Site Loader

Содержание

типы агрегатов, назначение асинхронного и синхронного оборудования

Классификация электродвигателейЭлектродвигатели представляют собой универсальные в использовании агрегаты, способные преобразовывать электричество в механическую энергию. Сегодня существуют различные типы и классификации электродвигателей, применяемых в бытовых и промышленных установках. Такая техника может различаться своим принципом работы, питанием от постоянного или переменного тока, мощностью и назначением.

Принцип действия и особенности конструкции

Устройство электродвигателя стандартно, что позволяет существенно упростить эксплуатацию и ремонт техники. Статор и ротор, которые являются основными элементами техники, находятся внутри проточки цилиндрической формы. При подаче напряжения на неподвижную обмотку статора возбуждается магнитное поле, что и приводит в движение ротор и вал электродвигателя.

Конструкция электродвигателя

Постоянное движение ротора поддерживается за счёт перекоммутации обмоток или путем создания в статоре вращающегося магнитного поля. Если первый способ поддержки вращения вала характерен для коллекторных модификаций агрегатов, то образование вращающегося магнитного поля присуще для трехфазных асинхронных моторов.

Корпус электрического двигателя может быть изготовлен из алюминиевого сплава или чугуна. В каждом конкретном случае выбор материала корпуса осуществляется исходя из сферы использования техники и ее необходимых параметров по весу.

Все двигатели изготавливаются с однотипными установочными размерами, что позволяет существенно упростить их монтаж и последующую эксплуатацию.

Сфера использования

Назначение электродвигателя чрезвычайно широко. Такие агрегаты используются для усиления мощности электросигналов, они способны преобразовывать постоянный ток в переменный, могут применяться в различных типах электромашин. Принято различать агрегаты, предназначенные для использования в промышленном оборудовании, машиностроении, на различных грузоподъёмных машинах и спецтехнике. Также большой популярностью пользуются маломощные электрические двигатели, которые с успехом применяются в различных бытовых инструментах и кухонной технике.

Где применяют электродвигатели

Классификация оборудования

На сегодняшний день существуют различные классификации электрических двигателей, которые отличаются по разным критериям и характеристикам. В зависимости от особенностей техники ее принято классифицировать:

  1. Назначение электродвигателяПо специфике вращающего момента различают магнитоэлектрические и гистерезисные агрегаты.
  2. По виду крепления принято выделять двигатели с горизонтальным и вертикальным расположением вала.
  3. По классу защиты от воздействия внешней среды различают защищенные, закрытые и взрывонепроницаемые.

В модификации гистерезисного типа вращение вала основывается на перемагничивании ротора. Такие двигатели были популярны в прошлом, однако сегодня их конструкция устарела, поэтому они практически не встречаются. Наибольшее распространение получили магнитоэлектрические агрегаты, способные работать от переменного или постоянного тока, а также модели универсального типа, которые одновременно питаются переменным и постоянным током.

Магнитоэлектрические установки

Использование магнитоэлектрических модификаций двигателей, работающих на постоянном токе, позволяет получить отличные динамические и эксплуатационные характеристики. В зависимости от своей конструкции такой

тип двигателей делится на две основные категории:

  • с постоянными магнитами;
  • с электромагнитами.

В последние годы наибольшей популярностью стали пользоваться модификации с электромагнитами, которые обладают большей мощностью, отличаются экономичностью в работе и позволяют быстро изменять параметры работы оборудования.

Магнитоэлектрические двигатели

В коллекторных электродвигателях используется щеточный узел, обеспечивающий соединение вращающихся и неподвижных частей мотора. Такие агрегаты могут выполняться с независимым возбуждением и применением постоянных магнитов, но есть и такие, что имеют самовозбуждающийся тип со смешанным, последовательным или параллельным соединением. Коллекторные модификации

отличаются посредственными показателями надежности. Они требуют грамотного и своевременного обслуживания.

Бесколлекторные вентильные агрегаты имеют замкнутую систему, которая работает по принципу синхронных устройств. Высококачественные бесколлекторные электродвигатели оснащаются датчиком считывания положения ротора, имеют преобразователь координат, на основании данных с которого и осуществляется работа устройства.

Вентильные типы двигателей могут иметь различные размеры и мощность. Такие агрегаты используются в промышленном оборудовании. Также ими оснащаются аккумуляторные инструменты, различные игрушки и мобильные телефоны.

Синхронные электродвигатели

К синхронным электродвигателям переменного тока относятся модификации, у которых ротор вращается синхронно с генерируемым магнитным полем. Особенностью таких агрегатов является их высокая мощность, которая может достигать сотен киловатт. Основной сферой использования синхронного оборудования являются мощные промышленные установки, ветряные генераторы и гидроэлектростанции.

Синхронные электродвигатели

Принято различать несколько модификаций синхронных электродвигателей:

  • шаговые;
  • реактивные;
  • с постоянными магнитами;
  • реактивно гистерезисные;
  • вентильные реактивные;
  • с обмотками возбуждения;
  • гибридные синхронные.

У шаговых синхронных двигателей с дискретным угловым движением вала положение ротора будет фиксироваться путём подачи напряжения на обмотки контура. Переход в другое положение вала осуществляется за счёт снятия питания с одних обмоток и последующей подачи напряжения на другие обмотки трансформатора.

Отличия синхронного и асинхронного двигателя

Также широкое распространение получил вентильный реактивный электродвигатель, у которого обмотка выполнена из полупроводниковых элементов. Вентильные реактивные агрегаты отличаются увеличенной мощностью, при этом они могут полностью управляться электроникой, что позволяет как поддерживать минимальные обороты, так и быстро выходить на полную мощность с максимальной частотой оборотов. К преимуществам синхронных двигателей принято относить:

  • стабильную скорость вращения;
  • низкую чувствительность к перепадам напряжения в сети;
  • возможность использования в качестве генератора мощности;
  • минимальное потребление электроэнергии.

Однако и недостатки у синхронных устройств всё же имеются. К ним относятся сложности с запуском, трудности с обслуживанием, а также проблемы с регулировкой частоты вращения вала. Основное назначение таких устройств — это мощное промышленное оборудование, где ценится производительность агрегатов и их надежность.

Асинхронные модификации

У асинхронных двигателей переменного тока частота вращения ротора будет отличаться от показателей магнитного поля. Такие агрегаты называют также индукционными, что объясняется принципом генерации магнитного поля, которое возникает за счёт перемещения статора.

Асинхронные модификации получили наибольшее распространение, что объясняется простотой их конструкции, надежностью, долговечностью, а также возможностью выполнения как сверхмощных промышленных установок, так и небольших электродвигателей, предназначенных для использования в бытовых инструментах.

Асинхронные двигатели

В зависимости от типа электротока, с которым работают такие агрегаты, их принято разделять на три категории:

  • однофазные;
  • двухфазные;
  • трехфазные.

Двигатель с конденсаторомНаибольшее распространение сегодня получили однофазные асинхронные двигатели, которые способны работать от бытовой электросети. Особенностью однофазных двигателей является наличие на статоре только одной рабочей обмотки и короткозамкнутого ротора. На обмотку статора подается переменный однофазный ток, приводящий во вращение ротор и вал двигателя. Сам ротор имеет цилиндрический сердечник с залитыми алюминием ячейками и открытыми вентиляционными лопастями. Однофазные двигатели с короткозамкнутым ротором используются в небольших по своей мощности устройствах, водяных насосах и комнатных вентиляторах.

Двухфазные асинхронные двигатели предназначены для использования в однофазной сети с переменным током. Их особенностью является наличие на статоре двух рабочих обмоток, расположенных перпендикулярно друг к другу. Во время работы агрегата на одну обмотку напрямую подаётся переменный ток, а на вторую — через соответствующий фазосдвигающий конденсатор. На выходе образуется крутящееся магнитное поле, которое упрощает запуск электромотора и в последующем поддерживает стабильно высокие обороты.

Трехфазный асинхронный двигатель

Трехфазные двигатели могут иметь короткозамкнутый и фазный ротор. Агрегаты оснащены тремя рабочими обмотками, расположенными на статоре параллельно друг другу. При включении двигателя в трехфазную сеть магнитное поле имеет сдвиг в пространстве относительно обмотки на 120 градусов. Наличие короткозамкнутого поля позволяет упростить запуск в работу устройства, при этом в последующем поддерживаются стабильные обороты. Модификации двигателей с фазным ротором отличаются увеличенной мощностью и используются преимущественно в промышленном оборудовании.

Преимуществами асинхронных электромоторов являются их устойчивость к скачкам напряжения и универсальность использования. Благодаря простоте конструкции существенно упрощается их последующее обслуживание, а сама техника чрезвычайно надежна и в процессе эксплуатации не доставляет каких-либо хлопот. В зависимости от своей модификации установки могут работать как от мощного источника электричества в трехфазной сети, так и от бытовой электросети, что позволяет применять их в различной бытовой технике и всевозможных электроприборах.

Электродвигатели представляют собой простейшие и чрезвычайно надёжные устройства, которые широко используются в промышленности и быту. Существующие в настоящее время типы электродвигателей позволяют подобрать агрегат, который будет полностью соответствовать особенностям своей эксплуатации. С помощью таких моторов могут приводиться в движение мощные станки и оборудование, производительные насосы. Без их использования не обходится ни один бытовой электроприбор.

Типы и виды электродвигателей — переменного и постоянного тока, коллекторные, асинхронные, прямого привода

Виды электродвигателей

Одним из основных стимулов к широкой электрификации, начавшейся в XX веке, стала возможность легкого преобразования энергии электрического тока в механическую — к тому времени уже был известен коллекторный электродвигатель, изобретенный Якоби еще в первой половине XIX века.

Изобретение асинхронного двигателя переменного тока стало еще большим шагом вперед.

Электромотор лишился механически трущихся и искрящих узлов (щеток и коллектора), превзойдя по бесшумности и ресурсу любой другой существовавший в то время тип привода.

Независимо от конструкции, любой электродвигатель устроен одинаково: внутри цилиндрической проточки в неподвижной обмотке (статоре) вращается ротор, в котором возбуждается магнитное поле, приводящее к отталкиванию его полюсов от статора.

Поддержание постоянного отталкивания требует либо перекоммутации обмоток ротора, как это делается на коллекторных электродвигателях, либо создания вращающегося магнитного поля в самом статоре (классический пример – асинхронный трехфазный двигатель).

Достоинства электродвигателей переоценить трудно. Это:

Крайняя простота.
Электродвигатель состоит из минимального количества узлов, поэтому ломаться в нем практически нечему.
Самостоятельный запуск.
Электродвигателю не нужен пусковой импульс, он начинает вращаться сам при включении питания (исключение – однофазные электродвигатели с пусковой обмоткой, но они практически вышли из употребления). Это позволяет отказаться от холостого хода, включая электромотор только при необходимости.
Отсутствие вибраций.
Так как в электродвигателях энергия магнитного поля непосредственно преобразуется во вращение, при должной балансировке ротора они полностью бесшумны и не создают вибрации.
Легкость управления оборотами и крутящим моментом.
Несмотря на то, что на разных типах электродвигателей это достигается разными способами, управление ими в любом случае достаточно просто и надежно.
Возможность реверса.
На коллекторном двигателе достаточно поменять местами полюса якоря, на трехфазном электромоторе – изменить порядок включения фаз.
Обратимость.
Коллекторные электродвигатели при внешнем приводе начинают работать как электрогенераторы, что позволяет использовать их для рекуперации энергии при торможении электротранспорта.

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

Благодаря удобству передачи на большие расстояния и легкости преобразования переменный ток успешно стал стандартом электроснабжения.

В сфере же производства электродвигателей его способность возбуждать переменное магнитное поле в статоре и соответственно индуцировать ток в короткозамкнутой обмотке ротора позволила создать асинхронные электродвигатели. В этом типе двигателей единственным испытывающим трение узлом остаются коренные подшипники якоря.

Ротор такого электродвигателя – это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

Однофазным – в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения. Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.

Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой).

Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно – конденсатор).

Трехфазный асинхронный электродвигатель – наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса – изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре – для промышленной сети 50 Гц это 3000 об/мин).

Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока.

Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым: при подаче напряжения на статор он работает как электродвигатель, при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток.

Основная область использования синхронных электродвигателей – высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

ЭЛЕКТРОДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов – это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора.

В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель – в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора.

Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов.

По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Классификация электродвигателей — устройство и принцип работы

электродвигатель

В быту, коммунальном хозяйстве, на любом производстве двигатели электрические являются неотъемлемой составляющей: насосы, кондиционеры, вентиляторы и пр. Поэтому важно знать типы наиболее часто встречающихся электродвигателей.

Электродвигатель является машиной, которая преобразует в механическую энергию электрическую. При этом выделяется тепло, являющееся побочным эффектом.

Видео: Классфикация электродвигателей

Все электродвигатели разделить можно на две большие группы:

  • Электродвигатели постоянного тока
  • Электродвигатели переменного тока.

Электродвигатели, питание которых осуществляется переменным током, называются двигателями переменного тока, которые имеют две разновидности:

  • Синхронные – это те, у которых ротор и магнитное поле питающего напряжения вращаются синхронно.
  • Асинхронные. У них отличается частота вращения  ротора от частоты, создаваемого питающим напряжением магнитного поля. Бывают они  многофазными, а также одно-, двух- и  трехфазными.
  • Электродвигатели  шаговые отличаются тем, что имеют конечное число положений ротора. Фиксирование заданного положения ротора происходит за счет подачи питания на определенную обмотку. Путем снятия напряжения с одной обмотки и передачи его на другую осуществляется переход в другое положение.

электродвигатель

К электродвигателям постоянного тока относят те, которые питаются постоянным током.  Они, в зависимости от того, имею или нет щёточно-коллекторный узел, подразделяются на:

  • Бесколлекторные
  •  Бесколлекторные электродвигатель
  • Коллекторные
  •  Коллекторные электродвигатель

Коллекторные также, в зависимости от типа возбуждения, бывают нескольких видов:

  • С возбуждением постоянными магнитами.
  • С параллельным соединением обмоток соединения и якоря.
  • С последовательным соединением якоря и обмоток.
  • Со смешанным их соединением.

Коллекторные электродвигатель

Электродвигатель постоянного тока в разрезе. Коллектор со щетками – справа

Какие электродвигатели входят в группу «электродвигатели постоянного тока»

Как уже говорилось, электродвигатели постоянного тока составляют группу, в которую входят коллекторные электродвигатели и бесколлекторные,  которые выполнены в виде замкнутой системы, включающей датчик положения ротора, систему управления и силовой полупроводниковый преобразователь. Принцип работы бесколлекторных электродвигателей аналогичен принципу работы двигателей асинхронных. Устанавливают их в бытовых прибора, например, вентиляторах.

Что собой представляет коллекторный электродвигатель

Длина электродвигателя постоянного тока зависит от класса. Например, если речь идет о двигателе 400 класса, то его длина составит 40 мм. Отличием коллекторных электродвигателей от  бесколлектрных собратьев является простота в изготовлении и эксплуатации, следовательно, и стоимость его будет более низкой. Их особенность —  наличие щеточно-коллекторного узла, при помощи которого осуществляется соединение цепи ротора с расположенными в неподвижной части мотора цепями. Состоит он из расположенных на роторе контактов – коллектора и прижатых к нему щеток, расположенных вне ротора.

ротор

Ротор

Щетки

Щетки

Используют эти электродвигатели в радиоуправляемых игрушках: подав на контакты такого двигателя напряжение от источника постоянного тока (той же батарейки), вал приводится в движение. А, чтобы изменить его направление вращения, достаточно изменить полярность, подаваемого напряжения питания. Небольшой вес и размеры, низкая цена и возможность восстановления щеточно-коллекторного механизма делают эти электродвигатели наиболее используемыми в бюджетных моделях, несмотря на то, что он значительно уступает по надежности бесколлекторному, поскольку не исключено искрение, т.е. чрезмерный нагрев подвижных контактов и их быстрый износ при попадании пыли, грязи или влаги.

На коллекторный электродвигатель нанесена, как правило, маркировка, указывающая на число оборотов: чем оно меньше, тем скорость вращения вала больше. Она, к слову, очень плавно регулируется. Но, существуют и  двигатели этого типа высокооборотистые, не уступающие бесколлекторным.

Преимущества и недостатки бесколлекторных электродвигателей

В отличие от описанных, у этих электродвигателей подвижной частью является статор с постоянным магнитом (корпус), а ротор с трехфазной обмоткой – неподвижен.

К недостаткам этих двигателей постоянного тока отнести можно менее плавную регулировку скорости вращения вала, но зато они способны за доли секунды набрать максимальные обороты.

бесколлекторных электродвигателей

Бесколлекторный электродвигатель  помещен в закрытый корпус, поэтому он более надежен при неблагоприятных условиях эксплуатации, т.е. ему не страшны пыль и влага. К тому же, его надежность возрастает благодаря отсутствию щеток, как и скорость, с которой вращается вал. При этом, по конструкции мотор более сложен, следовательно, не может быть дешевым. Стоимость его в сравнении с коллекторным, выше в два раза.

Таким образом,  коллекторный электродвигатель, работающий на переменном и на постоянном токе, является универсальным, надежным, но более дорогим. Он и легче, и меньше по размерам двигателя переменного тока  той же мощности.

Поскольку электродвигатели переменного тока, питающиеся  от 50 Гц (питание промышленной сети)  не позволяют получать высокие частоты (выше 3000 об/мин),  при такой необходимости, используют коллекторный двигатель.

Между тем, его ресурс ниже, чем у асинхронных электродвигателей переменного тока, который  зависит от состояния подшипников и изоляции обмоток.

Как работает синхронный электродвигатель

Синхронные машины применяют часто в качестве генераторов. Он синхронно работают  с частотой  сети, поэтому он с датчиком положения инвертора и ротора, является электронным аналогом коллекторного электродвигателя постоянного тока.

Строение синхронного электродвигателя

Строение синхронного двигателя

Свойства

Эти двигатели не являются механизмами самозапускающимися, а требуют внешнего воздействия для того, чтобы набрать скорость. Применение они нашли в компрессорах, насосах, прокатных станках и  подобном оборудовании,  рабочая скорость которого не превышает отметки пятьсот оборотов в минуту, но требуется увеличение мощности. Они достаточно большие по габаритам, имеют «приличный» вес и высокую цену.

Запустить синхронный электродвигатель можно несколькими способами:

  • Используя внешний источник тока.
  • Пуск асинхронный.

В первом случае, с помощью мотора вспомогательного, в качестве которого выступать может электродвигатель постоянного тока или индукционный трехфазный мотор. Изначально ток постоянный на  мотор не подается. Он начинает вращаться, достигая близкой к синхронной скорости. В этот момент подается постоянный ток. После замыкания  магнитного поля, разрывается  связь с вспомогательным двигателем.

Во втором варианте необходима установка в полюсные наконечники ротора дополнительной короткозамкнутой обмотки, пересекая которую магнитное вращающееся поле индуцирует токи в ней. Они, взаимодействуя с полем статора, вращают ротор. Пока он не достигнет синхронной скорости. С этого момента крутящий момент и ЭДС уменьшаются, магнитное поле замыкается, сводя к нулю крутящий момент.

Эти электродвигатели менее чувствительны, чем асинхронные, к колебаниям напряжения, отличаются высокой перегрузочной способностью, сохраняют неизменной скорость при  любых нагрузках на валу.

Однофазный электродвигатель: устройство и принцип работы

Использующий после пуска только одну обмотку статора (фазу) и не нуждающийся в частном преобразователе электродвигатель, работающий от электросети однофазного переменного тока, является асинхронным или однофазовым.

Однофазовый электродвигатель имеет вращающуюся часть – ротор и неподвижную – статор, который и создает магнитное поле, необходимое для вращения ротора.

Однофазовый электродвигатель

Из двух, расположенных в сердечнике статора друг к другу под углом 90 градусов обмоток, рабочая занимает 2/3 пазов. Другая обмотка, на долю которой приходится 1/3 пазов, называется пусковой (вспомогательной).

Однофазовый электродвигатель

Ротор – это тоже короткозамкнутая обмотка. Его стержни из алюминия или меди замкнуты с торцов кольцом, а пространство между ними залито алюминиевым сплавом. Может быть выполнен ротор в виде полого ферромагнитного или немагнитного цилиндра.

Однофазовый электродвигатель

Однофазный электродвигатель, мощность которого может быть от десятков ватт до десятка киловатт, применяются в бытовых приборах, устанавливаются в деревообрабатывающих станках, на транспортерах, в компрессорах и насосах. Преимущество их – возможность использования в помещениях, где нет трехфазной сети. По конструкции они не сильно отличаются от электродвигателей асинхронных трехфазного тока.

Однофазовый электродвигатель

Электродвигатели — их назначение и области применения | Полезные статьи

Понравилось видео? Подписывайтесь на наш канал!

Электродвигатель является специальной машиной, которая электрическую энергию преобразует в механическую. Учитывая род тока электроустановки, в которой работает электрическая машина, используются основные типы электродвигателей — постоянного и переменного тока.

Электромоторы переменного тока подразделяются на синхронные и асинхронные. Асинхронные, в свою очередь, делятся на общепромышленные, взрывозащищенные и крановые.

Электромашины переменного тока бывают однофазными и трехфазными. На современном этапе довольно широкое применение находят трехфазные синхронные и асинхронные электромоторы.

Сегодня асинхронные электромоторы являются наиболее востребованными электрическими двигателями. Такую широкую популярность асинхронные устройства получили из-за своей простоты конструкции и довольно высокой эксплуатационной надежности. Асинхронный электродвигатель довольно часто применяют в бытовой технике и на промышленных предприятиях.

В тех случаях, когда в приводах не нужны большие пусковые моменты, применяют электродвигатель с короткозамкнутым ротором. А когда не требуется плавной регулировки скорости и мощность электродвигателя большая, используется асинхронный электродвигатель с фазным ротором. Электромоторы асинхронные с фазным ротором используются в тех случаях, когда нужно снизить пусковой ток и увеличить пусковой момент.

 

Асинхронные однофазные агрегаты применяются в сети переменного тока 220 вольт. Такие электромоторы нашли широкое применение в бытовых стиральных машинах, бетономешалках, строительном электроинструменте, кухонных многофункциональных комбайнах, в деревообрабатывающих и сверлильных станках и другом бытовом оборудовании.

Асинхронные электрические двигатели также применяются для приводов различных крановых установок промышленного назначения, всевозможных грузовых лебедок и прочих устройств, которые применяются в производстве. Электромоторы переменного тока имеют огромное значение для многих отраслей промышленности. Асинхронные агрегаты могут быть с преобразовательным устройством в виде коллектора (коллекторные электродвигатели) или не иметь его (бесколлекторные электромоторы).

Коллекторный двигатель

Бесколлекторный электродвигатель

Коллекторные и бесколлекторные электродвигатели переменного тока применяются в различных промышленных и бытовых электроустройствах (холодильниках, пылесосах, мясорубках, электрическом инструменте, вентиляторах, соковыжималках) и в медицинской технике. Они рассчитаны на работу как от сети постоянного тока, так и от сети переменного тока. Для коллекторных электродвигателей характерен большой пусковой момент и относительно малые размеры.

 

Бесколлекторные электромоторы имеют малый уровень электромагнитных излучений и низкий уровень шума. Для них характерен высокий ресурс эксплуатации. В большинстве случаев бесколлекторные электродвигатели эксплуатируются в местах со взрывоопасной средой, например в нефтегазовой промышленности.

Довольно широкое распространение среди электромоторов переменного тока получили асинхронные электромоторы с трехфазной симметричной обмоткой на сердечнике статора, которые запитываются от сети переменного тока

 Примечательно, что асинхронные электродвигатели, как правило, используются как двигатели, а синхронные электромоторы чаще всего используются как генераторы.

Синхронные электродвигатели являются двухобмоточными электрическими машинами, в которых одна из обмоток подсоединена к электрической сети с определенной постоянной частотой вращения, при этом вторая регулярно возбуждается постоянным током с частотой вращения ротора, которая не зависит от нагрузки. Такие машины применяются в качестве электродвигателей в крупных установках, таких как приводы поршневых компрессоров и воздухопроводов и, как правило, используются в качестве генераторов.

 

Скорость вращения синхронных моторов находится в постоянном соотношении к определенной частоте электрической сети.

Рольганговые электромоторы применяются для приводов, которые эксплуатируются в условиях высоких температур различного металлургического производства. Взрывозащищенные электромоторы предназначены для привода разных механизмов в газовой, химической, нефтеперерабатывающей промышленности, где могут появляться различные взрывоопасные соединения газов и паров с воздухом. Различные крановые электромоторы в основном предназначены для всевозможных крановых механизмов всех типов. Они могут быть применены для привода других механизмов, которые работают в кратковременных режимах эксплуатации.

Общепромышленные электромоторы широко используются в деревообрабатывающей промышленности, станкостроении, всевозможных системах промышленной вентиляции, различных транспортерах, подъемниках, всевозможном насосном оборудовании.

Применение электродвигателей в промышленности. Какие бывают электрические двигатели и где они применяются

Использование электродвигателей :

  1. Общепромышленные;
  2. Взрывозащищенные;
  3. Крановые;
  4. Высоковольтные;
  5. Электродвигатели с постоянным током;
  6. Электродвигатели с переменным током.

Где и как применяют

Двигатели, работающие от трехфазного тока, имеют техническое направление в использовании. Номинальное напряжение для них.

  1. 660/380B.
  2. 380/220B.
  3. 220/127B.

Двигатели бытового применения имеют однофазное питание, напряжение в 200B. В редких случаях используют двигатель с параметром в 380/220B, работающий от трех фаз.

Электродвигатель в быту техническим языком называют асинхронным короткозамкнутым.

Промышленное применение

Почти в любом секторе промышленности используют электрический двигатель. Чаще всего, те кто решил купить электродвигатель , используют его в качестве электропривода к различным машинам промпроизводства.


В строительстве не обойтись без механизма с напряжением в 220B и 380B. Даже современные бытовые строительные устройства имеют встроенный двигатель.

Как электропривод в станке, а также в качестве вытяжного вентилятора в цехе.


В метро без электродвигателей не обойтись. Каждый пассажир доставляется в желаемое место посредством именно этого устройства.

Обновленные современные модели имеют меньший вес и размер, набирая до десяти тысяч оборотов в минуту за пару секунд. Их мощность выросла до 200 Киловатт.

Крановый электродвигатель является самым востребованным устройством в промышленности.


Горнодобывающая, металлургическая, энергетическая и строительная промышленность используют виды крановых двигателей с односторонним или двухсторонним исполнением.

Применение в быту


Без данных видов электроники уже нет комфорта. Каждый из них работает за счет электричества и электромотора.

Асинхронный электродвигатель для приборов имеют несложную конструкцию, достаточно надежен в процессе эксплуатации. Ручной инструмент, бытовые приборы, центрифуги и лифты – все это работает за счет такого аппарата.

Данный двигатель характеризован ограниченным диапазоном в частоте вращения, а также заниженным коэффициентом по мощности на низких оборотах. В итоге, область применения асинхронного двигателя расширяется с каждым днем.

Использование и эксплуатация для данного двигателя возможно почти во всех климатических зонах.

Электродвигатель преобразует электроэнергию в механическую. Он состоит из статора (или якоря) и ротора. Такое устройство получило очень широкое распространение во всех сферах жизни. Благодаря электрическим двигателям удалось заменить во многих областях труд человека работой машины. Рассмотрим различные типы моторов и выясним, где применяются электродвигатели (примеры см. ниже).

Принцип работы

Электрический двигатель устроен довольно просто. В его основе заложен принцип электромагнитной индукции. В установку входит неподвижная часть — статор, монтируемый в моторы переменного тока синхронного и асинхронного типа или индуктора (для двигателя постоянного тока), а также ротора, то есть подвижной части для синхронных и асинхронных типов, или якоря для устройств постоянного тока.

Роторы могут быть короткозамкнутыми (типа беличьей клетки) и фазными с обмоткой (системой контактных колец). Случаи, где применяется электродвигатель последнего типа, представляют устройства асинхронного типа для сокращения тока и регуляции частоты вращения.

Подвижную часть в устройстве постоянного тока или работающую по этому принципу в универсальном двигателе называют якорем. Универсальный мотор — это двигатель постоянного тока, имеющий последовательное возбуждение, то есть последовательное включение якоря и обмотки. на постоянном токе нет. Поэтому, если вынуть электрический блок из болгарки, то она продолжит работать, особенно если сетевое напряжение малое и используемый ток — постоянный.

Двигатели на переменном токе


Рассматриваемые устройства бывают переменного и постоянного тока. Во всех сферах, где применяется электродвигатель, чаще он имеет Такой мотор отличается простым принципом работы и легок в эксплуатации. Единственный существенный минус заключается в нерегулируемой частоте вращения.

Электрические двигатели переменного тока могут быть с одной или несколькими фазами. Устройствами, где применяется являются такие машины, которым не нужно регулировать частоту вращения. Они могут иметь различное назначение (дробилки, насосы, станки для обработки дерева и так далее). Их мощность составляет от двух десятых до двухсот и выше киловатт.

Двигатели на постоянном токе

Электрические двигатели постоянного тока могут иметь наряду с последовательным параллельное и смешанное соединение обмоток статора и якоря. Их преимуществом является то, что недоступно предыдущему виду: это способность регуляции частоты вращения. Однако при эксплуатации необходимо применение силы.


Такие двигатели бывают бесколлекторными и коллекторными.

Бесколлекторные, или вентильные — это двигатели, функционирующие в замкнутой системе с датчиком, определяющим роторное положение и систему управления.

Коллекторные двигатели могут быть с самовозбуждением (параллельным, последовательным и смешанным) и независимым возбуждением.

Устройствами, где применяются электродвигатели постоянного тока, являются, к примеру, электрический транспорт и различные строительные станки.

Асинхронный вид

Чаще всего используется трехфазный короткозамкнутый асинхронный двигатель. В этом случае круговое магнитное поле пронизывает короткозамкнутую роторную обмотку, из-за чего возникает ток индукции. Асинхронным его называют потому, что вращение ротора не равно вращению магнитного статора.


Применение типа распространено во многих отраслях техники, в бытовых приборах (холодильниках, стиральных машинах, кондиционерах), в промышленности, например в дерево- и металлообрабатывающей, а также в ткачестве. Они работают стабильнее других видов, стоят дешевле и просты в эксплуатации.

Синхронный вид

Синхронный двигатель имеет отличную роторную конструкцию, где эта часть представлена электрическим или постоянным магнитом. Частота вращения в этом случае магнитного статора совпадает с роторной частотой.

Этот вид электрических двигателей может применяться в насосных станциях, при необходимости компенсации реактивной мощности, а также в некоторых других случаях.

Виды по возникновению вращающего момента

По тому, как появляется вращающий момент, электрические двигатели подразделяют на гистерезисные и магнитоэлектрические.

Наиболее распространено в традиционных отраслях применение электродвигателей магнитоэлектрического типа. Они могут быть и на постоянном, и на переменном токе. Также существуют универсальные двигатели.

А вот отрасли, где применяются электродвигатели гистерезисные, распространенными не назовешь. Обычно такие устройства являются нетрадиционными и в промышленности используются крайне редко. Больше их применяют в гироскопии, счетчиках времени, а также в устройствах записи звуков и изображени

Типы электродвигателей и их применение — Статьи — Стройка.ру

СОДЕРЖАНИЕ:

 


Нельзя сказать, что вечный двигатель уже изобретен упорными Кулибиными, но вот варианты электрических двигателей существуют с момента открытия явления электромагнитной индукции Майклом Фарадеем. А случилось это в девятнадцатом веке. И вот с тех пор, невозможность существования без всякого рода машин – очевидна. Электрические двигатели в разных вариантах прочно вошли в нашу жизнь, быт и окружили нас комфортным существованием, а, порой, и становятся для нас ангелами-хранителями нашего здоровья и жизней.

Независимо от конструкции, алгоритм устройства электрических двигателей одинаков – цилиндрическая проточка вмещает в себя вращающийся ротор, который заключен неподвижную обмотку или, как еще называют специалисты, — статоре. При вращении, ротор создает магнитное поле, которое приводит к отталкивание разнополярных плюсов от статора.

Для того, чтобы отталкивание происходило постоянно, необходима периодичная перекоммутация ротора (по этому принципу работают коллекторные электродвигатели), либо следует создать условия для вращающегося магнитного поля в самом статоре (принцип асинхронного трехфазного двигателя).

Матрица работы электрических двигателей – напряжение, оно то и определяет конструкцию двигателя в зависимости от собственных свойств: переменное напряжение или постоянное напряжение. В зависимости от категории напряжения, разделяют основные виды электродвигателей. О них мы сейчас и поговорим.

 

Типы электродвигателей

Наиболее распространены в нашей жизни следующие типы электродвигателей:

  • Электродвигатели постоянного тока, имеющие якорь на постоянных магнитах.
  • Электродвигатели постоянного тока, но уже имеющие якорь с обмоткой возбуждения.
  • Двигатели переменного тока синхронного типа.
  • Асинхронные двигатели переменного тока.
  • Линейные асинхронные двигатели.
  • Серводвигатели.
  • Ролики с внутренними электродвигателями, совмещенные с редукторами – мотор-ролики.
  • Вентильные двигатели.
Виды электрических двигателей переменного тока – синхронные двигатели – имеют частоту вращения ротора идентичную частоте вращения магнитного поля в воздушной прослойке – зазоре. Такие типы электрических двигателей – это сердце вентиляторов, насосов, и других приборов, которые должны работать с постоянной скоростью и имеют мощность от сотен киловатт.

 

 

Еще один вид электрических двигателей переменного тока – асинхронные. Частота вращения ротера здесь противоположна частоте вращения магнитного поля, созданного обмоткой статора. Асинхронные двигатели, в свою очередь, делятся на двигатели с короткозамкнутым ротором и фазным ротором, а статор, имеющий одинаковую конструкцию в обоих вариантах, может иметь различия в обмотке.

 

 

Асинхронные двигатели переменного тока – основополагающие преобразователи электроэнергии в механическую. В свою очередь, асинхронные двигатели делятся на однофазные, двухфазные и трехфазные. Чаще всего – с короткозамкнутым ротером.

 

Однофазный асинхронный электродвигатель, как уже понятно из названия, имеет в наличии только одну фазу – обмотку. Недостаток этого двигателя – он не может запуститься в работу самостоятельно. Однофазным двигателям для начала процесса нужен стартовый толчок или включение дополнительной спусковой обмотки. Соответственно, что принцип двухфазных и трехфазных двигателей – это две-три обмотки – фазы на статоре.

Двухфазные электродвигатели самодостаточны при запуске начала работы, однако имеют проблемы с реверсом.

 

Трехфазный – практически самый совершенный двигатель на сегодняшний день.

 

Коллекторные двигатели переменного тока, мощностью от двух килоВатт, применяют как для переменного, так и для постоянного тока, что является неоспоримым преимуществом для электрического двигателя всех типов. Используют такие двигатели в тех случаях, когда требуется высокая частота вращения. Они заметно выйгрышны на фоне остальных электродвигателей при пусковом моменте, который, в этом случае, пропорционален току, а не оборотам, что позволяет уменьшить нагрузку на электросеть при запуске и контролировать обороты.

 

 

Высокая скорость ротора, скоростной реверс, возможности генератора и тяги дает расширяет возможности использования коллекторных двигателей. Мало того, — простота установки или возможность устранения поломки, при наличии чертежей, — неоспоримый плюс для бытового использования.

 

Но все, как и медали, имеет две стороны. Вторая сторона панегириков работы коллекторных двигателей – их дороговизна и повышенный шум при работах.

 

Ликбез электрических двигателей постоянного тока. Еще в недалеком прошлом, этот тип двигателей был фаворитом, однако время идет, а наука не стоит на месте. И на сегодняшний день, двигатели такого типа практически полностью вытеснены электродвигателями асинхронного типа.

 

Причины банально просты – экономические затраты применения нижеупомянутого типа двигателей значительно ниже, чем электродвигателей постоянного тока.

 

 

Типы электродвигателей с постоянным током работают по принципу постоянного переключения обмоток ротора коллектором. Каждая обмотка – своего рода рамка с током, вращающаяся в магнитном поле. В электродвигателе находится несколько таких рамок, к каждой из которых, прилагается пластина в коллекторе по нему же и передается ток.

 

Устройство такого типа электродвигателя дает возможность работать от постоянного либо переменного напряжения.

 

Сфера применения видов электрических двигателей постоянного тока достаточно широка – они регулируют электроприводы с высокими динамическими и эксплуатационными показателями, а именно: равномерность вращения и высокие перезагрузочные способности. Самый простой пример бытового использования таких электродвигателей – электротранспорт.

 

Про коллекторные двигатели мы писали выше, но еще раз повторим, что коллекторные двигатели можно использовать и при переменном токе и постоянном, что очень удобно и практично, но не всегда бюджетно.

 

 

Что касается униполярных и биполярных электродвигателей постоянного тока… Униполярный двигатель подарил миру Питер Барлоу в 1824 году. Нашим современникам он больше известен как «колесо Барлоу». Представляет собой такой двигатель два зубчатых колеса, расположенных на одной оси, которые вращаются благодаря взаимодействию тока с магнитным током постоянных магнитов. Направление вращения может изменяться при изменении контактов и расположения магнитных полюсов. Работает такой вид электродвигателя на преобразование электрических импульсов в механические, носящие дискретный характер.

 

С таким видом электрических двигателей мы чаще всего сталкиваемся в канцелярской и офисной технике. Мал да удал – именно так можно сказать об униполярных электрических двигателях. Они действительно не очень большого размера, но достаточно продуктивны.

 

По своему устройству, униполярный отделено напоминает однофазный двигатель – их связывает одиночная обмотка в каждой фазе, а различие – наличие отвода от середины отводки. Именно это и позволяет менять направления вращения. Конструкция униполярного электродвигателя постоянного тока работает без коллектора в своей конструкции.

 

Где необходимы более высокие, мощные и быстрые характеристики, используют серводвигатели. Они предназначены для широкого спектра скоростей, гарантируют плавность хода, минимальную вибрацию и децибелы шума. Управляются серводвигатели при помощи преобразователя частоты – инвертора.

 

Вид серводвигателей высокотехнологичен и работает по принципу обратной связи. Это мощный электродвигатель со способностью набора очень большой скорости вращения вала, которая регулируется при помощи ПО. Серводвигатели – идеальные рабочие лошадки в поточном промышленном оборудовании и станках.

 

 

Помимо вышеописанных видов электрических двигателей, существуют линейные электродвигатели, работающие по принципу прямолинейного движения ротора и статора относительно друг друга. Такой электродвигатель исключает механическую передачу.

 

Синхронные электродвигатели – частота вращения ротера идентична частоте вращения магнитного поля в воздушной дельте. Такие двигатели входят в комплектацию вентиляторов, насосов и генераторов. Работают синхронные двигатели с постоянной скоростью.

 

Асинхронные электродвигатели имеют различные частоты вращений ротера и магнитного тока, создаваемого обмоткой сатора. При одинаковой конструкции сатора, асинхронные двигатели разделяют на два вида – с короткозамкнутымротором и фазным ротором.

 

Алгоритм устройства любого электрического двигателя идентичен и он не зависит от конструкции и технических характеристик агрегата: сатор (неподвижная обмотка), вращающийся ротор, продуцирующий магнитное поле и отталкивающийся своими полюсами от статора.

Виды взрывозащищенных электродвигателей

Взрывозащищенные электродвигатели составляют комплектующую деталь оборудования, которое используют при работе во взрывоопасных и легковоспламеняющихся условиях. Как правило, это область нефтепереработки, газовая и химическая промышленность.

 

Производят такие двигатели из максимально прочных материалов и оснащают взрывонепроницаемой оболочкой, которая надежно защищает электрические двигатели от механических, термических и прочих повреждений. Ремонт электродвигателей должен производиться в надежных сервисных центрах.

 

 

Самыми безопасными из такой категории электродвигателей считаются двигатели серии ВА, имеющие маркировочный индекс 1 ExdIIBT4х по ГОСТР 51330.0.

 

Маркировка буквой «d», характеризуются взрывозащищенные двигатели, оснащенные взрывозащитной оболочкой.

 

Маркировка «х» означает необходимость дополнительных мер при монтаже электродвигателя, которые уберегут агрегат от растягивания, скручивания и выпадения кабелей и вводов.

Прочтений: 5058 Распечатать Поделиться:

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Модельный электродвигатель — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 февраля 2017; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 февраля 2017; проверки требуют 2 правки.

Моде́льный электродви́гатель — электрический двигатель, приводящий в движение летающую, плавающую, вообще какую-либо движущуюся модель, например модель автомобиля.

О двигателях, приводящих исполнительные механизмы, см. статью сервомашинка.

На моделях находят широкое применение коллекторные и бесколлекторные электродвигатели.

Коллекторные моторы широко применяются на авто и судомоделях, где нет столь жёстких требований к минимальной массе двигателя.

На летающих моделях широко используются бесколлекторные электродвигатели. Обмотки в таком двигателе находятся на статоре (неподвижная часть двигателя), а ротор оснащён постоянными магнитами. Коммутацию обмоток в них осуществляет не механический коллектор, а специальный электронный регулятор. Такая конструкция значительно повышает КПД мотора и позволяет получать высокую мощность при гораздо меньших размерах и массе по сравнению с коллекторным мотором.

Особенности модельных электродвигателей[править | править код]

Некоторые авиамодельные двигатели выпускаются в сборе с редуктором.

Типы коллекторных электродвигателей, применяющихся на разных видах моделей[править | править код]

Применение модельного электродвигателя класса 300 на кордовой модели автомобиля

Во-первых, двигатели разделяются по классам в зависимости от размеров (длина корпуса в миллиметрах × 10):

  • «130 класс»
  • «280 класс»
  • «300 класс»
  • «370 класс»
  • «540 класс»

Во-вторых, бывают двигатели с закрытым и с открытым щёточным узлом. Закрытый щёточный узел означает что его нельзя обслуживать /или просто не предусмотрено/. У двигателей с открытым узлом имеется доступ — снимается задняя крышка или другая часть корпуса открывая доступ , можно снимать щётки и извлекать щётки , якорь. Если у двигателя имеются щётки, то подвижная часть двигателя называется якорем, если щёток нет, то ротором, бесколлекторный двигатель — это многофазный двигатель.

В автомоделях по спортивной классификации двигатели бывают следующих классов:

  • «Стандарт»
  • «Сток»
  • «Модифид»

Мощность, крутящий момент, максимальные обороты зависят от количества витков в двигателе и мощности (типе) использованных постоянных магнитов. Момент и обороты также зависят от числа магнитных полюсов ротора и статора двигателя.

В спортивных классах моделей, предназначенных для участия в соревнованиях, существует не так много возможностей изменить характеристики двигателя, тем более что это может быть запрещено правилами.

В авиа- и судомоделях режим работы двигателя настраивают подбором винта с такими параметрами, при которых ток через двигатель не превышает максимальный, указанный производителем.

Охлаждение двигателя на модели лодки

Главной опасностью является перегрев. Эта проблема касается в наибольшей мере автомоделей, так как их кузова часто делают максимально закрытыми, чтобы предотвратить попадание внутрь пыли и грязи. Но при этом к двигателю не будет притока воздуха. Охлаждается двигатель облегающим его корпус металлическим радиатором, иногда устанавливается небольшой вентилятор.

В судомоделях для охлаждения двигателя используют воду, забираемую из-за борта. Вода прокачивается по металлической трубке, обёрнутой вокруг корпуса двигателя.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *