Site Loader

Содержание

Чем отличается коллекторный и бесколлекторный двигатель?

Задача электрического двигателя создать вращение, что приводит в движение радиоуправляемые модели.Часто одни и те же радиоуправляемые модели — автомодели, авиамодели, судомодели — сильно отличаются друг от друга по цене — почти в 2 раза. Эти модели могут быть укомплектованы коллекторными и бесколлекторными двигателями и соответственными регуляторами. Нужно понять, какой двигатель выбрать.

Существует 2 основных типа электродвигателей, использующихся в радиоуправляемых моделях: коллекторные и бесколлекторные.

Коллекторные двигатели (brushed, щеточные) дешеле, но модели с такими двигателями развивают меньшую скорость и такие моторы менее надежны.

Определяющей особенностей коллекторных двигателей является наличие щеточно-коллекторного узла, который обеспечивает движение радиоуправляемой модели. Главным внешним отличием коллекторного двигателя от бесколлекторного является наличие у него двух проводов вместо трех. Коллекторный двигатель состоит из подвижной части — ротор и неподвижной — статор (корпус). Коллектор — набор контактов, расположены на роторе и щётки — скользящие контакты, расположены вне ротора и прижаты к коллектору. Ротор с обмотками вращается внутри статора. Щётки используются, чтобы передавать электрическую энергию на катушки вращающихся обмоток ротора. Обычные коллекторные электродвигатели, имеют всего два провода (положительный и отрицательный), которыми двигатель подключается к регулятору скорости.


Коллекторные двигатели, используемые в радиоуправляемых моделях, работают от постоянного тока. К примеру, подав на два провода двигателя соответствующее напряжение от источника постоянного тока, например, обычной батарейки или аккумулятора, приводим вал двигателя в движение. Схема регулятора для коллекторного двигателя простая, что так же уменьшает стоимость такой комплектации. Ротор двигателя разгоняет магнитное поле, создаваемое на обмотках. Величина этого поля зависит от напряжения приложенного к обмоткам, чем большее магнитное поле будет создано, тем быстрее будет крутиться ротор. На двигателе обычно указывается число оборотов обмотки двигателя, чем меньше число, тем выше скорость вращения вала двигателя.
Среди преимуществ коллекторных двигателей радиоуправляемых моделей можно выделить: малые размеры, вес, а также относительно низкая стоимость. Поэтому такой тип двигателя наиболее часто применяется в бюджетных комплектациях моделей или в моделях начального уровня. Если говорить о надежности коллекторного двигателя, то он сильно уступает бесколлекторному. При всей их простоте, у них один огромный недостаток — ограниченный ресурс. Наличие щеточно-коллекторного узла подразумевает механическую систему подвижных контактов, то есть механическая работа щеточек и коллектора может привести к искрению при перегреве и быстрый износ при неблагоприятных условиях эксплуатации (влага, грязь, пыль). В процессе работы коллекторных двигателей происходит постепенный износ графитовых щеток и металла коллектора, по которым щетки скользят и рано или поздно они выходят из строя. Перед началом эксплуатации модели, двигатель желательно обкатать при пониженной нагрузке для того, чтобы щетки правильно притерлись к коллектору. При агрессивной (может быть 2 заезда) или длительной эксплуатации модели замена коллекторного моторчика – это частое и обыденное явление.

Бесколлекторные двигатели (brushless, бесщёточные) – дороже, но способны развить большую скорость, а также более износостойкие. Модель, оборудованная современной бесколлекторной системой, ездит и быстрее, и дольше.

Высокая эффективность (коэффициент полезного действия) и износостойкость достигается благодаря отсутствию щеточно-коллекторного узла. Бесколлекторные моторы являются более мощными, чем коллекторные моторы того же размера. Главным внешним отличием бесколлекторного мотора от коллекторного является наличие у него трёх проводов вместо двух. У бесколлекторного двигателя подвижной частью является как раз статор (корпус) с постоянными магнитами, а неподвижной частью — ротор с трехфазной обмоткой. Переключение обмоток происходит за счет относительно сложной электронной схемы — регулятора.

Бесколлекторный двигатель приводится во вращение трёхфазным переменным током, поэтому для их работы необходим специальный контроллер скорости (регулятор), преобразующий постоянный ток от аккумулятора в переменный. Как бесколлекторный двигатель, так и регулятор для бесколлекторного двигателя имеет более сложную конструкцию, в силу чего, стоимость возрастает.

Двигатели, используемые в моделях, имеют закрытый корпус, что делает их устойчивыми к влаге, пыли, грязи. Можно сказать, что бесколлекторные моторы практически не изнашиваются. Изнашиваться могут только подшипники. Единственная возможность разбить мотор — в столкновении. Еще можно сжечь контроллер — как и любой регулятор, но при наличии в контроллере защиты по току он тоже прослужит долго.

Значения характеристик двигателя для радиоуправляемых моделей
.


Помимо деления на коллекторные и бесколлекторные, двигатели делятся по следующим значимым характеристикам: мощности, КV, напряжению, максимальному току.

По размерам

. Для коллекторного двигателя — эта характеристика называется класс, где цифрой, к примеру, 280, 300,400, 480, 500, 600, 650, 700, 720, 820, 900, обозначается длина корпуса двигателя. Существует набор классов.
Пример: класс двигателя определяется его длиной — если мы говорим о двигателе 400-го класса, то речь идет о моторе с длиной корпуса 400мм. У Бесколлектоных двигателей важной характеристикой яляется его размер — длина и ширина. Различия в размерах дает представление о мощности бесколлекторного электромотора. Чем больше размер — тем выше мощность.
Пример: Двигатель 4274 означает:
диаметр — 42 мм,
длина — 74 мм.

Например, двигатель с такими размерами один из самых мощных, он подойдет на автомодель масштаба 1:8.

Мощность двигателя (power, watt) — определяет работу, которую двигатель может выполнить в единицу времени. Самая важная характеристика мотора. Зная мощность, можно определить максимальную нагрузку которую может выдержать двигатель по формуле.
Мощность (Ватт) = Напряжение питания (Вольт) * Сила тока (Ампер).
Зная мощность можно подобрать аккумулятор и регулятор по максимальной силе тока, получаемой из формулы.

Обороты, об/В (KV, RPM) — обороты на вольт.
Важный параметр указывает скорость вращения вала двигателя. Обороты в минуту определяются количеством вращений в минуту, проще говоря как быстро вращается мотор. Скорость вращения ротора, измеряется в KV. Так принято обозначать коэффициент отношения частоты вращения оборотов мотора (об/мин) к напряжению питания мотора (В). Грубо говоря kV показывает насколько быстро будут вращаться разные моторы при одинаковом напряжении.

Максимальные обороты = KV * Напряжение питания двигателя.
Например: мотор мощностью 980 KV, на который подаются 11.1V от батарейки будет вращаться при 980 x 11.1 = 10878 оборотах в минуту без нагрузки.
Показания тока могут представлять максимальный непрерывный ток и предельные значения тока, который может подаваться на двигатель. Выбирая аккумулятор и регулятор, выбирайте те, на которых указаны значения максимального непрерывного тока равного и больше, чем значения тока на моторе.
Для разных моделей, разных используемых шестеренок и пропеллеров требуемый kV мотора подбирается и вычисляется индивидуально. По этому параметру можно подобрать применение мотора, аккумулятор и пропеллер. Так моторы с KV больше 2000, как правило, применяют на вертолетах либо на скоростных моделях. Мотор с высоким KV можно использовать с батарей из меньшего количества банок и он более эффективен с пропеллером с меньшим шагом. Моторы этого класса чаще используют на летающих крыльях. Моторы с меньшим KV позволяют ставить аккумуляторы с большим количеством банок, таким образом несколько набирая вес, но увеличивая продолжительность полета — не за счет емкости, а за счет снижения максимальных токов при той же работе выполняемой мотором. Чем выше KV моторов, тем компактнее должны быть винты. Винты небольшого размера обеспечивают более высокую скорость, но снижают эффективность. Конфигурацию с винтами большого размера и, соответственно, моторы с более низким значением KV проще заставить стабильно летать, она расходует меньше энергии, позволяет поднять большую массу.
KV — значимая характеристика для бесколлекторных моторов. У коллекторных моторов обычно на KV не смотрят. Если моделист принял решение заменить коллекторный мотор, то обычно меняет на точно такой же.

Напряжение питания, В (cell count, volts)
Напряжение, к которому приспособлен двигатель. Определяет количество банок аккумулятора, которое можно использовать с мотоустановкой. При превышении резко уменьшается время жизни мотора.
Например, имеются моторы с рабочим напряжением 4,8 вольта, 6 вольт, и 7,2 вольта. Эти цифры указывают, с каким количеством банок в батарее предназначен работать этот двигатель. Напряжение на одной банке NiMH (никель-металгидридном) аккумулятора составляет 1,2 вольта — мотор с рабочим напряжением 4,8 вольт предназначен для работы от 4-х баночного аккумулятора. Эти цифры ориентировочные, моторы способны работать и при повышенных напряжениях.

Напряжение и KV связаны.

Максимальная нагрузка, А (max load, peak current, max amps, surge current)
Сила тока, которую способен без повреждения выдержать двигатель и регулятор. Максимальный ток тем больше,чем больше физические размеры бесколлекторного двигателя.

Рабочая нагрузка, А (current load, continuous current)
Количество ампер длительно и без перегрузки пропускаемое мотором при номинальном напряжении. Позволяет посчитать, сколько времени прослужит аккумулятор с этим мотором.

Максимальная эффективность, % (max efficiency)
КПД — то количество энергии, которое мотор переводит непосредственно в полезную работу. Чем выше — тем лучше.

По конструкции бесколлекторные моторы делятся на две группы: inrunner и outrunner. Эта характеристика говорит о конструктивной особенности мотора.
Двигатели Inrunner имеют расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор. Большенству радиоуправляемых моделей — машин и лодок требуются бесколлекторный мотор Inrunner.
Двигатели Outrunner имеют неподвижные обмотки, внутри двигателя, вокруг которых вращается корпус с помещенными на его внутреннюю стенку постоянными магнитами, т. е. в аутраннерах вращается внешняя часть мотора. Аутранеры выбирают для авиамоделей, т. к. они в силу своей конструкции лучше охлаждаются и у них больше вариаций, как их можно прикрепить. Моторы Outrunner имеют меньшие значения в Киловольтах, что означает, что они движутся с меньшей скоростью, но с большим крутящим (вращающим) моментом. Обычно мощность Аутранеров не определяют по внешним габаритам. Аутраннеры благодаря своей конструкции позволяют использовать большее число магнитных полюсов.

Количество полюсов магнитов, используемых в бесколлекторных двигателях, может быть разным.
По количеству полюсов можно судить о крутящем моменте и оборотах и двигателя. Моторы с двухполюсными роторами имеют наибольшую скорость вращения при наименьшем крутящем моменте. Моторы с большим количеством полюсов имеют меньшую скорость вращения, но зато больший крутящий момент.

Также бесколлекторные двигатели бывают сенсорные и бессенсорные.
Сенсорные лучше, так как сенсор обеспечивает более плавную работу двигателя, быстрый и плавный старт, более рациональное использование энергии.

Перейти к моторам для радиоуправляемых моделей машинок, катеров, квадрокоптеров оптовой компании «Прямые дистрибьюции»: Моторы для радиоуправляемых моделей

ПОЛУЧИТЬ ПРЕДЛОЖЕНИЕ ОТ ОПТОВОЙ КОМПАНИИ «ПРЯМЫЕ ДИСТРИБЬЮЦИИ»

в чем разница и что лучше

Наша жизнь немыслима без всевозможных механизмов. Это детские игрушки, бытовая техника сложная электроника, промышленное оборудование и т.п. Во всех этих приборах и устройствах применяются электродвигатели, работающие от различных источников питания. В этой статье мы решили рассмотреть, чем отличаются коллекторные и бесколлекторные двигатели, а также какой тип двигателей лучше и почему.

Коллекторные двигатели

Электродвигатели, используемые в детских игрушках, имеют небольшие габариты и малую мощность. Конструктивно коллекторный двигатель представляет собой два постоянных магнита, установленных на статоре, и ротор (якорь) с обмотками. Отметим, что на статоре могут быть и обмотки возбуждения, вместо постоянных магнитов.

К обмоткам подводится постоянное напряжение через ламели коллектора. Для подачи напряжения используются графитовые щетки. В двигателях малой мощности в качестве щеток применяются медные пластины.

Питаются коллекторные двигатели как от постоянного тока, так и от переменного. Для подключения питания они имеют два провода.

Бесколлекторные двигатели

Название электродвигателя говорит об отсутствии токосъемного устройства. Что является основной конструктивной разницей. Это позволяет снизить потери на трение и повысить мощность. При этом постоянные магниты смонтированы на роторе, а обмотки размещены на статоре.

Выпускаются бесколлекторные двигатели, у которых магниты смонтированы на корпусе. В этом случае корпус выполняет функцию ротора.

Для пуска двигателя требуется специальное устройство (контроллер или коммутатор), что увеличивает стоимость бесколлекторных электродвигателей.

Плюсы и минусы сравниваемых двигателей

Электродвигатели с коллектором применяются в детских игрушках, моделях автомобиля, судомоделировании и т.п. Более мощные устройства с обмоткой возбуждения применяются в автомобилестроении, бытовой технике, в токарном станке или сверлильном и т.д.

Широкое применение обусловлено:

  • Невысокой ценой.
  • Простотой управления. Для регулировки скорости достаточно иметь реостат, а для осуществления реверса — изменить полярность в цепи возбуждения или якоря.
  • Можно подключать непосредственно к питающей сети.
  • Скорости вращения ротора можно менять в широком диапазоне.
  • Небольшие пусковые токи.

Но при простоте устройства коллекторные двигатели имеют недостатки:

  • Невысокий КПД.
  • Ограниченный срок службы.
  • Необходимость в постоянном обслуживании.
  • Невысокая надежность устройства.

При этом такие двигатели применяются не во всех отраслях промышленности. Их нельзя использовать во взрывоопасных помещениях. При эксплуатации на высоких скоростях быстро выходит из строя коллектор и щетки.

В результате происходит снижение мощности, а токоподводящие щетки начинают искрить. Такое конструктивное отличие приводит к быстрому выходу из строя ламелей коллектора, создаются помехи в радиоаппаратуре.

Щетки приходится менять, а коллектор протачивать, что сокращает срок службы двигателя. Это является основным недостатком таких устройств.

В бесколлекторных электродвигателях отсутствует коллектор. В этом состоит отличие бесеколлекторных двигателей от коллекторных, в связи с чем и отсутствуют указанные выше недостатки.

Достоинствами таких электрических машин являются:

  • Отсутствие трущихся частей позволяет сократить потери мощности на трение. Не требуется постоянно следить за состоянием щеток, так как они отсутствуют. Это отличие позволяет увеличить межремонтный период.
  • Возможность использования корпуса в качестве рабочего органа. Эта конструктивная разница позволяет применять механизмы непосредственно в качестве колес.
  • Бесколлекторные электродвигатели, в отличие от коллекторных более долговечны. При этом они менее подвержены перегреву, т.к. отсутствует коллектор и щетки, которые в процессе работы сильно нагреваются.
  • Мгновенно набирают обороты.
  • Могут применяться во всех отраслях промышленности, в пожаро- и взрывоопасных помещениях. Из-за отсутствия коллектора не возникает искрения, чем они и лучше.

Но у данного типа двигателя имеется существенный недостаток: бесколлекторные модели можно использовать только с драйвером-коммутатором. С помощью этого устройства задаются режимы работы, скорость и направление вращения. При этом стоимость бесколлекторных двигателей значительно выше. Разница в стоимости может быть значительной. Это то, чем отличаются они от устройств с коллектором.

Малый вес и высокая мощность — это то, что лучше сочетается в приборах с дистанционным управлением, например, для квадрокоптера, где от веса и КПД зависит дальность и время полёта.

Заключение

Итак, подведем итоги и обозначим в чем разница между коллекторным и бесколлекторным двигателем, перечислив их особенности.

Коллекторный двигатель:

  1. Есть щетки и коллектор, которые искрят и изнашиваются.
  2. Нужно чаще обслуживать, соответственно и срок службы не слишком долгий.
  3. Легко регулировать скорость лишь изменением напряжения.
  4. Для реверса нужно просто сменить полярность.
  5. Два предыдущих факта позволяют их использовать в бюджетных устройствах без сложных электросхем.

Бесколлекторный двигатель:

  1. Для запуска нужен контроллер, который хоть и не слишком дорого стоит, но увеличивает конечную стоимость, схемотехнику и вес изделия.
  2. Весят меньше чем коллекторные, при одинаковой мощности (но это частично компенсируется предыдущим фактом).
  3. Нет щеток и коллектора, поэтому не требуют обслуживания, не искрят.
  4. Больший срок службы, он ограничен лишь ресурсом подшипников ротора.
  5. Стоят обычно дороже чем коллекторные.
  6. Зачастую выдают больший момент на валу и обороты.
  7. При наличии датчиков положения вала обеспечивают большую стабильность оборотов при изменении нагрузки (жесткая механическая характеристика). Это особенно важно при использовании на станках и ручном инструменте.

От автора:

Добавлю то, что нельзя однозначно сказать какой лучше или какой мощнее, можно найти коллекторный двигатель размером с холодильник, а можно бесколлекторный размером с ноготь. При этом оба будут отлично выполнять те функции, на которые рассчитаны и использоваться в конкретных устройствах с учетом требований к их надежности и особенностям эксплуатации. Каждый вид электропривода хорош по своему и идеален по конструкции как таковой.

Теперь вы знаете, в чем разница между коллекторным и бесколлекоторным двигателем, а также какие плюсы и минусы у каждого варианта исполнения. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

Чем отличается коллекторный двигатель от бесколлекторного?

Содержание:

 

Основное отличие коллекторного двигателя (то есть двигателя постоянного тока с возбуждением от постоянных магнитов) от бесколлекторного заключается в его конструкции.

 

У коллекторного — обмотка расположена на роторе, а на статоре установлены постоянные магниты.

 

 

У бесколлекторного — отсутствует коллектор, а трёхфазная обмотка расположена на статоре.

 

В практическом применении, однако большее значение имеют различия в параметрах и свойствах между этими типами двигателей, которые влечёт за собой такая разница конструкций.

Особенности конструкции

Наличие трёхфазной обмотки у бесколлекторного двигателя означает что для управления им обязательно требуется электроника — контроллер, независимо от сложности решаемых задач. С его помощью можно формировать трёхфазную систему напряжений, необходимую для работы и делать это так чтобы двигатель вращался необходимым образом. Без контроллера реализовать управление современными бесколлекторным микродвигателем практически невозможно.

Для коллекторного ситуация иная – он может работать от обычного источника постоянного напряжения, без использования управляющей электроники. Хотя такой подход позволяет решать лишь самые простые задачи управления движением, он тоже возможен.

Обязательное использование контроллера для управления бесколлекторным мотором не всегда является однозначным их недостатком по сравнению с коллекторными, ведь контроллеры предоставляют ряд сервисных функций, как например измерение и ограничение тока или возможность устанавливать заданное значение скорости или положения в удобном виде. Если же речь идёт о задачах, связанных с точным регулированием скорости, или о задачах, связанных с позиционированием, то контроллер нужно будет использовать и для коллекторного, и для бесколлекторного мотора.

Принцип работы бесколлекторного двигателя. Преимущества и недостатки

Для нормальной работы в большинстве случаев требуется датчик положения ротора. Управление бесколлекторным мотором без использования датчика положения ротора существует и применяется, но имеет ряд особенностей, которые не позволяют использовать его для решения многих задач. Самым распространённым типом датчиков положения ротора являются датчики Холла.

Чаще всего они устанавливаются при изготовлении двигателя и входят в его стоимость. Они позволяют производить коммутацию обмоток бесколлекторного мотора и могут быть использованы как датчик скорости для управления с обратной связью по скорости. Датчики Холла дают возможность управлять бесколлекторным двигателем только при помощи блочной коммутации, которая приводит к заметным пульсациям момента, приводящим к увеличению акустического шума и неравномерному вращению на низкой скорости. Синусоидальная коммутация, лишённая таких недостатков, требует более точной информации о положении чем могут обеспечить датчики Холла и соответственно установки дополнительного датчика положения.

Принцип работы коллекторного двигателя. Преимущества и недостатки

Как было сказано чуть выше, датчики Холла могут использоваться как источник информации о скорости. Коллекторные моторы по умолчанию не оснащаются подобными датчиками и для задач измерения и регулирования скорости обязательно нужно дополнительно устанавливать датчик скорости. Но это не значит, что в любых задачах, связанных с поддержанием скорости, коллекторный двигатель имеет однозначное преимущество за счёт встроенного датчика. Дело в том, что датчики Холла имеют очень низкое разрешение – 12 импульсов на оборот на пару полюсов двигателя. Этого недостаточно чтобы давать стабильный сигнал обратной связи по скорости на низкой скорости вращения. Даже для многополюсных бесколлекторных двигателей работа только с датчиками Холла в качестве датчика обратной связи в контуре скорости обычно не позволяет достигать скорости ниже нескольких сотен оборотов в минуту на валу двигателя. Поэтому, когда речь идёт о задачах регулирования скорости с требованием работы в широком диапазоне скоростей, или о задачах позиционирования – оба типа двигателя требуют установки дополнительного датчика положения или скорости.

При работе коллекторного двигателя за счёт коммутации тока щётками и коллектором возникает достаточно сильные электромагнитные помехи. Для двигателей с графитовыми щётками они сильнее, для двигателей со щётками из благородных металлов они слабее. Для борьбы с ними необходимо устанавливать помехоподавляющие элементы на мотор, что требует дополнительного места и не всегда возможно по условиям эксплуатации.  Бесколлекторный мотор не создаёт таких помех.

В чем еще отличие

Если попытаться сравнить параметры двигателей, то прежде всего нужно сказать о скорости вращения. Номинальная скорость коллекторного как правило не превышает 10-20 тысяч оборотов в минуту для двигателей самых маленьких из доступных размеров и не более 3- 5 тысяч оборотов в минуту для более крупных. Скорости, на которые рассчитаны бесколлекторные двигатели лежат в более широком диапазоне – выпускаются как сверхскоростные модели на скорости выше 100 тысяч оборотов в минуту, так и тихоходные многополюсные двигатели с номинальными скоростями не более 1-2 тысячи оборотов в минуту. Для коллекторных моторов ограничителем скорости выступает коллектор – линейная скорость перемещения щёток по коллектору ограничена.

Сравнивая номинальный момент, можно сказать, что он сильнее зависит от особенностей конструкции и компоновки двигателя, различающихся от серии к серии чем от того коллекторный это двигатель или бесколлекторный. Так, например распространены бесколлекторные двигатели большого диаметра и с очень короткой осевой длиной, рассчитанные на низкие скорости вращения и большой момент. И их различия по основным параметрам с бесколлекторными же двигателями цилиндрической компоновки (большая длина и маленький диаметр) не менее сильны чем между коллекторными и бесколлекторными двигателями одинаковой компоновки (например, цилиндрической).

Оба типа двигателей имеют свои характерные особенности, которые могут являться как преимуществами, так и недостатками в зависимости от требований того или иного приложения

Коллекторный или бесколлекторный двигатель радиоуправляемой модели, выбираем электродвигатель машины на р/у или квадрокоптера.

Опубликовано: 28 августа 2014

Всем привет, сегодня мы расскажем о разнице между коллекторным и бесколлекторными двигателями.

Перед покупкой радиоуправляемой модели с электроприводом, необходимо определиться с выбором электродвигателя, которые бывают двух типов: коллекторные и бесколлекторные двигатели.

Основная разница для потребителя: коллекторные двигатели более дешевые, но модели с такими двигателями развивают меньшую скорость. Бесколлекторные двигатели – более дорогие, но способны развить большую скорость, а также более износостойкие. Далее немного подробнее:

 

Коллекторный двигатель для радиоуправляемых моделей

Обладает щеточно-коллекторным узлом, благодаря которому происходит движение модели. Коллектор, это ни что иное, как набор контактов, находящихся на роторе и расположенные вне ротора щётки (скользящие контакты).

Работа такого двигателя достаточно проста. С помощью постоянного тока от источника (аккумулятор, батарея) подаётся напряжение и модель начинает двигаться. Для изменения направления движения, например для езды назад, можно с помощью реле, поменять полярность подаваемого тока. Это один из самых простых механизмов, который из-за своей простоты является самым дешёвым, а КПД такого двигателя примерно 60%.

Основные преимущества:

  • Небольшой вес
  • Компактный размер
  • Стоимость двигателя
  • Ремонтопригодность

Недостатки:

  • Низкий КПД относительно бесколлекторного мотора
  • Максимальная скорость
  • Трение щеток об коллектор быстро перегревает мотор
  • Повышенный износ

Бесколлекторные двигатели для радиоуправляемых моделей

Данные моторы состоит из ротора с постоянными магнитами и статора с обмотками, За счёт такой конструкции, они являются более износостойкие, относительно коллекторных двигателей. КПД таких двигателей доходит до 95% и обладают повышенной износостойкостью, но и повышенной ценой. 

Основные преимущества:

  • Повышенная максимальная скорость радиоуправляемой машинки (относительно коллекторного двигателя)
  • За счёт конструкции, более износостойкие
  • Конструктивно защищены от влаги, грязи и пыли

Недостатки:

  • Более высокая стоимость запчасти.
  • Более трудозатратный ремонт двигателя.

Взвесьте все за и против. И выбирайте ту модель, которая подойдет именно вам.

Варианты квадрокоптеров с бесколлекторными моторами

В чём разница между коллекторными и бесколлекторными двигателями

Большое количество людей увлекаются созданием электромоделей, где одним из основных элементов выступает электродвигатель. При этом сборка и эксплуатация таких устройств часто вызывает споры относительно того, какие именно моторы лучше использовать.

Ведь на выбор предлагаются коллекторные и бесколлекторные двигатели, у каждого из которых есть свои поклонники и противники. Чтобы попытаться определить лучший вариант, нужно изучить особенности, принцип работы, их сильные и слабые стороны. Это во многом поможет принять окончательное решение.

Электромоторчики входят в состав разного автомобильного оборудования, включая стеклоомыватели, стеклоподъёмники, вентиляторы охлаждения и отопления, дворники и пр. Но также широко применяются в других сферах и отраслях.

Двигатель коллекторного типа

Под понятие коллекторных двигателей попадают различные электромашины, где переключатель тока и роторный датчик по сути являются одним устройством. С его помощью обеспечивается качественное соединение цепей в неподвижном отсеке двигателя с рабочим ротором.

Внешний вид коллекторного двигателя

Конструкция включает в себя мощные щётки и непосредственно сам коллектор. Интересно и то, что коллекторный тип мотора обладает преимуществом в виде простоты ухода и эксплуатации, легко ремонтируется и долго служит. Но есть и недостаток, проявляющийся в малом весе при большом КПД. Изначально это может показаться преимуществом. Быстроходность вместе с малым весом вынуждают использовать дополнительно хороший редуктор, иначе нормально эксплуатировать моторчик не получится.

Если же машины подстроить под меньшие значения скорости, то моментально упадёт коэффициент полезного действия. Это, в свою очередь, негативно отразится на эффективности охлаждения.

Многих интересует, что же значит коллекторный двигатель. Фактически это электромашина переменного тока, способная с лёгкостью преобразовывать постоянный ток в механическую полезную энергию. При этом минимум одна обмотка соединяется с основным коллектором.

В зависимости от комплектации и входящих в состав моторчика компонентов, коллекторные двигатели (КД) могут применяться в игрушках, радиоуправляемых моделях и в автомобильных, выступая в качестве составляющего элемента системы охлаждения, вентиляции, стеклоочистителей, насосов омывателя ветрового стекла и пр.

Ведущим производителям удалось создать универсальные моторы коллекторного типа, которые способны функционировать на всех видах тока, то есть на переменном и постоянном. Они нашли широкое применение при создании электрических инструментов, бытовой техники, на ЖД транспорте. Их преимущество в небольшом весе и компактных размерах при достаточно адекватной цене.

Независимо от того, какая полярность у двигателя, этот электромотор будет всегда осуществлять вращения только в одном направлении, то есть в одну неизменную сторону. Это объясняется последовательным соединением роторным и статорных обмоток, что провоцирует одновременную смену полюсов. Потому момент всегда направлен в одну и ту же сторону.

Базовыми составляющими компонентами КД являются:

  • Двухполюсный статор, имеющий в своей основе постоянные магниты. В конструкции используются изогнутые магниты соответствующей формы;
  • Ротор трёхполюсного типа. Здесь также применяются специфические подшипники, обладающие эффектом скольжения;
  • Пластины из меди. Они применяются в роли щёток для двигателя коллекторного типа.

Набор действительно минимальный, потому встречается в основном в наиболее бюджетных и простых версиях коллекторных электромоторов. В их числе моторчики детских игрушек, которые не нуждаются в повышенной мощности.

Если вы хотите получить более качественный КД, тогда в его состав добавляют:

  • многополюсные роторы с подшипниками качения;
  • графитовые щётки;
  • четырёхполюсный статор на основе постоянных магнитов.

Чтобы добиться высокой эффективности, в состав КД включили несколько основных компонентов. А именно:

  • Коллектор. Фактически основообразующий элемент двигателя, вступающий в контакт с рабочими щётками. В итоге эти два компонента начинают распределять электроток по катушкам якорной обмотки;
  • Статор. Выступает в качестве неподвижной составляющей двигателя;
  • Якорь. Обязательный элемент коллекторных электромоторов. Внутри него индуцирует электродвижущая сила и проходит ток. Важно добавить, что якорем может выступать ротор и статор;
  • Индуктор. Особая система возбуждения, входящая в состав электромотора коллекторного типа. Служит для создания магнитного потока для того, чтобы вовремя создавать крутящий момент. На индукторе обязательно присутствует возбуждающая обмотка или постоянные машины;
  • Щёточки. Щётки входят в состав цепи, по которой следует электрическая энергия от поставщика к якорю. Щётки изготавливаются из высокопрочного графита. В зависимости от конкретного КД, моторчик оснащается 1 парой щёточек и более.

Вне зависимости от компоновки и входящих в состав элементов на основе тех или иных материалов, принцип работы у всех коллекторных типов двигателей остаётся одинаковым.

Принцип работы

Вам будет не сложно представить 2 магнита, у которых есть разные плюса. Попробуйте приставить их друг к другу одноимённым полюсом и посмотрите, что из этого получится. Вам не удастся соединить их, как бы ни старались. Но стоит соединить магниты разными полюсами, как создастся высокопрочное соединение. Именно этот эффект входит в основу работы и устройства коллекторных двигателей.

Схема электродвигателя коллекторного типа

Вы узнали про устройство КД. Теперь в процессе эксплуатации наверняка захочется узнать, как можно самостоятельно проверить коллекторный двигатель. Для этого следует разобраться в принципе его работы. Функционирует электромотор такого типа следующим образом:

  • электрический ток поступает на якорные обмотки;
  • в зависимости от того, сколько обмоток используется на моторе, ток поочерёдно поступает на каждую из них;
  • тем самым создаётся электромагнитное поле;
  • с одной стороны южный полюс, а с другой — северный;
  • магнитное поле, появляющееся в обмотках, вступает во взаимодействие с полюсами магнитов статора моторчика;
  • это позволяет привести в движение, то есть заставить вращаться якорь;
  • ток, проходя через коллектор и щёточки, приходит на следующую обмотку;
  • так происходит последовательно, в зависимости от числа якорных обмоток;
  • переходя с обмотки на обмотку, вал мотора вместе с якорем начинают вращаться;
  • вращение происходит до тех пор, пока есть источник напряжения.

В стандартных моторах коллекторного типа предусматривается использование трёхполюсного якоря. То есть он имеет 3 обмотки. Это позволяет двигателю не залипать в одном из положений.

Преимущества и недостатки

Нельзя отрицать тот факт, что коллекторные движки или же коллекторные электрические двигатели активно применяются в различных сферах и отраслях. В том числе они часто используются в автомобильном производстве.

Но для объективности нужно добавить, что КД используется не всегда и не везде, поскольку в конкретных ситуациях более эффективным и рациональным решением станет бесколлекторный электромотор.

Большой опыт в использовании КД позволяет выделить ряд сильных и слабых качеств эксплуатации такого типа электродвигателя.

Внутреннее строение коллекторного асинхронного двигателя

К основным достоинствам можно отнести следующие моменты:

  • Сравнительно небольшой показатель параметров пускового тока. Это заметно проявляется в ситуациях, когда коллекторные моторы устанавливаются в различную бытовую технику;
  • Такие электромоторы можно подключать напрямую к энергоносителю, то есть к сети. При этом исключается необходимость в использовании разного рода дополнительных и вспомогательных приспособлений;
  • Высокие показатели быстроходности;
  • Независимости от параметров сетевой частоты;
  • При наличии схемы управления устройство становится проще.

Но не стоит делать поспешные выводы. Сначала нужно взглянуть на имеющиеся минусы коллекторного двигателя. А именно:

  • Общие показатели коэффициента полезного действия снижены. Это обусловлено наличием индуктивности, а также потерь, необходимых для перемагничивания статора;
  • Максимальные показатели крутящего момента далеки от совершенства;
  • Сравнительно низкий уровень надёжности;
  • Относительно небольшой срок службы.

Специалисты выделяют один ключевой недостаток, характеризующий коллекторные типы электромоторов. Никто не спорит, что в коллекторниках очень удобно регулировать обороты. Но если они высокие, сразу же проявляют себя щётки. Причём не с самой лучшей стороны. Щётки всё время находятся в состоянии плотного прилегания к самому коллектору электромотора. При высокой скорости работы начинает их быстрый износ. С течением времени происходит засорение, результатом чего становится появление искр.

Постепенный износ щёток двигателя и всего узла коллектора с щётками способствует снижению общих показателей эффективности работы КД. То есть коллекторно-щёточный узел смело можно считать главным недостатком конструкции. Потому производители всё чаще отказываются от коллекторников, выбирая вместо них бесщёточные аналоги.

Главным конкурентом коллекторного типа электродвигателя выступает бесколлекторный аналог. Он имеет отличный от КД принцип работы, а также характеризуется своими сильными и слабыми сторонами.

Бесколлекторный мотор

Теперь можно поговорить о том, чем же коллекторный двигатель в действительности отличается от рассматриваемого бесколлекторного аналога.

Внешний вид двигателя бесколлекторного типа

Очевидная разница просматривается при изучении принципа работы бесколлекторного двигателя (БКД). Хотя часто бесколлекторный и коллекторный двигатель сопоставляют друг с другом, воспринимая их как конкурентов, по сути это два разных мотора. Потому и отличия между ними обязательно присутствуют.

Фактически БКД работает наоборот.

  • В конструкции не предусмотрено наличие щёток и самого коллектора, что становится очевидным уже исходя из самого названия;
  • Если говорить о магнитах, то в случае с бесколлекторником они размещаются обязательно вокруг вала. При этом магниты выполняют роль или функции ротора;
  • Обмотки с несколькими магнитными полюсами располагаются вокруг установленного ротора;
  • На роторе присутствует датчик. Он же сенсор. Его задача заключается в контроле положения ротора и передаче полученной информации на процессор;
  • Этот процессор работает параллельно с регулятором скорости, который отвечает за скорости вращения. Суммарно за 1 секунду обмен информацией происходит около 100 раз минимум.

Подобное устройство и принцип работы позволяет получить более плавный режим работы двигателя при его максимальной отдаче.

В случае с бесколлекторными электродвигателями они могут оснащаться датчиками или сенсорами, а также эксплуатироваться без них. Если датчика нет, это в определённой, но незначительной степени снизит эффективность работы всего электродвигателя.

Распознать БКД с сенсором и без него достаточно просто. Если у обычного двигателя присутствует 3 провода питания, то в моделях с датчиком дополнительно имеется шлейф, состоящий из тонких проводов. Он идёт от самого моторчика к регулятору скорости.

Преимущества и недостатки

Главный и неоспоримый плюс бесщёточных электромоторов заключается в практически полном отсутствии деталей, способных изнашиваться. Говорить о полном их отсутствии нельзя, поскольку роторный вал устанавливается на подшипники. Именно они всё же могут с течением времени износиться. Хотя даже у подшипников ресурс огромный. Плюс всегда можно быстро и без особого труда заменить подшипник в случае его износа.

Бесколлекторный бесщеточный электродвигатель в разборке

Такие особенности конструкции породили преимущества в виде надёжности, высокой эффективности и длительного срока службы. За счёт наличия датчика положения ротора улучшается его производительность и точность в процессе работы.

Вспомните недостаток коллекторных аналогов, где щётки искрятся и быстро изнашиваются, параллельно провоцируя помехи в процессе работы узла, механизма или машины, в которой установлен КД. В случае с бесколлекторными или бесщёточными моторами от такой проблемы удалось избавиться. Никаких искрений здесь не наблюдается.

Бесколлекторники не трутся, не перегреваются, что также справедливо относится к весомым достоинствам механизма. Дополнительное обслуживание в процессе даже очень активной эксплуатации тут не требуется.

Если же говорить про недостатки, то из существенного и всё равно условного можно выделить только один минус. Это более высокая стоимость. Минус условный по причине того, что при своей цене исключается необходимость в замене пружин, якоря, коллектора или щёток. Потому стоимость целиком и полностью себя оправдывает.

Далее уже можно сделать собственные субъективные выводы, отталкиваясь от приведённой выше информации.

В чем разница между коллекторным и бесколлекторным двигателем?

Покупка электромодели на радиоуправлении начинается с выбора электродвигателя. Перед покупателем стоит непростая задача, какому агрегату отдать свое предпочтение с коллекторным или бесколлекторным двигателем? Принять мудрое решение позволит детальное изучение каждого вида электродвигателя. Между ними есть удивительные сходства и потрясающие различия.

Коллекторный двигатель

Коллекторным двигателем называют электромашину, состоящею из нескольких важных деталей. Основным элементом считается коллектор – барабан медного цвета. Имеется подвижная (ротор) и неподвижная часть (статор), обмотка якоря, специальная щетка, вентилятор, сердечник и обмотка полюса.

Также наблюдаются 2 исходящих питающих провода (положительный и отрицательный). Принцип работы устройства базируется на качественном преобразовании электрической энергии в механическую. Вначале происходит создание электромагнитного поля в пределах якорных обмоток.

Образованное в якоре поле начинает взаимодействовать с полюсами статора, что приводит к движению якоря. Постепенно образовавшийся ток через щетки и коллектор попадает на следующую обмотку. Движение тока заставляет одновременно вращаться вал и якорь. Радиоуправляемые модели с подобными агрегатами работают от постоянного тока.

Коллекторные двигатели делятся на несколько видов. Классификация приборов зависит от типа их питания. Специалисты выделяют универсальные и постоянные КД.

Универсальные агрегаты способны функционировать от переменного и постоянного источника электропитания. Простые в использовании и компактные по размеру электромашины востребованы благодаря своей стоимости.

Второй вид коллекторного двигателя знаменит высоким пусковым моментом. Простая конструкция с плавным управлением частоты вращения. Функционирование агрегата осуществляется на постоянных магнитах или при помощи специальных катушек возбуждения.

Преимуществами таких двигателей считают габариты и вес конструкции. К достоинствам относят и стоимость агрегата.

Обсуждаемый КД встречается в разных бытовых электроприборах, таких как стиральная машина, пылесосы, детские игрушки, а также силовые установки.

И все же некоторые производители отдают предпочтение бесколлекторным устройствам.

Особенности бесколлекторного прибора

Бесколлекторный двигатель — популярный вид электромашины. Высокооборотный агрегат славится точным позиционированием. Конструкция состоит из якоря и статора. В роторе присутствует один или несколько постоянных магнитов. Статоры оснащены специальными катушками. Цель их существования – создание магнитного поля. Принцип работы двигателя зыблется на следующих условиях.

Для вращения двигателя требуется специальный регулятор. Так называемый контролер преобразовывает постоянный ток в переменный. Вначале на обмотке статора образовывается магнитная среда. Затем поданное трехфазное напряжение заставляет двигаться заданную систему. Взаимодействуя со статорами, ротор постепенно начинает вращаться.

Главными преимуществами бесколлекторного агрегата является:

  1. Высокая мощность электрического устройства.
  2. Высокая скорость движения. Некоторые наземные модели прибора могут функционировать со скоростью до 350 км/ч.
  3. Бесколлекторная электромашина не нуждается в дополнительном охлаждении.
  4. Высокий уровень износостойкости увеличивает срок эксплуатации БД.
  5. Простой в использовании прибор обладает высоким КПД (коэффициентом полезного действия).
  6. Имеет высокую степень влагозащиты. Не подвержен влиянию вязкой грязи и пыли.
  7. В процессе работы не производит искр. Такое преимущество позволяет использовать агрегат в пожароопасных условиях.

К недостаткам двигателя следует отнести сложности в ремонтировании прибора, высокую стоимость конструкции, а также вес привода.

Надежный и практичный электродвигатель на протяжении долгих лет активно используется в авиационной, судостроительной и автомобильной отрасли. Успешно применяется в качестве силовой установки дрона. Наблюдается в системе охлаждения. Бесколлекторные двигатели устойчивы к перегрузкам, поэтому подходят для медицинского оборудования.

Сравнение электродвигателей и нюансы использования

Между обсуждаемыми двигателями наблюдается несколько явных схожестей. В обоих агрегатах присутствуют специальные провода, подвижная (ротор) и неподвижная часть (статор). В коллекторных и бесколлекторных приборах работа системы начинается с образования магнитного поля. У каждого из этих устройств есть свои сильные и слабые стороны и определенная сфера использования.

И все-таки электродвигатели отличаются друг от друга. Разница касается внешних и внутренних характеристик устройств, а также затрагивает их возможности. Главное отличие кроется в наличии и отсутствии коллектора. Приборы с медным барабаном весят меньше, нежели бесколлекторные двигатели. У электромашины первой категории в арсенале два провода, у второй конструкции в запасе имеется третий. Первый вариант двигателя стоит дешевле, нежели бесколлекторный агрегат. Мощная и высокоскоростная бесколлекторная электромашина участвует в развитии авиационной и даже медицинской области, тогда как коллекторные изделия в основном используют для бытовых приборов.

Установка и применение двигателей зависит от цели его использования. Недорогие коллекторные агрегаты востребованы при создании некоторых детских игрушек, стиральных машин, пылесосов и прочих электрических устройств. Бесколлекторыне чаще встречаются в медицинском оборудовании, в системах охлаждения, самолетах, кораблях и автомобилях. Сфера применения также определяется устойчивостью двигателя к перегрузкам и способом его работы.

В чем разница между коллекторными и бесколлекторными моторами.

Двигатели в мультироторных аппаратах бывают двух типов: коллекторные и бесколлекторные. Их главное отличие в том, что у коллекторного двигателя обмотки находятся на роторе (вращающейся части), а у бесколлекторного — на статоре. Не вдаваясь в подробности скажем, что бесколлекторный двигатель предпочтительнее коллекторного поскольку наиболее удовлетворяет требованиям, ставящимся перед ним. Поэтому в этой статье речь пойдёт именно о таком типе моторов. Подробно о разнице между бесколлекторными и коллекторными двигателями можно прочесть в .

Несмотря на то, что применяться БК-моторы начали сравнительно недавно, сама идея их устройства появилась достаточно давно. Однако появление транзисторных ключей и мощных неодимовых магнитов сделало возможным их коммерческое использование.

Устройство БК — моторов

Конструкция бесколлекторного двигателя состоит из ротора на котором закреплены магниты и статора на котором располагаются обмотки. Как раз по взаиморасположению этих компонентов БК-двигатели делятся на inrunner и outrunner.

В мультироторных системах чаще применяется схема Outrunner, поскольку она позволяет получать наибольший вращательный момент.

Плюсы и минусы БК — двигателей

Плюсы:

  • Упрощённая конструкция мотора за счёт исключения из неё коллектора.
  • Более высокий КПД.
  • Хорошее охлаждение
  • БК-двигатели могут работать в воде! Однако не стоит забывать, что из-за воды на механических частях двигателя может образоваться ржавчина и он сломается через какое-то время. Для избежания подобных ситуаций рекомендуется обрабатывать двигатели при помощи водоотталкивающей смазки.
  • Наименьшие радиопомехи

Минусы:

Из минусов можно отметить только невозможность применения данных двигателей без ESC (регуляторы скорости вращения). Это несколько усложняет конструкцию и делает БК-двигатели дороже коллекторных. Однако если сложность конструкции является приоритетным параметром, то существуют БК-двигатели с встроенными регуляторами скорости.

Как выбрать двигатели для коптера?

При выборе бесколлекторных двигателей в первую очередь следует обратить внимание на следующие характеристики:

  • Максимальный ток — эта характеристика показывает какой максимальный ток может выдержать обмотка двигателя за небольшой промежуток времени. Если превысить это время, то неизбежен выход двигателя из строя. Так же этот параметр влияет на выбор ESC.
  • Максимальное напряжение — так же как и максимальный ток, показывает какое напряжение можно подать на обмотку в течение короткого промежутка времени.
  • KV — количество оборотов двигателя на один вольт. Поскольку этот показатель напрямую зависит от нагрузки на вал мотора, то его указывают для случая, когда нагрузки нет.
  • Сопротивление — от сопротивления зависит КПД двигателя. Поэтому чем сопротивление меньше — тем лучше.

Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.

Общие сведения, устройство, сфера применения

Одна из причин проявления интереса к БД – это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

Рис. 2. Устройство бесколлекторного двигателя

Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.

Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).


Рис. 3. Конструкция с внешним якорем (outrunner)

Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).


Принцип работы

В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.


Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.

Отличия коллекторного и бесколлекторного двигателя

Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.


Рис. 5. А – коллекторный двигатель, В – бесколлекторный

Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.

Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.

Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.

Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.

Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.

Как запустить бесколлекторный двигатель?

Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.


Рис. 6. Контроллеры бесколлекторных двигателей для моделизма

Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:

  • Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
  • Максимальная величина штатного напряжения для продолжительной работы.
  • Сопротивление внутренних цепей контроллера.
  • Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
  • Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.

Обратим внимание, что первые три характеристики определяют мощность БД.

Управление бесколлекторным двигателем

Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).


Рисунок 7. Диаграммы напряжений БД

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» – отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» – положительный, «А» – отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.


Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем

Преимущества и недостатки

Электрический бесколлекторный двигатель имеет много достоинств, а именно:

  • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
  • Высокий КПД.
  • Быстрый набор максимальной скорости вращения.
  • Он более мощный, чем КД.
  • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
  • Не требуется дополнительное охлаждение.
  • Простая эксплуатация.

Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.

Опубліковано 19.03.2013

Этой статьёй я начинаю цикл публикаций о бесколлекторных двигателях постоянного тока. Доступным языком опишу общие сведения, устройство, алгоритмы управления бесколлекторным двигателем. Будут рассмотрены разные типы двигателей, приведены примеры подбора параметров регуляторов. Опишу устройство и алгоритм работы регулятора, методику выбора силовых ключей и основных параметров регулятора. Логическим завершением публикаций будет схема регулятора.

Бесколлекторные двигатели получили широкое распространение благодаря развитию электроники и, в том числе, благодаря появлению недорогих силовых транзисторных ключей. Также немаловажную роль сыграло появление мощных неодимовых магнитов.

Однако не стоит считать бесколлекторный двигатель новинкой. Идея бесколлекторного двигателя появилась на заре электричества. Но, в силу неготовности технологий, ждала своего времени до 1962 года, когда появился первый коммерческий бесколлекторный двигатель постоянного тока. Т.е. уже более полувека существуют различные серийные реализации этого типа электропривода!

Немного терминологии

Бесколлекторные двигатели постоянного тока называют так же вентильными, в зарубежной литературе BLDCM (BrushLes Direct Current Motor) или PMSM (Permanent Magnet Synchronous Motor).

Конструктивно бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Обращаю Ваше внимание на то, что в коллекторном двигателе наоборот, обмотки находятся на роторе. Поэтому, далее в тексте ротор – магниты, статор – обмотки.

Для управления двигателем применяется электронный регулятор. В зарубежной литературе Speed Controller или ESC (Electronic speed control).

Что такое бесколлекторный двигатель?

Обычно люди, сталкиваясь с чем-то новым, ищут аналогии. Иногда приходится слышать фразы “ну это как синхронник”, или еще хуже “он похож на шаговик”. Поскольку большинство бесколлекторных двигателей трехфазные, это еще больше путает, что приводит к неправильному мнению о том, что регулятор “кормит” двигатель переменным 3-x фазным током. Все вышесказанное соответствует действительности только отчасти. Дело в том, что синхронными можно назвать все двигатели кроме асинхронных. Все двигатели постоянного тока являются синхронными с самосинхронизацией, но их принцип действия отличается от синхронных двигателей переменного тока, у которых самосинхронизация отсутствует. Как шаговый бесколлекторный двигатель тоже, наверное, сможет работать. Но тут такое дело: кирпич он тоже может летать… правда, недалеко, ибо для этого не предназначен. В качестве шагового двигателя больше подойдет вентильный реактивный двигатель .

Попробуем разобраться, что собой представляет бесколлекторный двигатель постоянного тока (Brushles Direct Current Motor). В самой этой фразе уже кроется ответ – это двигатель постоянного тока без коллектора. Функции коллектора выполняет электроника.

Преимущества и недостатки

Из конструкции двигателя удаляется довольно сложный, требующий обслуживания тяжелый и искрящий узел – коллектор. Конструкция двигателя существенно упрощается. Двигатель получается легче и компактнее. Значительно уменьшаются потери на коммутацию, поскольку контакты коллектора и щетки заменяются электронными ключами. В итоге получаем электродвигатель с наилучшими показателями КПД и показателем мощности на килограмм собственного веса, с наиболее широким диапазоном изменения скорости вращения. На практике бесколлекторные двигатели греются меньше, чем их коллекторные братья. Переносят большую нагрузку по моменту. Применение мощных неодимовых магнитов сделали бесколлекторные двигатели еще более компактными. Конструкция бесколекторного двигателя позволяет эксплуатировать его в воде и агресивных средах (разумеется, только двигатель, регулятор мочить будет очень дорого). Бесколлекторные двигатели практически не создают радиопомех.

Единственным недостатком считают сложный дорогостоящий электронный блок управления (регулятор или ESC). Однако, если вы хотите управлять оборотами двигателя, без электроники никак не обойтись. Если вам не надо управлять оборотами бесколлекторного двигателя, без электронного блока управления все равно не обойтись. Бесколлекторный двигатель без электроники – просто железка. Нет возможности подать на него напряжение и добиться нормального вращения как у других двигателей.

Что происходит в регуляторе бесколлекторного двигателя?

Для того чтобы понять, что происходит в электронике регулятора, управляющего бесколлекторным двигателем, вернемся немного назад и сначала разберемся как работает коллекторный двигатель. Из школьного курса физики помним, как магнитное поле действует на рамку с током. Рамка с током вращается в магнитном поле. При этом она не вращается постоянно, а поворачивается до определенного положения. Для того чтобы происходило непрерывное вращение, нужно переключать направление тока в рамке в зависимости от положения рамки. В нашем случае рамка с током – это обмотка двигателя, а переключением занимается коллектор – устройство со щетками и контактами. Устройство простейшего двигателя смотри на рисунке.

То же самое делает и электроника, управляющая бесколлекторным двигателем – в нужные моменты подключает постоянное напряжение на нужные обмотки статора.

Датчики положения, двигатели без датчиков

Из вышесказанного важно уяснить, что подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора. Поэтому электроника должна уметь определять положение ротора двигателя. Для этого применяются датчики положения. Они могут быть различного типа, оптические, магнитные и т.д. В настоящее время очень распространены дискретные датчики на основе эффекта Холла (например SS41). В трехфазном бесколлекторном двигателе используется 3 датчика. Благодаря таким датчикам электронный блок управления всегда знает, в каком положении находится ротор и на какие обмотки подавать напряжение в каждый момент времени. Позже будет рассмотрен алгоритм управления трехфазным бесколлекторным двигателем.

Существуют бесколлекторные двигатели, которые не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Эти методы также будут рассмотрены позднее. Следует обратить внимание на существенный момент: этот способ актуален только при вращении двигателя. Когда двигатель не вращается или вращается очень медленно, такой метод не работает.

В каких случаях применяют бесколлекорные двигатели с датчиками, а в каких – без датчиков? В чем их отличие?

Двигатели с датчиками положения более предпочтительны с технической точки зрения. Алгоритм управления такими двигателями значительно проще. Однако есть и свои минусы: требуется обеспечить питание датчиков и прокладку проводов от датчиков в двигателе к управляющей электронике; в случае выхода со строя одного из датчиков, двигатель прекращает работу, а замена датчиков, как правило, требует разборки двигателя.

В тех случаях, когда конструктивно невозможно разместить датчики в корпусе двигателя, используют двигатели без датчиков. Конструктивно такие двигатели практически не отличаются от двигателей с датчиками. А вот электронный блок должен уметь управлять двигателем без датчиков. При этом блок управления должен соответствовать характеристикам конкретной модели двигателя.

Если двигатель должен стартовать с существенной нагрузкой на валу двигателя (электротранспорт, подъёмные механизмы и т.п.) – применяют двигатели с датчиками.
Если двигатель стартует без нагрузки на валу (вентиляция, воздушный винт, применяется центробежная муфта сцепления и т.п.), можно применять двигатели без датчиков. Запомните: двигатель без датчиков положения должен стартовать без нагрузки на валу. Если это условие не соблюдается, следует использовать двигатель с датчиками. Кроме того, в момент старта двигателя без датчиков возможны вращательные колебания оси двигателя в разные стороны. Если это критично для Вашей системы, применяйте двигатель с датчиками.

Три фазы

Трехфазные бесколлекторные двигатели приобрели наибольшее распространение. Но они могут быть и одно, двух, трех и более фазными. Чем больше фаз, тем более плавное вращение магнитного поля, но и сложнее система управления двигателем. 3-х фазная система наиболее оптимальна по соотношению эффективность/сложность, поэтому и получила столь широкое распространение. Далее будет рассматриваться только трехфазная схема, как наиболее распространенная. Фактически фазы – это обмотки двигателя. Поэтому если сказать “трехобмоточный”, думаю, это тоже будет правильно. Три обмотки соединяются по схеме “звезда” или “треугольник”. Трехфазный бесколлекторный двигатель имеет три провода – выводы обмоток, см. рисунок.

Двигатели с датчиками имеют дополнительных 5 проводов (2-питание датчиков положения, и 3 сигналы от датчиков).

В трехфазной системе в каждый момент времени напряжение подается на две из трех обмоток. Таким образом, есть 6 вариантов подачи постоянного напряжения на обмотки двигателя, как показано на рисунке ниже.

В этой статье мы хотели бы рассказать о том, как мы с нуля создали электрический мотор: от появления идеи и первого прототипа до полноценного мотора, прошедшего все испытания. Если данная статья покажется вам интересной, мы отдельно, более подробно, расскажем о наиболее заинтересовавших вас этапах нашей работы.

На картинке слева направо: ротор, статор, частичная сборка мотора, мотор в сборе

Вступление

Электрические моторы появились более 150 лет назад, однако за это время их конструкция не претерпела особых изменений: вращающийся ротор, медные обмотки статора, подшипники. С годами происходило лишь снижение веса электромоторов, увеличение КПД, а также точности управления скоростью.

Сегодня, благодаря развитию современной электроники и появлению мощных магнитов на основе редкоземельных металлов, удаётся создавать как никогда мощные и в то же время компактные и легкие “Бесколлекторные ” электромоторы. При этом, благодаря простоте своей конструкции они являются наиболее надежными среди когда-либо созданных электродвигателей. Про создание такого мотора и пойдет речь в данной статье.

Описание мотора

В “Бесколлекторных моторах” отсутствует знакомый всем по разборке электроинструмента элемент “Щетки”, роль которых заключается в передаче тока на обмотку вращающегося ротора. В бесколлекторных двигателях ток подается на обмотки не-двигающегося статора, который, создавая магнитное поле поочередно на отдельных своих полюсах, раскручивает ротор, на котором закреплены магниты.

Первый такой мотор был напечатан нами 3D принтере как эксперимент. Вместо специальных пластин из электротехнической стали, для корпуса ротора и сердечника статора, на который наматывалась медная катушка, мы использовали обычный пластик. На роторе были закреплены неодимовые магниты прямоугольного сечения. Естественно такой мотор был не способен выдать максимальную мощность. Однако этого хватило, что бы мотор раскрутился до 20к rpm, после чего пластик не выдержал и ротор мотора разорвало, а магниты раскидало вокруг. Данный эксперимент сподвиг нас на создание полноценного мотора.

Несколько первых прототипов


Узнав мнение любителей радиоуправляемых моделей, в качестве задачи, мы выбрали мотор для гоночных машинок типоразмера “540”, как наиболее востребованного. Данный мотор имеет габариты 54мм в длину и 36мм в диаметре.

Ротор нового мотора мы сделали из единого неодимового магнита в форме цилиндра. Магнит эпоксидкой приклеили на вал выточенный из инструментальной стали на опытном производстве.

Статор мы вырезали лазером из набора пластин трансформаторной стали толщиной 0.5мм. Каждая пластина затем была тщательно покрыта лаком и затем из примерно 50 пластин склеивался готовый статор. Лаком пластины покрывались чтобы избежать замыкания между ними и исключить потери энергии на токах Фуко, которые могли бы возникнуть в статоре.

Корпус мотора был выполнен из двух алюминиевых частей в форме контейнера. Статор плотно входит в алюминиевый корпус и хорошо прилегает к стенкам. Такая конструкция обеспечивает хорошее охлаждение мотора.

Измерение характеристик

Для достижения максимальных характеристик своих разработок, необходимо проводить адекватную оценку и точное измерение характеристик. Для этого нами был спроектирован и собран специальный диностенд.

Основным элементом стенда является тяжёлый груз в виде шайбы. Во время измерений, мотор раскручивает данный груз и по угловой скорости и ускорению рассчитываются выходная мощность и момент мотора.

Для измерения скорости вращения груза используется пара магнитов на валу и магнитный цифровой датчик A3144 на основе эффекта холла. Конечно, можно было бы измерять обороты по импульсам непосредственно с обмоток мотора, поскольку данный мотор является синхронным. Однако вариант с датчиком является более надёжным и он будет работать даже на очень малых оборотах, на которых импульсы будут нечитаемы.

Кроме оборотов наш стенд способен измерять ещё несколько важных параметров:

  • ток питания (до 30А) с помощью датчика тока на основе эффекта холла ACS712;
  • напряжение питания. Измеряется непосредственно через АЦП микроконтроллера, через делитель напряжения;
  • температуру внутри/снаружи мотора. Температура измеряется посредством полупроводникового термосопротивления;
Для сбора всех параметров с датчиков и передачи их на компьютер используется микроконтроллер серии AVR mega на плате Arduino nano. Общение микроконтроллера с компьютером осуществляется посредством COM порта. Для обработки показаний была написана специальная программа записывающая, усредняющая и демонстрирующая результаты измерений.

В результате наш стенд способен измерять в произвольный момент времени следующие характеристики мотора:

  • потребляемый ток;
  • потребляемое напряжение;
  • потребляемая мощность;
  • выходная мощность;
  • обороты вала;
  • момент на валу;
  • мощность уходящая в тепло;
  • температура внутри мотора.
Видео демонстрирующее работу стенда:

Наверняка задавался вопросом, чем же отличается такой двигатель от других двигателей, например от тех, что стоят в сверлильных станках. Двигатели, установленные в не очень мощных станках, обычно не искрят, и работают они не так шумно, как та же дрель, обладающая меньшей чем станок мощностью.

В чем же дело? Дело в том, что двигатель с щетками — это коллекторный двигатель, а двигатель без щеток — бесколлекторный . Для решения разных задач подойдет свой тип двигателя — где-то лучше подойдет коллекторный, а где-то можно установить только бесколлекторный.

Коллекторный двигатель

Двигатель коллекторный имеет, как правило, всего два провода питания, он прост в управлении, достаточно регулировать постоянное или переменное напряжение питания и обороты станут соответственно меняться. Управлять коллекторным двигателем можно даже при помощи нехитрого диммера. Главное достоинство коллекторного двигателя — высокие обороты (десятки тысяч в минуту) при высоком крутящем моменте.

Принцип работы коллекторного двигателя очень прост. По сути, ротор его представляет собой набор медных рамок в магнитопроводе, которые поочередно коммутируются к источнику питания на коллекторно-щеточном узле. Статор может быть как из постоянных магнитов, так и с обмоткой, питаемой от того же источника, что и ротор, или от отдельного источника, а иногда статор и ротор включены в единую последовательную цепь (как например двигатели стиральных машинок-автоматов).

На каждую из секций обмотки ротора, через коллекторно-щеточный узел, поочередно, в процессе вращения ротора, подается электрический ток, в результате ротор перемагничивается, приобретая четко выраженные северный и южный магнитные полюсы, благодаря которым и происходит вращение ротора внутри статора (полюсы ротора выталкиваются полюсами статора, затем ротор дальше перемагничивается и вновь выталкивается). Поскольку ротор каждый раз коммутируется к источнику питания очередной секцией, вращение не останавливается, пока на коллектор подается питание.

Основной недостаток коллекторного двигателя

Обороты коллекторного двигателя очень удобно регулировать, но когда они достаточно высоки, щетки дают о себе знать. Поскольку щетки все время плотно прилегают к коллектору, на высоких оборотах они быстро изнашиваются, со временем так или иначе засоряются, и в конце концов начинают искрить.

Износ щеток, и вообще коллекторно-щеточного узла, ведет к снижению эффективности коллекторного двигателя. Таким образом, сам коллекторно-щеточный узел — это и есть главный недостаток коллекторных двигателей . Сегодня от коллекторных двигателей стараются отказываться в пользу бесщеточных шаговых.

У бесколлекторного двигателя нет ни коллектора, ни щеток. Простейший пример бесколлекторного двигателя — асинхронный трехфазный двигатель с ротором типа «беличья клетка». Еще один пример бесколлекторного двигателя — более современный — шаговый двигатель с магнитным ротором . Обмотки статора бесколлекторного двигателя сами перемагничиваются так, чтобы ротор все время разворачивался и непрерывно таким образом вращался.

Чаще всего современные бесколлекторные двигатели оснащаются датчиком положения ротора, по сигналам с которого работает регулятор скорости вращения двигателя. Сигнал с датчика положения ротора передается на процессор более 100 раз в секунду, в результате получается точное позиционирование ротора и высокий крутящий момент. Бывают, конечно, бесколлекторные двигатели и без датчика положения ротора, яркий пример — тот же асинхронный трехфазный мотор. Моторы без датчика положения стоят дешевле чем с датчиком.

Достоинства бесколлекторных двигателей

Поскольку ресурс подшипников ротора крайне велик, можно сказать, что в бесколлекторном двигателе практически отсутствуют изнашиваемые со временем детали, и он вообще не требует обслуживания в процессе эксплуатации. Здесь сведено к минимуму трение, отсутствует проблема перегрева коллектора, в целом надежность и эффективность бесколлекторных двигателей очень высоки.

Нет искрящих щеток, датчик положения ротора поможет сделать управление точным, — недостатков практически нет, одни достоинства. Разве что цена качественных шаговых двигателей выше чем у коллекторных (плюс драйвер), но это ничто по сравнению с регулярной заменой пружин, щеток и коллекторов у коллекторных двигателей.

Матовые двигатели постоянного тока Vs. Бесщеточные двигатели постоянного тока

Любой специалист по управлению движением должен понимать разницу между щеточными и бесщеточными двигателями постоянного тока. Щеточные моторы когда-то были очень распространены. Хотя они в значительной степени вытеснены своими бесщеточными аналогами, правильный двигатель постоянного тока любого типа может сделать проект намного более эффективным.

В чем разница между щеточными и бесщеточными двигателями постоянного тока?


В щеточном двигателе постоянного тока используется конфигурация катушек с намотанной проволокой, якорь , действующий как двухполюсный электромагнит.Направленность тока меняется дважды за цикл переключателем , механическим поворотным переключателем. Это облегчает прохождение тока через якорь; таким образом, полюса электромагнита тянутся и отталкиваются от постоянных магнитов снаружи двигателя. Затем коммутатор меняет полярность электромагнита якоря, когда его полюса пересекают полюса постоянных магнитов.

В бесщеточном двигателе, напротив, в качестве внешнего ротора используется постоянный магнит.Кроме того, он использует три фазы приводных катушек и специализированный датчик, отслеживающий положение ротора. Когда датчик отслеживает положение ротора, он отправляет контрольные сигналы на контроллер. Контроллер, в свою очередь, активирует катушки структурированным образом — одну фазу за другой.

Каковы преимущества щеточных и бесщеточных двигателей постоянного тока?


Матовый

  • Низкие общие затраты на строительство;

  • Часто можно перестраивать для продления срока службы;

  • Простой и недорогой контроллер;

  • Контроллер не требуется для фиксированной скорости;

  • Идеально подходит для экстремальных условий эксплуатации.

Бесщеточный

  • Меньше общего обслуживания из-за отсутствия щеток;

  • Эффективно работает на всех скоростях с номинальной нагрузкой;

  • Высокий КПД и высокое соотношение выходной мощности к размеру;

  • Уменьшенный размер с намного лучшими тепловыми характеристиками;

  • Более высокий диапазон скоростей и меньшее генерирование электрического шума.

В каких областях применения используются щеточные и бесщеточные двигатели постоянного тока?


Сегодня бесщеточный двигатель гораздо более распространен, чем щеточный. Однако и то, и другое можно найти в широком спектре приложений. Щеточные двигатели постоянного тока по-прежнему часто используются в бытовых приборах и автомобилях. Они также занимают прочную промышленную нишу из-за возможности изменять отношение крутящего момента к скорости исключительно для щеточных двигателей.

Благодаря надежности и долговечности бесщеточный двигатель постоянного тока нашел применение во многих областях.Это распространено в широком спектре отраслей: производство, вычисления и многое другое. Их используют электромобили нового поколения и даже некоторые электроинструменты! Из-за сильно различающихся потребностей и условий для проектов управления движением может быть полезен любой из двигателей.

Матовые и бесщеточные двигатели: в чем разница?

Вот уже несколько лет мы наблюдаем, как бесщеточные двигатели начинают доминировать в индустрии профессиональных инструментов в аккумуляторных инструментах. Это здорово, но что в этом такого? Разве это имеет значение, пока я могу заворачивать этот шуруп по дереву? Ну да, это так.Существенные различия и последствия существуют при работе с щеточными и бесщеточными двигателями.


Начните здесь: как работает щеточный двигатель постоянного тока

Прежде чем мы углубимся в сравнение щеточных и бесколлекторных двигателей на обеих ногах, давайте рассмотрим основы того, как на самом деле работает двигатель постоянного тока. Когда дело доходит до управления двигателем, все дело в магнитах. Противоположно заряженные магниты притягиваются друг к другу. Основная идея в двигателе постоянного тока состоит в том, чтобы удерживать противоположный заряд вращающейся части (ротора), притягивая неподвижные магниты (статор) перед собой, чтобы обеспечить постоянное тяговое усилие вперед.Это все равно что держать перед собой бостонский кремовый пончик на палочке, пока я бегу — я буду продолжать пытаться его поймать!

Вопрос в том, как заставить этот пончик двигаться. Нет простого способа сделать это. Он начинается с набора магнитов, которые удерживают постоянный заряд (постоянные магниты). У набора электромагнитов изменяется заряд (изменение полярности) во время вращения, поэтому всегда есть противоположно заряженный постоянный магнит, к которому он может двигаться. Кроме того, подобный заряд, который испытывает электромагнитная катушка при изменении, отталкивает катушку.Когда мы смотрим на щеточные и бесколлекторные двигатели, разница заключается в том, как электромагнит меняет полярность.

Взгляд изнутри щеточный двигатель

В щеточном двигателе есть четыре основных части: постоянные магниты, якорь, коллекторные кольца и щетки. Постоянные магниты составляют внешнюю часть механизма и не двигаются (статор). Один заряжен положительно, а другой отрицательно создает постоянное магнитное поле.

Якорь представляет собой катушку или ряд катушек, которые становятся электромагнитами при подаче питания.Это также вращающаяся часть (ротор), обычно она сделана из меди, хотя возможен и алюминий.

Кольца коммутатора крепятся к катушке якоря двумя (2-полюсная конфигурация), четырьмя (4-полюсная конфигурация) или более частями. Они вращаются с арматурой. Наконец, угольные щетки остаются на месте и доставляют электрический заряд к каждой части коммутатора.

Все дело в якоре

Когда якорь запитан, заряженная катушка притягивается к противоположно заряженному постоянному магниту.Поскольку кольцо коммутатора над ним также вращается, оно перемещается от соединения с одной угольной щеткой к другой. Когда он достигает следующей щетки, он меняет полярность и теперь притягивается к другому постоянному магниту, отталкиваясь таким же зарядом. Ощутимо, когда коммутатор достигает отрицательной щетки, он теперь притягивается к положительному постоянному магниту. Коммутатор прибывает как раз вовремя, чтобы соединиться с положительной щеткой, и следует за отрицательным постоянным магнитом.Щетки расположены парами, поэтому положительная катушка будет тянуться к отрицательному магниту, а отрицательная катушка будет тянуться к положительному магниту одновременно.

Я как катушка якоря гоняюсь за бостонским кремом. Я подхожу близко, но затем передумал и выбрал более здоровый смузи (моя полярность или желание изменились). В конце концов, пончик полон калорий и жира. Теперь я гоняюсь за смузи, пока меня отталкивают от бостонского крема. Добравшись до места, я понимаю, насколько вкуснее будет этот пончик над смузи.Пока спусковой крючок нажат, я передумываю каждый раз, когда перехожу к следующей кисти, отчаянно гоняясь за объектом моей привязанности по кругу. Это высшее проявление СДВГ, которое можно найти с пользой. Кроме того, нас там двое, поэтому один из нас всегда страстно, но нерешительно гнался за бостонскими кремовыми пончиками и смузи.

Внутри бесщеточного двигателя

В бесщеточном двигателе вы теряете коммутатор и щетки, а получаете электронный контроллер. Теперь постоянные магниты действуют как ротор и вращаются внутри, в то время как статор состоит из неподвижных электромагнитных катушек, которые теперь находятся снаружи.Контроллер питает каждую катушку в зависимости от того, какой заряд ей нужен для притяжения постоянного магнита.

В дополнение к электронному перемещению заряда, контроллер также может обеспечивать такой же заряд, чтобы противостоять постоянному магниту. Поскольку одинаковые заряды противостоят друг другу, это толкает постоянный магнит. Теперь ротор движется за счет тяги и толчка.

В этом случае постоянные магниты движутся, так что теперь они мой партнер по бегу и я. Мы больше не меняем своих мыслей о том, чего хотим.Вместо этого мы знаем, что я хочу пончик с кремом Бостон, а мой партнер хочет смузи.

Электронный контроллер заставляет нас двигаться вперед, и мы всегда гонимся за одним и тем же. Контроллер также помещает то, что нам не нужно, прямо позади, чтобы предложить толчок.

Стоимость щеточных и бесщеточных двигателей постоянного тока

Щеточный двигатель постоянного тока относительно прост, а детали для его изготовления недороги (хотя медь не становится дешевле).Поскольку для бесщеточных двигателей требуется этот электронный коммуникатор, вы, по сути, начинаете собирать компьютер внутри своего беспроводного инструмента. Это то, что увеличивает стоимость бесщеточных двигателей.

Эффективность щеточных и бесщеточных двигателей

Бесщеточные двигатели имеют несколько преимуществ по сравнению с щеточными двигателями благодаря своей конструкции. Во многом это связано с потерей щеток и коммутатора. Поскольку щетка должна контактировать с коммутатором для доставки заряда, это также вызывает трение.Трение снижает скорость, которая может быть достигнута вместе с нагревом. Это как ехать на велосипеде с слегка затянутым тормозом. При таком же усилии ног вы будете медленнее. И наоборот, если вы хотите поддерживать скорость, это потребует больше энергии от ваших ног. Вы также нагреете свои диски от тепла трения. Это означает, что по сравнению с щеточными двигателями бесщеточные двигатели работают холоднее. Это дает им большую эффективность, поэтому они преобразуют больше электроэнергии в мощность.

Угольные щетки также со временем изнашиваются.Это то, что вызывает искру внутри некоторых инструментов. Чтобы инструмент продолжал работать, щетки необходимо время от времени заменять. Бесщеточные двигатели не требуют такого обслуживания.

В то время как для бесщеточных двигателей требуется электронный контроллер, комбинация ротор / статор более компактна. Это дает возможность получить меньший вес и более компактный размер. Вот почему мы видим так много инструментов, как ударный шуруповерт Makita XDT16, которые имеют сверхкомпактную конструкцию и большой мощности.

Крутящий момент между щеточными и бесщеточными двигателями

Кажется, существует неправильное представление о бесщеточных двигателях и крутящем моменте. Сама по себе конструкция двигателя с щеткой или бесщеточным двигателем на самом деле не показывает величину крутящего момента. Например, первая ударная дрель Milwaukee M18 FUEL имела меньший реальный крутящий момент, чем предшествующая ей щеточная модель.

Однако в конце концов производители поняли кое-что очень важное. Электроника, используемая в бесщеточных двигателях, может при необходимости обеспечивать эти двигатели большей мощностью.

Поскольку в бесщеточных двигателях теперь используется усовершенствованное электронное управление, они могут определять, когда они начинают замедляться под нагрузкой. Пока аккумулятор и двигатель находятся в пределах температурных характеристик, электроника бесщеточного двигателя может запрашивать и получать больший ток от аккумуляторной батареи. Это позволяет таким инструментам, как бесщеточные дрели и пилы, поддерживать большую скорость под нагрузкой. Это делает их быстрее. Часто намного быстрее . Некоторые примеры этого включают Milwaukee RedLink Plus, Makita LXT Advantage и DeWalt Perform and Protect.

Эти технологии плавно объединяют двигатель инструмента, аккумулятор и электронику в единую систему для достижения максимальной производительности и продолжительности работы.

Более глубокое погружение в технологию двигателей BLDC

Коммутация — изменение полярности заряда — запускает бесщеточный двигатель и поддерживает его вращение. Затем вам нужно контролировать как скорость, так и крутящий момент. Изменение напряжения на статоре двигателя BLDC регулирует скорость. Модуляция напряжения на более высоких частотах позволяет вам контролировать скорость двигателя в еще большей степени.

Для управления крутящим моментом вы можете снизить напряжение статора, когда крутящая нагрузка двигателя превышает определенные уровни. Конечно, здесь возникает основная потребность: мониторинг двигателя и датчики.

Датчики на эффекте Холла обеспечивают недорогой способ определения положения ротора. Они также могут определять скорость по времени и частоте переключения датчиков.

Примечание редактора: Ознакомьтесь с нашей статьей «Что такое бесщеточный бесщеточный двигатель», чтобы узнать, как передовые технологии двигателей BLDC меняют электроинструменты.

Окончательный вердикт

Комбинация этих преимуществ дает еще один эффект — более длительный срок службы. Хотя гарантия, как правило, одинакова для щеточных и бесщеточных двигателей (и инструментов) внутри бренда, вы можете рассчитывать на более длительный срок службы бесщеточных моделей. Это часто может длиться годами после истечения срока гарантии.

Помните, что я сказал об электронном контроллере, который, по сути, составляет компьютер в вашем инструменте? Бесщеточный двигатель также стал прорывом в производстве интеллектуальных инструментов.Технология Milwaukee One-Key не работала бы, если бы бесщеточный двигатель не зависел от электронных коммуникаций.


Бесщеточные двигатели постоянного тока против щеточных: когда и почему выбирать один вместо другого | Статья

.

СТАТЬЯ

Пит Миллетт

Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность


Введение

Во многих приложениях управления движением используются двигатели постоянного тока с постоянными магнитами.Поскольку проще реализовать системы управления с использованием двигателей постоянного тока по сравнению с двигателями переменного тока, они часто используются, когда необходимо контролировать скорость, крутящий момент или положение.

Существует два типа обычно используемых двигателей постоянного тока: щеточные двигатели и бесщеточные двигатели (или двигатели BLDC). Как следует из их названия, щеточные двигатели постоянного тока имеют щетки, которые используются для коммутации двигателя, чтобы заставить его вращаться. Бесщеточные двигатели заменяют механическую функцию коммутации электронным управлением.

Во многих случаях можно использовать щеточный или бесщеточный двигатель постоянного тока.Они работают на тех же принципах притяжения и отталкивания между катушками и постоянными магнитами. У обоих есть преимущества и недостатки, из-за которых вы можете выбрать один из них, в зависимости от требований вашего приложения.

Щеточные двигатели постоянного тока

Щеточные двигатели постоянного тока (изображение: maxon group)

В двигателях постоянного тока

для создания магнитного поля используются намотанные катушки из проволоки. В щеточном двигателе эти катушки могут свободно вращаться, приводя в движение вал — они являются частью двигателя, называемой «ротором».Обычно катушки намотаны на железный сердечник, хотя есть также электродвигатели с щеточным покрытием, которые не имеют сердечника, когда обмотка является самоподдерживающейся.

Неподвижная часть двигателя называется «статором». Постоянные магниты используются для создания постоянного магнитного поля. Обычно эти магниты расположены на внутренней поверхности статора вне ротора.

Для создания крутящего момента, который заставляет ротор вращаться, магнитное поле ротора должно непрерывно вращаться, так что это поле притягивает и отталкивает фиксированное поле статора.Чтобы поле вращалось, используется ползунковый электрический переключатель. Переключатель состоит из коммутатора, который обычно представляет собой сегментированный контакт, установленный на роторе, и неподвижных щеток, установленных на статоре.

По мере вращения ротора коммутатор постоянно включает и выключает различные наборы обмоток ротора. Это заставляет катушки ротора постоянно притягиваться и отталкиваться от неподвижных магнитов статора, что заставляет ротор вращаться.

Поскольку существует некоторое механическое трение между щетками и коллектором — и поскольку это электрический контакт, он обычно не подлежит смазке — происходит механический износ щеток и коллектора в течение всего срока службы двигателя.Этот износ в конечном итоге достигнет точки, когда двигатель перестанет работать. Многие щеточные двигатели, особенно большие, имеют сменные щетки, обычно сделанные из угля, которые предназначены для поддержания хорошего контакта при износе. Эти двигатели требуют периодического обслуживания. Даже со сменными щетками, в конечном итоге, коммутатор также изнашивается до такой степени, что необходимо заменить двигатель.

Для приведения в действие щеточного двигателя на щетки подается постоянное напряжение, которое пропускает ток через обмотки ротора, заставляя двигатель вращаться.

В случаях, когда необходимо вращение только в одном направлении и не нужно контролировать скорость или крутящий момент, для щеточного двигателя не требуется никакой приводной электроники. В подобных приложениях напряжение постоянного тока просто включается и выключается, чтобы двигатель работал или останавливался. Это типично для недорогих приложений, таких как моторизованные игрушки. Если необходимо реверсирование, это можно сделать с помощью двухполюсного переключателя.

Для облегчения управления скоростью, крутящим моментом и направлением используется «H-мост», состоящий из электронных переключателей — транзисторов, IGBT или MOSFET — позволяющих двигателю вращаться в любом направлении.Это позволяет подавать напряжение на двигатель любой полярности, что заставляет двигатель вращаться в противоположных направлениях. Скорость или крутящий момент двигателя можно контролировать с помощью широтно-импульсной модуляции одного из переключателей.

Бесщеточные двигатели постоянного тока

Бесщеточные двигатели постоянного тока (изображение maxon group)

Бесщеточные двигатели постоянного тока работают по тому же принципу магнитного притяжения и отталкивания, что и щеточные двигатели, но они устроены несколько иначе. Вместо механического коммутатора и щеток магнитное поле статора вращается с помощью электронной коммутации.Это требует использования активной управляющей электроники.

В бесщеточном двигателе к ротору прикреплены постоянные магниты, а к статору — обмотки. Бесщеточные двигатели могут быть сконструированы с ротором внутри, как показано выше, или с ротором на внешней стороне обмоток (иногда называемый двигателем с опережением).

Число обмоток, используемых в бесщеточном двигателе, называется числом фаз. Хотя бесщеточные двигатели могут быть сконструированы с различным числом фаз, наиболее распространены трехфазные бесщеточные двигатели.Исключение составляют небольшие охлаждающие вентиляторы, которые могут использовать только одну или две фазы.

Три обмотки бесщеточного двигателя соединены по схеме «звезда» или «треугольник». В любом случае к двигателю подключаются три провода, а технология привода и форма сигнала идентичны.

Трехфазные двигатели могут быть сконструированы с различными магнитными конфигурациями, называемыми полюсами. Самые простые трехфазные двигатели имеют два полюса: ротор имеет только одну пару магнитных полюсов, один северный и один южный.Двигатели также могут быть построены с большим количеством полюсов, что требует большего количества магнитных секций в роторе и большего количества обмоток в статоре. Более высокое количество полюсов может обеспечить более высокую производительность, хотя очень высокие скорости лучше достигаются с меньшим количеством полюсов.

Для приведения в действие трехфазного бесщеточного двигателя необходимо, чтобы каждая из трех фаз могла быть подключена либо к входному напряжению питания, либо к земле. Для этого используются три схемы управления «полумостом», каждая из которых состоит из двух переключателей.Переключатели могут быть биполярными транзисторами, IGBT или MOSFET, в зависимости от требуемого напряжения и тока.

Существует ряд методов привода, которые можно использовать для трехфазных бесщеточных двигателей. Самый простой из них называется трапециевидной, блочной или 120-градусной коммутацией. Трапецеидальная коммутация в чем-то похожа на метод коммутации, используемый в щеточном двигателе постоянного тока. В этой схеме в любой момент времени одна из трех фаз подключена к земле, одна остается разомкнутой, а другая приводится в действие напряжением питания.Если требуется управление скоростью или крутящим моментом, обычно фаза, подключенная к источнику питания, имеет широтно-импульсную модуляцию. Поскольку фазы переключаются резко в каждой точке коммутации, а вращение ротора является постоянным, есть некоторое изменение крутящего момента (называемое пульсацией крутящего момента) при вращении двигателя.

Для повышения производительности можно использовать другие методы коммутации. Синусоидальная или 180-градусная коммутация постоянно пропускает ток через все три фазы двигателя. Электроника привода генерирует синусоидальный ток через каждую фазу, каждая из которых смещена на 120 градусов относительно другой.Этот метод привода сводит к минимуму пульсации крутящего момента, а также акустический шум и вибрацию и часто используется для высокопроизводительных или высокоэффективных приводов.

Для правильного вращения поля управляющая электроника должна знать физическое положение магнитов на роторе относительно статора. Часто информация о положении получается с помощью датчиков Холла, установленных на статоре. Когда магнитный ротор вращается, датчики Холла улавливают магнитное поле ротора. Эта информация используется электроникой привода для пропускания тока через обмотки статора в такой последовательности, которая вызывает вращение ротора.

Используя три датчика Холла, трапецеидальную коммутацию можно реализовать с помощью простой комбинационной логики, поэтому не требуется сложной управляющей электроники. Другие методы коммутации, такие как коммутация синуса, требуют немного более сложной управляющей электроники и обычно используют микроконтроллер.

Помимо обеспечения обратной связи по положению с помощью датчиков Холла, существуют различные методы, которые можно использовать для определения положения ротора без датчиков. Самый простой — это контролировать обратную ЭДС на незадействованной фазе, чтобы определить магнитное поле относительно статора.Более сложный алгоритм управления, называемый полевым управлением или FOC, вычисляет положение на основе токов ротора и других параметров. FOC обычно требует довольно мощного процессора, так как есть много вычислений, которые нужно выполнять очень быстро. Это, конечно, дороже, чем простой метод трапецеидального управления.

Щеточные и бесщеточные двигатели: преимущества и недостатки

В зависимости от вашего приложения, есть причины, по которым вы можете использовать бесщеточный двигатель вместо щеточного двигателя.В следующей таблице приведены основные преимущества и недостатки каждого типа двигателя:

Мотор с щеткой Бесщеточный двигатель
Срок службы Короткое (износ щеток) Длинный (без щеток)
Скорость и ускорение Средний Высокая
КПД Средний Высокая
Электрический шум Шумный (искрение втулки) Тихий
Акустический шум и пульсация крутящего момента Плохо Среднее (трапециевидное) или хорошее (синусоидальное)
Стоимость Самый низкий Средний (дополнительная электроника)

Срок службы

Как упоминалось ранее, одним из недостатков щеточных двигателей является механический износ щеток и коллектора.В частности, угольные щетки являются жертвой, и во многих двигателях они предназначены для периодической замены в рамках программы технического обслуживания. Мягкая медь коллектора также медленно изнашивается щетками и в конечном итоге достигает точки, когда двигатель больше не работает. Поскольку бесщеточные двигатели не имеют подвижных контактов, они не страдают от этого износа.

Скорость и ускорение

Скорость вращения щеточных двигателей может быть ограничена щетками и коллектором, а также массой ротора.На очень высоких скоростях контакт щетки с коммутатором может стать неустойчивым, и искрение щетки возрастет. В большинстве щеточных двигателей также используется сердечник из многослойного железа в роторе, что придает им большую инерцию вращения. Это ограничивает скорость разгона и замедления двигателя. Можно построить бесщеточный двигатель с очень мощными редкоземельными магнитами на роторе, что минимизирует инерцию вращения. Конечно, это увеличивает стоимость.

Электрический шум

Щетки и коммутатор образуют своего рода электрический выключатель.Когда двигатель вращается, переключатели размыкаются и замыкаются, в то время как значительный ток проходит через обмотки ротора, которые являются индуктивными. Это приводит к возникновению дуги на контактах. Это создает большой электрический шум, который может попасть в чувствительные цепи. Возникновение дуги можно несколько смягчить, добавив к щеткам конденсаторы или RC-демпферы, но мгновенное переключение коммутатора всегда создает некоторый электрический шум.

Акустический шум

Щеточные двигатели имеют «жесткое переключение», то есть ток резко переключается с одной обмотки на другую.Создаваемый крутящий момент изменяется в зависимости от вращения ротора, когда обмотки включаются и выключаются. С помощью бесщеточного двигателя можно управлять токами обмоток таким образом, чтобы ток постепенно передавался от одной обмотки к другой. Это снижает пульсацию крутящего момента, которая представляет собой механическую пульсацию энергии на ротор. Пульсация крутящего момента вызывает вибрацию и механический шум, особенно при низких оборотах ротора.

Стоимость

Поскольку бесщеточные двигатели требуют более сложной электроники, общая стоимость бесщеточного привода выше, чем стоимость щеточного двигателя.Несмотря на то, что бесщеточный двигатель проще в изготовлении, чем щеточный двигатель, поскольку в нем отсутствуют щетки и коммутатор, технология щеточного двигателя является очень зрелой, а производственные затраты низкими. Ситуация меняется по мере того, как бесщеточные двигатели становятся все более популярными, особенно в больших объемах, таких как автомобильные двигатели. Кроме того, стоимость электроники, такой как микроконтроллеры, продолжает снижаться, что делает бесщеточные двигатели более привлекательными.

Сводка

Из-за снижения затрат и повышения производительности бесщеточные двигатели становятся все более популярными во многих областях применения.Но все же есть места, где щеточные двигатели имеют больше смысла.

Многое можно узнать, изучив применение бесщеточных двигателей в автомобилях. По состоянию на 2020 год большинство двигателей, которые работают, когда автомобиль работает, — например, насосы и вентиляторы — перешли от щеточных двигателей к бесщеточным двигателям для повышения их надежности. Добавленная стоимость двигателя и электроники более чем компенсирует более низкий уровень отказов в полевых условиях и снижение требований к техническому обслуживанию.

С другой стороны, двигатели, которые используются нечасто, например двигатели, приводящие в движение сиденья с электроприводом и электрические стеклоподъемники, остались преимущественно щеточными двигателями.Причина в том, что общее время работы в течение всего срока службы автомобиля очень мало, и очень маловероятно, что двигатели выйдут из строя в течение всего срока службы автомобиля.

Поскольку стоимость бесщеточных двигателей и связанной с ними электроники продолжает снижаться, бесщеточные двигатели находят свое применение в приложениях, которые традиционно использовались щеточными двигателями. Еще один пример из автомобильного мира: в двигателях регулировки сиденья в высокопроизводительных платах используются бесщеточные двигатели, поскольку они производят меньше акустического шума.

Получить техническую поддержку

Бесщеточный и щеточный электродвигатели: почему вы должны знать разницу

Электродвигатель дрели предназначен для преобразования электроэнергии в механическое движение. На рынке представлен широкий спектр двигателей, которые могут работать с различными приложениями и с различными требованиями к мощности. Двумя наиболее распространенными типами двигателей являются бесщеточные и щеточные двигатели. Хотя они основаны на одних и тех же физических принципах, их структура, характеристики и управление значительно различаются.

… Спешите?

См. Наш Наша бесщеточная дрель №1 с рейтингом 4.7 из 5 звезд и почти 300 отзывами клиентов.

Бесщеточный двигатель, который становится все более популярным среди домашних пользователей и профессиональных пользователей, не является новым для рынка. Чтобы понять его происхождение, важно вернуться к изобретениям г-на Эрнста Вернера фон Сименса в 1856 году. Несмотря на то, что изобретения были элементарными, за десятилетия они претерпели ряд улучшений, одним из которых был реостат для точного управления скоростью вращения. вала.

История бесщеточного двигателя началась в начале 1960-х годов с появлением силового диммера, способного преобразовывать переменный ток (AC) в постоянный (DC). В 1962 году Т. Г. Уилсон и П. Х. Трики опубликовали статью, в которой описывался бесщеточный двигатель, работающий на постоянном токе. Агрегаты были оснащены технологией, которая использовала магнетизм и последовательно противодействовала электрическому устройству. Главным открытием концепции бесщеточного двигателя стало отсутствие физического переключателя для передачи тока.

Однако только в 1980-х годах бесщеточный двигатель действительно хорошо стартовал. Большая доступность постоянных магнитов в сочетании с высоковольтными транзисторами позволила этому типу двигателя генерировать такую ​​же мощность, как и щеточные двигатели. Усовершенствования бесщеточного двигателя не ослабевают в течение последних трех десятилетий. Это изменило способ производства эффективных буровых инструментов производителями сверл. В свою очередь, клиенты пользуются ключевыми преимуществами, связанными с разнообразием и меньшими требованиями к техническому обслуживанию.

Как работает дрель?

Основное различие между бесщеточными и щеточными двигателями для сверл состоит в том, что щеточные варианты сделаны из углерода, в то время как бесщеточные блоки используют магниты для выработки энергии. По этой причине бесщеточные двигатели лучше адаптированы, не вызывают трения, меньше нагреваются и обеспечивают лучшую производительность. Кроме того, бесщеточные агрегаты значительно сокращают техническое обслуживание, которое сводится к пыли и нет необходимости заменять изношенные щетки.

В бесщеточном двигателе коммутация обмоток не механическая, а управляется электроникой с помощью устройства, известного как контроллер.Это преобразует постоянный ток в трехфазный ток переменной частоты и последовательно питает катушки двигателя для создания вращающегося поля. Понятно, что при таком силовом принципе катушки закреплены в двигателе и не вращаются, как в щеточных двигателях.

Все бесщеточные двигатели имеют относительно схожую конструкцию. Они поставляются с неподвижным статором, на котором держатся катушки, и подвижным ротором, на который наклеены постоянные магниты. Обмотки могут быть построены по-разному: в форме звезды или треугольника.У большинства бесщеточных есть внутренний ротор, который быстро вращается до 100 000 об / мин.

Что такое кисти?

Щетки необходимы для правильного функционирования щеточных моторных инструментов, таких как дрели, отбойные молотки, строгальные станки, кусторезы и шлифовальные машины. Угольные щетки выбирают в зависимости от марки и типа инструмента. Они устанавливаются на неподвижной части двигателя, чтобы обеспечить оптимальную передачу мощности на ротор (вращающуюся часть). Они обеспечивают переключение без искры.

Работая попарно, эти компоненты изнашиваются и подвержены трению. Угольные щетки постоянно контактируют с контактными кольцами. Эти компоненты, изготовленные из графита, бывают разных типов. Они могут быть оснащены пружиной, коннектором (провод со штекером) или без щеткодержателя. Щетки бывают разных размеров и форм (в основном квадратные, прямоугольные) и могут иметь канавки для улучшения направления.

Скорость сверла указывается как часть крутящего момента, который зависит от силы магнитного поля.Подпружиненные угольные щетки прикреплены к пружине, которая снабжена пластиной для обеспечения плавной передачи мощности. В некоторых случаях щетки устанавливаются на щеткодержателе с пружиной, предназначенной для увеличения тяги.

С другой стороны, дробящие щетки используются для остановки работы двигателя и, в конечном итоге, сверла до полного износа графитового материала. Это нацелено на поддержание оптимальной производительности.

Производители переносных электроинструментов, включая дрели, обычно продают щетки, совместимые с их станками.Размеры выражаются в миллиметрах или дюймах, которые представляют толщину, глубину и ширину. Однако эти характеристики могут отличаться от одного производителя к другому.

Недостатки щеточных двигателей

Хотя щеточные двигатели недороги, надежны и обладают высоким крутящим моментом или передаточным числом инерции, они также имеют ряд недостатков. Эти компоненты со временем изнашиваются, образуя пыль. Этот тип двигателя требует регулярного обслуживания для очистки или замены щеток.Они также имеют низкую теплоотдачу из-за ограничений ротора, высокой инерции ротора, низкой максимальной скорости и электромагнитных помех (EMI) из-за дуги на щетках.

Принцип работы бесщеточных двигателей такой же, как и у двигателей со щетками (управление переключением с использованием внутренней обратной связи по положению вала), но их общая конструкция отличается. Конструкция бесщеточных агрегатов снижает внутреннее сопротивление и помогает рассеивать тепло, выделяемое в обмотках статора. Таким образом, эффективность выше, поскольку тепло от катушек может рассеиваться более эффективно благодаря гораздо большему стационарному корпусу двигателя.

В отличие от щеточного двигателя, в бесщеточном блоке постоянный магнит установлен на роторе. Статор изготовлен из рифленого стального проката и содержит обмотки катушки. С другой стороны, щеточные устройства требуют небольшого количества внешних компонентов или вообще не требуют их и поэтому хорошо работают в ограниченных условиях.

Что такое бесщеточный дрель?

Прочтите полный обзор дрели Dewalt 20v max.

Чтобы понять, что означает «бесщеточный», очень важно рассмотреть базовую конструкцию этих двигателей.Обмотки статора могут быть расположены звездой (или Y) или треугольником. Прокатку стали можно производить с канавками и без них. Двигатель дрели без пазов имеет меньшую индуктивность. Следовательно, он может работать быстрее и вызывать меньше пульсаций на более низких скоростях. Его главный недостаток — более высокие факторы стоимости, поскольку необходимо увеличивать количество обмоток, чтобы компенсировать большее воздушное пространство.

Число полюсов ротора может варьироваться в зависимости от области применения. Чем больше полюсов, тем больше крутящий момент, но снижается максимальная скорость.Материал, используемый для изготовления постоянных магнитов, также влияет на максимальный крутящий момент, который увеличивается с увеличением плотности магнитного потока.

Поскольку переключение должно выполняться электронным способом, управление бесщеточным двигателем намного сложнее, чем в простых схемах, связанных с щеточными агрегатами. Используются как аналоговые, так и цифровые методы управления. Базовый блок управления аналогичен блоку управления щеточными двигателями, но управление с обратной связью является обязательным.

В бесщеточных двигателях используются три основных типа алгоритмов управления: трапецеидальная коммутация, синусоидальная коммутация и векторное (или ориентированное на поле) управление.Каждый алгоритм управления может быть реализован по-разному в зависимости от кода программного обеспечения и конструкции оборудования. У каждого есть свои преимущества и недостатки.

Трапецеидальная коммутация требует простейшей схемы и управляющего программного обеспечения, что делает ее идеальным решением для приложений начального уровня. Он использует шестиэтапный процесс с использованием обратной связи по положению ротора. Трапецеидальное переключение эффективно контролирует скорость и мощность двигателя, но страдает от пульсации крутящего момента во время переключения, особенно на низких скоростях.

Бездатчиковое переключение (оценка положения ротора путем измерения обратной ЭДС двигателя) обеспечивает впечатляющую производительность за счет большей сложности алгоритма. Благодаря удалению датчиков на эффекте Холла и их интерфейсных схем, это бессенсорное переключение снижает затраты на компоненты и установку и упрощает конструкцию системы. Это помогает ответить на вопрос, что такое бесщеточный двигатель?

Преимущества бесщеточного двигателя

Прочтите полный обзор Makita 18v Drill

Технология бесщеточного двигателя не только увеличивает мощность ваших аккумуляторных электроинструментов, но и продлевает их срок службы.С этими двигателями у вас практически не будет забот об обслуживании.

Бесщеточная технология имеет множество преимуществ. Отсутствие щеток избавляет от проблем, связанных с перегревом и поломками. Таким образом, срок службы бесщеточного двигателя зависит только от подшипников. Бесщеточный двигатель компактнее и в два-три раза легче щеточных агрегатов. Это улучшает портативность, а также снижает вибрацию и шум.

Электронная коммутация обеспечивает точное позиционирование.Двигатель развивает скорость до 50 000 об / мин с оптимально сбалансированными роторами. Электронный модуль обеспечивает большую гибкость с более широким диапазоном вариаций и, в особенности, поддержание крутящего момента с самого начала.

Эффективность значительно повышается без трения между ротором и статором. Тепло и трение уменьшаются, а энергия батареи оптимизируется. Это увеличивает мощность и автономность до 25 процентов с обычными батареями. По словам производителей, последние поколения литий-ионных аккумуляторов обеспечивают до 50 или даже 60 процентов повышенной автономности.

Отсутствие трения позволяет двигателю работать без искрения даже при интенсивных нагрузках. Бесщеточная технология не имеет зоны контакта, что значительно снижает износ и обслуживание. Это дает несколько преимуществ: двигатель более энергоэффективен, предотвращает перегрев, устраняет необходимость замены щеток, а пользователи получают более длительный срок службы батареи — вы обнаружите, что лучшая аккумуляторная дрель работает на бесщеточном двигателе.

Матовые и бесщеточные двигатели: зачем нужны дополнительные расходы?

В обычном электродвигателе ротор (вращающаяся часть машины) приводится в движение внутри статора (неподвижная часть).Оба соединены электрическим соединением: коллектором или коммутатором, который контактирует с небольшими угольными щетками.

В бесщеточной технологии ротор состоит из магнитов, а статор — из катушек, которые поочередно заряжаются положительно или отрицательно. Таким образом, полюса притягиваются и отталкиваются, позволяя двигателю вращаться. Преимущество заключается в отсутствии физического контакта между ротором и статором. Энергия передается от одного к другому через магнетизм между электромагнитами.

Приведенный в действие постоянным током, двигатель работает от переменного тока, вырабатываемого электронной платой, которая преобразует постоянный ток в трехфазную переменную частоту.Таким образом, катушки питаются поочередно, чтобы создать вращающееся поле и, следовательно, вращение. Электронный модуль, встроенный в двигатель или в корпус, непрерывно регулирует ток, чтобы двигатель работал с максимальной эффективностью. Это улучшает общую производительность и, таким образом, обеспечивает реальное соотношение цены и качества.

Что лучше: бесщеточный или щеточный мотор?

Таким образом, бесщеточные двигатели лучше щеточных. Пользователи могут воспользоваться преимуществами сокращенного обслуживания, повышения эффективности, снижения тепловыделения и шума.Бесщеточные двигатели представляют собой синхронные блоки с одним или несколькими постоянными магнитами. Электроинструменты с бесщеточным двигателем теперь считаются продукцией высокого класса.

Двигатель постоянного тока состоит из двух электрических частей: статора и ротора. При включении двигателя он создает магнитное взаимодействие, которое приводит двигатель в движение. Когда вы меняете направление напряжения, питающего двигатель, он вращается в противоположном направлении.

Обзор других аккумуляторных дрелей

Различия между щеточными и бесщеточными двигателями постоянного тока

Я никогда не забуду свой первый проект, связанный с двигателями.

Я построил небольшой лифт для научного проекта еще в начальной школе. Конечно, он отлично работал на этапе тестирования, но не работал, когда рассчитывал. Я использовал дерево, чтобы построить каркас шахты лифта, и я использовал систему шкивов с веревками, чтобы поднимать и опускать картонную коробку. (Это было до того, как я изучил передаточное отношение шестерни к шкиву, поэтому мой лифт был больше похож на сиденье с выталкивателем, чем на лифт.)

Для управления движением я использовал в своем проекте аккумулятор, выключатель и двигатель постоянного тока.Короче говоря, так как я был так сосредоточен на тестировании, моя батарея фактически разрядилась перед демонстрацией. Оглядываясь назад, я должен был заменить батарею незадолго до демонстрации. Учитель по-прежнему поставил мне оценку «ОК», поскольку кто-то видел, как работает лифт, и поручился за меня.

Это был мой первый опыт работы с двигателем постоянного тока. Сможете угадать, какой тип двигателя постоянного тока я использовал?

Типы двигателей постоянного тока

Есть два типа двигателей постоянного тока — щеточные и бесщеточные.Оба они являются двигателями постоянного тока с постоянными магнитами, поскольку оба используют сегментированный ротор с постоянными магнитами. Эти двигатели обычно используются для управления скоростью.

Драйвер или нет драйвера?

Первое отличие заключается в их названиях. Один использует кисти, а другой нет. Щеточные электродвигатели постоянного тока также известны как электродвигатели постоянного тока с автоматической коммутацией. Его конструкция и конструкция позволяют ему работать без схемы привода, о которой я расскажу позже. Бесщеточные двигатели постоянного тока не могут самостоятельно коммутироваться, поэтому для них требуется схема управления, в которой используются транзисторы для направления тока на различные обмотки двигателя.

Конструкция и работа

Двигатель активирует набор электромагнитов в своем статоре в последовательности, чтобы создать вращение с помощью ротора с постоянными магнитами. Северный полюс статора будет притягивать южный полюс двигателя. Это теория работы всех двигателей постоянного тока с постоянными магнитами. Они делают это иначе.

Чтобы понять, почему эти двигатели ведут себя так, как они, нам нужно понять его конструкцию.

Вот как щеточные моторы и бесщеточные моторы выглядят внутри.На изображении ниже мы показываем щеточный двигатель с постоянными магнитами в статоре вместо ротора. Иногда постоянные магниты могут находиться в роторе в зависимости от производителя. При наличии катушек обмотки в роторе тепло не излучается так же хорошо, как при наличии катушек обмотки в статоре.

На верхнем левом изображении показаны коммутатор и щетки. На нижнем правом изображении показан тот же двигатель спереди. Внутри двигателя установлен электрод в виде щеток и коммутатор.Коммутатор вращается вместе с ротором, а статор неподвижен. В этом моторе два полюса постоянного магнита — северный и южный.

Когда источник питания подключен к стационарным щеткам, в роторе возбуждается определенный набор электромагнитов (катушек), который притягивает следующий полюс магнита и отталкивает текущий полюс статора. Как только ротор вращается к следующему набору электромагнитов, щетки механически переключаются на следующий набор электромагнитов в роторе.Этот процесс повторяется до тех пор, пока не будет отключено питание. Направление двигателя можно изменить, переключив полярность источника питания.

На следующем изображении показан бесщеточный двигатель с постоянными магнитами на роторе вместо статора, который мы делаем. Одним из преимуществ этой конструкции является то, что катушки обмотки статора, которые производят больше всего тепла, могут рассеивать тепло быстрее, чем двигатель с катушками в центре.

На верхнем левом изображении показаны ротор, статор и ИС на эффекте Холла в задней части двигателя.В отличие от щеточных двигателей, бесщеточные двигатели используют специальную схему драйвера для контроля обратной связи от двигателя, а драйвер использует транзисторы для электрического возбуждения полюсов статора для вращения ротора. Они также известны как бесщеточные двигатели постоянного тока или двигатели BLDC. Oriental Motor использует термин «бесщеточные двигатели», поскольку мы предлагаем эти двигатели с входными драйверами переменного или постоянного тока. На нижнем правом изображении показана передняя сторона двигателя. У нас есть 6 полюсов статора (электромагнитов) и 4 полюса ротора (постоянные магниты) в этом двигателе.

ИС на эффекте Холла определяет постоянные магниты в роторе при его вращении, преобразует аналоговый сигнал в цифровой, а затем отправляет данные обратно в схему драйвера. Затем драйвер использует данные, чтобы определить правильную синхронизацию для фазового возбуждения. Обратная связь также используется для регулирования скорости двигателя.

На изображении ниже показано, как силовая цепь драйвера включает и выключает определенные катушки обмотки с помощью транзисторов. Мы показываем 12-ступенчатую последовательность возбуждения транзистора с обмотками U, V и W.После 12 шагов цикл повторяется.

Большинство наших бесщеточных двигателей теперь 10-полюсные. Выходное разрешение ИС на эффекте Холла равно количеству полюсов ротора ИС на эффекте Холла, то есть 3 ИС x 10 полюсов = 30 импульсов на оборот. Некоторые бесщеточные двигатели, такие как серия BXII, предлагают энкодер для приложений, требующих более высокого разрешения.

Обратная связь

Еще одно очевидное различие между щеточными и бесщеточными двигателями заключается в том, что для правильной работы требуется обратная связь.Сигналы обратной связи от его ИС на эффекте Холла предоставляют данные о вращении и необходимы для правильной синхронизации фазового возбуждения.

Усовершенствованные драйверы бесщеточного двигателя могут предлагать некоторые уникальные функции, недоступные для простых контроллеров двигателей с щеткой, такие как сохраненные профили скорости и связь через RS-485. Датчики обратной связи и тока в бесщеточных двигателях могут обеспечивать функцию ограничения крутящего момента, что может быть полезно для приложений с натяжением.Хотя первоначальные затраты на бесщеточные двигатели выше, при выборе двигателя следует учитывать их преимущества.

Характеристики регулирования скорости

Как щеточные, так и бесщеточные двигатели обладают одинаковой производительностью. Их кривые крутящего момента такие же, как показано ниже. Для щеточных двигателей скорость и крутящий момент можно контролировать, изменяя входное напряжение двигателя. Однако повышенное напряжение иногда может слишком сильно увеличить нагрев и снизить рабочий цикл двигателя.

Бесщеточные приводы электродвигателей ограничивают кривую крутящего момента для достижения наилучшей производительности, поэтому вы всегда можете рассчитывать на одинаковую отличную производительность каждый раз.Для бесщеточных двигателей последовательность возбуждения водителя должна увеличиваться, чтобы двигатель вращался быстрее.

Резюме / Сравнение

Вы, должно быть, догадались, что в моем проекте лифта я использовал щеточный двигатель.

Хотя бесщеточные двигатели намного лучше, щеточный двигатель выполнил свою работу для моего простого одноразового проекта. Кроме того, я не знал, как создать драйвер, и мне действительно нужно было снизить затраты.

Вот сводка различий между щеточными и бесщеточными двигателями .

Хотя щеточные двигатели просты и дешевле в эксплуатации, они обычно используются в приложениях, где длительный срок службы или техническое обслуживание не являются серьезной проблемой.

Щетки всегда соприкасаются, поэтому со временем они изнашиваются из-за трения, и их нужно будет периодически заменять. Это может повлечь за собой нежелательные изменения в конструкции, так как двигатели должны быть доступны для обслуживания.

Внутри бесщеточного двигателя контактируют только шариковые подшипники, поэтому они не требуют периодического обслуживания.

Бесщеточные двигатели также тише и служат дольше, чем щеточные двигатели постоянного тока. Щеточная коммутация также является основным источником электрического и звукового шума, который может влиять на другие электронные сигналы или требовать принятия мер по снижению шума.

Искры от коммутации щеток ограничивают среду, в которой щеточные двигатели могут безопасно работать.

Поскольку бесщеточные двигатели обеспечивают более высокую энергоэффективность, эти двигатели могут быть более компактными из-за высокого отношения крутящего момента к массе и большего крутящего момента на ватт.

Наконец, датчики Холла в бесщеточных двигателях регулируют скорость примерно с точностью +/- 0,2%. Для энкодеров это значение составляет + / 0,05%.

Бесщеточные двигатели становятся более популярными, чем щеточные. В то время как щеточные двигатели по-прежнему широко используются в бытовых приборах и автомобилях, бесщеточные двигатели более универсальны для широкого спектра применений, от конвейеров до грузовых автомобилей.

Хотите узнать больше? Сравните в этом техническом документе бесщеточные и щеточные двигатели с двигателями переменного тока.

Вот небольшой ролик про нашу.

Спасибо, что прочитали мой пост. Пожалуйста, подпишитесь, чтобы и дальше получать мои сообщения.

В чем разница между щеточными и бесщеточными двигателями постоянного тока?

Parvalux производит электродвигатели более 70 лет, и в этом коротком блоге мы хотим объяснить существенные различия между щеточными и бесщеточными электродвигателями постоянного тока.

Что такое щеточный электродвигатель постоянного тока?

Щеточный двигатель постоянного тока имеет постоянные магниты внутри своего внешнего корпуса с вращающимся якорем внутри.Постоянные магниты неподвижны и называются «статором». Вращающийся якорь содержит электромагнит и называется «ротором».

В щеточном двигателе постоянного тока ротор вращается на 180 градусов, когда на якорь подается электрический ток. Чтобы выйти за пределы начальных 180 градусов, полюса электромагнита должны перевернуться. Угольные щетки контактируют со статором во время вращения ротора, изменяя магнитное поле и позволяя ротору вращаться на 360 градусов.

Преимущества

  • Высокий пусковой крутящий момент: Для применений, в которых необходимо очень быстро набрать обороты, щеточный электродвигатель с высоким крутящим моментом — это выбор для вас.Например, в таких приложениях, как автоприцепы, необходим высокий пусковой крутящий момент.
  • Низкая стоимость: Щеточные двигатели постоянного тока относительно недороги в производстве и покупке по сравнению с бесщеточными двигателями постоянного тока.
  • Для промышленных сред: Из-за высокого пускового момента щеточные двигатели также являются популярным выбором в промышленных условиях.

Недостатки

  • Риск повышенного обслуживания: Из-за трения угольных щеток двигателя они со временем изнашиваются естественным образом.В результате щеточные электродвигатели с большей вероятностью потребуют какого-либо обслуживания в виде очистки или замены щеток.
  • Низкая скорость: Несмотря на высокий пусковой крутящий момент, щеточные двигатели не так способны поддерживать высокие скорости. Это связано с тем, что работа щеточного двигателя на постоянной высокой скорости может привести к его нагреванию.

Что такое бесщеточный двигатель постоянного тока?

Подобно щеточному двигателю, бесщеточный двигатель работает, меняя полярность обмоток внутри двигателя.По сути, это электродвигатель с вывернутой щеткой, который устраняет необходимость в щетках. В бесщеточном двигателе постоянного тока постоянные магниты прикреплены к ротору, а электромагниты — на статоре. Электронный регулятор скорости (ESC) регулирует или «коммутирует» заряд на электромагниты в статоре, чтобы ротор мог перемещаться на 360 градусов.

Преимущества

  • Длительный срок службы: Бесщеточные двигатели постоянного тока не имеют щеток, что означает, что они требуют меньшего обслуживания, чем их щеточные аналоги.
  • КПД: Отсутствие щеток означает, что скорость не теряется, что делает бесщеточные двигатели постоянного тока немного более эффективными, обычно на 85-90% по сравнению с их щеточными аналогами при типичном КПД 75-80%.
  • Тихая работа: Бесщеточные двигатели из-за отсутствия щеток работают очень тихо и имеют особенно плавную работу. Это особенно полезно для приложений, требующих таких свойств, например, для подъемников для пациентов.

Недостатки

  • Требуется контроллер: Бесщеточные двигатели постоянного тока должны быть подключены к электронному регулятору скорости (ESC), чтобы ток проходил к электромагнитам.
  • Стоимость: Из-за необходимости в контроллере бесщеточные двигатели постоянного тока могут быть более дорогими.

Для получения дополнительной информации о том, какой электродвигатель постоянного тока лучше всего подходит для вашего применения, свяжитесь с нашей командой. Просто позвоните по телефону +1 508 677 0520 и поговорите с одним из наших экспертов — мы с нетерпением ждем вашего ответа!

Разница между щеточными и бесщеточными двигателями

В чем разница между щеточными и бесщеточными двигателями? У одного есть кисти, а у другого нет, верно?

Хотя на первый взгляд это, конечно, правда, реальный вопрос заключается в том, почему существуют оба типа? Каковы основные преимущества и ограничения того и другого?

Читайте дальше, чтобы узнать.

СВЯЗАННЫЕ: 10 НАИБОЛЕЕ ВАЖНЫХ ИЗОБРЕТЕНИЙ НИКОЛА ТЕСЛА

Но, прежде чем мы перейдем к их сравнению, полезно потратить некоторое время на обсуждение каждого типа двигателя по отдельности.

Что такое щеточный мотор?

В щеточном двигателе постоянного тока используются катушки с намотанной проволокой, называемые якорем, которые действуют как двухполюсный электромагнит. Дважды за цикл направление тока меняется на противоположное с помощью коммутатора, который представляет собой механический поворотный переключатель. Полюса электромагнита притягивают и толкают постоянные магниты на внешней стороне двигателя.Затем коммутатор меняет полярность электромагнита якоря, когда его полюса пересекают полюса постоянных магнитов, образуя постоянный ток.

«Деловая сторона» щеточного электродвигателя постоянного тока — роторный узел с коммутатором и обмотками электромагнита. Источник: Зак Хукен / Flickr

Матовые двигатели были первыми коммерчески важными двигателями и уже более 100 лет используются для работы двигателей в коммерческих и промышленных приложениях. Они самые простые и используются с конца 1800-х годов.

Коллекторные двигатели можно изменять по скорости, изменяя рабочее напряжение или силу магнитного поля внутри них.

Этот уровень управления очень полезен для многих приложений.

Щеточные двигатели обычно состоят из четырех основных компонентов:

  • Статор
  • Ротор или якорь
  • Щетки (очевидно)
  • Коммутатор

Мы обсудим, как эти компоненты работают вместе со следующими раздел.

Как работает щеточный мотор?

Как упоминалось ранее, щеточный двигатель состоит из четырех основных компонентов. Первый, называемый статором, создает стационарное магнитное поле, окружающее ротор.

Типичная анатомия щеточного двигателя DB.

Вверху слева: Двигатель и корпус в сборе.

Вверху справа: (слева направо) пластиковая крышка с открытыми щетками, ротор с коммутатором и электромагнитными обмотками, а также корпус с постоянными магнитами и статором внутри.

Внизу слева: Изолированный ротор / якорь в сборе (обмотки электромагнита коммутатора и т. Д.).

Внизу справа: Крупным планом пластиковая крышка с щеточными электродами.

Источник: Илья Криворук / Wikimedia Commons

Это магнитное поле создается с помощью двух изогнутых постоянных магнитов. Эти магниты обычно неподвижны (не двигаются), отсюда и термин.

Также важно отметить, что у одного будет северный полюс, направленный в сторону ротора, а у другого — южный полюс в сторону ротора.

Ротор или якорь состоит из проволочных катушек, которые при прохождении через них электричества могут создавать магнитное поле.

Это часть, которая движется (отсюда и название «ротор») и вращает главный вал двигателя.

Благодаря магнитному полярному притяжению, магнитное поле ротора будет пытаться совмещаться / отталкиваться с полем статора, заставляя ротор вращаться вокруг своей оси.

Когда к двигателю подается электричество, создается магнитное поле, которое притягивает (и отталкивает) фиксированные магниты в статоре.Чтобы ротор продолжал вращаться, магнитное поле необходимо реверсировать каждые оборота на 180 градусов на оборотов ротора (в простом щеточном двигателе с одним якорем).

Упрощенная схема простого щеточного двигателя постоянного тока. По материалам: Jared Owen / YouTube

Это изменение магнитной полярности ротора осуществляется щетками двигателя (обычно сделанными из угля) и коммутатором (частью, которая «коммутирует» или реверсирует электрический ток, идущий в якорь ротора. всего два фиксированных электрода, которые трутся о кольцо коммутатора, когда оно вращается вместе с ротором.

Щетки также будут подпружинены, чтобы оставаться в контакте с коммутатором.

Коммутатор обычно состоит из небольшого, обычно медного, цилиндра, прикрепленного к ротору с перерывами через равные промежутки времени (например, 180 градусов в роторе с одним якорем). Электрический ток будет течь через одну половину коммутатора, через якорь и обратно из другой половины коммутатора.

При вращении ротора (якоря) вращается и коммутатор, постоянно замыкая и размыкая электрическую цепь щетками.Это приводит к тому, что магнитные полюса обмоток ротора меняют магнитную полярность, поскольку цепь разрывается в одном направлении и повторно подключается в другом, то есть ток меняется каждые на 180 градусов .

Более сложные двигатели будут иметь ряд якорей с разрывами между ними на коллекторе. Это помогает предотвратить потенциальное заклинивание двигателя, если щетки замыкают цепь через зазоры коллектора.

Другими словами, каждая петля якоря по очереди превращается в электромагнит и притягивается / отталкивается от внешних постоянных магнитов неподвижного статора.Довольно аккуратно.

В реальных двигателях якорь также будет состоять из массы проводов вместо одного провода. Это помогает значительно улучшить силу электромагнита и, следовательно, крутящий момент двигателя.

Более сложная схема щеточного двигателя постоянного тока. Обратите внимание на множественные якоря и связанные с ними разрывы в кольце коммутатора. Источник: Джаред Оуэн / YouTube

Обычно щеточные двигатели постоянного тока помещаются в штампованный стальной и оцинкованный корпус с пластиковым колпачком на одном конце. Корпус и крышка обычно имеют ряд отверстий, которые обычно используются для прохождения потока воздуха через двигатель и предотвращения перегрева.

Также обычно есть отверстия под винты для крепления двигателя на месте. Пластиковая крышка также будет удерживать пару соединительных штифтов для подключения источника питания и предотвращения короткого замыкания из-за контакта с металлическим корпусом двигателя.

Если у вас возникли проблемы с визуализацией работы щеточного двигателя постоянного тока, вот отличная симуляция.

Для чего используются щеточные двигатели?

Матовые электродвигатели постоянного тока (BLDC) можно найти практически везде в вашем доме и в дороге.Всякий раз, когда требуется средство преобразования электричества во вращательное движение, скорее всего, вы найдете щеточный двигатель постоянного тока.

В вашем доме любая игрушка или электронное устройство, скорее всего, будет иметь такое. Электрические зубные щетки, моторизованные хлеборезки, любимая радиоуправляемая машинка вашего ребенка — все это воплотит в жизнь эти удивительные образцы инженерной мысли.

Во всем мире щеточные двигатели постоянного тока до сих пор широко используются в таких машинах, как электрические силовые установки, краны, сверлильные станки и сталепрокатные станы, и это лишь некоторые из них, благодаря способности изменять соотношение крутящего момента к скорости, который является эксклюзивным для щеточных двигателей

Что такое бесщеточный двигатель?

В отличие от щеточных двигателей постоянного тока, как следует из названия, бесщеточные двигатели постоянного тока избавляют от необходимости использовать щеточные электроды для вращения ротора.Они также устраняют необходимость в физическом коммутаторе.

Схема бесщеточного двигателя постоянного тока Outrunner. Изменено по: JAES / YouTube

Также известные как двигатели с электронной коммутацией (двигатели ECM или EC), они, как широко считается, имеют более высокое отношение мощности к массе, скорость, уровень контроля и более низкие требования к техническому обслуживанию по сравнению с щеточными двигателями. .

Они также частично меняют принцип работы щеточного двигателя. Например, на роторе используются постоянные магниты, а для вращения ротора используются управляемые электромагниты.

Бесщеточные двигатели обычно бывают двух видов:

  • Inrunner — здесь статор расположен вне ротора.
  • Outrunner — Здесь статор расположен внутри ротора. Так обстоит дело со старыми дисководами гибких дисков и т. Д. Этот термин происходит от того факта, что ротор вращается или вращается вокруг внешней стороны.
Пример бесщеточного двигателя постоянного тока Outrunner. Этот пример — разобранный дисковод гибких дисков. Обратите внимание на радиальные катушки статора слева и «колпачок» ротора справа.Постоянные магниты представляют собой серое кольцо по периметру ротора. Источник: Себастьян Коппехель / Wikimedia Commons

В бесщеточном двигателе медные катушки обмотки закреплены, поскольку это постоянный магнит, который вращается вместе с ротором. Небольшая печатная плата используется для имитации работы щеток в обычном щеточном двигателе, управляя подачей энергии на электромагниты.

В остальном основной принцип технологии такой же, как и у щеточного двигателя, хотя применение немного отличается.Бесщеточные двигатели впервые появились в 1960-х годах благодаря появлению твердотельной электроники.

Как работает бесщеточный двигатель?

Мы уже подробно рассмотрели, как работает щеточный двигатель. Бесщеточный двигатель, как предполагалось ранее, работает аналогичным образом, за исключением того, какие части зафиксированы, а какие вращаются.

Электрический ток вообще не подается на ротор, и постоянные магниты прикреплены к валу, а не к статору.Катушки электромагнита закреплены на статоре, поэтому отпадает необходимость в щеточных электродах и коммутаторе.

Как и в щеточных катушках электромагнита, катушки здесь обычно состоят из сердечника из мягкого железа, обернутого проволокой.

Неподвижные катушки электромагнита последовательно включаются и выключаются, чтобы временно намагнитить их, чтобы либо отталкивать, либо притягивать постоянные магниты на роторе. По сути, они используют магнетизм, чтобы толкать и тянуть магниты, прикрепленные к ротору, чтобы влиять на вращение вала.

Схема, показывающая принцип работы бесщеточного двигателя. В этом случае катушка 2 и ее противоположная партнерская катушка находятся под напряжением. «Колпачок» внешнего ротора вращается за счет притяжения противоположных магнитных полюсов внутренних катушек электромагнита и внешних фиксированных постоянных магнитов. В этом случае ротор будет вращаться против часовой стрелки. Источник: JAES / YouTube

Таким образом, крутящий момент создается за счет постоянного смещения магнитных полей ротора и статора. Когда постоянные магниты пытаются выровняться, система управления двигателем автоматически отключается или изменяет полярность электромагнитов, чтобы поддерживать рассогласование полей.

Это достигается за счет использования датчиков, способных определять угол поворота ротора (в частности, постоянных магнитов) в любой момент времени. Полупроводниковые переключатели, такие как транзисторы, затем используются для изменения электрического тока через электромагнитные обмотки.

Как и в щеточном двигателе, магнитное поле катушек может быть изменено по требованию путем изменения направления тока внутри них. Их также можно полностью отключить, просто отключив подачу электрического тока на катушку (например, выключив ее).

Вращением вала также можно управлять, регулируя величину тока в катушках.

Еще один пример бесщеточного двигателя постоянного тока Outrunner. Статор находится слева, а ротор (с видимыми постоянными магнитами) — справа. Источник: Ленц Гриммер / Flickr

Для чего используются бесщеточные двигатели?

Бесщеточные двигатели постоянного тока, как и щеточные, сегодня используются почти повсеместно. Из-за их высокой эффективности и управляемости, не говоря уже о более длительном сроке службы, они, как правило, используются в устройствах, которые либо работают непрерывно, либо используются регулярно.

Их можно найти, например, в стиральных машинах, кондиционерах, электрических вентиляторах и другой бытовой электронике. Благодаря своему принципу работы они способствовали значительному снижению энергопотребления многих современных электронных устройств.

В электромобилях и дронах также хорошо используются бесщеточные двигатели благодаря их способности обеспечивать точное управление. Это важно, поскольку дронам необходимо постоянно и точно контролировать скорость каждого ротора, чтобы выполнять такие действия, как парение.

Вы также можете найти их в вакуумных машинах, и раньше они использовались для вращения жестких дисков в старых компьютерах. Они также широко используются в сборках компьютерных вентиляторов.

Бесщеточный канальный вентилятор постоянного тока демонтированный. Не два больших электромагнита с фиксированной катушкой и печатная плата. Источник: Materialscientist / Wikimedia Commons

Долговечность и эксплуатационная надежность в долгосрочной перспективе, а также энергоэффективность и высокое соотношение выходной мощности к размеру быстро делают их двигателями выбора для многих электронных устройств, разрабатываемых сегодня.

По этой причине ожидается, что бесщеточные двигатели будут находить все более широкое применение. Они, вероятно, будут, например, обычным явлением для сервисных роботов, поскольку бесщеточные двигатели лучше подходят для управления силой, чем другие альтернативы, такие как шаговые двигатели.

В чем основное различие между щеточными и бесщеточными двигателями?

К настоящему времени вы должны понимать разницу между двумя типами двигателей. Учитывая их различный дизайн, они обладают некоторыми другими преимуществами перед другим.

К ним относятся, но не ограничиваются:

  • Щеточные двигатели относительно неэффективны из-за потерь мощности из-за трения и передачи мощности через систему коммутатора.
  • Бесщеточные двигатели, с другой стороны, более эффективны из-за отсутствия механических потерь, наблюдаемых в щеточных двигателях.
  • Благодаря своей конструкции щеточные двигатели имеют более короткий срок службы из-за износа щеток. Обычно они требуют замены каждые два-семь лет, в зависимости от рабочих температур и рабочей среды.
  • Поскольку в бесщеточных двигателях отсутствуют щетки и физические коммутаторы, они требуют меньшего общего обслуживания.
Изменено из: Shaswat Regmi / YouTube
  • Двигатели с щеткой требуют более сложных методов управления скоростью. Снижение напряжения снижает крутящий момент двигателя, но это происходит за счет более низких скоростей, поскольку крутящий момент резко падает.
  • Бесщеточные двигатели относительно очень просты в управлении. По этой причине для бесщеточных двигателей крутящий момент имеет тенденцию быть выше на более низких скоростях.
  • Щеточные двигатели, как правило, работают слишком быстро, чтобы их можно было использовать в большинстве случаев. По этой причине им, как правило, требуется зубчатая передача для снижения скорости и, следовательно, увеличения крутящего момента.
  • Бесщеточные двигатели, однако, в этом отношении превосходны. По этой причине они часто используются напрямую без необходимости переключения передач. В некоторых специализированных приложениях может использоваться зубчатая передача, если требуется очень высокая точность или больший крутящий момент.
  • Бесщеточные двигатели легче, долговечнее, эффективнее и безопаснее для некоторых применений.Они также работают намного тише.
  • Двигатели со втулкой могут образовывать искры, что не идеально в местах с риском взрыва. По этой причине бесщеточные двигатели часто являются предпочтительным выбором в опасных условиях труда.
  • Многие инструменты, в которых используются бесщеточные двигатели, часто называют «интеллектуальными двигателями». Это связано с тем, что датчики используются для определения сопротивления двигателя для таких вещей, как электродрели. Таким образом, подача тока может регулироваться автоматически.Это позволяет таким инструментам быть очень эффективными с точки зрения потребления электроэнергии.
  • Учитывая относительную сложность бесщеточных двигателей, неудивительно, что они, как правило, дороже. С другой стороны, щеточные двигатели относительно дешевы.

А это, как говорится, накрутка.

Мы надеемся, что теперь вы имеете представление о двух типах двигателей и основных принципах, лежащих в основе их конструкции. Теперь вы также должны понимать относительные плюсы и минусы любого устройства.

Итак, в следующий раз, когда вы подумываете о том, чтобы купить себе электроинструмент или двигатель для следующего проекта, вы можете подумать о том, чтобы потратить немного больше на бесщеточный?

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *