Site Loader

Содержание

Сила тока — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2019; проверки требует 1 правка.

Сила тока — физическая величина I{\displaystyle I}, равная отношению количества заряда ΔQ{\displaystyle \Delta Q}, прошедшего через некоторую поверхность за некоторое время Δt{\displaystyle \Delta t}, к величине этого промежутка времени[1]:

I=ΔQΔt.{\displaystyle I={\frac {\Delta Q}{\Delta t}}.}

В качестве рассматриваемой поверхности часто используется поперечное сечение проводника.

Обычно обозначается символом I{\displaystyle I}, от фр. intensité du courant.

Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A), ампер является одной из семи основных единиц СИ. 1 А = 1 Кл/с.

По закону Ома сила тока I{\displaystyle I} для участка цепи прямо пропорциональна приложенному напряжению U{\displaystyle U} к участку цепи и обратно пропорциональна сопротивлению R{\displaystyle R} проводника этого участка цепи:

I=UR.{\displaystyle I={\frac {U}{R}}.}

По закону Ома для полной цепи

I=εR+r{\displaystyle I={\frac {\varepsilon }{R+r}}}

Носителями заряда, движение которых приводит к возникновению тока, являются заряженные частицы, в роли которых обычно выступают электроны, ионы или дырки. Сила тока зависит от заряда q{\displaystyle q} этих частиц, их концентрации n{\displaystyle n}, средней скорости упорядоченного движения частиц vcp→{\displaystyle {\vec {v_{cp}}}}, а также площади S{\displaystyle S} и формы поверхности, через которую течёт ток.

Если n{\displaystyle n} и vcp→{\displaystyle {\vec {v_{cp}}}} постоянны по объёму проводника, а интересующая поверхность плоская, то выражение для силы тока можно представить в виде

I=qnvcpcos⁡αS,{\displaystyle I=qnv_{cp}\cos \alpha S,}

где α{\displaystyle \alpha } — угол между скоростью частиц и вектором нормали к поверхности.

В более общем случае, когда сформулированные выше ограничения не выполняются, аналогичное выражение можно записать только для силы тока dI{\displaystyle dI}, протекающего через малый элемент поверхности площадью dS{\displaystyle dS}:

dI=qnvcpcos⁡αdS.{\displaystyle dI=qnv_{cp}\cos \alpha dS.}

Тогда выражение для силы тока, протекающего через всю поверхность, записывается в виде интеграла по поверхности

I=∫Sqnvcpcos⁡αdS.{\displaystyle I=\int \limits _{S}qnv_{cp}\cos \alpha dS.}

В металлах заряд переносят электроны, соответственно в этом случае выражение для силы тока имеет вид

I=∫Senvcpcos⁡αdS.{\displaystyle I=\int \limits _{S}env_{cp}\cos \alpha dS.}

где e{\displaystyle e} — элементарный электрический заряд.

Вектор qnvcp→{\displaystyle qn{\vec {v_{cp}}}} называют плотностью электрического тока. Как следует из сказанного выше, его величина равна силе тока, протекающей через малый элемент поверхности единичной площади, расположенный перпендикулярно скорости vcp→{\displaystyle {\vec {v_{cp}}}}, а направление совпадает с направлением упорядоченного движения заряженных частиц[2].

Для измерения силы тока используют специальный прибор — амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи[3] в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).

В случае переменного тока различают мгновенную силу тока, амплитудную (пиковую) силу тока и эффективную силу тока (равную силе постоянного тока, который выделяет такую же мощность).

Сила тока. Единицы силы тока. Амперметр (Гребенюк Ю.В.). Видеоурок. Физика 8 Класс

На данном уроке, тема которого «Сила тока. Единицы силы тока. Амперметр», мы познакомимся с такой характеристикой тока, как сила, поговорим о единицах её измерения, а также о приборе, с помощью которого можно измерять силу тока в цепи, – об амперметре.

На предыдущих уроках мы говорили о токе в металле, также обсудили электрическую цепь и её составные части, говорили о направлении тока. Однако мы не касались такого вопроса, как характеристики, с помощью которых можно описать электрический ток. Наверное, все вы слышали о выражении «скачок напряжения» и наблюдали мигание лампочки. То есть мы понимаем, что электрические токи бывают разными, а как же можно сравнивать электрические токи? Какие характеристики тока позволяют оценивать его величину и другие его параметры? Сегодня мы начнем изучать величины, которые характеризуют электрический ток, и начнем мы с такой характеристики, как сила тока.

Вы уже знаете, что в металлическом стержне достаточно большое количество носителей электрического заряда – электронов. Понятно, когда по стержню не течет электрический ток, эти электроны движутся хаотически, то есть можно считать, что количество электронов, которое проходит через сечение стержня слева направо, приблизительно равно количеству электронов, которое проходит через то самое сечение стрежня справа налево за одно и то же время. Если мы пропускаем по стержню электрический ток, то движение электронов становится упорядоченным и количество электронов, которое проходит через сечение стержня за промежуток времени, существенно возрастает (имеется в виду то количество электронов, которое проходит в одном направлении).

Сила тока – это физическая величина, характеризующая электрический ток и численно равная заряду, проходящему через поперечное сечение проводника за единицу времени. Силу тока обозначают символом  и определяют по формуле: , где  – заряд, проходящий через поперечное сечение проводника за время

.

Чтобы лучше понять суть введенной величины, давайте обратимся к механической модели электрической цепи. Если рассмотреть водопроводную систему вашей квартиры, то она может оказаться поразительно похожей на электрическую цепь. Действительно, аналогом источника тока выступает насос, который создает давление и поставляет воду в квартиры (см. рис .1).

Водопроводная система

Рис. 1. Водопроводная система

Как только он перестанет работать, исчезнет вода в кранах. Краны выступают в роли ключей электрической цепи: когда кран открыт – вода течет, когда закрыт – нет. В роли заряженных частиц выступают молекулы воды (см. рис. 2).

Движение молекул воды в системе

Рис. 2. Движение молекул воды в системе

Если мы теперь введем величину, аналогичную только что введенной силе тока, то есть количеству молекул воды через сечение трубы за единицу времени, то фактически получим количество воды, проходящей через поперечное сечение трубки за одну секунду – то, что в быту часто называют напором. Соответственно, чем больше напор, тем больше воды вытекает из крана, аналогично: чем больше сила тока, тем сильнее ток и его действие.

Единицей силы тока является ампер: Движение молекул воды в системе. Эта величина названа в честь французского ученого Андре-Мари Ампера. Ампер – одна из единиц интернациональной системы. Зная единицы силы тока, легко получить определение единицы электрического заряда в СИ. Поскольку

, то Движение молекул воды в системе.

Следовательно, Движение молекул воды в системе. То есть 1 Кл – это заряд, проходящий через поперечное сечение проводника за 1 с при силе тока в проводнике 1 А. Кроме ампера, также применяют такие величины, как миллиампер (Движение молекул воды в системе

), микроампер (Движение молекул воды в системе), килоампер (Движение молекул воды в системе). Чтобы представлять себе, что такое малая, а что такое большая сила тока, приведем такие данные: для человека считается безопасной сила тока, меньше 1 мА, а сила тока, больше 100 мА, может привести к существенным проблемам со здоровьем.

Некоторые значения силы тока

Чтобы понимать величину такой силы тока, как 1А, давайте рассмотрим следующую таблицу.

Рентгеновский медицинский аппарат (см. рис. 3) – 0,1 А

Рентгеновский медицинский аппарат

Рис. 3. Рентгеновский медицинский аппарат

Лампочка карманного фонаря – 0,1–0,3 А

Переносной магнитофон – 0,3 А

Лампочка в классе – 0,5 А

Мобильный телефон в режиме работы – 0,53 А

Телевизор – 1 А

Стиральная машина – 2 А

Электрический утюг – 3 А

Электродоильная установка – 10 А

Двигатель троллейбуса – 160–220 А

Молния – более 1000 А

Кроме того, рассмотрим эффекты действия тока, которые он оказывает на организм человека, в зависимости от силы тока (в таблице приведена сила тока при частоте 50 Гц и эффект действия тока на человеческий организм).

0–0,5 мА        Отсутствует

0,5–2 мА        Потеря чувствительности

2–10 мА         Боль, мышечные сокращения

10–20 мА       Растущее воздействие на мышцы, некоторые повреждения

16 мА             Ток, выше которого человек уже не может освободиться от электродов

20–100 мА     Дыхательный паралич

100 мА – 3 А Смертельные желудочковые фибрилляции (необходима срочная реанимация)

Более 3 А       Остановка сердца, тяжелые ожоги (если шок был кратким, то сердце можно реанимировать)

Вместе с тем большинство приборов рассчитано на значительно большее значение силы тока, поэтому при работе с ними очень важно соблюдать некоторые правила. Остановимся на главных моментах, которые нужно помнить всем, кто имеет дело с электричеством.

Нельзя:

1) Прикасаться к обнаженному проводу, особенно стоя на земле, сыром полу и т.п.

2) Пользоваться неисправными электротехническими устройствами.

Собирать, исправлять, разбирать электротехнические устройства, не отсоединив их от источника тока.

Для измерения силы тока используется прибор – амперметр. Он обозначается буквой А в кружочке при схематическом изображении в электрической цепи. Как и любой прибор, амперметр не должен влиять на значение измеряемой величины, поэтому он сконструирован таким образом, чтобы практически не менять значение силы тока в цепи.

Правила, которые необходимо соблюдать при измерении силы тока амперметром

1) Амперметр включают в цепь последовательно с тем проводником, в котором необходимо измерять силу тока (см. рис. 4).

2) Клемму амперметра, возле которой стоит знак +, нужно соединять с проводом, идущим от положительного полюса источника тока; клемму со знаком минус – с проводом, идущим от отрицательного  полюса источника тока (см. рис. 5).

3) Нельзя подключать амперметр к цепи, где отсутствует потребитель тока (см. рис. 6).

Последовательное соединение амперметра

Рис. 4. Последовательное соединение амперметра

Правильно соединена клемма +

Рис. 5. Правильно соединена клемма +

Неверно подключенный амперметр

Рис. 6. Неверно подключенный амперметр

Давайте посмотрим на работу амперметра вживую. Перед нами электрическая цепь, которая состоит из источника тока, амперметра, который соединен последовательно, и лампочки, которая также соединена последовательно (см. рис. 7).

Электрическая цепь

Рис. 7. Электрическая цепь

Если сейчас включим источник тока, то сможем пронаблюдать, какая сила в цепи с помощью амперметра. Вначале он указывает 0 (то есть тока в цепи нет), а теперь видим, что сила тока стала почти 0,2 А (см. рис. 8).

Протекание тока в цепи

Рис. 8. Протекание тока в цепи

Если мы изменим ток в цепи, увидим, что сила тока увеличится (станет примерно 0,26 А), и при этом лампочка загорится ярче (см. рис .9), то есть, чем больше сила тока в цепи, тем ярче лампочка горит.

Сила тока в цепи больше – лампочка горит ярче

Рис. 9. Сила тока в цепи больше – лампочка горит ярче

Виды амперметров

Распространение получили амперметры электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные.

В электромагнитных амперметрах (см. рис. 10) измеряемый ток, проходя по катушке, втягивает внутрь ее сердечник из мягкого железа с силой, возрастающей с увеличением силы тока; при этом насаженная на одной оси с сердечником стрелка поворачивается и по градуированной шкале указывает силу тока в амперах.

Электромагнитный амперметр

Рис. 10. Электромагнитный амперметр

В тепловых амперметрах (см. рис. 11) измеряемый ток пропускается по натянутой металлической нити, которая вследствие нагревания током удлиняется и провисает, поворачивая при этом стрелку, указывающую на шкале силу тока.

Тепловой амперметр

Рис. 11. Тепловой амперметр

В магнитоэлектрическом амперметре (см. рис. 12) под влиянием взаимодействия измеряемого тока, пропускаемого по проволоке, намотанной на легкую алюминиевую рамку, и магнитного поля постоянного подковообразного магнита рамка вместе с указательной стрелкой поворачивается на больший или меньший угол в зависимости от величины силы тока.

Магнитоэлектрический амперметр

Рис. 12. Магнитоэлектрический амперметр

В электродинамических амперметрах (без железа) (см. рис. 13) измеряемый ток пропускается последовательно по обмотке неподвижной и подвижной катушек; последняя благодаря взаимодействию проходящего по ней тока с током в неподвижной катушке поворачивается вместе со стрелкой, указывающей силу тока.

Электродинамический амперметр

Рис. 13. Электродинамический амперметр

В индукционных приборах (см. рис. 14) подвижный металлический диск или цилиндр подвергается воздействию бегущего или вращающегося поля, создаваемого неподвижными катушками, соединенными магнитной системой.

Индукционный амперметр

Рис. 14. Индукционный амперметр

Тепловые и электродинамические амперметры пригодны для измерения как постоянного, так и переменного токов, электромагнитные – для постоянного тока и индукционные – для переменного

Решение задач

Рассмотрим решение нескольких типовых задач по данной теме.

Задача 1

Сколько электронов каждую секунду проходит через поперечное сечение проводника, если по нему течёт ток 0,32 А?

Решение

Мы знаем не только силу тока I = 0,32 A, время t = 1 c, но и заряд одного электрона: Индукционный амперметр.

Воспользуемся определением силы тока: Индукционный амперметр, а заряд, который проходит за единицу времени по модулю, равен сумме модулей зарядов электронов, которые проходят через сечение за 1 с. Получаем Индукционный амперметр. Откуда Индукционный амперметр.

Проверяем единицы искомой величины: Индукционный амперметр.

Индукционный амперметр

Ответ: Индукционный амперметр.

Задача 2

Почему амперметр, который показывает силу тока, идущего через провод, которым аккумулятор автомобиля соединяется с бортовой электрической сетью, имеет на шкале и положительные, и отрицательные значения?

Решение

Дело в том, что в автомобильном аккумуляторе происходят два процесса: иногда он заряжается (см. рис. 15), то есть получает заряд (заряды движутся в одну сторону), а иногда – питает бортовую сеть, то есть отдаёт заряд (соответственно, заряды движутся в другую сторону) (см. рис. 16). В этих двух случаях сила тока будет отличаться знаком.

Индукционный амперметр

Рис. 15. Зарядка аккумулятора

Разрядка аккумулятора

Рис. 16. Разрядка аккумулятора

Задача 3

В проводнике в каждом кубическом сантиметре содержится Разрядка аккумулятора свободных электронов. С какой средней скоростью электроны упорядоченно двигаются по проводнику, если сила тока в нём 8 А? Площадь поперечного сечения проводника составляет 1 мм2.

Решение

Мы знаем силу тока I = 8 A, площадь сечения Разрядка аккумулятора, заряд одного электрона Индукционный амперметр, объём Разрядка аккумулятора и количество электронов в этом объёме Разрядка аккумулятора. Найти необходимо скорость Разрядка аккумулятора.

Рассмотрим кубический сантиметр проводника. В нём содержится известное количество свободных электронов. Что такое средняя скорость их движения? Разрядка аккумулятора. Как определить расстояние?

Для начала воспользуемся определением силы тока: Индукционный амперметр, а заряд, который проходит за единицу времени, по модулю равен сумме модулей зарядов электронов, которые проходят через сечение за время. Получаем Разрядка аккумулятора. Откуда Разрядка аккумулятора– количество электронов, которые прошли через сечение проводника за единицу времени. Из несложной пропорции определяем объём, который занимают эти электроны: Разрядка аккумулятора, откуда Разрядка аккумулятора.

Теперь найти расстояние, пройденное электронами, несложно: если весь этот объём прошёл через сечение, то длина пути каждого электрона равна: Разрядка аккумулятора.

Получаем итоговую формулу: Разрядка аккумулятора.

Проверяем единицы измерения: Разрядка аккумулятора.

Разрядка аккумулятора

Ответ: Разрядка аккумулятора

На следующем уроке мы поговорим о еще одной характеристике тока – напряжении. На этом наш урок окончен, спасибо за внимание!

 

Домашнее задание

  1. Что такое сила тока? В чем она измеряется в СИ?
  2. Как в цепь подключают амперметр?
  3. Какие виды амперметров вы знаете? Опишите принцип их работы.

 

Список рекомендованной литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Перышкин А.В. Физика:  Учебник 8 класс. — Издательство: М.: 2013. – 240 с.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Class-fizika.narod.ru (Источник).
  2. Интернет-портал Yaklass.ru (Источник).

Основные величины и меры электрического тока

На этой страничке кратко излагаются основные величины электрического тока. По мере необходимости, страничка будет пополняться новыми величинами и формулами.


Сила тока – количественная мера электрического тока, протекающего через поперечное сечение проводника. Чем толще проводник, тем больший ток может по нему течь. Измеряется сила тока прибором, который называется Амперметр. Единица измерения — Ампер (А). Сила тока обозначается буквой – I.

Следует добавить, что постоянный и переменный ток низкой частоты, течёт через всё сечение проводника. Высокочастотный переменный ток течёт только по поверхности проводника – скин-слою. Чем выше частота тока, тем тоньше скин-слой проводника, по которому течёт высокочастотный ток. Это касается любых высокочастотных элементов — проводников, катушек индуктивности, волноводов. Поэтому, для уменьшения активного сопротивления проводника высокочастотному току, выбирают проводник с большим диаметром, кроме того, его серебрят (как известно, серебро имеет очень малое удельное сопротивление).


Напряжение (падение напряжения) – количественная мера разности потенциалов (электрической энергии) между двумя точками электрической цепи. Напряжение источника тока – разность потенциалов на выводах источника тока. Измеряется напряжение вольтметром. Единица измерения — Вольт (В). Напряжение обозначается буквой – U, напряжение источника питания (синоним — электродвижущая сила) может обозначаться буквой – Е.

Узнайте больше о напряжение в нашей статье.


Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт). Мощность электрического тока обозначается буквой – Р. Мощность определяется зависимостью:

формула мощности электрического тока

Коснусь практического применения этой формулы на примере: Представьте, что у Вас есть электронагревательный прибор, мощность которого Вам не известна. Чтобы узнать потребляемую прибором мощность, измерьте ток и умножьте его значение на напряжение. Либо наоборот, имеется прибор мощностью 2 кВт (киловатт), на напряжение сети 220 вольт. Как узнать силу тока в кабеле питающего этот прибор? Мощность делим на напряжение, получаем ток: I = P / U = 2000 Вт/220 В = 9,1 А.


Потребляемая электроэнергия – суммарное значение потребляемой мощности от источника электрической сети за единицу времени. Измеряется потребляемая электроэнергия счётчиком (обыкновенным квартирным). Единица измерения – киловатт*час (кВт*ч).


Сопротивление элемента цепи – количественная мера, характеризующая способность элемента электрической цепи сопротивляться электрическому току. В простом виде, сопротивление это обыкновенный резистор. Резистор может использоваться: как ограничитель тока – добавочный резистор, как потребитель тока – нагрузочный резистор. Источник электрического тока так же обладает внутренним сопротивлением. Измеряется сопротивление прибором называемым Омметром. Единица измерения — Ом (Ом). Сопротивление обозначается буквой – R. Связано с током и напряжением законом Ома (формулой):

формула сопротивления

где U – падение напряжения на элементе электрической цепи, I – ток, протекающий через элемент цепи.


Рассеиваемая (поглощаемая) мощность элемента электрической цепи – значение мощности рассеиваемой на элементе цепи, которую элемент может поглотить (выдержать) без изменения его номинальных параметров (выхода из строя). Рассеиваемая мощность резисторов обозначается в его названии (например: двух ваттный резистор — ОМЛТ-2, десяти ваттный проволочный резистор – ПЭВ-10). При расчёте принципиальных схем, значение необходимой рассеиваемой мощности элемента цепи рассчитывается по формулам:

формула необходимой рассеиваемой мощности

формула необходимой рассеиваемой мощности

формула необходимой рассеиваемой мощности

Для надёжной работы, определённое по формулам значение рассеиваемой мощности элемента умножается на коэффициент 1,5 , учитывающий то, что должен быть обеспечен запас по мощности.


Проводимость элемента цепи – способность элемента цепи проводить электрический ток. Единица измерения проводимости – сименс (См). Обозначается проводимость буквой — σ. Проводимость — величина обратная сопротивлению, и связана с ним формулой:

формула проводимости элемента цепи

Если сопротивление проводника равно 0,25 Ом (или 1/4 Ом), то проводимость будет 4 сименс.


Частота электрического тока – количественная мера, характеризующая скорость изменения направления электрического тока. Имеют место понятия — круговая (или циклическая) частота — ω, определяющая скорость изменения вектора фазы электрического (магнитного) поля и частота электрического тока — f, характеризующая скорость изменения направления электрического тока (раз, или колебаний) в одну секунду. Измеряется частота прибором, называемым Частотомером. Единица измерения — Герц (Гц). Обе частоты связаны друг с другом через выражение:

формула круговой частоты электрического тока

Период электрического тока – величина обратная частоте, показывающая, в течение, какого времени электрический ток совершает одно циклическое колебание. Измеряется период, как правило, с помощью осциллографа. Единица измерения периода — секунда (с). Период колебания электрического тока обозначается буквой – Т. Период связан с частотой электрического тока выражением:

формула периода электрического тока

Длина волны высокочастотного электромагнитного поля – размерная величина, характеризующая один период колебания электромагнитного поля в пространстве. Измеряется длина волны в метрах (м). Длина волны обозначается буквой – λ. Длина волны связана с частотой и определяется через скорость распространения света:

формула длина волны высокочастотного электромагнитного поля

Электрическая ёмкость – количественная мера, характеризующая способность накапливать энергию электрического тока в виде электрического заряда на обкладках конденсатора. Обозначается электрическая ёмкость буквой – С. Единица измерения электрической ёмкости — Фарада (Ф).


Магнитная индуктивность – количественная мера, характеризующая способность накапливать энергию электрического тока в магнитном поле катушки индуктивности (дросселя). Обозначается магнитная индуктивность буквой – L. Единица измерения индуктивности — Генри (Гн).


Реактивное сопротивление конденсатора (ёмкости) – значение внутреннего сопротивления конденсатора переменному гармоническому току на определённой его частоте. Реактивное сопротивление конденсатора обозначается — ХС и определяется по формуле:

Формула реактивного сопротивления конденсатора

Реактивное сопротивление катушки индуктивности (дросселя) – значение внутреннего сопротивления катушки индуктивности переменному гармоническому току на определённой его частоте. Реактивное сопротивление катушки индуктивности обозначается ХL и определяется по формуле:

Формула реактивного сопротивления в катушке индуктивности

Резонансная частота колебательного контура – частота гармонического переменного тока, на которой колебательный контур имеет выраженную амплитудно-частотную характеристику (АЧХ). Резонансная частота колебательного контура определяется по формуле:

Формула резонансной частоты LC контура, или

Формула резонансной частоты колебательного контура


Добротность колебательного контура — характеристика, определяющая ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки. Добротность обозначается буквой – Q.

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

Формула добротности последовательного колебательного контура

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

Формула добротности параллельного колебательного контура

Скважность импульсов – это отношение периода следования импульсов к их длительности. Скважность импульсов определяется по формуле:

формула скважности импульсов

Ампер — Википедия

Ампе́р (русское обозначение: А; международное: A) — единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ. В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование — ампер-виток)[1]. Кроме того, ампер является единицей силы тока и относится к числу основных единиц в системе единиц МКСА.

16 ноября 2018 года на XXVI Генеральной конференции мер и весов было принято новое определение ампера, основанное на использовании численного значения элементарного электрического заряда. Формулировка, вступившая в силу 20 мая 2019 года, гласит[2]:

Ампер, символ А, есть единица электрического тока в СИ. Она определена путём фиксации численного значения элементарного заряда равным 1,602 176 634⋅10−19, когда он выражен единицей Кл, которая равна А·с, где секунда определена через ΔνCs{\displaystyle \Delta \nu _{\mathrm {Cs} }}[3].

Происхождение[править | править код]

Единица измерения, принятая на 1-м Международном конгрессе электриков[4] (1881 г., Париж), названа в честь французского физика Андре Ампера. Она была первоначально определена как одна десятая единицы тока системы СГСМ (эта единица, известная в настоящее время как абампер или био, определяла ток, создающий силу в 2 дины на сантиметр длины между двумя тонкими проводниками на расстоянии в 1 см).

Международный ампер[править | править код]

В 1893 году было принято определение единицы измерения силы тока как тока, необходимого для электрохимического осаждения 1,118 миллиграммов серебра в секунду из раствора нитрата серебра. Предполагалось, что величина единицы при этом не изменится, однако оказалось, что она изменилась на 0,015%. Эта единица стала известна как международный ампер.

Определение 1948 года[править | править код]

Определение ампера, предложенное Международным комитетом мер и весов в 1946 году и принятое IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году, гласит[5][6]:

Ампер — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10−7ньютона.

{\displaystyle \Delta \nu _{\mathrm {Cs} }} Иллюстрация к определению ампера 1948 года.

Таким образом, фактически было возвращено изначальное определение.

Из определения ампера следует, что магнитная постоянная μ0{\displaystyle \mu _{0}} равна 4π×10−7{\displaystyle 4\pi \times 10^{-7}} Гн/ м или, что то же самое, 4π×10−7{\displaystyle 4\pi \times 10^{-7}} Н/А² точно. Это утверждение становится понятным, если учесть, что сила взаимодействия двух расположенных на расстоянии d{\displaystyle d} друг от друга бесконечных параллельных проводников, по которым текут токи I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}}, приходящаяся на единицу длины, выражается соотношением:

F=μ04π2I1I2d.{\displaystyle F={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{d}}.}

Магнитодвижущая сила 1 ампер (ампер-виток) — это такая магнитодвижущая сила, которую создаёт замкнутый контур, по которому протекает ток, равный 1 амперу.

Определение 2018 года[править | править код]

В 2018 году было принято и на следующий год вступило в силу нынешнее определение ампера. Величина ампера не изменилась при смене определения. Однако изменения определения привело к тому, что указанное выше выражение для магнитной постоянной перестало быть точным, а стало выполняться лишь численно (но с огромной точностью).

В соответствии с полным официальным описанием СИ, содержащемся в действующей редакции Брошюры СИ (фр. Brochure SI, англ. The SI Brochure), опубликованной Международным бюро мер и весов (МБМВ), десятичные кратные и дольные единицы ампера образуются с помощью стандартных приставок СИ[5]. «Положение о единицах величин, допускаемых к применению в Российской Федерации», принятое Правительством Российской Федерации, предусматривает использование в России тех же приставок[7].

Кратные Дольные
величина название обозначение величина название обозначение
101 А декаампер даА daA 10−1 А дециампер дА dA
102 А гектоампер гА hA 10−2 А сантиампер сА cA
103 А килоампер кА kA 10−3 А миллиампер мА mA
106 А мегаампер МА MA 10−6 А микроампер мкА µA
109 А гигаампер ГА GA 10−9 А наноампер нА nA
1012 А тераампер ТА TA 10−12 А пикоампер пА pA
1015 А петаампер ПА PA 10−15 А фемтоампер фА fA
1018 А эксаампер ЭА EA 10−18 А аттоампер аА aA
1021 А зеттаампер ЗА ZA 10−21 А зептоампер зА zA
1024 А иоттаампер ИА YA 10−24 А иоктоампер иА yA
     применять не рекомендуется

Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение проходит заряд, равный 1 кулону[8].

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

  1. Магнитодвижущая сила (неопр.). Большая советская энциклопедия. Архивировано 21 августа 2011 года.
  2. ↑ Le Système international d’unités (SI) / The International System of Units (SI). — BIPM, 2019. — P. 20, 132. — ISBN 978-92-822-2272-0.
  3. ↑ ΔνCs{\displaystyle \Delta \nu _{\mathrm {Cs} }} — частота излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.
  4. History of the ampere, Sizes, <http://www.sizes.com/units/ampHist.htm> 
  5. 1 2 The SI brochure Описание СИ на сайте Международного бюро мер и весов.
  6. ↑ Положение о единицах величин, допускаемых к применению в Российской Федерации. Основные единицы Международной системы единиц (СИ) (неопр.) (недоступная ссылка). Федеральный информационный фонд по обеспечению единства измерений. Росстандарт. Дата обращения 28 февраля 2018. Архивировано 18 сентября 2017 года.
  7. ↑ Положение о единицах величин, допускаемых к применению в Российской Федерации (неопр.) (недоступная ссылка). Дата обращения 28 декабря 2014. Архивировано 5 марта 2016 года.
  8. ↑ Bodanis, David (2005), Electric Universe, New York: Three Rivers Press, ISBN 978-0-307-33598-2 
  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. — Мн.: Вышэйшая школа, 1979. — С. 23—24. — 416 с. — 30 000 экз.

Сила тока. Амперметр — урок. Физика, 8 класс.

В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время. Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.

Сила тока \((I)\) — скалярная величина, равная отношению заряда (\(q\)), прошедшего через поперечное сечение проводника, к промежутку времени (\(t\)), в течение которого шёл ток.

I=qt, где \(I\) — сила тока, \(q\) — заряд, \(t\) — время.

 

Единица измерения силы тока в системе СИ — \([I] = 1 A\) (ампер).


В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:


при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.


pluss.pngminus.png

 

За единицу силы тока \(1 A\) принимают силу тока, при которой два параллельных проводника длиной \(1\) м, расположенные на расстоянии \(1\) м друг от друга в вакууме, взаимодействуют с силой \(0,0000002\)\(H\).

Единица силы тока называется ампером (\(A\)) в честь французского учёного А.М. Ампера.

 

Amper.png

Андре-Мари Ампер

(1775 — 1836)

 

А.М. Ампер ввёл такие термины, как электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток и т.д.


Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую \(100\) Вт лампочку накаливания проходит ток с силой, приблизительно равной \(0,5A\). Ток в электрическом обогревателе может достигать \(10A\), а для работы карманного микрокалькулятора достаточно \(0,001A\).

Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
\(1 мA = 0,001 A\), \(1 мкA = 0,000001 A\), \(1 кA =1000 A\).
То есть \(1 A = 1000 мA\), \(1 A = 1000000 мкA\), \(1 A = 0,001 кA\).

Если электроны перемещаются в одном направлении, т.е. — от одного полюса источника тока к другому, то такой ток называют постоянным.

Переменным называется ток, сила и направление которого периодически изменяются.

В бытовых электросетях используют переменный ток напряжением \(220\) В и частотой \(50\) Гц. Это означает, что ток за \(1\) секунду \(50\) раз движется в одном направлении и \(50\) раз — в другом. У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).

 

Силу тока измеряют амперметром. В электрической цепи он обозначается так:

 

ampermetr.png

Обрати внимание!

Амперметр включают в цепь последовательно с тем прибором, силу тока в котором нужно измерить. Амперметр нельзя подсоединять к источнику тока, если в цепь не подключён потребитель!

Измеряемая сила тока не должна превышать максимально допустимую силу тока для измерения амперметром. Поэтому существуют различные амперметры.

 

L25.jpgL20.jpg

Микроамперметр

Миллиамперметр

L10.jpgL7.jpg

Амперметр

Килоамперметр

 

Обрати внимание!

Различают амперметры для измерения силы постоянного тока и силы переменного тока.

Их можно различить по обозначениям: 

  • «~» означает, что амперметр предназначен для измерения силы переменного тока;
  • «» означает, что амперметр предназначен для измерения силы постоянного тока.

Можно обратить внимание на клеммы прибора. Если указана полярность («\(+\)» и «\(-\)»), то это прибор для измерения постоянного тока.


Иногда используют буквы \(AC/DC\). В переводе с английского \(AC\) (alternating current) — переменный ток, а \(DC\) (direct current) — постоянный ток.
 

Для измерения силы постоянного тока

Для измерения силы переменного тока

L12.jpg8258.jpg
L1.jpg

 

Для измерения силы тока можно использовать и мультиметр. Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.

 

16_2.jpg

 

Обрати внимание!

Включая амперметр в цепь постоянного тока, необходимо соблюдать полярность (см. рисунок): провод, который идёт от положительного полюса источника тока, нужно соединять с клеммой амперметра со знаком «+»; провод, который идёт от отрицательного полюса источника тока, нужно соединять с клеммой амперметра со знаком «-».

Если полярность на источнике тока не указана, следует помнить, что длинная линия соответствует плюсу, а короткая — минусу.


00_1.png

 

В цепь переменного тока включается амперметр для измерения переменного тока. Он полярности не имеет.

 

00_2.png

Обрати внимание!

В цепи, состоящей из источника тока и ряда проводников, соединённых так, что конец одного проводника соединяется с началом другого, сила тока во всех участках одинакова.

Это видно из опыта, изображённого на рисунке.

 

460px-F29.jpg

 

Обрати внимание!

Безопасным для организма человека можно считать переменный ток силой не выше \(0,05 A\), ток силой более \(0,05 — 0,1 A\) опасен и может вызвать смертельный исход.

Источники:

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://class-fizika.narod.ru/8_28.htm
http://school.xvatit.com/index.php?title=%D0%A1%D0%B8%D0%BB%D0%B0_%D1%82%D0%BE%D0%BA%D0%B0
http://physics.kgsu.ru/index.php?option=com_content&view=article&id=217&Itemid=72

http://kamenskih3.narod.ru/untitled74.htm

 

Какой буквой обозначается сила тока?

  • О проекте
  • Контакты
  • Помощь
  • Рекламодателям
  • Рус /  Eng
Поиск найти Расширенный поиск

Разделы

  • Все Кроссворды Советы Обзоры Статьи
  • Викторины Пазлы Рецепты Списки

Искать

  • Везде В названии В описании
  • В содержании По тегам

9952 викторины, 945 кроссвордов, 806 пазлов и многое другое…

как и в чём измеряется, по каким формулам находится, как обозначается

Сила тока: единица измеренияОпределение понятия силы тока звучит так: это заряженные частицы (электрические заряды), которые двигаются в определённом направлении и называются электронами.

Представим, что через участок цепи проходит определённое количество электричества, например, один кулон.

Он может пройти за одну секунду, а может за целый час. Поэтому сила его определяется именно количеством электричества, которое проходит через проводник за конкретную единицу времени — секунду.

Виды тока и единицы измерения

Ток бывает двух видов:

  • Постоянный — это тот, что не меняется со временем.
  • Переменный — это тот, что находится в розетке.

Постоянный и переменный токОбычные батарейки или аккумуляторы телефонов выдают именно постоянный. А переменный может изменяться. Когда вы включаете в одну розетку настольную лампу, которой не требуется большая сила, и вместе с ней включаете, например, мощный пылесос, то работают оба прибора, так как ток в сети переменный, в отличие от напряжения, он «подстроился» под приборы. Если бы он был постоянным, то в зависимости от его величины у вас либо сгорит лампа, либо не заработает пылесос.

Измеряется в амперах (А) — эта единица измерения одна из основных в СИ, обозначается величина английской буквой I.

Сила может измеряться основными и вспомогательными единицами:

  • Ампер (А).
  • миллиампер (мА) — это одна тысячная ампера.
  • микроампер (мкА) — одна миллионная ампера.

Если в замкнутой простой цепи проходит постоянный тoк, то в каждом месте цепи за секунду или минуту проходит абсолютно равное его количество, так как он не может накапливаться в отдельных участках цепи. Если рассматривать сложные цепи, то это правило тоже работает, но уже для отдельных участков цепи, которые можно считать простыми.

Количество его измеряется в кулонах. Если через поперечное сечение проводника за одну секунду проходит точно один кулон — то это один ампер. Для нахождения её можно использовать специальные приборы либо формулы.

Формулы для расчета величины

Начнём с формул, по которым можно вычислить эту самую силу. Например, если знать, сколько электричества прошло через проводник за определённый и известный промежуток времени, то можно узнать его силу по такой формуле: I = q/t, где:

  • q — это электрический заряд, который измеряется в кулонах;
  • t — время прохождения этого заряда, измеряется в секундах.

Закон Ома для замкнутой цепиЗакон Ома звучит так: сила тока в цепи обратно пропорциональна сопротивлению и прямо пропорциональна напряжению. Этот закон применяется для вычисления силы постоянного тока.

Если вам нужно найти значение для переменного, то результат формулы нужно разделить на корень из двух.

Если опустить слова и перейти к обозначениям, то выглядит формула так: I = U/R. Буква I — сила тока в амперах. Буквой U обозначается напряжение в цепи, которое измеряется в вольтах. Буква R — это сопротивление, оно измеряется в Омах.

Зная эту формулу, можно без проблем вычислять и напряжение или сопротивление в цепи.

Можно ещё встретить такую запись закона: I = U/R+r. Это полный Закон Ома, который, помимо сопротивления внешних элементов цепи, учитывает сопротивление внутри источника питания и позволяет вычислить потребляемый ток.

Измерение с помощью приборов

Амперметр — специальный прибор, с помощью которого можно узнать, какая в цепи сила тока. Обозначение на амперметре покажут вам результат. Он подключается в разрыв таким образом, чтобы электричество протекало через прибор. Такое подключение называется последовательным. Подключать можно в любом месте, так как сила одинакова на любом участке замкнутой цепи. Применяется этот метод для измерения постоянного тока.

Если амперметра нет под рукой, то можно воспользоваться вольтметром — прибором для измерения напряжения в цепи. Для этого его нужно подключить параллельно в электрическую цепь. Замерив напряжение в цепи и зная сопротивление, мы можем высчитать силу тока по формуле Ома.

Также существует электромагнитный способ измерения постоянного и переменного тoка. Для этого требуется специальный магнитомодульный датчик. Он находит нужное значение, анализируя электромагнитное поле.

Не стоит забывать, что ток, как огонь — он полезен точно так же, как и опасен. Даже одна десятая ампера может быть опасна и даже смертельна для человека. А ведь в некоторых бытовых приборах он может достигать 10 и больше ампер. Даже в обычной лампочке накаливания его может быть достаточно для того, чтобы убить человека. Не говоря уже про технику где-нибудь на производствах, где он порой достигает нескольких тысяч ампер. Так что будьте осторожны.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *