Что такое диодный мост, как его проверить
Диодный мост — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий (постоянный).
Диодный мост или, как его ещё называют, выпрямитель нужен для преобразования переменного тока в постоянный. Его используют везде, где нужно получить питание постоянным напряжением независимо от мощности прибора, потребляемого тока или величины напряжения.
Устройство
Для выпрямления однофазного напряжения используют схему Гретца из четырёх диодов. Если в схеме стоит трансформатор с отводом от средней точки используют схему из двух диодов.
Мостом называется именно включение четырёх диодов.
Диодный мост может быть выполнен в одном корпусе, а может быть из дискретных диодов, то есть отдельных. Входом диодного моста называют точки подключения переменного напряжения, а выходом — точки с которых снимают постоянное.
Переменное напряжение подают в точки, в которых соединены анод с катодом диодов. На выходе получают плюс и минус, при этом с точки соединения катодов снимают положительный полюс, т.е. плюс питания, а точка соединения анодов является минусом.
На приведенном рисунке изображена схема диодного моста, где мест подключения переменного напряжения обозначены «AC ~», а выход постоянного «+» и «-«.
Некоторые новички наивно предполагают, исходя из принципа обратимости электрических машин, что подав постоянку на мост на оставшихся контактах они получат переменку. Это не так, это не электрическая машина и здесь нужен преобразователь.
На современных диодных мостах контакты помечены также: вход переменки «AC» или «~», а выход по стоянки «+» и «-«. Совместим схему с изображением реального моста, чтобы разобраться, как это выглядит на практике.
Где устанавливают
Диодный мост обычно установлен на входе цепи питания, если выпрямляется сетевое напряжение 220В, такое решение применяется в импульсных блоках питания, в том числе компьютерного блока питания, устройство которого было рассмотрено в одной, из ранее выложенных на сайте (смотрите — Как устроен компьютерный блок питания) . Либо во вторичной обмотке трансформатора, такое включение применяется в обычных блоках питания, например маломощной магнитолы для дома или старого телевизора.
В современных блоках питания чаще используются импульсные схемы, в них диодный мост выпрямляет именно сетевое напряжение, а трансформатором управляют полупроводниковые ключи (транзисторы).
Будьте осторожны:
Если диодный мост стоит на входе по линии 220В, то на его выходе пульсирующее или сглаженное (если есть фильтрующий конденсатор) постоянное по знаку напряжение амплитудой в 310В. В любом случае выпрямленное напряжение увеличивается, относительно переменного.
Тоже касается и остаточного заряда фильтрующих электролитических конденсаторов, они могут биться током, даже когда питание на плату блока питания не подаётся. Их нужно предварительно разряжать лампой накаливания или резистором.
Не стоит разряжать емкость закорачиванием железным инструментом: вас может ударить током, вы можете повредить конденсаторы или дорожки платы.
Приступим к проверке диодного моста
Я буду рассуждать на примере типовой ситуации. Есть нерабочее устройство и его нужно отремонтировать.
Вы решили отремонтировать устройство, при разборке увидели на плате перегоревший предохранитель, защитный резистор или дорожку на печатной плате.
После замены сгоревшего элемента и восстановления дорожки не спешите включать. Начинающие электронщики любят делать «жучки» вместо предохранителя, тогда, тем более, нельзя включать плату.
Если предохранитель вышел из строя не случайно, а из-за проблем на плате блока питания вы получите повторное перегорание предохранителя. А если вместо него поставили жучек, то это включение сопроводить зрелищный фейерверк, возможное повреждение провода или розетки, выбитые пробки и автоматы.
Если пробит диодный мост, то после предохранителя на плате будет КЗ. Чтобы проверить диодный мост на пробой без мультиметра пользуйтесь проверенным способом: подключайте сомнительные блоки пиатния, через лампу накаливания на 40-100 Вт 220В. Она выполнит роль ограничителя тока и плата не повредится, и предохранитель не перегорит. Лампу подключают в разрыв одного из питающих кабелей 220В.
Если диодный мост пробит — лампа засветится в полный накал.
Это достаточно приблизительный способ диагностики диодного моста без мультиметра. Лампа может засветиться и при исправном мосте, если КЗ находится в схеме после него. Проверить диодный мост на обрыв без мультиметра можно и с помощью индикаторной отвёртки, на его выходе, как уже было сказано, должно быть высокое напряжение, если он установлен на линии 220В, неоновый индикатор в отвёртке должен засветиться.
Проверка диодного моста мультиметром
Любую деталь в электрической схеме нужно выпаивать перед её проверкой и прозвонкой. Можно, конечно, проверить и на плате, но есть вероятность получить ложные результаты измерений.
Также если вы будете прозванивать мост со стороны дорожек и контактных площадок на плате, есть вероятность отсутствия электрического контакта при визуально нормальной пайке. В тоже время, если диодный мост собран на плате из отдельных диодов, его зачастую удобно проверять, не выпаивая из плат, с её лицевой стороны. В таком случае вы получаете удобный доступ к металлическим ножкам диода.
Вам понадобится любой цифровой мультиметр, например самый дешёвый и распространенный типа dt-830. Включите режим прозвонки диодов, вы его можете найти по пиктограмме с условным его обозначением.
Часто этот режим совмещён с режимом звуковой прозвонки. Любая прозвонка и большинство омметров состоит из пары щупов, один из которых является плюсом, а второй — минусом. На мультиметра чаще всего красный щуп принимается за плюс, а чёрный за минус.
Как известно — диод проводит ток в одну сторону. При этом протекание тока возможно только при подключении положительного щупа (плюса) к аноду, а отрицательного к катоду. Тогда при проверке мультиметром в этом режиме силового кремниевого диода на дисплее отображаются цифры в диапазоне 500…700.
Это количество милливольт, которое падает на pn-переходе. Если вы увидели эти значения — диод уже наполовину исправен. Если цифры большие или у левой стороны экрана появилась единица и больше ничего — диод в обрыве. Если сработала звуковая прозвонка или на экране около 0 — диод пробит.
Теперь нужно определить, не проходит ли ток в обратном направлении. Для этого меняем щупы местами, на экране либо должно быть значение много больше 1000, порядка 1500, либо единица у левой стороны экрана — так обозначается большое значение, выходящее за пределы измерений. Если значения маленькие — диод неисправен, он пробит.
Если оба замера совпали с описанными — с диодом все в порядке.
Таким образом проверяют диодный мост из отдельных диодов.
У диодов Шоттки падение напряжения от 0.3В, то есть при проверке на экране мультиметра высветится цифра порядка 300-500.
Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.
Проверка диодного моста в корпусе мультиметром
Я начал статью с описания точек, куда подключается переменка и откуда снимается постоянка неспроста. Это поможет при его проверке, давайте разберемся!
Сразу оговорюсь, что черный щуп вставлен в разъём «COM» на мультиметре.
Ставим черный щуп мультиметра на контакт, помеченный как «+», а красным попеременно касаемся контактов «~» к которым подключают переменное напряжение по очереди. В обоих случаях на экране вы должны увидеть падение напряжения на прямовключенном pn-переходе, т.е. цифры около 600, если диод исправен. Поменяв щупы местами, если выпрямитель исправен, вы увидите большие значения или единицу.
На некоторых мультиметрах вместо единицы используют символы 0L.
Проверяем вторую пару диодов. Для этого красный щуп ставим на вывод «-» диодного моста, а красным по очереди касаемся выводов «~», вы должны увидеть на экране мультиметра значения прямого падения — около 600 при касании любого из контактов со знаком «~» (AC). Меняем щупы местами — на экране больше значения или бесконечность. Если что-то отличается, то диодный мост нужно заменить.
Быстрая проверка диодного моста
Иногда возникает необходимость экспресс проверки диодного моста, это можно сделать тремя касаниями щупов мультиметра к мосту. Можно проводить её не выпаивая мост из платы.
Первое положение щупов: ставим оба щупа между выводами для подключения переменного напряжения (на вход) «~». Если диодный мост пробит — сработает прозвонка, а если её нет, то на экране мультиметра значения устремятся к нулю.
Второе положение щупов: красный щуп ставим на вывод со знаком «-«, а черный на вывод со знаком «+», если диоды исправны — на экране мультиметра будут цифры в двое больше прямого падения на диоде, то есть 1200-1400 мВ. Если на экране около 600 — значит один диод пробит, и вы видите падение напряжения на одном оставшемся.
На рисунке ниже вы видите, как течет ток при такой проверке подумайте, почему получаются такие результаты.
Однако если один из диодов в обрыве ток потечет по уцелевшей ветви и на экране будут условно-исправные значения.
Третье положение щупов — красный щуп на вывод со знаком «-«, а черный на вывод со знаком «+», тогда на экране мультиметра будут такие же результаты как при проверке диода подключенного в обратном направлении (бесконечность). Если сработала прозвонка или на экране маленькие значения (от нуля до сотен) – значит, мост пробит.
Такая проверка эффективна, но не даст такой достоверности как описанная в предыдущем пункте статьи. Если устройство все равно не работает и на выходе диодного моста отсутствует напряжение, то выпаяйте мост и повторно проверьте его.
Проверка другими средствами
Если у вас нет мультиметра, но у вас есть советский тестер или, как его еще называют «цешка» или какой-нибудь Омметр с пределом измерения до десятка кОм можно использовать и эти стрелочные приборы.
Логика проверки такая же самая, только в прямом включении стрелка будет указывать низкие сопротивления, а в обратном включении диода — высокое.
Если у вас и этого нет — вам поможет любая батарейка или несколько батареек с выходным напряжением больше пары вольт и лампочка накаливания (можно и светодиодом и кроной, батарейкой на 9В). Взгляните на картинку, и вам все станет ясно.
Заключение
Проверка диодного моста — базовый навык для тех, кто занимается ремонтом радиоэлектронной аппаратуры и электроприборов и для тех, кто хочет этому научиться. Для этого нужен минимальный набор инструментов, но хорошие понимание не только способа проверки, а и самой логики работы моста.
Использование мультиметра, цешки или прозвонки не меняет конечного результата при правильном проведении измерений. Однако на моей практике случалось так, что прибор показывал исправность диодного моста, а в реальности он не работал.
Возможно он «пробивался» под большим напряжением, чем на клеммах прибора, которым я проводил проверку. Поэтому самым точным способом «посмотреть» процессы, происходящие в схеме — это осциллограф.
В автоэлектрике, например по одной только осциллограмме напряжения в линии можно определить исправность диодного моста генератора, причем специалист может даже определить, что конкретно произошло — пробой или обрыв.
Ранее ЭлектроВести писали, что компания AE Solar начала свою деятельность в Германии в 2003 году со строительства солнечных электростанций. С 2009 года компания производит солнечные батареи в Китае. Теперь же она начинает производство в Грузии. В одном из интервью директор по продажам компании Вальдемар Хартманн отвечает на вопросы о продуктах и рыночной стратегии компании.
По материалам: electrik.info.
Как проверить диодный мост мультиметром
В бытовых приборах и разных устройствах много радиоэлементов, благодаря которым всё работает так, как надо. Неисправность хотя бы одной детали плохо сказывается на работе всего механизма, который может даже перестать функционировать. Один из представителей таких важных элементов электротехники — диодный мост. Его поломка не приводит ни к чему хорошему, но вовремя заметить неисправность помогает мультиметр. Мы расскажем вам, как проверить диодный мост мультиметром, но для начала вспомним, что это за деталь и как устроена её работа.
Диодный мост: особенности и принцип работы
Диодный мост — схема, которая собрана из соединенных диодов и преобразовывает переменное напряжение в постоянное. Применяется почти во всех механизмах, которые питаются от сети, что логично: в сети напряжение переменное, а электроника работает от постоянного. Поэтому другое название такой схемы — выпрямитель переменного тока.
Несмотря на всю простоту, такое устройство намного лучше обычного диода. В теории, и применение одного полупроводника дает нужный результат — преобразование напряжение. На практике на выходе оно сильно пульсирует, поэтому не годится в качестве питания электросхем. А вот включение конкретным способом нескольких диодов дает практически идеальный результат: лишняя полуволна не срезается, а переворачивается, благодаря чему сильно повышается эффективность выпрямления.
Как выглядит диодный мост
Найти выпрямитель на плате не трудно, но внешний вид отличается в зависимости от устройства. Часто четыре диода впаяны рядом и собраны в одном корпусе — это выпрямительная сборка. На фото представлено несколько вариантов:
В таких вариантах четыре вывода: два обозначаются как «+» и «-» (выходы), а два без символов или указываются как «~» или «АС» (входы).
Диодный мост генератора автомобиля выглядит по-другому: это пара металлических электропроводящих пластин, на которых в определенной последовательности расположены диоды.
На мосту могут быть не только силовые, но и вспомогательные диоды:
Здесь зеленым помечены силовые диоды. Тестировать лучше все, тем более что сделать это не трудно.
Как прозвонить мультиметром диодный мост генератора
Инструкция проверки исправности выпрямителя:
- Разобрать генератор и снять диодный мост.
- Промыть его в бензине, чтобы избавить от масла и грязи (они, кстати, тоже могут быть причиной неисправности).
- Дать высохнуть и приступать к проверке.
- Установить щупы тестера в соответствующие гнезда. Полезна статья о том, как пользоваться мультиметром.
- Выбрать на мультиметре режим проверки диодов (в данном случае он совмещен с функцией прозвонки):
- Подключить наконечники проводов измерителя к каждому диодному выводу. Минус соединить с алюминиевой или стальной пластинкой, а плюс – с металлической жилой, которая сделана в виде луженого оголённого проводка (диаметр не меньше 1 мм).
- Одним проводом дотронуться до жилы или пластины, а другим — до противоположного вывода. После этого поменять щупы местами.
Значения работающего диода в одном направлении будут в пределах 400-700, в другом — бесконечность или 1. Диоды с плюсом и минусом проверяются аналогично.
Так нужно протестировать все диоды. Если у какого-то элемента с обоих направлений показывается 1, значит, он повреждён.
Значения на всех диодах не должны сильно отличаться. Если же у диода серьезное отклонение, он работает плохо.
Подробности проверки диодного моста генератора мультиметром на видео:
Теперь вы знаете, как проверить диодный мост генератора мультиметром.
Проверка моста с другой конструкцией
Как проверить диодный мост других устройств?
Принцип действия обычный (проверка, не выпаивая):
- Перевести цифровой мультиметр в режим проверки диодов. Если у вас стрелочный агрегат, выбирайте функцию измерения сопротивления с диапазоном в 1 кОм.
- Прозвонить каждый диод, подключая щупы тестера в одной полярности, затем в другой. В одном направлении будет небольшое сопротивление (в пределах 200-700 Ом), в другом прозвонка невозможна, то есть мультиметр выдает «бесконечность».
Суть проверки показана на картинке:
Если результаты не соответствуют норме, нужно выпаивать мост. Принцип проверки такой же, как описан выше. Если у диода в двух направлениях высокие значения, он в обрыве. Если звонится в обоих случаях, то элемент пробит.
Правила безопасности
В зависимости от того, где и какой диодный мост вы проверяете, учтите следующее:
- Многие современные агрегаты функционируют с высоковольтными источниками питания, то есть мосты в них под высоким напряжением! Поэтому перед тестированием отключите устройство от сети и разрядите сглаживающие конденсаторы, которые на фото под алыми стрелочками. Сделать это просто: можно замкнуть на секундочку конденсаторные выводы отверткой, при этом держать ее нужно за изолирующий участок. Если не учесть этот пункт, можно потерять жизнь!
- Когда ремонт закончен, не стоит напрямую подключать прибор в сеть. Сначала включите его через лампу (150-200 Вт). Если все в порядке, она будет немного гореть. А вот яркий свет указывает на короткое замыкание.
- Берегите глаза и не только. Детали импульсных блоков способны взорваться, если отремонтированы неправильно, а это очень опасно!
Теперь вы знаете, как проверить диодный мост мультиметром. Беритесь за работу, если всесторонне изучили технику безопасности и уверены в своих силах.
Делитесь в комментариях своим опытом.
Желаем безопасных и точных измерений!
Вопрос — ответ
Вопрос: Как проверить диодный мост генератора цифровым мультиметром?
Ответ: Сначала нужно разобрать генератор и снять диодный мост, промыть его в бензине, чтобы избавить от масла и грязи. Дать высохнуть и приступать к проверке в соответствии с инструкцией.
Вопрос: Как прозвонить четырехвыводный диодный мост мультиметром?
Ответ: Перевести цифровой мультиметр в режим проверки диодов. Прозвонить каждый диод, подключая щупы тестера в одной полярности, затем в другой. В одном направлении будет небольшое сопротивление (в пределах 200-700 Ом), в другом прозвонка невозможна, то есть мультиметр выдает «бесконечность».
Вопрос: Как прозвонить диодный мост автомобильного генератора мультиметром?
Ответ: После снятия моста с генератора установить щупы тестера в соответствующие гнезда. Выбрать на мультиметре режим проверки диодов, подключить наконечники проводов измерителя к каждому диодному выводу. Минус соединить с алюминиевой или стальной пластинкой, а плюс – с металлической жилой. Одним проводом дотронуться до жилы или пластины, а другим — до противоположного вывода. После этого поменять щупы местами.
Что такое диодный мост: схема и принцип работы
Смотрите также обзоры и статьи:
Таким мостом называется электроустройство миниатюрного размера, используемое в электросхемах и светодиодном оборудовании для трансформирования электротока, а именно его изменение из переменного значения в постоянное. Также оно выпрямляет ток в схеме. Важная часть двухполупериодного элемента питания, так и называемая — выпрямителем.
Большинство предприятий, производств и просто жителей городов и сел страны активно приобретают светодиодные лампы и ленты в качестве выгодной замены привычных источников света с нитями накаливания и даже галогеновых или люминесцентных ламп. Ведь LED лампы в 9 раз более экономны, чем накаливания и на 30-40% меньше затрачивают на аналогичную выработку яркости, чем другие «экономки». Современные источники света на экономных кристаллах не имеют в своем содержании вредных испарений, соединений, металлов и кислот, а значит, не загрязняют почву и не требуют специальной утилизации. Светодиоды, которые, как и обычные диоды, преобразуют ток, но только в светящийся эффект, не вырабатывают лучей в инфракрасном и ультрафиолетовом спектре.
Во многом по конструкции светодиодная лампа не отличается от своих предшественников. В ней представлены два стандартных типа цоколя, штырьковый и резной, которые отличаются принципом действия. Резной или вкручивающийся цоколь подходит для использования в аналогичных патронах с напряжением 220 вольт (переменный ток). Каждая лампа имеет встроенный стабилизатор для регулирования напряжения в постоянное значение. Резные цоколи – привычные Е14, Е27 и Е40, где цифровое значение указывает на расстояние между контактами цоколя.
Штырьковый цоколь характерен для большинства ламп, работающих от низких значений напряжения, и выглядит как два металлических или керамических столбика со шляпкой на конце или без нее. К таким цоколям можно отнести светодиодные лампы MR16, G4,G9.GU10 и другие. Некоторые модели можно использовать для основного освещения, однако большинство ламп штырькового типа предназначены для точечной или акцентной вспомогательной подсветки витрин, ступеней дома, салона автомобиля, номерных знаков, приборной панели и т.п.
И самое главное – в основе всех этих современных источников света – все тот же диодный мост из светодиодов, который мы рассмотрим ниже.
Схема диодного мостаНаиболее примитивным способом, т.е. схемой подключения диодов, является комплекс из четырех последовательно соединенных полупроводников, которые создают нечто наподобие ромба. Далее по схеме мост подключается к разным по полярности источникам, снимая при этом переменное напряжение, преобразовывая его в постоянное значение.
По разновидностям и от того, какая схема подключения, разделяют два основных вида:
- Однофазный диод,
- Трехфазный.
Чтобы разыскать диод в электросхеме, необходимо обратить внимание, на то, что обычно его обозначение выглядит так:
А тот самый примитивный мост, состоящий из четырех диодов, в соединенном состоянии передается таким рисунком:
Однако на многих общих схемах обозначения диодного моста можно встретить и такой, более простой:
Или же, наоборот, детализированный:
Главное во всех схемах – правила, по которым необходимо этот элемент подключать к напряжению. Правильно это нужно делать так:
Выпрямитель Ларионова – еще одна распространенная схема подключения. Это трехфазный диод, пропускающий полуволны поочередно. На чертеже это демонстрируется как:
Техническая схема предполагает полупроводниковый диод-выпрямитель и его разновидности, в числе которых диод Шоттки. Выпрямитель из данных сборок крайне отличается от остальных. Так, он применим в блоках питания импульсного типа, ведь кристалл Шоттки имеет невысокую барьерную силу, малое время на обратное восстановление. Используется зачастую в схемах, где катод и анод – общий. В графике это представлено таким образом:
Устройство диодного мостаДля того, чтобы самостоятельная сборка состоялась успешно, необходимо выбрать диодный мост, подходящий по основным параметрам. К главным показателям таких устройств можно отнести важнейших два:
- Обратное напряжение;
- Ток в максимальном значении обратный.
То есть при выборе разновидности моста с рабочим напряжением от обычной сети, а именно 220 вольт,
Номинальная сила напряжения у приобретаемого продукта должна быть не меньше 400 вольт, а сила тока в выпрямленном состоянии – не меньше 3 ампер. Стоит обращать внимание и на мощности пикового тока (максимальная концентрация в один момент) и обратного напряжения. В данном случае, например, пик – около 50 ампера, а обратка по напряжению – 600-1000 ватт, смотря какую модель моста вы выбрали.
Само устройство моста подразумевает наличие корпуса, форма которого может отличаться в зависимости от схемы подключения диодов. Так, могут быть прямоугольные и квадратные модели, и даже в один ряд в виде прямой платы. В квадратном корпусе можно встретить выводы, размещенные по углам устройства. Также устройство моста требует алюминиевых плат или специальных радиаторов для отвода излишков тепла, которое неизбежно возникает во время прохождения такого количества напряжения и силы тока через небольшие элементы микросхемы. Поэтому все мосты имеют отдельные крепежные элементы.
Рекомендуем выбирать модели, в которых диоды умещены в один корпус. Это позволяет:
- Мосту не перегреваться и поддерживать нормальный эксплуатационный режим без сбоев;
- Диоды, размещенные в одном устройстве, изготавливаются на заводе в одной партии, поэтому с большей вероятностью будут иметь схожие параметры, что благоприятно скажется на всей работе прибора;
- Экономия пространства на плате за счет плотного размещения внутри одного бокса.
Отрицательная волна в диодном мосте не уменьшается, а трансформируется в положительную.
Это происходит из-за того, что он как бы «подчиняет» себе нестабильный переменный ток, который меняет свое направление по несколько раз в одночасье, образуя то положительные в амплитуде, то отрицательные полуволны.
При подаче нагрузки через генератор, диодный мост все выравнивает, ведь поочередно в игру вступают то первые два полупроводника, то последующие два. То есть происходит соприкосновение двух полупроводников разной проводимости или p-n-переход, называемый также электронно-дырочным, поскольку в нем участвуют и электроны, и дырки.
Как собрать диодный мостПоскольку найти сегодня старые постперестроечного периода подобные выпрямители довольно непросто, то детально рассматривать схему сборки и пайки советского образца не будем. Только стоит упомянуть, что выглядит схема для пайки четырех последовательно подключенных диодов так:
Собрать современный мост даже проще: если представить его в виде ромба, то на северном угле будет вход с переменным значением, как и на южном. Западный угол уйдет под выход с отрицательным значением, а восточный – с положительным.
Чем отличаются диодные мостыОни отличаются в первую очередь такими существенными показателями как:
- Форма корпуса;
- Схема расположения выводов.
Выводы могут быть в один ряд, с углов и даже снизу корпуса. Также различия составляют такие критерии как мощность напряжения (400-1000 ватт), сила тока обратного и на максимальных значениях.
Как проверить исправность диодного мостаНесмотря на цену и надежность, любая модель моста такого типа неизбежно сталкивается с таким понятием как остаточная пульсация, которая в любом случае остается. Поэтому рекомендуем проверять исправность устройства с помощью мультиметра, а именно вольтаж, омметраж и показатели в ваттах. Подавайте на диод напряжение не больше 3 вольт.
Опубликовано: 2020-06-09 Обновлено: 2021-08-30
Автор: Магазин Electronoff
ПОДХОДЯЩИЕ ТОВАРЫ
Поделиться в соцсетях
Как правильно проверить диодный мост мультиметром
Диодный мост есть практически в любой аппаратуре, и выход его из строя – очень распространенная причина поломки электронного прибора. Проверка же и замена диодного моста в мастерской стоят неоправданно дорого. Тем не менее самостоятельно выявить неисправность выпрямительного блока и при необходимости починить или заменить мост можно самостоятельно с минимальными затратами. Для этого нужно знать, как проверить диодный мост. Именно эту задачу мы и постараемся сегодня решить.
Что такое диодный мост и что у него внутри
Прежде чем мы займемся проверкой диодного моста, необходимо узнать, что вообще такое диодный мост и из чего он состоит. Мост представляет собой схему, собранную из четырех диодов, соединенных определенным образом, и служит для преобразования переменного напряжения в постоянное. Используется такая схема практически во всей аппаратуре, питающейся от сети – ведь почти всей электронике для своего питания нужно постоянное напряжение, а в сети оно переменное. Но для начала выясним, что такое диод и какими свойствами он обладает.
Диод и принцип его работы
Диод – двухэлектродный полупроводниковый прибор, способный проводить ток только в одном направлении. Его часто так и называют – полупроводник. Если включить полупроводник в цепь постоянного тока анодом к плюсовому выводу источника питания, то через него потечет ток. Если к минусовому – тока в цепи не будет. Во втором случае говорят, что диод закрыт. А теперь включим наш полупроводник в цепь переменного напряжения.
Выпрямление переменного напряжения при помощи полупроводниковИз рисунка хорошо видно, что полупроводник пропустил положительную полуволну и срезал отрицательную. Если включить его в другой полярности, то срезанной окажется положительная полуволна.
Чем диодный мост лучше диода
Теоретически используя лишь один полупроводник, ты смог бы преобразовать переменное напряжение в постоянное. Практически же ты получишь на выходе сильно пульсирующее напряжение, которое мало годится для питания электронных схем. Но если включить несколько диодов определенным образом, то лишнюю полуволну можно не срезать, а в буквальном смысле перевернуть ее. А теперь взгляни на схему ниже:
Диодный мост по схеме Гретца
При положительной полуволне работают диоды под номером 1 и 3: первый пропускает плюс, второй – минус. Полупроводники 2 и 4 в это время заперты и в процессе не участвуют – к ним приложено обратное напряжение, и сопротивление их pn-переходов велико. При отрицательной полуволне в работу включаются диоды 2 и 4. Первый перенаправляет отрицательную полуволну на положительный выход, второй служит минусом. На этом этапе запираются приборы 1 и 3. В результате отрицательная полуволна не пропадает, а просто переворачивается:
Результат работы мостового выпрямителяВот так при помощи трех дополнительных полупроводников мы повысили эффективность выпрямления вдвое. Конечно, напряжение на выходе все равно пульсирующее, но с такой пульсацией легко справится сглаживающий конденсатор относительно небольшой емкости.
к содержанию ↑Как найти диодный мост на плате
Прежде чем прозвонить диодный мост, его необходимо сначала найти на плате. Для этого, конечно, нужно знать, как он может выглядеть. Внешний вид у него зависит от разновидности корпуса. Выпрямители могут состоять как из четырех отдельных полупроводников, впаянных рядышком, так и из диодов, собранных в одном корпусе. Такой сборный прибор так и называют – выпрямительная сборка. Вот лишь несколько видов таких сборок:
Внешний вид выпрямительной диодной сборкиНесмотря на обилие форм, распознать интегральный диодный мост несложно. Он, как ты заметил, четырехвыводной, и два его вывода отмечены знаками «+» и «-». Это выход выпрямителя. На входные выводы подается переменное напряжение, поэтому они обозначаются символом «~», буквами «АС» (аббревиатура от английского «переменный ток») либо могут не обозначаться совсем.
Располагается диодный мост рядом с проводами подачи переменного напряжения: с трансформатора либо для импульсных блоков питания непосредственно из розетки (сетевой шнур).
Как правило, рядом с выпрямителем ставится сглаживающий электролитический конденсатор – такой бочонок относительно больших размеров.
На рисунках, приведенных ниже, выпрямительные диодные мосты обозначены зеленой стрелкой:
Примеры расположения выпрямительных диодных сборок и мостов на дискретных элементах
к содержанию ↑Как проверить диодный мост
Проверить диодный мост можно двумя способами:
- При помощи тестера (мультиметра).
- При помощи лампочки.
Первый способ, конечно, предпочтительнее: он весьма точен и безопасен для диодного моста. Но если с мультиметром проблемы, то можно воспользоваться лампой от карманного фонаря и батарейкой на напряжение 5-12 В.
Теперь если диодный мост найден, прежде всего нужно провести внешний осмотр всей платы устройства. Элементы должны иметь естественный цвет, не быть обуглены или разрушены. Осмотри место пайки и целостность дорожек: важно, чтобы ничего не отпаялось и не лопнуло. Заодно внимательно осмотри электролитические конденсаторы (те самые бочонки). Они тоже должны быть в порядке: не поврежденные и не вздувшиеся. Если какой-то конденсатор вздулся или взорвался, его надо выпаять – все равно он потребует замены, чтобы не мешал проведению измерений.
Если конденсатор взорвался, после его демонтажа всю плату нужно тщательно промыть спиртом. Разлетевшиеся части конденсатора – это электролит, который не только проводит ток, но и имеет свойства кислоты.
Прозвонка диодного моста при помощи тестера
Теперь переходим к проверке, или, как говорят, к прозвонке диодного моста, которую нередко приходится проводить в два этапа:
- Предварительная прозвонка на месте.
- Точная проверка.
Первый этап удобен тем, что диодный мост можно не выпаивать, а проверять его прямо в схеме. Второй метод более трудоемок, но в случае неудачи с первым вариантом поможет провести точную проверку.
Для работы нам понадобится тестер: стрелочный или цифровой. В первом случае прибор должен уметь измерять сопротивление, во втором – иметь режим проверки полупроводников. Этот режим обозначается значком диода:
Проверить диодный мост можно лишь в этом положении переключателяНикогда не проверяй полупроводниковые приборы цифровым тестером в режиме измерения сопротивления. В этом режиме практически все подобные приборы проводят измерение переменным током, и прозвонка полупроводников ничего не покажет.
Прозвонка диодного моста на месте
Итак, стрелочный прибор переводим в режим сопротивления на предел измерения около 1 кОм, цифровой включаем на проверку диодов. Теперь вспоминаем схему диодного моста:
Электрическая схема диодного мостаТвоя задача – прозвонить каждый из диодов, подключив к нему щупы тестера сначала в одной, а потом в другой полярности. Как видно из схемы, добраться до каждого диодика в отдельности не составляет труда, достаточно лишь выбрать соответствующие ножки сборки. Если выпрямитель собран на отдельных полупроводниках, проблемы вообще нет: просто прозванивай каждый, касаясь щупами прибора его выводов.
Что говорят измерения после прозвонки? Для каждого из отдельных полупроводников результат измерений должен быть следующим: в одном направлении тестер показывает маленькое сопротивление (значение около 200-700 Ом), в другом невозможно прозвонить вообще – прибор показывает «бесконечность».
На самом деле цифровой тестер в режиме проверки диодов показывает не сопротивление цепи, а величину падения напряжения на открытом диоде. Это имеет большое значение для измерения параметров полупроводников, но совершенно не существенно для прозвонки. Таким образом, алгоритм работы с любым типом тестера одинаков, а напряжение падения можешь принимать хоть за милливольты, хоть за Омы.
Если самостоятельно вычислить каждый из диодов по выводам тебе сложно, то ориентируйся на картинку ниже, в которой в качестве примера показана прозвонка диодной сборки GBU25M.
Прозвонка диодного моста при помощи мультиметраОбрати внимание, что цифры на экране тестера, изображенного на рисунке, условны. Падение напряжения на диоде и его сопротивление могут колебаться и зависят от типа полупроводника и его рабочего напряжения.
Точная проверка
Если результаты твоих измерений совпали с теми, которые описал я, то диодный мост можно считать исправным. Но если что-то пошло не так и ты не получил желаемых результатов, то диодный мост придется выпаять и провести проверку еще раз. Дело в том, что большинство схемотехнических решений предусматривают «обвязку» выпрямителя дополнительными элементами: конденсаторами, фильтрами, катушками и пр. Все это может внести искажения в измерения, и ты просто не увидишь, почему и что не так.
Включаем паяльник и выпаиваем диодный мост. Если он состоит из отдельных диодов, то их достаточно отпаять лишь с одной стороны, приподняв по одной ножке каждого диода над платой. Теперь проводи повторное измерение. Методика та же, что и в первом случае: каждый из диодов прозванивай в обе стороны, меняя полярность подключения щупов прибора.
Если и сейчас показания прибора не соответствуют норме, можно с полной уверенностью сказать, что сборка или отдельный диод неисправны. Если в обоих направлениях измерения высокие значения сопротивления, переход диода выгорел, он в обрыве. Звонится в обе стороны – диод пробит, замкнут накоротко. Если пробита диодная сборка, то придется заменить ее целиком. Если диоды стоят отдельно, достаточно заменить неисправный прибор однотипным.
В Интернете полно поисковых запросов типа «как проверить диодный мост индикаторной отверткой». Индикаторная отвертка, точнее, указатель напряжения предназначен для абсолютно других целей, и проверять диоды с его помощью не только бессмысленно, но и опасно!
Прозвонка моста индикаторной лампой
Если в твоем распоряжении не оказалось мультиметра, то для проверки диодного моста можно обойтись и подручными средствами: лампочкой и батарейкой. Тебе понадобится батарейка или кассета с несколькими пальчиковыми батарейками с общим напряжением 5-12 В и маломощная лампочка накаливания приблизительно с таким же, как у батареи, напряжением питания.
Лампу нужно брать минимальной мощности, чтобы не сжечь диод чрезмерно большим током. Подойдет, к примеру, лампочка от маломощного карманного фонаря. Если в качестве батареи ты используешь аккумулятор на 12 В, то подойдет и лампочка от подсветки приборной панели или габаритных фар («подфарников»).
Ты, конечно, помнишь, что диод проводит ток в одну сторону, поэтому взгляни на две предложенные мной схемы:
Схема проверки диода при помощи лампы накаливанияНа схеме слева диод включен в прямом направлении и пропускает ток – лампа должна загореться. На правом рисунке диод включен в обратном направлении и тока не пропускает – лампа погашена. Понял идею? Собирай тестер и щупами А1 и А2 прозванивай диодный мост, ориентируясь не на экран мультиметра, а на лампу. Горит – маленькое сопротивление, погашена – большое. Вот и вся хитрость.
к содержанию ↑Проверка диодного моста генератора автомобиля
Если у тебя есть автомобиль, то тебя наверняка заинтересует этот раздел статьи. Выход из строя генератора авто – серьезная проблема, решение которой стоит немалых денег. Но и тут причиной поломки может оказаться неисправность диода выпрямительного моста, который установлен в генераторе. А это значит, что вопрос можно попытаться решить своими силами. Взглянем на упрощенную схему генератора:
Схема диодного моста генератора автомобиляПеред тобой такой же диодный мост, только трехфазный, с шестью, а не с четырьмя диодами. Это означает, что прозвонить его не составит никакого труда!
Итак, разбирай генератор и снимай диодный мост, который выглядит примерно вот так:
Диодный мост автомобильного генератораЗелеными стрелками я отметил силовые диоды, но еще есть три вспомогательных, они помечены красными стрелками. Звонить будем и те и другие – все на виду и легкодоступны.
Промывай подковку в бензине, чтобы смыть всю грязь и масло, которые могут быть причиной неисправности. Когда мост высохнет, начинай прозванивать каждый диод, используя методику, описанную выше. Для работы можно использовать как мультиметр, так и лампу от габаритов в комплекте с автомобильным аккумулятором.
Обрати внимание! Диоды, стоящие на разных подковках, только с виду одинаковые. На самом деле у одних на центральном выводе анод, у других – катод. Это сделано для того, чтобы диоды можно было расположить на одной подковке, одновременно исполняющей роль радиатора, без изолирующих прокладок.
к содержанию ↑Техника безопасности
Подавляющее большинство современной аппаратуры имеет импульсные высоковольтные блоки питания. Это означает, что диодные мосты в них работают под напряжением до 300 В. Поэтому, прежде чем начать измерение, отключи прибор от сети и, главное, разряди сглаживающие электролитические конденсаторы, которые могут «держать» опасный для жизни заряд часами. Для наглядности я пометил их красными стрелками:
Плата блока питания ПК с диодным мостом и сглаживающими конденсаторамиЧтобы разрядить их, замкни на секунду выводы конденсатора отверткой, держа ее за изолирующую ручку. В противном случае ты не только сожжешь мультиметр, но и можешь попасть под смертельное напряжение.
И последний совет: после ремонта прибора не спеши втыкать сетевую вилку в розетку. Для начала включи его в сеть через лампу накаливания мощностью 150-200 Вт. Если все сделано правильно, лампа будет едва светиться. О неудавшемся ремонте лампа просигнализирует тебе ярким светом в полный накал, указывающим на короткое замыкание.
Делая всевозможные сетевые переключения, береги глаза. Очень многие элементы импульсных блоков питания при неудачном ремонте способны взрываться не хуже осколочной гранаты. А разрыв электролитического конденсатора, как я уже писал выше, грозит огромным разлетом не только осколков алюминия и клочьев бумаги, но и разбрызгиванием кислоты.
Вот ты и научился проверять исправность диодных мостов. Надеюсь, в будущем эти знания будут полезны и сохранят не только твои деньги и время, но и нервы. Провести самостоятельную дефектовку электронного прибора, а затем и его ремонт – это круто. Не так ли? Пиши ответ в комментариях
Задать новый вопрос
ПредыдущаяВопросы экспертуКак правильно менять лампочки в подвесном потолке
СледующаяВопросы экспертуКак правильно заземлить ванну в квартире?
Спасибо, помогло!Не помоглоКак выглядит диодный мост на плате
Схема диодного моста
Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.
Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.
Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.
Схема диодного моста
Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.
В железе это выглядит следующим образом.
Диодный мост из отдельных диодов S1J37
Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.
Как работает диодный мост?
Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «
») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.
Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.
Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.
Обозначение диодного моста на схеме.
На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.
Диодная сборка.
Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.
Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.
Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «
». Иногда могут иметь обозначение AC (Alternating Current — переменный ток).
Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).
Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.
Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.
Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.
В реальности сборка диодного моста может выглядеть вот так.
Диодная сборка KBL02 на печатной плате
Диодная сборка RS607 на плате компьютерного блока питания
А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.
Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.
Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.
Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.
Условное изображение диодного моста и диодной сборки
Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.
На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1 – VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.
Где применяется схема диодного моста?
Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.
Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).
В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.
В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.
Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.
Принцип работы диодного моста
Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.
Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.
Трехфазный диодный мост схема
Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.
Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.
Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.
Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.
Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.
8 thoughts on “ Диодный мост схема, принцип работы ”
Как будет выглядеть синусоида, при полключении двух фаз?
Вопрос на засыпку.
Подключение 3-х диодных мостов к трем фазам с общей нейтралью. То есть на каждом диодном мосту есть N и L1, N и L2, N и L3 по 220 вольт. На выходе с мостов делитель на 100 и конденсатор на общей минусовой земле.
Я считал что нет фазы и нет выходного напряжения с диодного моста, но это не так.
Так как работает однофазный мост установленный 3 раза на каждую фазу и объединенный общим минусом?
Надеюсь правильно представил себе эту схему… Если объединить минусы хотя бы 2-х диодных мостов, то получим межфазное короткое замыкание через диоды.
Если было там КЗ меж фаз, то диоды 1n4007 (1А, 1000 В) испарились бы в пыль. Значит КЗ там скорее всего нет.
Если бы было замыкание был бы бабах, а его не и все работает только криво.
сколько постоянки будет на выходе с моста при условии ровнячка 220 в на фазе?
Если не применять фильтры то после однофазного диодного моста не будет постоянного напряжения, будет однополярное. Если поставить конденсатор сглаживающий пульсации, то можно добиться напряжения : входное напряжение умножить на корень из 2, минус двойное падение на диодах (это около 2 В).
Если смотреть трехфазные схемы, то там и без фильтров пульсации меньше. Среднее выходное напряжение будет сильно зависеть от схемы включения.
Например для схемы треугольник-Ларионова среднее выходное составить 1,35 от действующего входного. А для звезды-Ларионова коэффициент равен 2,34.
Давайте немного уточним терминологию — тогда после реального конденсатора тоже не будет постоянного напряжения. Во всех случаях (даже после однофазного диодного моста) будет постоянная составляющая и переменная. При этом постоянная составляющая будет в первом случае, вроде, равна половине действующего напряжения минус падение на диоде (в количественной оценке могу ошибаться, лень считать)». А переменная во втором случае будет значительно меньше: тем меньше, чем больше приближение реального конденсатора к идеальному бесконечной емкости (при реальном источнике напряжения).
Несмотря на то что в бытовых розетках, как известно, присутствует переменное напряжение величиной 220 В, подавляющее большинство электронных приборов требует намного меньших значений. Более того, это питание должно осуществляться не переменным, а постоянным током. Именно поэтому практически каждый бытовой прибор имеет в составе своей схемы выпрямитель — диодный мост.
Постоянный и переменный ток
Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.
На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.
Для сравнения можно подключить щупы осциллографа к источнику постоянного тока. В качестве него могут использоваться клеммы батарейки. В этом случае картина будет несколько иная.
Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.
Особенности видов напряжения
Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.
Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.
Выпрямление электроэнергии
До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.
Выпрямитель на одном диоде
Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.
На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.
На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.
Чем выше емкость конденсатора, тем больше энергии он сможет запасти, и тем больше напряжение будет походить на постоянное.
Двухполупериодный прибор
Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.
Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:
При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.
Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.
Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.
Выпрямительный мост своими руками
Каждый, кто занимается конструированием электронных устройств, не обходится без выпрямителя. Он присутствует практически в каждом самодельном приборе, питаемом от сети. Для того чтобы собрать выпрямитель, недостаточно взять четыре диода и скрутить им ножки согласно приведенной схеме. Для того чтобы мост работал, придется ближе познакомиться с диодами и их характеристиками перед тем, как браться за паяльник. Основные характеристики, которые понадобятся при построении выпрямителя у полупроводников, следующие:
- Максимально допустимое обратное напряжение. Напряжение, которое способен выдерживать диод в закрытом состоянии.
- Максимально допустимый прямой ток. Ток, который может долговременно выдерживать диод без повреждения.
- Прямое напряжение. Величина падения напряжения на открытом диоде.
- Граничная частота. Частота переменного тока, на которой прибор еще может работать.
При сборке сетевого выпрямителя, способного отдавать в нагрузку ток в 1 А, необходимо сделать диодный мост на 12 вольт. Так выглядит практическая схема мостового выпрямителя.
Прежде всего, необходимо правильно всё рассчитать и подобрать нужный тип полупроводников, исходя из имеющихся диодов. Если в распоряжении есть диоды Д226, КД204А, КД201А и Д247, нужно открыть справочник и ознакомиться с их основными характеристиками (напряжением, током и граничной частотой):
- Д226 — 400 В, 0,3 А, 1 кГц;
- КД204А — 400 В, 0,4 А, 50 кГц;
- КД201А — 100 В, 5 А, 1,1 кГц;
- Д247 — 500 В, 10 А, 1 кГц.
Все четыре типа диодов подходят по напряжению и частоте, но первые два не выдержат ток в 1 А. Остаются КД201А и Д247. Решение взять те или другие зависит от конструкции блока питания. Первые диоды компактнее, вторые имеют хороший запас по току.
Сглаживающий конденсатор С1 нужно выбирать по типу, электрической емкости и напряжению. Понадобится электролитический конденсатор емкостью от 1 000 до 20 000 мкФ с рабочим напряжением не ниже 25 В. Чем выше емкость сглаживающего конденсатора, тем качественнее будет выпрямленное напряжение, но тем больше по габаритам окажется сама конструкция. Всю необходимую информацию, включая емкость, полярность и рабочее напряжение можно увидеть прямо на конденсаторе.
Осталось включить паяльник и спаять схему, не забывая при этом, что электролитические конденсаторы — полярные приборы. Они имеют плюс и минус, путать которые нельзя.
Выбор типа сборки
Использование выпрямительного моста вместо четырех диодов не только существенно упрощает сборку, но и делает конструкцию более компактной. Принцип выбора типа сборки тот же — по напряжению, току и частоте. Чтобы определить, подойдет ли, к примеру, сборка КЦ402Г, фото и схема которого приведены выше, нужно обратиться к справочнику. В нём указаны следующие характеристики моста:
- максимальное обратное напряжение диодов — 300 В;
- прямой ток всей сборки — 1 А;
- граничная частота — 5 кГц.
Мостик подходит, но микросборка будет работать на пределе своих возможностей по току. Для обеспечения надежности схемы лучше использовать более мощный прибор. Например, мост КЦ409А на ток 3 А или КЦ409И на 6 А.
Проверка элементов
Нередко в самодельных устройствах приходится использовать детали, уже бывшие в употреблении. Перед установкой все такие комплектующие должны быть проверены. Поскольку выпрямительная сборка представляет собой четыре диода, подключенных встречно-последовательно, а до выводов всех диодов можно добраться щупом, вопрос от том, как прозвонить диодный мост, решается элементарно.
Для этого достаточно измерить обычным омметром сопротивление каждого диода, ориентируясь на схему выпрямителя и цоколевку моста. В одной полярности щупов прибор должен показывать высокое сопротивление, в другой — низкое. Когда соответствующий диод пробит, в обоих положениях щупов сопротивление будет низким, если сгорел — высоким.
Использование барьера Шоттки
Еще одна основная характеристика, которая не использовалась в предыдущих расчетах, — прямое падение напряжения на открытом диоде. Диод только теоретически проводит ток в одну сторону, а диэлектрик — в другую. На практике в прямом подключении на приборе падает напряжение, которое может достигать 1,5 В и более.
Это значит, что напряжение на выходе однополупериодного выпрямителя будет ниже входного на 1,5 В, а если использовать мостовую схему, то на все 3 В. Кроме того, вольты, помноженные на протекающий через выпрямитель ток, будут бесполезно рассеиваться на диодах в виде тепла, уменьшая КПД схемы.
Избежать подобной неприятности позволяют диоды с барьером Шоттки. Они отличаются низким (десятые вольта) прямым падением напряжения, а значит, собранная на них схема будет обладать более высоким КПД и работать в облегченном режиме. Вид и схема мощной диодной сборки Шоттки представлены на изображении.
Сегодня и отдельные диоды, и диодные мосты Шоттки используются в качестве выпрямительных очень широко и выпускаются как отдельными приборами, так и сборками. Монтаж выпрямителя на диодах Шоттки ничем не отличается от сборки на обычных диодах.
Отзывы и комментарии
Как электроны и позитроны превращаются друг в друга
GIF анимации: http://tverd4.narod.ru/mosty.gif http://tverd4.narod.ru/Animation-1-.gif
Теория этого явления должна начинаться с осознания того, что не существует в металлических проводниках электрического тока, который распространяется от плюса к минусу.
Разность потенциалов, рождающая силу движения зарядов, формируется не между плюсом и минусом, а между плюсом и нулевым потенциалом (позитронный ток) и между минусом и нулевым потенциалом (электронный ток).
То есть электронный ток имеет разность потенциалов – / 0.
Позитронный ток имеет разность потенциалов + / 0.
По нашей гипотезе превращение электронов и позитронов друг в друга происходит посредством замены вектора движения зарядов на противоположный вектор.
Объясняется это тем, что все элементы магнитоэлектрической системы электрона противоположны всем элементам магнитоэлектрической системы позитрона. И эта противоположность определяется вектором их движения в пространстве.
Поэтому, стоит только поменять вектор движения одного из зарядов на противоположный вектор, так сразу же этот заряд превращается в своего антипода.
Анимация показывает, как полупроводниковый мост пропускает позитронный ток, движимый разностью потенциалов + / 0. Но, когда электронная полуволна на мост подаёт разность потенциала – / 0, здесь-то и происходит замена вектора движения электронов на вектор движения позитронов, с превращением электронов в позитроны.
Аналогичным образом происходит превращение позитронов в электроны в мосте, собранным на вакуумных диодах.
Разница лишь в том, что превращение позитронов в электроны, происходит, когда на мост подаётся разность потенциала + / 0.
Диоды работают парами. Пара диодов всегда открыта, другая – всегда закрыта.
Кроме того, генераторы постоянного тока генерируют позитронный ток при правом вращение, и генерируют электронный ток при левом вращении.
Объясняется это явление тем, что заряд, формирующийся первым, задаёт вектор движения, а антипод вынужден следовать принятому вектору движения.
Вектор движения электрона противоположен вектору движения позитрона, как в проводниках, так и в электромагнитных волнах.
Заключение:
1. Любой любознательный восьмиклассник способен осуществить описанные опыты.
2. Комичность ситуации заключается в том, что с широким распространением осциллографов любой любознательный восьмиклассник на экране видит, что ток есть движение, как отрицательных, так и положительных зарядов.
3. Фарадей двести лет назад получил ток с отрицательными и положительными зарядами, который распространяется в прилегающем к проводнику слое эфира.
4. Все современные тепловые, гидравлические и атомные электростанции получают ток Фарадея.
Диодный мост что это такое
Схема диодного моста
Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.
Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.
Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.
Схема диодного моста
Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.
В железе это выглядит следующим образом.
Диодный мост из отдельных диодов S1J37
Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.
Как работает диодный мост?
Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «
») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.
Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.
Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.
Обозначение диодного моста на схеме.
На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.
Диодная сборка.
Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.
Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.
Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «
». Иногда могут иметь обозначение AC (Alternating Current – переменный ток).
Оставшиеся два вывода имеют обозначения « + » и « – ». Это выход выпрямленного, пульсирующего напряжения (тока).
Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.
Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.
Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.
В реальности сборка диодного моста может выглядеть вот так.
Диодная сборка KBL02 на печатной плате
Диодная сборка RS607 на плате компьютерного блока питания
А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.
Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.
Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.
Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.
Условное изображение диодного моста и диодной сборки
Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.
На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1 – VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.
Где применяется схема диодного моста?
Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.
Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).
В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.
Почти вся электронная аппаратура для своей работы требует определённую величину постоянного напряжения. В электрический сети передаётся синусоидальный сигнал с частотой 50 Гц. Для преобразования сигнала используется свойство полупроводниковых элементов пропускать ток только в одном направлении, а в другом блокировать его прохождение. В качестве преобразователя применяется схема диодного моста, позволяющая получать на выходе сигнал постоянной величины.
Физические свойства p-n перехода
Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).
Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.
Примешанные атомы начинают образовывать, в зависимости от своей природы, свободные электроны или дырки. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный.
Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.
В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.
Принцип работы диода
Диод — это полупроводниковый прибор, имеющий малое сопротивление для тока в одном направлении, и препятствующий его прохождению в обратном. Физически диод состоит из одного p-n перехода. Конструктивно представляет собой элемент, содержащий два вывода. Вывод, подключённый к p-области, называется анодом, а соединённый с n-областью — катодом.
При работе диода существует три его состояния:
- сигнал на выводах отсутствует;
- он находится под действием прямого потенциала;
- он находится под действием обратного потенциала.
Прямым потенциалом называется такой сигнал, когда плюсовой полюс источника питания подключён к области p-типа полупроводника, другими словами, полярность внешнего напряжения совпадает с полярностью основных носителей. При обратном потенциале отрицательный полюс подключён к p-области, а положительный к n.
В области соединения материала n- и p-типа существует потенциальный барьер. Он образуется контактной разностью потенциалов и находится в уравновешенном состоянии. Высота барьера не превышает десятые доли вольта и препятствует продвижению носителей заряда вглубь материала.
Если к прибору подключено прямое напряжение, то величина потенциального барьера уменьшается и он практически не оказывает сопротивление протеканию тока. Его величина возрастает и зависит только сопротивления p- и n- области. При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки. Слои обедняются и сопротивление барьера прохождению тока возрастает.
Основным показателем элемента является вольт-амперная характеристика. Она показывает зависимость между приложенным к нему потенциалом и током, протекающим через него. Представляется эта характеристика в виде графика, на котором указывается прямой и обратный ток.
Схема простого выпрямителя
Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.
При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.
Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.
Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.
Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.
Диодный мост
Такое устройство представляет собой электрический прибор, служащий для преобразования переменного тока в постоянный. Словосочетание «диодный мост» образуется из слова «диод», что предполагает использование в нём диодов. Схема диодного моста выпрямителя зависит от сети переменного тока, к которой он подключается. Сеть может быть:
В зависимости от этого и выпрямительный мост называется мостом Гретца или выпрямителем Ларионова. В первом случае используется четыре диода, а во втором прибор собирается уже на шести.
Первая схема выпрямительного прибора собиралась на радиолампах и считалась сложным и дорогим решением. Но с развитием полупроводниковой техники диодный мост полностью вытеснил альтернативные способы выпрямления сигнала. Вместо диодов редко, но ещё применяются селеновые столбы.
Конструкции и характеристики прибора
Конструктивно выпрямительный мост выполняется из набора отдельных диодов или литого корпуса, имеющего четыре вывода. Корпус может быть плоского или цилиндрического вида. По принятому стандарту, значками на корпусе прибора отмечаются выводы подключения переменного напряжения и выходного постоянного сигнала. Выпрямители, имеющие корпус с отверстием, предназначены для крепления на радиатор. Основными характеристиками выпрямительного моста являются:
- Наибольшее прямое напряжение. Это максимальная величина, при которой параметры прибора не выходят за границы допустимых.
- Наибольшее допустимое обратное напряжение. Это максимальное импульсное напряжение, при котором мост длительно и надёжно работает.
- Наибольший рабочий ток выпрямления. Обозначает средний ток, протекающий через мост.
- Максимальная частота. Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев.
Превышение значений характеристик выпрямителя приводит к резкому сокращению срока его службы или пробою p-n переходов. Необходимо отметить такой момент, что все параметры диодов указываются для температуры окружающей среды 20 градусов. К недостаткам применения мостовой схемы выпрямления относят большее падение напряжения, по сравнению с однополупериодной схемой, и более низкое значение коэффициента полезного действия. Для уменьшения величины потерь и снижения нагрева мосты часто изготавливают с применением быстрых диодов Шотки.
Схема подключения устройства
На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами. Если выпрямитель собран из отдельных диодов, то рядом с каждым ставится обозначение VD и цифра, обозначающая порядковый номер диода в схеме. Редко используются надписи VDS или BD.
Диодный выпрямитель может подключаться напрямую к сети 220 вольт или после понижающего трансформатора, но схема включения его остаётся неизменной.
При поступлении сигнала в каждом из полупериодов ток сможет протекать только через свою пару диодов, а противоположная пара будет для него заперта. Для положительного полупериода открытыми будут VD2 и VD3, а для отрицательного VD1 и VD4. В итоге на выходе получится постоянный сигнал, но его частота пульсации будет увеличена в два раза. Для того чтобы уменьшить пульсацию выходного сигнала, используется, как и в случае с одним диодом, параллельное включение конденсатора С1. Такой конденсатор ещё называют сглаживающим.
Но случается так, что диодный мост ставится не только в переменную сеть, но и подключается в уже выпрямленную. Для чего нужен диодный мост в такой цепи, станет понятно, если обратить внимание в каких схемах используется такое его включение. Эти схемы связаны с использованием чувствительных радиоэлементов к переполюсовке питания. Использование моста позволяет осуществить простую, но эффективную защиту «от дурака». В случае ошибочного подключения полярности питания радиоэлементы, установленные за мостом, не выйдут из строя.
Проверка на работоспособность
Такой тип электронного прибора можно проверить, не выпаивая из схемы, так как в конструкциях устройств никакое его шунтирование не используется. В случае выпрямителя, собранного из диодов, проверяется каждый диод в отдельности. А в случае с монолитным корпусом измерения проводятся на всех четырёх его выводах.
Суть проверки сводится к прозвонке мультиметром диодов на короткое замыкание. Для этого выполняются следующие действия:
- Мультиметр переключается в режим позвонки диодов или сопротивления.
- Штекер одного провода (чёрного) вставляется в общее гнездо тестера, а второго (красного) в гнездо проверки сопротивления.
- Щупом, подключённым чёрным проводом, дотроньтесь до первой ножки, а щупом красного провода до третьего вывода. Тестер должен показать бесконечность, а если поменять полярность проводов, то мультиметр покажет сопротивление перехода.
- Минус тестера подается на четвёртую ногу, а плюс на третью. Мультиметр покажет сопротивление, при смене полярности бесконечность.
- Минус на первую ногу, плюс на вторую. Тестер покажет открытый переход, при смене – закрытый.
Такие показания тестера говорят об исправности выпрямителя. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром. Но при этом придётся подать питание на схему и замерить напряжение на сглаживающем конденсаторе. Его величина должна превышать входное в 1,4 раза.
Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.
Содержание статьи
Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.
Схема диодного моста из 4 диодов
Что такое диодный мост и из каких элементов он состоит
Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.
Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.
Как работает диодный мост: для чайников, просто и коротко
На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.
Обозначение диодного моста на схеме
Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.
Работа диодного моста
На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.
Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.
На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.
Чем можно заменить диодный мост-сборку
Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:
- меньшей площади, занимаемой сборкой на схеме;
- упрощению работы сборщика схемы;
- единому тепловому режиму для всех четырех полупроводниковых устройств.
Различные варианты сборки диодного моста
У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.
Для чего нужен диодный мост в генераторе автотехники
Диодный мост в генераторе
Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:
- маломощные – до 300 мА;
- средней мощности – от 300 мА до 10 А;
- высокомощные – выше 10 А.
Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.
Чем заменить диодный мост в генераторе
В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:
- на плату попала жидкость;
- грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
- изменение положения полюсов контактов на АКБ.
Видео: принцип работы диодного моста
Как работает диодный мост видео
Схема диодного моста
Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.
Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.
Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.
Схема диодного моста
Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.
В железе это выглядит следующим образом.
Диодный мост из отдельных диодов S1J37
Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.
Как работает диодный мост?
Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «
») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.
Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.
Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.
Обозначение диодного моста на схеме.
На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.
Диодная сборка.
Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.
Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.
Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «
». Иногда могут иметь обозначение AC (Alternating Current — переменный ток).
Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).
Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.
Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.
Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.
В реальности сборка диодного моста может выглядеть вот так.
Диодная сборка KBL02 на печатной плате
Диодная сборка RS607 на плате компьютерного блока питания
А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.
Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.
Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.
Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.
Условное изображение диодного моста и диодной сборки
Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.
На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1 – VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.
Где применяется схема диодного моста?
Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.
Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).
В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.
Словосочетание “диодный мост” образуется от слова “диод”. Следовательно, диодный мост должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.
Обозначение на схеме
Диодный мост на схемах выглядит подобным образом:
Иногда в схемах его обозначают еще так:
Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка “
”. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками “+” и “-“. Диодный мост также называют диодным выпрямителем.
Принцип работы
Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок, как все это будет выглядеть:
Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше. Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.
Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост “переворачивает” отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.
На выходе диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.
Практические опыты
Для начала возьмем простой диод.
Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.
Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220В делает 12В.
На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультиметр показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на так называемом “холостом ходу”.
Давайте же рассмотрим осциллограмму, которая идет со вторичной обмотки трансформатора. Максимальную амплитуду напряжения нетрудно посчитать. Если не помните как это делать, можно прочитать статью Осциллограф. Основы эксплуатации.
3,3х5=16.5В – это максимальное значение напряжения. А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть действующее значение напряжения. Осциллограф не врет, все ОК.
Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт – это не шутки, поэтому я и понизил переменное напряжение.
Припаяем к одному концу вторичной обмотки трансформатора наш диод.
Цепляемся снова щупами осциллографа
Смотрим на осциллограмму
А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.
Находим еще три таких диода и спаиваем диодный мост.
Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.
С двух других концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму
Вот, теперь порядок.
Виды диодных мостов
Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент – диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).
Например, на советском диодном мосте показаны контакты, на которые нужно подавать переменное напряжение значком ”
“, а контакты, с которых надо снимать постоянное пульсирующее напряжение значком “+” и “-“.
Существует множество видов диодных мостов в разных корпусах
Есть даже автомобильный диодный мост
Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:
В основном трехфазные диодные мосты используются в силовой электронике.
Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.
Как проверить диодный мост
1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем эту статью.
2) Второй способ 100%-ый. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками “
”, а с двух других контактов, с “+” и “-” снимаем показания с помощью осциллографа.
Значит, импортный диодный мост исправен.
Резюме
Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.
Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.
Как мы знаем, в наших розетках протекает переменный электрический ток с напряжением в 220 вольт. Но как быть если нам нужно запитать низковольтный приемник, которому требуется постоянный ток? Если с напряжением все понятно – нам поможет трансформатор, то как сделать из переменного тока постоянный – вопрос.
В этой ситуации нам на помощь приходит такое устройство как выпрямитель.Это устройство содержится почти во всех электронных приборах, которые работает на постоянном токе, от сварочных полуавтоматов, до блоков питания. В статье мы рассмотрим классическую схему выпрямителя из четырех диодов, которая именуется выпрямительным диодным мостом.
Для чего нужен диодный мост
Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.
Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.
Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.
Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.
При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:
- Обратное напряжение диодов;
- Обратный ток диодов;
- Длительно допустимый ток;
- Максимальная рабочая температура;
- Рабочая частота (актуально для высокочастотных приборов).
Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.
Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.
Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.
Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.
В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.
Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.
Схема диодного моста
Как мы выяснили выше, схема диодного моста состоит из четырех полупроводниковых диодов, соединенных по схеме Гретца. Такая схема еще называется двухполупериодным выпрямителем.
На принципиальных схемах диодный мост может обозначаться по-разному, либо как схема из четырех диодов, либо как один большой диод в ромбике. Суть его от этого не меняется, вот несколько примеров:
А вот так обозначается выпрямитель со сглаживающим конденсатором:
Как работает диодный мост
Принцип работы диодного моста достаточно прост. Переменный ток имеет две полуволны: положительную отрицательную. Каждое плечо (2 диода) выпрямляют свою полуволну, в то время как второе плечо блокирует протекание тока в другом направлении. В результате выпрямляется два полупериода, а на выводах всегда неизменная полярность.
Подключить диодный мост не составит труда, ведь это схематично показано на всех УГО (это и есть схема подключения) этого устройства. В случае с подключением диодной сборки, ее выводы обозначены соответственными обозначениями.
Собрать диодный мост самостоятельно тоже проще простого. Если вы уже подобрали диоды, то достаточно припаять их концы соответственно схеме. Но перед этим не поленитесь проверить диоды на исправность и не перепутайте их полярность.
Обычно катод и анод указаны на корпусе диодов.
Если остались вопросы, то рекомендуем к просмотру видео, чтобы найти ответы на оставшиеся вопросы.
Вывод
В статье мы рассмотрели такое классическое электронное устройство как диодный мост. Изучили его схему и разобрались в принципе работы. Я, как автор этой статьи, надеюсь, что она будет понятна даже чайнику и эти знания помогут вам в освоении радиоэлектроники.
Как устранить неполадки диодного моста выпрямителя
В этой статье будут рассмотрены различные неисправности выпрямителя с диодным мостом, чтобы дать некоторое представление об устранении неисправностей источника питания переменного / постоянного тока.
Источники питания переменного / постоянного тока широко используются в различных типах электронного оборудования. Когда кто-то терпит неудачу, как мы можем определить причину?
В этой статье мы рассмотрим пример блока питания и расскажем о некоторых возможных причинах его выхода из строя.
Пример источника переменного / постоянного тока
Для эффективного поиска и устранения неисправностей вам необходимо разобраться в своей схеме.Мы будем работать с примером источника переменного / постоянного тока, который преобразует 230 В переменного тока в 5 В постоянного тока. Его блок-схема показана на рисунке 1 ниже.
Рис. 1. Изображение предоставлено NUS.Во-первых, давайте сначала кратко рассмотрим каждый из этих блоков.
Трансформатор
Трансформатор преобразует электрическую сеть высокого напряжения в более низкое переменное напряжение. Например, если мы хотим генерировать 12 В постоянного тока, трансформатор может быть спроектирован так, чтобы генерировать переменное напряжение амплитудой 22 В, как показано на рисунке 2.
Рисунок 2Выпрямитель
Выпрямитель преобразует напряжение переменного тока в напряжение постоянного тока, как показано на рисунке 3. Это достигается путем инвертирования отрицательной части напряжения переменного тока для создания положительного напряжения. Результатом является постоянное напряжение, потому что ток теперь может течь только в одном направлении через гипотетическую нагрузку (не показано на рисунке). Однако по-прежнему существуют большие колебания напряжения и тока, и его нельзя использовать в качестве источника постоянного тока для питания электронных схем.На рисунке 3 показано очень важное свойство выхода выпрямителя: поскольку отрицательная часть перевернута на положительные значения, выход выпрямителя представляет собой периодический сигнал с периодом, который составляет половину периода входа. Следовательно, если на входе сигнал 50 Гц, выходная частота будет 100 Гц. Это наблюдение может быть полезно при поиске и устранении неисправностей источника питания переменного / постоянного тока.
Рисунок 3Фильтр
Чтобы избавиться от больших колебаний, мы применяем фильтр нижних частот к выходу выпрямителя.Фильтр будет давать формы сигналов, похожие на красные кривые на Рисунке 4.
Рисунок 4Регулятор
Поскольку все еще есть некоторые пульсации, мы можем применить выходной сигнал фильтра к регулятору, который использует концепции обратной связи для дальнейшего подавления колебаний и генерирования желаемого напряжения постоянного тока.
Давайте рассмотрим неисправности, связанные с диодным мостом выпрямителя и фильтром нижних частот, как показано на рисунке 5.
Рисунок 5Теперь, когда мы знакомы с нашим примером, мы можем начать обсуждение некоторых общих проблем, которые могут потребоваться для устранения неполадок.
Проблема: отказал открытый диод
В каждом полупериоде входа $$ V_ {AC1} $$ горят два из четырех диодов. Например, когда $$ V_ {AC1} $$ положительный, D1 и D2 будут проводить ток, в то время как D3 и D4 блокируют (обратный) ток. В следующем полупериоде D3 и D4 будут проводить.Если какой-либо из этих четырех диодов имеет разрыв цепи, соответствующий полупериод будет пропущен, и схема будет действовать как полуволновой выпрямитель. На рисунке 6 показано влияние неисправного открытого диода на выходное напряжение.
Рисунок 6Как видите, величина ряби увеличилась примерно в два раза. Кроме того, кривая, относящаяся к вышедшему из строя диоду, имеет период, в два раза превышающий период синей кривой, поскольку вышедшая из строя схема действует как полуволновой выпрямитель.Следовательно, при отказе открытого диода частота $$ V_ {DC1} $$ будет такой же, как VAC1. В исправной цепи пульсации возникают с частотой, вдвое превышающей входную частоту. С помощью осциллографа легко проверить работу выпрямителя на диодном мосту. Если частота электросети 50 Гц, частота колебаний должна быть 100 Гц. Это пример случаев, когда осциллограф намного полезнее мультиметра.
Проблема: закороченный диод
В предыдущем разделе мы предположили, что диод имеет разрыв цепи.Однако неисправный диод тоже может закоротить. В этом случае диод будет иметь небольшое сопротивление в обоих направлениях. Распространенными причинами выхода из строя диода являются чрезмерный прямой ток и большое обратное напряжение. Обычно большое обратное напряжение приводит к короткому замыканию диода, в то время как перегрузка по току приводит к его размыканию при отказе.
Давайте посмотрим, как закороченный диод повлияет на двухполупериодный выпрямитель. Предположим, что D1 на рисунке 5 закорочен, и теперь схема имеет вид, показанный на рисунке 7.
Рисунок 7Предположим, что $$ V_ {AC1} $$ положительный.В этом случае D2 будет включен, а D3 и D4 будут иметь обратное смещение. Ток будет течь через нагрузку и диод D2 обратно во вторичную обмотку трансформатора, как это было на рисунке 5. Следовательно, если предположить, что диоды идеальны и имеют нулевое прямое падение напряжения, положительный полупериод не будет влияет закороченный диод. Но как насчет отрицательного полупериода? Когда значение $$ V_ {AC1} $$ становится отрицательным, включается D3. Ток будет течь обратно к трансформатору через закороченный диод, а не через нагрузку.Следовательно, $$ V_ {DC1} $$ будет равен нулю, и большое напряжение будет непосредственно приложено к D3. Чрезмерный прямой ток может привести к отказу D3 при открытии. Трансформатор и закороченный диод (D1) — это два других компонента, которые могут перегореть.
Проблема: Старение конденсатора фильтра
В источниках питания переменного / постоянного тока обычно используются электролитические конденсаторы для подавления пульсаций. Эти конденсаторы обладают высокой емкостью для данного рабочего напряжения (у них почти самая высокая доступная емкость, помноженная на напряжение или CV).Кроме того, такое высокое резюме достигается за доступную цену.
Несмотря на эти преимущества, у электролитических конденсаторов есть свои ограничения. Одним из основных недостатков является то, что у них гораздо более короткий срок службы, чем у других конденсаторов. Это связано с тем, что электролит внутри конденсатора со временем испаряется, и емкость уменьшается. К концу срока службы конденсатора емкость уменьшится примерно на 20%.
Также стоит отметить, что эквивалентное последовательное сопротивление конденсатора (ESR) увеличивается по мере использования.Чем больше ESR, тем больше тепла выделяется, и тепло является основным фактором, который может ускорить испарение электролита. Это приведет к ситуации теплового разгона.
Дело в том, что электролитические конденсаторы, вероятно, являются первыми компонентами, которые выйдут из строя в правильно спроектированной электронной системе. Разработчик игнорирует эту проблему надежности, чтобы просто снизить затраты. По мере старения емкость будет уменьшаться, и на $$ V_ {DC1} $$ будут появляться более сильные колебания. Мы использовали $$ C_L = 220 мкФ $$ и $$ R_L = 1 k \ Omega $$ для создания графики этой статьи.Давайте уменьшим $$ C_L $$ на 20%, чтобы визуализировать эффект старения конденсатора (мы игнорируем увеличение ESR, чтобы упростить задачу). При $$ C_L = 176 мкФ $$ получаем красную кривую на рисунке 8.
Рисунок 8Как и ожидалось, меньший конденсатор приводит к большим колебаниям. Следовательно, когда пульсации больше, чем ожидалось, мы должны проверить частоту пульсаций: если частота вдвое превышает входную частоту, диоды работают правильно и, вероятно, что-то не так с конденсатором.
Проблема: Закороченный конденсатор фильтра
Электролитические конденсаторы обычно выходят из строя. Фактически, слой оксида алюминия, который образует диэлектрик конденсатора, обладает свойством самовосстановления и обычно может немедленно исправить крошечное короткое замыкание. Тем не менее, все еще есть вероятность появления дырявого конденсатора, когда относительно небольшой резистор появляется параллельно конденсатору. Если это сопротивление утечки настолько мало, конденсатор будет казаться закороченным. Приложение обратного напряжения к конденсатору может привести к утечке компонента.Что-то, что может случиться при первом производстве платы. В этом случае схему можно смоделировать, как показано на рисунке 9.
Рисунок 9Резистор утечки ускорит разрядку конденсатора, поэтому у нас будет более крупная пульсация, похожая на красные кривые на Рисунке 8. Если резистор утечки настолько мал, выход будет закорочен на землю. Следовательно, закороченный конденсатор может привести к отказу диодов или трансформатора.
Заключение
В этой статье мы рассмотрели различные неисправности выпрямителя с диодным мостом, чтобы дать некоторое представление об устранении неисправностей источника питания переменного / постоянного тока. Мы увидели, что частоту пульсаций на выходе можно проверить, чтобы проверить, правильно ли работает диодный мост. Кроме того, величина пульсаций может дать нам некоторое представление о проблемах конденсатора фильтра.
Какие еще темы по устранению неполадок вы хотели бы обсудить? Дайте нам знать в комментариях ниже.
диодов | Клуб электроники
Диоды | Клуб электроникиСигнал | Выпрямитель | Мостовой выпрямитель | Зенер
Смотрите также: светодиоды | Блоки питания
Диоды позволяют электричеству течь только в одном направлении. Стрелка символа схемы показывает направление, в котором может течь ток. Диоды — электрическая версия вентиль и первые диоды на самом деле назывались вентилями.
Типы диодов
Обычные диоды можно разделить на два типа:
Дополнительно есть:
Подключение и пайка
Диоды должны быть подключены правильно, на схеме может быть указано a или + для анода и k или — для катода (да, это действительно k, а не c, для катода!).Катод отмечен линией, нарисованной на корпусе. Диоды обозначены своим кодом мелким шрифтом, вам может потребоваться ручная линза, чтобы прочитать его.
Сигнальные диоды могут быть повреждены нагревом при пайке, но риск невелик, если только вы используете германиевый диод (коды начинаются OA …), и в этом случае вы должны использовать радиатор (например, зажим «крокодил»), прикрепленный к проводу между соединением и корпусом диода.
Выпрямительные диоды достаточно прочные, и при их пайке не требуется специальных мер предосторожности.
Испытательные диоды
Вы можете использовать мультиметр или простой тестер. проект (батарея, резистор и светодиод), чтобы проверить, что диод проводит только в одном направлении.
Лампу можно использовать для проверки выпрямительного диода, но НЕ используйте лампу для проверки сигнальный диод, потому что большой ток, пропускаемый лампой, разрушит диод.
Падение напряжения в прямом направлении
Электричество потребляет немного энергии, проталкиваясь через диод, как человек. толкая дверь пружиной.Это означает, что есть небольшое прямое падение напряжения через проводящий диод. Для большинства диодов, сделанных из кремния, оно составляет около 0,7 В.
Прямое падение напряжения на диоде почти постоянно, независимо от тока, протекающего через диода, поэтому они имеют очень крутую характеристику (вольт-амперный график).
обратное напряжение
При подаче обратного напряжения проводит не идеальный диод, а настоящие диоды утечка очень небольшого тока (обычно несколько мкА).Это можно игнорировать в большинстве схем. потому что он будет намного меньше, чем ток, текущий в прямом направлении. Однако все диоды имеют максимальное обратное напряжение (обычно 50 В или более), и если при превышении этого значения диод выйдет из строя и будет пропускать большой ток в обратном направлении, это называется разбивкой .
Диоды сигнальные (малоточные)
Сигнальные диоды обычно используются для обработки информации (электрических сигналов) в цепях, поэтому они требуются только для пропускания небольших токов до 100 мА.
Сигнальные диоды общего назначения, такие как 1N4148, изготовлены из кремния и имеют прямое падение напряжения 0,7 В.
Rapid Electronics: 1N4148
Германиевые диоды , такие как OA90, имеют меньшее прямое падение напряжения 0,2 В, что делает Их можно использовать в радиосхемах в качестве детекторов, выделяющих звуковой сигнал из слабого радиосигнала. Сейчас они используются редко, и их может быть трудно найти.
Для общего использования, где величина прямого падения напряжения менее важна, кремниевые диоды лучше, потому что они менее легко повреждаются под воздействием тепла при пайке, имеют меньшее сопротивление при проводке и имеют очень низкие токи утечки при приложении обратного напряжения.
Защитные диоды для реле
Сигнальные диоды также используются для защиты транзисторов и микросхем от кратковременного высокого напряжения, возникающего при обмотке реле. выключен. На схеме показано, как защитный диод подключен к катушке реле «в обратном направлении».
Зачем нужен защитный диод?
Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается. при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.
Выпрямительные диоды (большой ток)
Выпрямительные диоды используются в источниках питания для преобразования переменного тока (AC). к постоянному току (DC) этот процесс называется выпрямлением. Они также используются в других схемах, где через диод должен проходить большой ток.
Все выпрямительные диоды изготовлены из кремния и поэтому имеют прямое падение напряжения 0,7 В. В таблице указаны максимальный ток и максимальное обратное напряжение для некоторых популярных выпрямительных диодов. 1N4001 подходит для большинства цепей низкого напряжения с током менее 1 А.
Rapid Electronics: 1N4001
Диод | Максимум Ток | Максимум Обратное Напряжение | |||||||||||
1N4001 | 1A | 50V | |||||||||||
1N4002 | 9027 1A | ||||||||||||
1N5401 | 3A | 100V | |||||||||||
1N5408 | 3A | 1000V |
Книг по комплектующим:
Мостовые выпрямители
Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный.Мостовой выпрямитель — один из них, и он доступен в специальных пакетах, содержащих четыре необходимых диода. Мостовые выпрямители рассчитаны на максимальный ток и максимальное обратное напряжение. У них есть четыре вывода или клеммы: два выхода постоянного тока помечены + и -, два входа переменного тока помечены .
На схеме показана работа мостового выпрямителя при преобразовании переменного тока в постоянный. Обратите внимание, как проводят чередующиеся пары диодов.
Rapid Electronics: мостовые выпрямители
Мостовые выпрямители различных типов
Обратите внимание, что у некоторых есть отверстие в центре для крепления к радиатору
Фотографии © Rapid Electronics
Стабилитроны
Стабилитроныиспользуются для поддержания постоянного напряжения.Они рассчитаны на «поломку» в надежном и неразрушающим способом, чтобы их можно было использовать в обратном направлении для поддержания фиксированного напряжения на их выводах.
Стабилитроныможно отличить от обычных диодов по их коду и напряжению пробоя. которые напечатаны на них. Коды стабилитронов начинаются BZX … или BZY … Их напряжение пробоя обычно печатается с буквой V вместо десятичной точки, поэтому 4V7 означает, например, 4,7 В.
a = анод, k = катод
Rapid Electronics: стабилитроны
На схеме показано, как подключен стабилитрон с последовательно включенным резистором для ограничения тока.
Стабилитроныимеют номинальное напряжение пробоя и максимальную мощность . Минимальное доступное напряжение пробоя составляет 2,4 В. Широко доступны номинальные мощности 400 мВт и 1,3 Вт.
Для получения дополнительной информации см. Страницу источников питания.
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому.На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google.Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
4 вещи, которые нужно знать о мостовом выпрямителе
1) Как работает мостовой выпрямитель?
Мостовой выпрямитель — это разновидность двухполупериодного выпрямителя, который может преобразовывать переменный ток (переменный ток) в постоянный ток. Он использует как минимум 4 диода для выпрямления переменного тока, и на рисунке ниже показано, как работает выпрямление.
Рис. 1 Ток через мостовой выпрямитель, (а) во время положительного полупериода входного сигнала переменного тока;(b) во время отрицательного полупериода входного сигнала переменного тока (Источник: BYJU’S)
На рис. 1 показан мостовой выпрямитель с поданным на него сигналом переменного тока. На рис. 1 (а) показано время, когда сигнал переменного тока находится в положительном полупериоде, а на рис. 1 (b) показано время, когда сигнал переменного тока находится в отрицательном полупериоде. Из рис. 1 (а) видно, что диоды D1 и D3 смещены в прямом направлении, а диоды D2 и D4 смещены в обратном направлении; и из рис.1 (b), диод D2 и D4 смещены в прямом направлении, а диоды D1 и D3 смещены в обратном направлении в течение отрицательного полупериода.
Посмотрите на выходной сигнал постоянного тока, мы можем обнаружить, что ток всегда течет от клеммы B к D, поэтому VBD всегда положительный. Так и происходит исправление. В результате мостовой выпрямитель снизит входное напряжение почти на 1,4 В (падение на 2 диода).
2) Какие характеристики у мостового выпрямителя?
Основными характеристиками мостового выпрямителя являются коэффициент пульсации , пиковое обратное напряжение (PIV) и КПД .
1. Коэффициент пульсаций
Поскольку любой входной сигнал переменного тока является синусоидальным сигналом, выходной сигнал постоянного тока после выпрямления будет пульсирующим, а коэффициент, используемый для измерения плавности сигнала, называется коэффициентом пульсаций. Обычно коэффициент пульсаций мостового выпрямителя составляет 0,48. Конденсатор можно использовать для сглаживания выходного сигнала постоянного тока и снижения коэффициента пульсаций.
(b) форма напряжения выходного сигнала постоянного тока с / без сглаживающего конденсатора
(Источник: BYJU’S, Electronics Tutorials)
2.Пиковое обратное напряжение (PIV)
Пиковое обратное напряжение (PIV) — это пиковое напряжение на диоде при обратном смещении. В идеале PIV мостового выпрямителя такое же, как выходное напряжение постоянного тока; Практически разница между PIV и выходным напряжением составляет 0,7 В, то есть PIV = VBD (out) + 0,7 В.
3. КПД
КПД мостового выпрямителя показывает, насколько эффективен мостовой выпрямитель.Он определяется как выходная мощность постоянного тока, деленная на входную мощность переменного тока.
η = выход PDC / вход PAC.
3) Какие бывают типы мостовых выпрямителей?
1. Однофазные и трехфазные мостовые выпрямители
4 диода в мостовом выпрямителе, о которых говорилось выше, являются основным случаем, и этот тип мостового выпрямителя является однофазным. Другой тип мостового выпрямителя — трехфазный выпрямитель с 6 диодами. Трехфазные мостовые выпрямители используются для трехфазных источников питания.При наложении 3-х синусоидальных волн выходная мощность трехфазного мостового выпрямителя больше, PIV больше, а коэффициент пульсации меньше.
2. Неуправляемые и контролируемые мостовые выпрямители
Мостовые выпрямители, использующие диоды для реализации выпрямления, называются неуправляемыми мостовыми выпрямителями. Неуправляемый мостовой выпрямитель может обеспечивать фиксированное выходное напряжение постоянного тока из заданного входного сигнала переменного тока.Мостовые выпрямители, использующие для выпрямления другие управляемые устройства, такие как MOSFET, SCR и IGBT, называются управляемыми мостовыми выпрямителями. Управляемый мостовой выпрямитель может обеспечивать регулируемое выходное напряжение постоянного тока.
4) Каковы области применения мостовых выпрямителей?
Любое приложение, которое должно преобразовывать входной переменный ток в выход постоянного тока, может использовать в схеме мостовые выпрямители. Обычно используются источники питания, умножители напряжения, генераторы импульсов, радиосигналы AM, электросварка и т. Д.
Мостовые выпрямители на TECHDesign
Вы можете напрямую приобрести высококачественные мостовые выпрямители у известного ведущего поставщика PANJIT на TECHDesign. PANJIT предлагает вам на выбор однофазные неуправляемые мостовые выпрямители, включая выпрямители общего назначения и мостовые выпрямители Шоттки. Здесь представлены продукты с различными характеристиками для различных областей применения. Приходите и покупайте сейчас!
➔ Узнать больше Выбор редактора
Продолжить чтение
Полуполупериодный и полнополупериодный выпрямители | Преобразование переменного тока в постоянный
Преобразование мощности очень распространено в современной электронике.Мы постоянно переключаемся с переменного тока на постоянный и наоборот. Обычным источником переменного тока является источник питания, тогда как батареи используются для питания постоянного тока по мере необходимости. Однако преобразование переменного тока в постоянный — это более простой способ вместо того, чтобы покупать новую батарею каждый раз, когда вам нужен постоянный ток. Выпрямитель — это электрическое устройство, которое преобразует переменный ток в постоянный, и часто используется во многих устройствах, используемых вокруг нас. Однако одноступенчатый выпрямитель не создает плавного постоянного тока, который можно было бы использовать. Многоступенчатое выпрямление и дополнительные схемы необходимы для более плавного или пригодного для использования постоянного тока.Посмотрим, как это происходит.
Основы полуволнового и полноволнового выпрямления
Самый простой выпрямитель — это диод, подключенный к источнику переменного тока. Это также известно как полуволновой выпрямитель. Простой однополупериодный выпрямитель представляет собой одиночный диод с p-n переходом, подключенный последовательно к нагрузочному резистору. Работу полуволнового выпрямителя легко понять: диод с p-n переходом проводит ток только тогда, когда он смещен в прямом направлении.
Этот принцип используется в полуволновом выпрямителе для преобразования переменного тока в постоянный.Здесь предусмотрен входной цикл переменного тока. Это входное напряжение понижается с помощью трансформатора. Диод с p-n переходом проводит ток только при прямом смещении. Тот же принцип используется в полуволновом выпрямителе для преобразования переменного тока в постоянный. Вход здесь — переменный ток. Это входное напряжение понижается с помощью трансформатора. Поскольку диод смещен в прямом направлении в течение полупериода переменного тока, выход доступен только в течение этого полупериода.
Для уменьшения пульсаций в цепи выпрямителя с конденсаторным фильтром:
- RL следует увеличить.
- необходимо уменьшить входную частоту. Входная частота
- должна быть увеличена. Следует использовать конденсаторы
- с высокой емкостью.
Двухполупериодный выпрямитель
Подобно полуволновой схеме, двухполупериодная схема выпрямителя вырабатывает выходное напряжение или ток, которые являются чисто постоянным током или имеют некоторую заданную составляющую постоянного тока. Двухполупериодные выпрямители имеют некоторые фундаментальные преимущества перед своими полуволновыми выпрямителями.Среднее выходное напряжение постоянного тока выше, чем для полуволны, выход двухполупериодного выпрямителя имеет меньшую пульсацию, чем у полуволнового выпрямителя, что дает относительно более гладкую форму выходного сигнала.
Часто используются два основных типа двухполупериодных выпрямителей. В меньшей конструкции используются два диода вместо одного диода, используемого в полуволновом диоде, то есть по одному на каждую половину цикла. Многообмоточный трансформатор используется там, где вторичная обмотка разделена поровну на две половины с центральным ответвленным соединением.Подключение двухполупериодного выпрямителя с отводом по центру показано ниже.
Схема двухполупериодного выпрямителя с центральным ответвлением Схема двухполупериодного выпрямителя с диодным мостом Полная форма сигнала синусоидального выпрямителяДля другой конфигурации требуется четыре диода, подключенные по схеме Н-моста. Четыре диода, обозначенные от D1 до D4, расположены «последовательными парами», и только два диода проводят ток в течение каждого полупериода. Во время положительного полупериода питания диоды D1 и D2 проходят последовательно, в то время как диоды D3 и D4 смещены в обратном направлении, и ток течет через нагрузку.Во время отрицательного полупериода питания диоды D3 и D4 проходят последовательно, но диоды D1 и D2 выключаются, поскольку теперь они смещены в обратном направлении. Ток, протекающий через нагрузку, имеет то же направление, что и раньше.
Фильтрация выпрямленного напряжения
Выходной сигнал через диоды в вышеуказанных шагах не является ни полным, ни полностью постоянным током. Выходной сигнал не является постоянным постоянным током и его нецелесообразно использовать с цепями. Схема фильтра, также известная как сглаживающий конденсатор, добавляется к схеме выпрямителя для улучшения выходного сигнала.Сглаживающие конденсаторы подключаются параллельно нагрузке на выходе двухполупериодного мостового выпрямителя. Эта схема фильтра увеличивает средний выходной уровень постоянного тока, поскольку конденсатор действует как запоминающее устройство. Сглаживающий конденсатор преобразует пульсирующий выход выпрямителя в более плавный выход постоянного тока.
Конденсаторный выходТем не менее, на выходе все еще есть небольшая пульсация, которую можно сгладить путем изменения номиналов конденсатора. Напряжение пульсаций обратно пропорционально величине сглаживающего конденсатора.Эти два связаны следующей формулой:
В пульсация = I нагрузка / (fxC)
Альтернативой является использование ИС регулятора напряжения для постоянного источника питания постоянного тока.
Вы можете ознакомиться с конструкцией мостового выпрямителя здесь с видеоуроком:
Видео предоставлено:
ElectroBOOMЭта статья была впервые опубликована 8 августа 2017 г., а недавно — 13 декабря 2019 г.
Мостовой выпрямительРабота, характеристики, типы и применение
Назначение мостового выпрямителя может заключаться во многих системах подачи питания постоянного тока, это может быть бытовая техника, где требуется питание постоянного тока, чтобы переменный ток выпрямления можно было преобразовать в постоянный ток. Следовательно, его можно рассматривать как основную часть блоков питания. Исходя из требований к нагрузке, желательно выбрать для него конкретный выпрямитель.
Мостовые выпрямители достаточно эффективны и имеют минимальное значение пульсации.Этот тип выпрямителя разработан для устранения недостатка трансформатора с центральным отводом двухполупериодной схемы выпрямления.
Выпрямитель
Выпрямитель
Электрическая и электронная схема, которая используется для процесса выпрямления, называется выпрямителем. Существуют различные типы выпрямителей, такие как однополупериодный выпрямитель, двухполупериодный выпрямитель и мостовой выпрямитель. Однополупериодный выпрямитель преобразует или выпрямляет только полупериод входного сигнала. Двухполупериодный выпрямитель преобразует или выпрямляет полный цикл или всю форму входного сигнала.Мостовой выпрямитель также преобразует или выпрямляет всю форму входного сигнала. Но в основном мостовой выпрямитель используется для максимального числа приложений, поскольку он более эффективен и выгоден, чем однополупериодный выпрямитель и двухполупериодный выпрямитель. Каждый проект силовой электроники на базе микроконтроллера требует выпрямителя, так как для большинства компонентов требуется источник питания с напряжением около 5 В постоянного тока.
Мостовой выпрямитель
Что такое мостовой выпрямитель?Схема, состоящая из четырех или более диодов таким образом, что она соответствует топологии моста.Он упоминается как мостовой выпрямитель . Он может быть сконструирован с использованием обычных диодов или управляемых переключателей в нем. Он использует как положительную, так и отрицательную половины циклов, что приводит к полному выпрямлению волны.
Типы мостовых выпрямителейВ зависимости от исходной поставки и основных элементов, использованных при их проектировании, а также функций управления мостовые выпрямители подразделяются на два типа. В основном, эти два типа — однофазные и трехфазные с.Далее эти основные типы подразделяются на управляемые и неуправляемые выпрямители.
- Однофазные и трехфазные выпрямители
В однофазной схеме выпрямителей к источнику переменного тока подключены четыре диода. Тогда как трехфазный состоит из шести диодов в своей схеме. Это базовые выпрямители, которые далее классифицируются как управляемые и неуправляемые на основе используемых компонентов, таких как диоды, кремниевые управляемые выпрямители и т. Д.
Однофазная цепь питания
Трехфазная цепь питания
- Неуправляемые мостовые выпрямители
В выпрямителях этого типа используются диоды в схеме. В свойстве диодов четко указано, что ток может протекать в одном направлении. Следовательно, это будет основной компонент неуправляемого выпрямителя, так что мощность в выпрямителе остается неизменной даже при изменении требований к нагрузке.Следовательно, они называются постоянными выпрямителями .
Базовая схема, представляющая неуправляемый выпрямитель
- 3 . Управляемые выпрямители (мост)
В выпрямителях этого типа вместо обычных диодов для этой схемы предпочтительны кремниевые управляемые выпрямители (SCR). Вместо использования только SCR можно использовать MOSFET и другие управляющие устройства. При этом значение выходной мощности изменяется в зависимости от требований к нагрузке.Это можно сделать, подав на него различное напряжение. Метод, используемый здесь для изменения выходного напряжения на нагрузке, называется запуск .
Схема мостового выпрямителя, представляющая управляемые выпрямители
Выше представлены типы мостовых выпрямителей, которые классифицируются на основе предоставленного источника питания, а также дополнительно классифицируются на основе управляемой или изменяемой выходной мощности. Исходя из необходимости, предпочтительно выбирается тип выпрямителя.
Типы мостовых выпрямителей
Диод
Существуют разные типы мостовых выпрямителей, которые классифицируются на основе разных критериев. Рассмотрим различные типы мостовых выпрямителей, которые классифицируются на основе типов выпрямителей, например, неуправляемые выпрямители и управляемые выпрямители. Диоды называются неуправляемыми выпрямителями, поскольку диоды начинают проводить проводимость всякий раз, когда анодное напряжение превышает катодное напряжение. Но в случае управляемых выпрямителей, известных как тиристоры, даже если анодное напряжение больше, чем катодное напряжение, тиристоры начинают проводить проводимость только при срабатывании клеммы затвора.Таким образом, мы можем запустить терминал затвора согласно требованию; следовательно, мы можем контролировать работу выпрямителя.
Тиристор
Мостовые выпрямители, в которых используются тиристоры, называются управляемыми мостовыми выпрямителями. Работой выпрямления можно управлять, активировав терминал затвора тиристора всякий раз, когда это необходимо. Мы знаем, что диод — это полупроводниковый прибор, состоящий из двух слоев (P-N), а тиристор также является полупроводниковым прибором, состоящим из четырех слоев (P-N-P-N).Его можно использовать как переключатель разомкнутой цепи, а также как выпрямитель в зависимости от того, как срабатывает вывод затвора тиристора.
Типы диодов мостового выпрямителя
1N4007 Диод
Существуют серии диодов от 1N4001 до 1N4007 с различными номинальными токами и напряжениями, но часто 1N4007 используется для проектирования мостовых выпрямителей. Диод 1N4007 имеет абсолютные максимальные номинальные значения, включая номинальное напряжение: пиковое повторяющееся обратное напряжение 1000 В VRPM, средний выпрямленный выходной ток 1 А IF (AV), непериодический пиковый прямой импульсный ток 30 А IFSM, который может работать при температуре от -55 до +175 градусов .Тепловые характеристики, такие как рассеиваемая мощность 3 Вт, переход к тепловому сопротивлению окружающей среды 50 градусов / Вт. Дидо, которые иногда используются для проектирования выпрямителей, представляют собой серии дидо от 1N5400 до 1N5408 и 6A4.
1N5048 Диод
1N5408 Дидо выпрямителя моста также используются для некоторых специальных приложений, и они имеют номинальные характеристики: максимальное повторяющееся пиковое обратное напряжение 1000 В, максимальное среднеквадратичное напряжение 700 В, максимальное напряжение блокировки постоянного тока 1000 В, максимальный средний прямой выпрямленный ток 3 А, рабочий диапазон температур перехода и хранения от -50 до +150 градусов по Цельсию.Управление ACPWM для асинхронного двигателя является практическим примером, в котором мостовой выпрямитель спроектирован с использованием диодов 1N5408.
6A4 Диод
Эти диоды мостового выпрямителя 6A4 имеют максимальные номинальные характеристики и электрические характеристики, такие как максимальное рекуррентное пиковое обратное напряжение 400 В, максимальное обратное напряжение 280 В, максимальное напряжение отключения постоянного тока 400 В и максимальный средний прямой выпрямленный ток 6 А. Диоды 6A4 используются для мостовых выпрямителей в некоторых специальных приложениях, например, пропеллерное отображение сообщения виртуальными светодиодами.Работа схемы мостового выпрямителя одинакова, независимо от диодов, используемых для проектирования выпрямителя, поэтому давайте рассмотрим схему мостового выпрямителя, разработанную с использованием диодов 1N4007, поскольку она используется для мостовых выпрямителей в некоторых специальных приложениях — например, пропеллер, отображающий сообщение с помощью виртуальные светодиоды.
Схема мостового выпрямителяМостовой выпрямитель — это двухполупериодная выпрямительная схема, которая использует оба цикла для выпрямления. Единственная разница между этой схемой и другой схемой двухполупериодного с трансформатором с центральным отводом состоит в том, что здесь диоды соединены по мостовой топологии без необходимости использования в нем трансформатора с центральным отводом.
Поскольку использование трансформатора с центральным отводом сделало схему дорогостоящей. Этот выпрямитель призван преодолеть этот недостаток, так как эффективность остается неизменной в обоих случаях.
Схема мостового двухполупериодного выпрямителя
Выше показана схема мостового выпрямителя, которая состоит из начального источника переменного тока, а также четырех диодов, соединенных по мостовой топологии, и подключенного к нему нагрузочного резистора. На начальном этапе питание подается с помощью понижающего трансформатора.В зависимости от характеристик, касающихся требований к выпрямителю, это могут быть номинальные значения тока или пикового обратного напряжения, и поэтому были выбраны соответствующие диоды.
После обработки входных сигналов на диодном мосту другой каскад выпрямителя будет его нагрузкой. Здесь нагрузка принята как резистор. Как только выпрямление выполнено, входной переменный ток преобразуется в пульсирующий постоянный ток, но требуется чистый постоянный ток. В этом случае к нагрузке добавляется еще один компонент, называемый конденсатором или катушкой индуктивности.Так что он может убрать рябь из схемы и сделать вывод плавным.
Работа схемы мостового выпрямителяЗдесь рассматриваемая схема представляет собой однофазный выпрямитель с четырьмя диодами в мостовой топологии. Они дополнительно подключаются к резистивной нагрузке. Работа диодов зависит от применяемых циклов и основана на действии диодов в соответствии с ними.
Анализ работы мостового выпрямителя
Давайте рассмотрим приведенную выше базовую схему, чтобы проанализировать мостовой выпрямитель.Четыре соединены по диагонали, как диодный мост. Предположим, что на схему подано питание, что означает, что первый положительный цикл войдет в схему. Когда положительный цикл попадает в электрическую схему, диод D1 и диод D2 переходят в состояние прямого смещения и пропускают ток.
При этом диод D3 и диод D4 останутся в состоянии обратного смещения. Следовательно, D3 и D4 не будут проводить. Как только отрицательный цикл попадет в схему, D3 и D4 будут в проводящем режиме.D1 и D2 останутся в состоянии обратного смещения. Это приводит к использованию как положительной, так и отрицательной половины цикла. Можно наблюдать, является ли это положительным или отрицательным циклом, применяемым к потоку тока в одном и том же направлении, чтобы удовлетворить свойству диода. Следовательно, схема становится более эффективной.
Однако после исправления в сгенерированном выходе имеется некоторая рябь, которую можно сгладить с помощью техники фильтрации.Значение коэффициента пульсации у этого типа выпрямителя меньше, чем у полуволнового выпрямителя.
Работа мостового выпрямителя, используемого для преобразования 230 В переменного тока в 5 В постоянного тока
Понижающий трансформатор
Понижающие трансформаторы используются для преобразования 230 В переменного тока (высокое напряжение) в 12 В переменного тока (низкое напряжение). Этот выход 12 В представляет собой среднеквадратичное значение, а его пиковое значение определяется как произведение квадратного корня из двух на среднеквадратичное значение выхода понижающего трансформатора, которое составляет примерно 17 В. Принцип работы трансформаторов основан на законах электромагнитной индукции Фарадея.
Неуправляемые мостовидные выпрямители
Мостовые выпрямители
Мощность 230 В переменного тока преобразуется в среднеквадратичное значение 12 В переменного тока или пиковое значение 17 В (приблизительно), но 5 В постоянного тока является необходимой мощностью; для этого мощность 17 В переменного тока (пиковое значение) преобразуется в мощность постоянного тока, а затем понижается до 5 В постоянного тока. 17 В переменного тока преобразуются в постоянный ток с помощью мостового выпрямителя, состоящего из четырех диодов, которые называются неуправляемыми выпрямителями. Диод будет проводить только при прямом смещении и не будет проводить при обратном смещении.Если анодное напряжение диода больше, чем катодное, то говорят, что диод находится в прямом смещении. Диоды D2 и D4 проводят в течение положительного полупериода, а диоды D1 и D3 проводят в течение отрицательного полупериода.
Фильтр
Эта зарядка и разрядка конденсатора превращают пульсирующий постоянный ток в чистый постоянный ток, как показано на рисунке. Понижающий преобразователь, а именно стабилизатор напряжения IC 7805, используется для преобразования 15 В постоянного тока в 5 В постоянного тока.
Блок-схема IC7805
Блок-схема регулятора напряжения IC7805 показана на рисунке выше.Он состоит из операционного усилителя, который действует как усилитель ошибки, стабилитрона, используемого для обеспечения опорного напряжения.
Стабилитрон, используемый для обеспечения опорного напряжения
Как правило, диапазон рабочего напряжения стабилизатора IC7805 составляет от 7,2 В до 35 В. Если входное напряжение составляет 7,2 В, то это дает максимальный КПД, а если напряжение превышает 7,2 В, эффективность будет снижаться, так как будут потери энергии в виде тепла. Итак, радиаторы используются для защиты регулятора от перегрева.Даже без использования трансформатора мы можем напрямую преобразовать 230 В переменного тока в 5 В постоянного тока с помощью высокопроизводительных диодов. Если у нас есть источник питания 230 В постоянного тока, то мы можем напрямую преобразовать 230 В постоянного тока в 5 В постоянного тока с помощью понижающего преобразователя постоянного тока в постоянный. Не стесняйтесь оставлять свои комментарии в разделе комментариев ниже и поощрять других читателей узнать основы выпрямителей.
Характеристики двухполупериодного (мостового) выпрямителяХарактеристики двухполупериодных выпрямителей одинаковы как для выпрямителя с центральным отводом, так и для мостового выпрямителя.
(1) Коэффициент пульсацииКак обсуждалось в приведенном выше анализе схемы мостового выпрямителя, выходной сигнал, генерируемый после выпрямления, состоит из некоторой составляющей переменного тока, присутствующей в нем. Эти компоненты называются рябью. Волны можно измерить с помощью коэффициента пульсации .
Его можно выразить как отношение между присутствием составляющей переменного тока в генерируемом выходе и полученным постоянным током на выходе. Символ «r» используется для представления коэффициента пульсации.
[latexpage]
[
r = I_rms / I_DC
]
Для мостового выпрямителя значение коэффициента пульсации r = 0,483. Этот коэффициент пульсации важен для анализа эффективности схемы. Значение коэффициента пульсации и КПД схемы обратно пропорциональны друг другу.
(2) КПД мостового выпрямителяКПД выпрямителя определяется как отношение выходной мощности постоянного тока к приложенному переменному току в качестве входной мощности.
E = (генерируемая мощность постоянного тока) / (приложенная входная мощность переменного тока)
Полученный КПД схемы мостового выпрямителя составляет 81,2%. По эффективности по сравнению с полуволновой схемой он более эффективен и по сравнению с трансформатором с центральным ответвлением очень дешев. Общий анализ мостового выпрямителя прост для понимания. Однако он также требует поддержки фильтра, чтобы использовать его в практических приложениях.
Преимущества мостового выпрямителя- По сравнению с однополупериодным выпрямителем схема мостового выпрямителя более эффективна.
- Нет потери выходной мощности из-за использования обеих половин цикла.
- Входной сигнал отсутствует, поскольку выходной сигнал полностью выпрямлен.
- Значение коэффициента пульсации в мостовом выпрямителе меньше, потому что схема более эффективна.
- Среднее значение постоянного тока наивысшего значения достигается благодаря схеме двухполупериодного мостового выпрямителя.
- С точки зрения стоимости, это намного меньше, потому что концепция трансформатора с центральным отводом исключается из мостового выпрямителя.
Согласно анализу и эффективности, мостовой выпрямитель имеет много преимуществ по сравнению с недостатками. Но для практического применения необходимо внести некоторые необходимые изменения.
Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о мостовом выпрямителе MCQ.
Применение мостового выпрямителя- При модуляции радиосигналов для определения его амплитуды концепция мостового выпрямителя имеет важное значение.
- Для электрического тока требуется стабильная подача постоянного тока с поляризацией, это возможно с помощью двухполупериодной схемы выпрямления.
- Из-за эффективного характера мостового выпрямителя его предпочтительно использовать в качестве части блока питания различных устройств.
- Высокое напряжение переменного тока можно преобразовать в низкое значение постоянного тока с помощью мостового выпрямителя.
- Для питания устройств, это может быть светодиод или двигатель постоянного тока, предпочтительно использовать выпрямители этого типа.
Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о Carey Foster Bridge.
Перейдите по этой ссылке, чтобы узнать больше о MCQ Power Electronics.
Выше приведены некоторые применения мостового выпрямителя. Проектирование и анализ мостовых выпрямителей упростили понимание, а его эффективность и коэффициент пульсации сделали его высокоэффективным. Для практических целей какой из них предпочтительнее: выпрямитель с центральным отводом или мостовой выпрямитель?
Изображение предоставлено
Схема мостового выпрямителя, представляющая управляемые выпрямители — Allaboutcircuits.com
Что такое компрессор с диодным мостом и как он работает? — Мой новый микрофон
Тип компрессора с диодным мостом — менее известный тип компрессора, но о нем стоит знать при изучении аудиопроизводства и инструментов торговли.
Что такое компрессор с диодным мостом? Компрессор с диодным мостом — это аналоговый компрессор, который использует пары диодов в симметричной мостовой конфигурации для применения переменного затухания (сжатия) к входному сигналу.
В этой статье мы подробно обсудим компрессию диодных мостов, охватывая задействованные технологии и теорию, а также рассмотрим некоторые характеристики и области применения компрессоров этого типа.
Содержание
Праймер на сжатие
Прежде чем перейти к основному обсуждению компрессоров с диодными мостами, давайте быстро рассмотрим основы компрессии.
Щелкните здесь, чтобы перейти к разделу Что такое компрессор с диодным мостом?
Сжатие динамического диапазона (сжатие) определяется, как следует из названия, как процесс уменьшения динамического диапазона аудиосигнала. Таким образом, сжатие — это звуковой инструмент, используемый для сжатия / минимизации разницы в амплитуде между самой высокой и самой низкой частями аудиосигнала.
Технически компрессор будет ослаблять только «самые громкие части» сигнала (вместо увеличения тихих частей, что считается «восходящей компрессией»).
Два важных вопроса определяют, как будет работать компрессор:
- Какие части были самыми громкими?
- На сколько нужно ослабить самые громкие части?
На эти два важных вопроса отвечают пороговые значения компрессора и регуляторы / параметры соотношения, соответственно.
Какой порог компрессора? Пороговое значение компрессора — это установленный предел амплитуды, который определяет, когда компрессор включается и выключается.Когда входной сигнал превышает порог, включается компрессор (с заданным временем атаки). Когда входной сигнал снова падает ниже порогового значения, компрессор отключается (в соответствии с временем его отпускания).
Какой коэффициент у компрессора? Коэффициент компрессора сравнивает количество децибел, в котором входной сигнал превышает пороговое значение, с количеством децибел, в котором выходной сигнал превышает пороговое значение. Другими словами, это относительная величина ослабления, которую компрессор применяет к сигналу.
Чтобы узнать больше о порогах компрессора и регуляторах соотношения, ознакомьтесь со следующими статьями «Мой новый микрофон», соответственно:
• Сжатие динамического диапазона: что такое пороговый контроль?
• Сжатие динамического диапазона: что такое контроль соотношения?
Другие параметры компрессора, о которых стоит упомянуть, следующие (я добавил ссылки на подробные статьи по каждому параметру):
- Время атаки: количество времени, которое требуется компрессору для включения / реакции после того, как амплитуда входного сигнала превысит пороговое значение.
- Release Time: время, необходимое компрессору для отключения (прекращения ослабления сигнала) после того, как входной сигнал упадет ниже порогового значения.
- Колено: точка перехода около порогового значения компрессора, где выходной сигнал становится ослабленным по сравнению с входным.
- Makeup Gain: усиление, применяемое к сигналу после сжатия (обычно используется для доведения пиков сжатого сигнала до того же уровня, что и пиков до сжатия).
Все компрессоры имеют схему уменьшения усиления, которая эффективно сжимает аудиосигнал в ответ на управляющий сигнал. Этот управляющий сигнал (также называемый боковой цепью) получается из входного аудиосигнала (общий) или через внешний аудиосигнал (реже). Он управляется с помощью вышеупомянутых параметров компрессора.
Таким образом, у каждого компрессора будет два критических пути сигнала:
- Путь аудиосигнала, который проходит через схему уменьшения усиления и сжимается.
- Канал управляющего сигнала (боковой цепи), который считывает, манипулирует сигналом боковой цепи (входной или внешний) и управляет схемой уменьшения усиления.
В случае компрессоров с диодным мостом схема уменьшения усиления сконцентрирована вокруг схемы диодного моста.
Для получения дополнительной информации о сжатии ознакомьтесь с моей статьей «Полное руководство по сжатию звука и компрессорам».
Теперь давайте рассмотрим компрессоры с диодными мостами и их действие для сжатия динамического диапазона аудиосигналов!
Что такое компрессор с диодным мостом?
Компрессор с диодным мостом, как следует из названия, представляет собой компрессор, использующий диодный мост в основе схемы уменьшения усиления.
Что такое диодный мост? Диодный мост (также известный как диодное кольцо) представляет собой конфигурацию из 4 (или более) диодов в конфигурации мостовой схемы, которая обеспечивает одинаковую полярность вывода для любой полярности входа. Диодные мосты чаще всего действуют как выпрямители (преобразуют вход переменного тока во вход постоянного тока).
Это преобразование стало возможным благодаря тому, что диоды пропускают ток только в одном направлении.
Диодный мостовой выпрямитель обеспечивает двухполупериодное выпрямление от входа переменного тока, что означает, что он выпрямляет отрицательные составляющие входного напряжения, превращая их в положительные напряжения перед преобразованием переменного тока в постоянный (импульсный ток).
Обычно две пары диодов устанавливаются в виде ромбовидной матрицы. Аудиосигнал применяется к двум противоположным углам, а управляющий сигнал — к двум другим.
Самый простой диодный мост будет выглядеть примерно так.
В компрессоре с диодным мостом управляющий сигнал боковой цепи является выпрямленной (DC) версией входного аудиосигнала. Входной аудиосигнал является сбалансированным, что означает, что один и тот же сигнал применяется к каждому из «звуковых» углов, но с противоположной полярностью (когда один положительный, другой отрицательный и наоборот).
Как уже упоминалось, диод обычно пропускает ток только в одном направлении. Обычно они либо не проводят (при низком напряжении), либо проводят полностью (при высоком напряжении). Однако у них есть небольшая область, где их проводимость изменяется в зависимости от приложенного к ней напряжения.
Эта странность позволяет использовать диоды в случае диодных компрессоров в качестве аттенюаторов с регулируемым напряжением.
Изменяя сопротивление диодов в этом специальном диапазоне, мы можем изменять их проводимость.В частности, мы можем контролировать уровень сигнала, проходящего через схему уменьшения усиления.
Поддерживая «напряжение смещения» (от боковой цепи) в этом диапазоне, сопротивление диодов будет изменено и будет влиять на то, сколько сигнала проходит через них.
При увеличении уровня входного сигнала также увеличивается уровень управляющего сигнала боковой цепи, а диодный мост вызывает большее ослабление сигнала.
Это можно объяснить простым делителем напряжения с диодом:
Где у нас есть следующее общее уравнение:
- В выход : Аудиовыход
- В вход : Аудиовход
- R 1 : сопротивление резистора (аудиосхема перед диодом)
- R 2 : Сопротивление диода
По мере уменьшения сопротивления диода диод позволяет большему сигналу проходить на землю и эффективно ослабляет выходной сигнал.По мере того, как уровень напряжения смещения боковой цепи на диоде увеличивается (из-за увеличения уровня входного сигнала), он снижает сопротивление диода и эффективно ослабляет выходной сигнал.
Вот как работает компрессия диодного моста.
Следует упомянуть, что эта область небольшая и обычно требует сигналов низкого уровня. Перед схемой сжатия должен быть каскад ослабления. Точно так же должен быть каскад усиления после схемы уменьшения усиления компрессора диодного моста, чтобы довести общий уровень выходного сигнала до приемлемого уровня.
К сожалению, эта схема сжатия низкого уровня может улавливать значительный шум, который затем будет усилен перед выходом. Чтобы уменьшить этот шум, компрессоры с диодными мостами имеют сбалансированную схему (аналогично двухтактным усилителям).
Другими словами, входной сигнал разделяется на два идентичных тракта компрессора. Однако второй путь действует на сигнал обратной полярности. Когда компрессор передает звук, оба тракта улавливают одинаковое количество шума.
Затем на выходе дифференциальный усилитель или трансформатор суммирует разности между двумя путями, тем самым суммируя два сигнала (регулярной и обратной полярности) и подавляя общий шум для обеих линий (подавление синфазного сигнала).
Значит, для правильной работы компрессора с диодным мостом в нем должно быть:
- Согласованные диоды (для уменьшения в противном случае высокого уровня искажений)
- Сбалансированный сигнал во всем компрессоре (из-за пар диодов)
- Сигнал в очень маленьком динамическом диапазоне (для действия в изменяемой части диодов) ‘кривые передачи)
Это сложно спроектировать, и неудивительно, что эти компрессоры не так популярны.
Если не используется внешний сайдчейн (в редких случаях), то это аудиовход, который сайдчейн исправляет, манипулирует (для управления временем, порогом и соотношением) и отправляет в схему уменьшения усиления.
Вот простая блок-схема сигналов для визуализации боковой цепи компрессора.
Чаще всего схема определения уровня определяет пик (максимальную амплитуду) и выдает напряжение постоянного тока того же значения.
Диодные мостовые схемы позволяют проектировать кривые сжатия (коэффициент, порог и изгиб), а также параметры времени атаки и восстановления, независимо от элемента сжатия.
Эти параметры описаны более подробно ниже (я дал ссылки на подробные статьи по каждому элементу управления):
- Порог: предел амплитуды, который определяет, когда компрессор включается и выключается.
- Соотношение: отношение амплитуды входного сигнала выше установленного порога к амплитуде выходного сигнала выше порога.
- Атака: количество времени, которое требуется компрессору для включения / реакции, когда амплитуда входного сигнала превышает пороговое значение.
- Разрешение: время, необходимое компрессору для отключения (прекращения ослабления сигнала) после того, как входной сигнал упадет ниже порогового значения.
Трансформаторы используются для балансировки и установки уровней сигналов, которые, наряду с характеристиками диодов и самой схемой компрессора, добавляют искажения к сигналу. Это искажение часто бывает гармонично богатым и придает сигналу приятный цвет.
Характеристики компрессоров с диодным мостом
В этом разделе мы рассмотрим несколько типичных характеристик компрессоров с диодными мостами:
- Очень быстрое время атаки и восстановления
- Нелинейное сжатие, которое добавляет характер посредством гармонического искажения
- Требуются входные сигналы низкого уровня
- Требуется большее выходное усиление, которое часто увеличивает минимальный уровень шума
Примеры компрессора с диодным мостом
Прежде чем мы подведем итоги, всегда полезно рассмотреть несколько примеров.Давайте посмотрим на 3 различных компрессора с диодным мостом, чтобы лучше понять этот тип сжатия.
В этом разделе мы обсудим:
Другие известные компрессоры с диодным мостом:
- Neve 33609
- Neve 2254
- Chandler Limited Zener
- Heritage Audio Successor
Rupert Neve Designs 535
Rupert Neve Designs 535 (ссылка, чтобы узнать цену на Amazon) — это компрессор с диодным мостом, упакованный в блок серии 500.Его базовая конструкция в значительной степени основана на оригинальном компрессоре 2254 Руперта Неве и включает расширенные элементы управления.
Руперт Неве Дизайн 535Этот универсальный блок предлагает унифицированный контроль времени, который изменяет время атаки и восстановления компрессора. Выберите один из 2 режимов (быстрый и медленный) с 6 вариантами в каждом: быстрый, средний быстрый (MF), средний, средний медленный (MS), медленный и автоматический. Это всего 12 уникальных постоянных времени!
Модель 535 имеет типичный порог (ручка с 31 фиксатором от -25 дБ до +20 дБ) и коэффициент передачи (1.5: 1, 2: 1, 3: 1, 4: 1, 6: 1, 8: 1) вместе с ручкой усиления макияжа.
Параллельное сжатие упрощается с 535 с помощью ручки с 31 фиксатором, которая может быть установлена на 0% (полностью без сжатия) и 100% (полностью сжато). Устройство также оснащено выбираемым фильтром верхних частот боковой цепи на 150 Гц.
Благодаря специальным трансформаторам и выходным усилителям класса A, 535 предлагает превосходные звуковые характеристики, сохраняя при этом богатую гармонику тональность, которой известны компрессоры с диодным мостом.
Хотя Rupert Neve Designs 535 является одноканальным устройством, несколько 535 могут быть соединены вместе для обработки стереосигналов.
Для получения дополнительной информации о модулях серии 500 ознакомьтесь с моей статьей Что такое аудиооборудование серии 500 и стоит ли оно того?
Rupert Neve Designs представлен в следующих статьях «Мой новый микрофон»:
• 10 лучших брендов студийных консолей для записи / микширования
• 11 лучших брендов аудиокомпрессоров в мире
• 11 лучших мировых брендов звуковых эквалайзеров
• 11 лучших брендов аудиосистемы для модулей / оборудования серии 500
• 11 лучших брендов аудиосистем для прямого ввода на рынке
Дизайн Руперта Неве 5254
Rupert Neve Designs 5254 (ссылка, чтобы узнать цену на фото / видео B&H) — еще один отличный компрессор с диодным мостом.Как и вышеупомянутый 535, 5254 также вдохновлен классическим компрессором ранних дней Руперта Неве. Однако на этот раз это стереосистема в форм-факторе для монтажа в стойку.
Руперт Нив Дизайн 5254Элементы управления в основном такие же, как у 535 на каждом канале.
Заметные различия включают переменный фильтр высоких частот боковой цепи от 20 Гц до 250 Гц и тот факт, что каждый канал имеет свой собственный измеритель уровня громкости с возможностью измерения выходных уровней или уменьшения усиления.Независимые внешние сигналы боковой цепи также могут использоваться на любом канале 5254 и могут быть выбраны нажатием кнопки S / C Insert на любом канале.
5254 может работать как в двойном моно, так и в стереофонической конфигурации.
Линделл 254E
Lindell 254E (ссылка, чтобы проверить его на Lindell Plugins) снова вдохновлен легендарным Neve 2254, который был впервые представлен в 1968 году. Этот плагин компрессора запрограммирован таким образом, чтобы воссоздать волшебство реальной вещи и предлагает дополнительную универсальность с дополнительными дополнительными возможностями. Особенности.
Lindell 254EЭтот плагин компрессора с диодным мостом великолепно звучит и в нем очень легко ориентироваться.
Lindell 254E имеет функцию измерения входного и выходного уровней, а также уменьшения усиления. Он имеет управление микшированием для параллельной обработки, выбираемый фильтр верхних частот боковой цепи, а также медленные и быстрые параметры для виртуальных схем компрессора и ограничителя (которые могут работать одновременно).
Компрессор 254E имеет типичные элементы управления порогом, соотношением и восстановлением (временем восстановления).Часть ограничителя определяется контролем предельного уровня и контролем восстановления предела (времени отпускания). Выход / усиление плагина также имеет собственную ручку управления.
Lindell Audio входит в список 11 лучших аудиобрендов для модулей и оборудования серии 500 по версии My New Microphone.
Какие бывают типы аудиокомпрессоров? Термин «тип» может иметь несколько значений, поэтому давайте рассмотрим несколько различных типов компрессоров.
С точки зрения топологии схемы компрессоры обычно делятся на один из следующих типов:
С точки зрения того, как компрессор будет работать при сжатии аудиосигнала (и типичных задач, которые он будет выполнять), мы можем думать о следующих типах сжатия:
Следует ли использовать сжатие на каждой дорожке? Как правило, сжатие следует использовать целенаправленно и, следовательно, использовать на каждой дорожке только в том случае, если это требуется для каждой дорожки.Чаще всего в миксе будут определенные треки, которые отлично звучат (и лучше) без сжатия динамического диапазона.
Еще раз, типичные преимущества использования сжатия на дорожке включают (но не ограничиваются) следующее:
- Поддержание более согласованного уровня по всему аудиосигналу / дорожке
- Предотвращение перегрузки / ограничения
- Объединение боковых элементов
- Повышение сустейна
- Улучшение переходных процессов 20
- движение »к сигналу
- Добавление глубины к миксу
- Обнаружение нюансированной информации в аудиосигнале
- Деэссинг
- « Склеивание »микса вместе (делая его более связным)
Выбор лучших звуковых плагинов для DAW может оказаться сложной задачей.По этой причине я создал «Подробное руководство покупателя звуковых подключаемых модулей для моего нового микрофона». Ознакомьтесь с ним, чтобы узнать, как определиться с вашими следующими покупками аудиоплагина.
Создание вашей системы серии 500 может оказаться сложной задачей. По этой причине я создал подробное руководство покупателя для моего нового микрофона серии 500. Ознакомьтесь с ним, чтобы получить помощь в определении ваших следующих покупок серии 500.
Эта статья была одобрена в соответствии с редакционной политикой «Мой новый микрофон».
Что такое мостовой выпрямитель? — Работа, преимущества и недостатки
Определение: мостовой выпрямитель образован путем соединения четырех диодов в форме моста Уитстона . Он также обеспечивает полное выпрямление волны. Во время первой половины цикла переменного тока два диода смещены в прямом направлении, а во второй половине цикла переменного тока два других диода становятся смещенными в прямом направлении.
Таким образом, выпрямитель обеспечивает выход постоянного тока во время положительного цикла переменного тока, а также во время отрицательного цикла переменного тока.
Компоненты схемы мостового выпрямителя
Состоит из понижающего трансформатора, четырех диодов, соединенных в виде моста. Два из четырех диодов подключены по диагонали и подключены к вторичным обмоткам трансформатора, а два других диода подключены к нагрузочному резистору.
Работа мостового выпрямителя
Когда сигнал переменного тока подается на мостовой выпрямитель, понижающий трансформатор преобразует сигнал переменного тока высокого напряжения в сигнал переменного тока низкого напряжения.Сигнал переменного тока подается на первичную обмотку трансформатора, а через взаимную индукцию — на вторичные обмотки трансформатора.
Работа диодов во время положительной половины переменного тока
Когда положительная половина сигнала переменного тока подается на мостовой выпрямитель, верхняя часть вторичной обмотки трансформатора является положительной, а нижняя часть вторичной обмотки — отрицательной. Таким образом, в этом состоянии вывод анода диода D1 положительный, а вывод катода диода D3 отрицательный.
Следовательно, диод D1 и диод D3 будут смещены в прямом направлении в течение положительной половины или первой половины цикла переменного тока. И диод D2 и диод D4 будут иметь обратное смещение, потому что катодный вывод диода D4 подключен к выводу, имеющему положительное напряжение, а анодный вывод диода D2 подключен к положительному напряжению.
Работа диодов при отрицательной половине переменного тока
Когда отрицательный цикл или вторая половина сигнала переменного тока приближается к мостовому выпрямителю, верхняя часть вторичной обмотки трансформатора является отрицательной, а нижняя половина вторичной обмотки трансформатора — положительной.Таким образом, в этой ситуации анодный вывод диода D1 является отрицательным, а катодный вывод D3 — положительным. Это заставляет диод D1 и D3 работать в режиме обратного смещения.
Во время отрицательного полупериода сигнала переменного тока вывод катода диода D4 отрицательный, а вывод анода диода D2 положительный. Таким образом, диод D4 и диод D2 смещены в прямом направлении во время отрицательной половины переменного тока. Хотя во время этого отрицательного полупериода анодный вывод диода D1 является отрицательным, а катодный вывод диода D3 — положительным, это вызывает обратное смещение диодов D1 и D3.
Таким образом, мостовой выпрямитель проводит как половину входного сигнала переменного тока, то есть как положительную, так и отрицательную половину. Направление тока, протекающего через нагрузочный резистор, остается неизменным как для положительной половины цикла переменного тока, так и для отрицательной половины цикла переменного тока.
Анализ мостового выпрямителя
Приложенное напряжение Vsmax появляется на нагрузочном резисторе RL, таким образом, на нагрузочном резисторе появляется пиковое обратное напряжение (PIV).
- Пиковый ток: Значение пикового тока мостового выпрямителя можно получить с помощью мгновенного напряжения, приложенного к цепи выпрямителя.
Давайте рассмотрим прямое сопротивление некоторого значения и обратное сопротивление, обеспечивающее бесконечное сопротивление, тогда мы можем получить значение тока через нагрузочный резистор.
Полный ток, протекающий через сопротивление нагрузки R L , являющийся суммой токов i 1 и i 2 , определяется как: —
Пиковое значение силы тока через сопротивление RL может быть получено с помощью приведенного ниже уравнения.
Здесь RF — прямое сопротивление, а RL — сопротивление нагрузки.
- Эффективность выпрямления: Эффективность выпрямления может быть получена соотношением мощности постоянного тока, подаваемой на нагрузку, и составляющей мощности переменного тока, присутствующей в ней.
Преимущества мостовых выпрямителей над выпрямителями с центральным отводом
- В случае мостового выпрямителя центральное ответвление во вторичной обмотке трансформатора не требуется.Таким образом, это снижает сложность схемы. Схема может быть упрощена, если мы удалим трансформатор из схемы выпрямителя на тот случай, если нам не нужно понижать напряжение.
- Стабилизация напряжения, обеспечиваемая мостовыми выпрямителями, лучше, чем у двухполупериодных выпрямителей с центральным ответвлением.
- Коэффициент использования трансформатора в случае мостового выпрямителя выше, чем у двухполупериодного выпрямителя с центральным ответвлением.
- Силовой трансформатор меньшего размера может использоваться для заданной выходной мощности.
Недостатки мостовых выпрямителей по сравнению с выпрямителями с центральным отводом
- Для работы требуется четыре диода, поэтому требования к компонентам схемы в случае мостового выпрямителя больше, чем у выпрямителей с центральным ответвлением.
- Падение напряжения на диодах увеличивается в четыре раза, чем у двухполупериодного выпрямителя с центральным ответвлением. Это создает проблему в приложениях, где требуется низкое напряжение.