкФ)

Ceq = 0,066 мкФ = 66 нФ

Падение напряжения на двух последовательно соединенных конденсаторах составляет,

В1 = (C2 * VT) / (C1 + C2) = (0,2 мкФ * 12 В) / (0,1 мкФ + 0,2 мкФ) = 8 Вольт

V2 = (C1 * VT) / (C1 + C2) = (0,1 мкФ * 12 В) / (0,1 мкФ + 0,2 мкФ) = 4 В

Из этих результатов мы заметили, что эквивалентная емкость 66 нФ меньше наименьшей емкости 0,1 мкФ из данных двух конденсаторов. Отдельные падения напряжения на данных двух конденсаторах различны.

Но сумма индивидуальных падений напряжения обоих конденсаторов равна общему напряжению. т.е. 8 В + 4 В = 12 В.

Теперь посчитаем заряд, накопленный в отдельном конденсаторе,

Q1 = V1 * C1 = 8 В * 0,1 мкФ = 0,8 мкКл

Q2 = V2 * C2 = 4 В * 0,2 мкФ = 0,8 мкК

Здесь мы заметили, что одинаковый заряд 0,8 мкКл хранится в обоих конденсаторах C1 и C2, которые соединены последовательно.

Конденсаторы в серии Сводка

• Заряд конденсаторов при последовательном включении одинаков.

• Эквивалентная емкость конденсаторов меньше наименьшей емкости в серии.

• Эквивалентная емкость последовательно подключенных n конденсаторов равна

.

1 / Ceq = 1 / C1 + 1 / C2 + ……… + 1 / CN

Конденсаторы в параллельных цепях

Почему мы подключаем конденсаторы параллельно?

Есть преимущество подключения конденсаторов параллельно, чем последовательно. При параллельном подключении конденсаторов общее значение емкости увеличивается.В некоторых приложениях требуются более высокие значения емкости.

Как подключить конденсаторы параллельно?

На рисунке ниже показано параллельное соединение конденсаторов. Все положительные клеммы подключены к одной точке, а отрицательные клеммы — к другой точке.


Какая эквивалентная емкость конденсаторов, подключенных параллельно?
  • Все конденсаторы, которые соединены параллельно, имеют одинаковое напряжение, равное ТН, приложенному между входными и выходными клеммами схемы.
  • Тогда на параллельные конденсаторы подается «общее напряжение». VT = V1 = V2 и т. Д.
  • Эквивалентная емкость Ceq цепи, в которой конденсаторы соединены параллельно, равна сумме всех индивидуальных емкостей конденсаторов, сложенных вместе.
  • Это связано с тем, что верхняя пластина каждого конденсатора в цепи соединена с верхней пластиной соседних конденсаторов. Таким же образом нижняя пластина каждого конденсатора в цепи соединена с нижней пластиной соседних конденсаторов.

Давайте посмотрим, как рассчитать эквивалентную емкость конденсаторов при параллельном подключении. Рассмотрим два конденсатора, подключенных, как показано на схеме ниже.

Общий заряд (Q) в цепи делится между двумя конденсаторами, это означает, что заряд Q распределяется между конденсаторами, подключенными параллельно. Заряд Q равен сумме всех зарядов отдельных конденсаторов.

Таким образом, Q = Q1 + Q2

Где Q1, Q2 — заряды на конденсаторах C1 и C2.

Мы знаем это,

Q = Ceq VT

Здесь Q = Q1 + Q2

Ceq VT = C1xV1 + C2xV2

Так как VT = V1 = V2 = V

Ceq VT = C1xV + C2xV

Ceq VT = (C1 + C2) В

Следовательно, Ceq = C1 + c2

Если N конденсаторов подключены параллельно, то Ceq = C1 + C2 + C3 + —— Cn

Таким образом, эквивалентная емкость конденсаторов, соединенных параллельно, равна сумме индивидуальных емкостей конденсаторов в цепи.

Конденсаторы параллельно Пример №1

Рассмотрим значения емкости двух конденсаторов C1 = 0,2 мкФ и C2 = 0,3 мкФ, которые показаны на рисунке 4 выше. Теперь вычислите эквивалентную емкость цепи.

Мы знаем, что эквивалентная емкость,

Ceq = C1 + C2

Ceq = 0,2 мкФ + 0,3 мкФ

Ceq = 0,5 мкФ

Один важный момент, который следует помнить о параллельно соединенных цепях конденсаторов, эквивалентная емкость (Ceq) любых двух или более конденсаторов, соединенных параллельно, всегда будет больше, чем значение самого большого конденсатора в цепи, поскольку мы складываем значения.Таким образом, в нашем примере выше Ceq = 0,5 мкФ, тогда как емкость самого большого конденсатора в цепи составляет всего 0,3 мкФ.

Когда конденсаторы подключены параллельно?

Вот несколько приложений, в которых конденсаторы подключаются параллельно.

  • В некоторых источниках постоянного тока для лучшей фильтрации используются конденсаторы небольшой емкости с превосходным коэффициентом пульсации. Они подключаются параллельно для увеличения значения емкости.
  • Может использоваться в автомобильной промышленности в больших транспортных средствах, таких как трамваи, для рекуперативного торможения.Для этих приложений могут потребоваться большие значения емкости, чем емкость, обычно доступная на рынке.

Параллельно подключенные конденсаторы Сводка

  • Напряжение на конденсаторах одинаковое при параллельном подключении. Эквивалентное напряжение параллельных конденсаторов равно наименьшему номинальному напряжению конденсатора, подключенного параллельно.
  • Общее значение емкости конденсаторов является суммой всех значений емкости, подключенных параллельно.
  • Эквивалентная емкость n конденсаторов, включенных параллельно, составляет Ceq = C1 + C2 + C3… Cn.{th} \ $ конденсатор (то есть, в общем, \ $ Q_k \ neq Q_l \ $).

    Допустим по закону Кирхгофа, что ток в последовательной цепи одинаков во всех частях последовательной цепи. Таким образом, в соответствии с соотношением между током (т. Е. \ $ I_k, I_l \ $) и изменением заряда (т. Е. \ $ \ Delta {Q_k}, \ Delta {Q_l} \ $) во временном интервале \ $ \ Delta {t} \ $ \ begin {align} I_k & = I_l \\ \ dfrac {\ Delta Q_ {C, k}} {\ Delta t} & = \ dfrac {\ Delta Q_ {C, l}} {\ Delta t} \\ \ end {align}

    Таким образом \ begin {уравнение} \ Delta Q_ {C, k} = \ Delta Q_ {C, l} = \ Delta Q \ quad \ textrm {Ур.N {\ dfrac {1} {C_k}}} \ end {align}

    В заключение, для сети конденсаторов, соединенных последовательно, можно вывести хорошо известное уравнение для эффективной емкости без необходимости утверждать, что заряд на каждой емкости одинаков.

    Резисторы и конденсаторы в серии

    Введение

    При анализе цепей резисторов по постоянному току мы изучили, как рассчитать полное сопротивление цепи последовательных компонентов. В этом разделе мы будем использовать этот подход для анализа цепей, содержащих последовательные резисторы и конденсаторы.Для этого мы используем емкостное реактивное сопротивление как эффективное «сопротивление» конденсатора, а затем действуем аналогично предыдущему.

    Анализатор RC-цепей серии

    Вы помните, что последовательная схема обеспечивает только один путь для прохождения тока между двумя точками в цепи, поэтому, например, на диаграмме ниже показано последовательное соединение резистора с конденсатором между точками A и B .

    Полный импеданс (сопротивление) этой цепи является вкладом как конденсатора, так и резистора.Из предыдущего раздела мы видели, что емкостное реактивное сопротивление Xc сдвинуто на -90 ° от сигнала возмущающего напряжения и поэтому выражается в сложной форме как

    Таким образом, полное сопротивление цепи составляет

    .

    При анализе переменного тока и резистор, и конденсатор рассматриваются как векторные величины, поэтому Xc сдвинут по фазе на -90 ° по отношению к резистору. Поскольку Z является векторной суммой, результат представлен на векторной диаграмме (или комплексной плоскости)

    Величина импеданса — длина вектора может быть рассчитана с помощью

    .

    Например, если мы возьмем приведенную выше схему с резистором 100 Ом и конденсатором 1×10-6 Ф и приложим синусоидальное напряжение с частотой 10 Гц, емкостное реактивное сопротивление можно будет рассчитать как:

    Xc = 1 / (2 x 3.1415 x 10 x 1×10-6) = 15,9×103 Ом

    , поэтому полное сопротивление в прямоугольной форме составляет

    Z = R — j Xc = 100 — j 15,9×103

    Мы можем преобразовать это в полярную форму, используя описанный выше метод, который дает величину 15,89×103 Ом и угол -89,6 °. Величина явно определяется реактивным сопротивлением конденсаторов, поскольку мы рассмотрели низкую рабочую частоту. При изменении частоты наблюдается следующий отклик (в форме вектора и боде)

    Анализ более сложных последовательных цепей выполняется путем суммирования отдельных сопротивлений и емкостных реактивных сопротивлений в единичные эквивалентные компоненты с последующим выполнением того же анализа, что и выше

    Когда конденсатор хранит больше энергии, последовательное или параллельное соединение?


    Эй, в этой статье мы узнаем, когда конденсатор будет хранить больше энергии при последовательном или параллельном подключении.Эта статья расширит ваши знания об основах конденсаторов. Если вы хотите стать гением, сначала очистите свои базовые знания в области электротехники. Однако давайте узнаем.

    Конденсатор — это пассивное устройство, которое может накапливать электрическую энергию в виде заряда. Формула накопления энергии конденсатора:


    здесь C = емкость
    V = приложенное напряжение на конденсаторе

    Таким образом, накопление электрической энергии зависит от значения емкости конденсатора и квадрата приложенного напряжения.

    При последовательном соединении 4-х конденсаторов общая емкость будет равна

    .
    При параллельном соединении 4-х конденсаторов общее значение емкости составит:
    Так убирается, что при параллельном подключении значение емкости будет больше.

    Поскольку накопление энергии зависит от значения емкости и напряжения, конденсатор будет накапливать гораздо больше энергии при параллельном соединении, чем при последовательном соединении для того же уровня приложенного напряжения, потому что при параллельном соединении значение емкости больше.


    Поясним это на примере

    . Предположим, мы берем 4 одинаковых конденсатора номиналом 4 фарада, 4 вольта.

    Последовательное подключение, накопитель энергии,


    При параллельном подключении накопитель энергии,

    Итак, теперь вы можете понять, что при параллельном соединении конденсатор может хранить, сколько энергии, чем при последовательном соединении.


    Теперь, если мы подумаем практически, когда несколько конденсаторов подключены параллельно, все они будут иметь одинаковое напряжение, поэтому каждый из них будет накапливать энергию в соответствии с их значением емкости, а чистый накопитель энергии будет суммой всех отдельных накопителей энергии. .

    Когда несколько конденсаторов соединены последовательно, все они не будут получать одинаковое напряжение, потому что напряжение будет падать в зависимости от распределения номиналов конденсаторов. Таким образом, они не могут заряжаться полностью или не могут хранить максимум энергии.

    Итак, вывод: конденсатор будет хранить больше энергии при параллельном соединении, чем при последовательном соединении.


    Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений. Конденсатор и конденсаторы серии

    в последовательных цепях

    Конденсаторы серии

    Конденсаторы соединены последовательно, когда они соединены последовательно в одну линию

    Для последовательно соединенных конденсаторов зарядный ток (i C ), протекающий через конденсаторы, равен ТО ЖЕ для всех конденсаторов, так как у него есть только один путь.

    Тогда все конденсаторы серии серии имеют одинаковый ток, протекающий через них, так как i T = i 1 = i 2 = i 3 и т. Д. Следовательно, каждый конденсатор будет хранить одинаковое количество электрического заряда, Q на его пластинах независимо от его емкости. Это связано с тем, что заряд, накопленный пластиной любого конденсатора, должен исходить от пластины соседнего с ним конденсатора. Следовательно, конденсаторы, соединенные последовательно, должны иметь одинаковый заряд.

    Q T = Q 1 = Q 2 = Q 3 … .etc

    Рассмотрим следующую схему, в которой три конденсатора, C 1 , C 2 и C 3 , все соединены вместе в последовательную ветвь через напряжение питания между точками A и B.

    Конденсаторы в последовательном соединении

    В предыдущей параллельной схеме мы видели, что общая емкость C T схемы была равна сумме всех отдельных конденсаторов, сложенных вместе.Однако в последовательно соединенной цепи общая или эквивалентная емкость C T рассчитывается по-другому.

    В последовательной цепи над правой пластиной первого конденсатора C 1 подключен к левой пластине второго конденсатора, C 2 , правая пластина которого подключена к левой пластине третьего конденсатора. , С 3 . Тогда это последовательное соединение означает, что в цепи постоянного тока конденсатор C 2 эффективно изолирован от цепи.

    Результатом этого является то, что эффективная площадь пластины уменьшилась до наименьшей отдельной емкости, включенной в последовательную цепочку. Следовательно, падение напряжения на каждом конденсаторе будет различным в зависимости от значений отдельной емкости.

    Затем, применив закон Кирхгофа (KVL) к указанной выше схеме, мы получим:

    Конденсаторы серии

    Equation

    При сложении конденсаторов в серии , обратные (1 / C) отдельных конденсаторов складываются вместе (точно так же, как резисторы, включенные параллельно), а не сами емкости.Тогда общее значение для конденсаторов, подключенных последовательно, равно обратной сумме обратных величин отдельных емкостей.

    Конденсаторы в серии Пример №1

    Взяв значения трех конденсаторов из приведенного выше примера, мы можем вычислить общую емкость C T для трех последовательно соединенных конденсаторов как:

    Один важный момент, который следует помнить о конденсаторах, которые соединены вместе в последовательной конфигурации, заключается в том, что общая емкость цепи (C T ) любого количества конденсаторов, соединенных последовательно, всегда будет на МЕНЬШЕ, чем на , чем значение наименьшего конденсатор в последовательном и в нашем примере выше C T = 0.055 мкФ при номинале самого маленького конденсатора в последовательной цепи составляет всего 0,1 мкФ.

    Этот обратный метод расчета может использоваться для расчета любого количества отдельных конденсаторов, соединенных вместе в одну последовательную сеть. Если же последовательно соединены только два конденсатора, можно использовать более простую и быструю формулу:

    .

    Тогда мы можем видеть, что если и только если два последовательно соединенных конденсатора одинаковы и равны, то общая емкость C T будет точно равна половине значения емкости, то есть: C / 2.

    Для последовательно соединенных резисторов сумма всех падений напряжения на последовательной цепи будет равна приложенному напряжению V S (Закон Кирхгофа о напряжении), и это также верно для конденсаторов, включенных последовательно.

    При последовательном соединении конденсаторов емкостное реактивное сопротивление конденсатора действует как импеданс из-за частоты источника питания. Это емкостное реактивное сопротивление вызывает падение напряжения на каждом конденсаторе, поэтому последовательно соединенные конденсаторы действуют как сеть емкостного делителя напряжения.

    В результате формула делителя напряжения, применяемая к резисторам, также может быть использована для нахождения отдельных напряжений для двух последовательно соединенных конденсаторов. Тогда:

    Где: C X — емкость рассматриваемого конденсатора, V S — напряжение питания в последовательной цепи, а V CX — падение напряжения на целевом конденсаторе.

    Конденсаторы в серии Сводка

    Затем, чтобы подвести итог, общая или эквивалентная емкость C T цепи, содержащей конденсаторов серии , является обратной величиной суммы обратных величин всех индивидуальных емкостей, сложенных вместе.

    Также для конденсаторов , соединенных последовательно , все последовательно соединенные конденсаторы будут иметь одинаковый зарядный ток, протекающий через них, так как i T = i 1 = i 2 = i 3 и т.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *