Site Loader

Содержание

Получены первые изображения атомов водорода и углерода в микроскопе

Электронный микроскоп смог разглядеть отдельные атомы водорода и углерода; прежде можно было увидеть лишь тяжёлые атомы вроде золота. Секрет метода, который позволит изучать биологические молекулы «живьём», – использование подложки из графена, одноатомного углеродного листа.

Микроскоп является, наверное, самым удобным инструментом, позволяющим разглядеть кирпичики мироздания. Сначала микроскопы представляли собой оптические системы, увеличение в которых достигалось с помощью линз, фокусирующих отраженные от исследуемого образца или прошедшие сквозь него световые лучи.

Затем с развитием техники оптические микроскопы уступили место электронным аналогам, где вместо световых волн используются сфокусированные потоки электронов. Они, подобно квантам света, поглощаются или рассеиваются различными веществами и материалами, но позволяют добиться увеличения куда большего, чем в оптических микроскопах. Связано это с явлением дифракции света, «огибания» электромагнитными волнами препятствий, которое не позволяет разглядеть в оптические устройства объекты меньше примерно 300 нм – этот размер соответствует ультрафиолетовому краю видимого света. Электроны также представляют собой волны (равно как и частицы), но длина их волны существенно меньше.

В настоящее время существует масса микроскопических методов, позволяющих проводить исследования в нанодиапазоне, – это сканирующая туннельная микроскопия, атомно-силовая и так далее.

Наибольшего увеличения и разрешения на сегодняшний день можно добиться с помощью технологии трансмиссивной, или просвечивающей электронной микроскопии (ТЭМ) высокого разрешения.

Справка

Когда пучок электронов проходит сквозь образец, он по-разному рассеивается в его объеме. Часть этого пучка рассеивается на ядрах атомов, часть отражается электронными облаками атомов и межатомных связей, часть проходит сквозь толщу…

Читать дальше

Она заключается в пропускании сфокусированного электронного пучка сквозь тонкий образец. Этим образцом может быть наноразмерный кристаллит неорганического вещества, углеродные нанотрубки, фуллерены и так далее. С помощью просвечивающего микроскопа и математического аппарата преобразования сигнала можно видеть отдельные атомы, образующие кристаллическую решетку просвечиваемого твердого тела, рассчитывать его параметры и так далее. Казалось бы, о чем еще можно мечтать физикам и химикам? И действительно, ТЭМ до сих остается пределом мечтаний для сотрудников многих отечественных учебно-научных учреждений: цена одного такого аппарата сравнима со стоимостью истребителя.

Тем не менее и такой аппарат не всесилен, увидеть в нем даже при разрешении в доли нанометра можно далеко не каждый атом.

Дело в том, что легкие атомы, такие как углерод, кислород, азот и уж тем более водород, обладающие небольшим количеством электронов, очень слабо рассеивают поток электронов. На фоне сигнала проводящей подложки, на которой лежит образец, и шума детектора сигнал этих атомов становится совершенно незаметным. Поэтому вплоть до последнего времени просвечивающая электронная микроскопия применялась в подавляющем большинстве случаев для исследования строения неорганических материалов, состоящих из тяжелых и богатых электронами атомов. Между тем азот, водород, кислород и углерод – это биогенные элементы, входящие в состав всех органических соединений, а потому представляют едва ли не больший интерес для ученых, нежели все неорганические материалы вместе взятые.

Графен

двумерный кристаллический углеродный материал, который удобно представить в виде одного слоя углеродных атомов, образующих слоистую структуру графита. Впервые экспериментально получен и описан этот материал был в 2004 году группой…

Читать дальше

Приспособить ТЭМ под исследование объектов органической природы позволил уже завоевавший славу углеродный материал графен. Тонкий углеродный лист графена атомарной толщины оказался прекрасной подложкой для соединений из легких атомов для изучения их на просвет электронным пучком.

Открытие это было сделано во многом случайно. Янник Мейер, входящий в группу профессора Алекса Зеттля из Калифорнийского университета в Беркли, но работающий сейчас в Университете немецкого города Ульм, изучал сами графеновые листы, пытаясь подобрать параметры съемки и настроить соотношение «сигнал—шум» своего микроскопа наилучшим образом.

В один прекрасный момент ему пришло в голову, что «шум», от которого никак не удается избавиться, есть не что иное, как легкие углеродные атомы на поверхности графена.

Оказалось, что графен, обладая минимально возможной толщиной в сочетании с феноменальной электронной проводимостью, дает очень низкий уровень шума, а прочностные характеристики этого материала позволяют ему выдерживать бомбардировку электронным пучком в течение многих часов. Статья команды ученых вышла в свет в журнале Nature.

Случайным ли образом в камере просвечивающего микроскопа Мейера оказались молекулы органических соединений, или они присутствуют там всегда и у всех, – сейчас сказать уже тяжело. Тем не менее Мейер, без сомнения, – первый, кто смог наблюдать динамику их движения по поверхности графена.

close

100%

Какие перспективы открывает новая методика просвечивающей микроскопии, разработанная специалистами из Беркли?

Главное, теперь становится возможным воочию наблюдать простые и сложные органические молекулы напрямую с помощью микроскопа, а не «щупать» их методами ядерного магнитного резонанса и рентгеновской дифракции.

Кроме того, по словам Зеттля, взаимодействие этих молекул на поверхности и с поверхностью отныне можно будет наблюдать в динамике. Если раньше ученым приходилось анализировать состав продуктов и промежуточных веществ в ходе реакции, а затем строить сложные кинетические модели цепных реакций для установления их механизма, то в перспективе они смогут ограничиться простым наблюдением за молекулами взаимодействующих веществ напрямую; благо, ТЭМ позволяет наблюдать, что называется, «живую» картинку.

Конечно, такие радужные перспективы не могут пока исключить нескольких очень важных «но».

Во-первых, изучение структуры органических соединений, адсорбированных на поверхности, должно учитывать то обстоятельство, что конформация многих молекул в ходе такого адсорбционного взаимодействия может значительно измениться. О влиянии конформации молекулы на ход реакций, особенно если дело касается природных соединений, «Газета.Ru»

писала в понедельник.

Во-вторых, если предметом изучения становится изучение взаимодействия органики с поверхностью твердого тела – задачи, очень важной в гетерогенном катализе, – графен не слишком-то и интересен, ибо со структурной и химической точки зрения он очень прост, чтобы не сказать примитивен. А синтезировать подложки толщиной в несколько атомов из более интересных соединений с каталитической или структурной точки зрения – задача во многих случаях просто неразрешимая.

Наблюдение легких соединений с помощью ТЭМа таит в себе и ряд чисто технических сложностей. Однако, как показывает опыт развития науки техники последних лет, ученые наверняка найдут способ извернуться и в этом случае.

Исчезающая малость Ученые научились рассматривать в микроскоп отдельные атомы: Наука и техника: Lenta.ru

Наверное, все читатели помнят уроки биологии в школе, на которых нужно было рассматривать в микроскоп капли воды и восхищаться увиденным там зверинцем. Учительница в это время традиционно рассказывала, что первым 300 лет тому назад так развлекался Антони Ван Левенгук. Сегодня ученые по-прежнему очень активно используют микроскопы, вот только изучают они с их помощью уже не инфузорий-туфелек, а отдельные молекулы и атомы.

Мал мала меньше

Полноценная история микроскопа начинается в XVII веке, хотя необычные оптические свойства изогнутых поверхностей были известны людям еще во времена Евклида и Птолемея. Вероятно, тогда люди не могли придумать, зачем им нужно увеличивать изображения тех или иных объектов. Даже самое, как кажется сегодня, очевидное использование линз – в качестве очков – было освоено человечеством только в XIII веке.

По некоторым данным, первый микроскоп, содержащий несколько линз (так называемый сложный микроскоп), был изобретен уже в 1590 году именно мастером по изготовлению очков из Нидерландов Хансом Янссеном и его сыном Захарией Янссеном. Впрочем, некоторые специалисты полагают, что человеком, сконструировавшим прибор — прародитель современных микроскопов, был знаменитый Галилео Галилей.

Первые по-настоящему значимые наблюдения при помощи микроскопа провел английский физик Роберт Гук. В 1667 году вышла его книга «Микрография», в которой Гук описал и зарисовал, что именно ему удалось увидеть, разглядывая в микроскоп самые разные вещи. Ученый скрупулезно запечатлел увеличенные в десятки раз иголки, бритвы, растения, блох, камни, мух и многое другое. Описания и особенно рисунки Гука оставались образцами для будущих исследователей еще многие годы — вплоть до XIX века они в обязательном порядке включались во все учебники естественной истории. Кстати, именно Гук придумал подсвечивать изучаемый объект при помощи искусственных источников света.

Уже упоминавшийся Левенгук известен не только своим знаменитым высказыванием про обитателей капли воды: «С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши», — но также замечательными линзами, которые по качеству не уступали линзам современных микроскопов. За свою жизнь Левенгук, освоивший профессию шлифовальщика, изготовил около 250 линз, лучшие из которых давали увеличение до 300 раз. Для своего времени Левенгук проводил самые передовые научные наблюдения, хотя его зарисовки и не отличались таким совершенством, как у Гука.

В медицинской практике микроскоп впервые применил, вероятно, Марчелло Мальпиги, итальянский врач и биолог, живший одновременно с Гуком и Левенгуком. В 1661 году он написал труд «Анатомические наблюдения легких», для создания которого также пользовался микроскопом. Мальпиги рассматривал сквозь линзы не только органы людей — он описал органы пищеварения и выделения у членистоногих и открыл у них органы дыхания.

Несмотря на то, что при помощи микроскопов люди фактически узнали о существовании у окружающего мира еще одного измерения, долгое время прогресс в технологиях микроскопии был относительно слабым. Причиной были сферические и хроматические аберрации, знакомые сегодня всем, кто увлекается фотографией. Первый тип аберраций связан с тем, что лучи света, проходящие через центр объектива и через его периферийные части, фокусируются в различных точках, и в результате изображение получается нечетким. Причина хроматических аберраций — фокусировка лучей разной длины волны в разных местах и, соответственно, окрашивание изображения.

Конструкторы микроскопов научились обходить эти затруднения только в XIX веке, и, начиная с этого времени, микроскоп стал одним из обязательных инструментов для медиков и биологов. Постепенно разрешающая способность микроскопов (то есть их способность «показывать» два находящихся рядом объекта раздельно, а не в виде одного пятна) росла, и исследователи могли разглядывать детали все более и более мелких образцов. Но до бесконечности увеличивать изображение пыльцы или клеток ученые не могли из-за открытого немецким физиком Эрнстом Аббе еще в далеком 1873 году дифракционного предела.

Дифракционный предел – это фундаментальное ограничение, которое не позволяет оптическим приборам разрешать объекты размером меньше, чем длина волны излучения, в котором ученые наблюдают эти объекты. То есть, при помощи микроскопов, являющихся непосредственными потомками тех приборов, которые использовали Гук и Мальпиги (хотя и намного более совершенных), нельзя разглядеть детали, размер которых меньше длины волны видимого света. Самая короткая длина волны у фиолетового света, и она составляет около 380 нанометров. И если размер дрожжевой клетки достигает 10 тысяч нанометров, то средний вирус обычно не вырастает больше нескольких десятков нанометров, а крупные белки редко добираются до 30 нанометров. Что уж говорить об отдельных изгибах белковых молекул.

Для того чтобы увидеть столь незначительные (имеются в виду только физические размеры) объекты, ученым пришлось приспособить для своих нужд излучение с намного меньшей, чем у видимого света, длиной волны. Преемником оптического микроскопа стал микроскоп, который облучал исследуемый объект потоком электронов. Длина волны в этом случае зависит от скорости движения электронов, и в современных электронных микроскопах ученые добиваются разрешения порядка десятых частей нанометра. Этого уже вполне достаточно для того, чтобы рассматривать, например, отдельные атомы в кристалле. Первые электронные микроскопы появились в 1930-е годы, а еще через 20 лет были изобретены приборы, в которых задействовано рентгеновское излучение. По своей разрешающей способности рентгеновские микроскопы уступают электронным, но для целого ряда применений они подходят намного лучше.

Но как бы ни были хороши рентгеновские и электронные микроскопы, использовать их можно далеко не всегда. Чем короче длина волны, тем больше энергии несет излучение, поэтому долго рассматривать образцы, особенно живые, при помощи очень коротких волн зачастую не получается — мощное излучение быстро разрушает исследуемые объекты.

И еще меньше

Для того чтобы все-таки изучить самые мелкие детали, например, увидеть, как расположены атомы в каком-нибудь веществе, ученые придумали множество хитроумных технологий. Одна из них — атомная силовая микроскопия (АСМ). Ее суть заключается в следующем: очень тонкая игла скользит над поверхностью изучаемого образца, подходя настолько близко, что начинает «чувствовать» силы атомных связей, действующих между атомами вещества. В итоге игла немного отклоняется от заданной траектории, и, анализируя параметры этого отклонения, исследователи могут восстановить рельеф поверхности.

У метода АСМ есть одно существенное ограничение – из-за сил Ван-дер-Ваальса (относительно слабые силы межмолекулярного взаимодействия) игла микроскопа не может опуститься над препаратом на расстояние меньше одного нанометра, а чем меньше расстояние, тем более мелкие детали игла может «прощупать». В 2009 году группа ученых из исследовательского центра IBM в Цюрихе предложила и опробовала способ модификации технологии АСМ, позволяющий заметно снизить влияние сил Ван-дер-Ваальса. Исследователи поместили на кончик иглы одну молекулу угарного газа – CO, на которую силы Ван-дер-Ваальса оказывают относительно несущественное влияние.

Используя такую «насадку», ученые исследовали молекулу пентацена — углеводорода с химической формулой C22H14, молекула которого содержит пять колец. Специалистам удалось разглядеть их все, а также увидеть отдельные атомы углерода и водорода — полученное в их работе разрешение оказалось лучшим за всю историю АСМ. В 2010 году те же авторы, используя созданную ими технологию, смогли предсказать пространственную структуру органической молекулы цефаландола А — до сих пор для решения этой задачи исследователи полагались на непрямые методы, например, на рентгеновскую кристаллографию. Ученые не всегда могут однозначно сказать, как именно будут расположены друг относительно друга отдельные атомы даже в не очень сложной молекуле, по той причине, что нередко сразу несколько конфигураций оказываются энергетически выгодными. А без точного знания трехмерной структуры молекулы исследователи не могут достоверно судить о многих ее свойствах.

Еще один прорыв в микроскопии был сделан учеными, которые в своей работе использовали метод сканирующей туннельной микроскопии (СТМ). Общий принцип СТМ схож с АСМ, однако в деталях эти две технологии заметно отличаются. СТМ задействует чисто квантовый эффект, получивший название туннелирования. Этим термином называют способность электрона преодолевать энергетический потенциальный барьер между двумя областями пространства, который, по всем правилам классической механики, он преодолеть не может.

Металлическая игла сканирующего туннельного микроскопа скользит над объектом на расстоянии всего несколько ангстрем (один ангстрем в десять раз меньше нанометра). В процессе движения на иглу подается небольшой потенциал, и в итоге между иглой и образцом возникает так называемый туннельный ток — электроны из образца, преодолевая расстояние до иглы, как бы «перепрыгивают» на нее. Количество туннелировавших электронов зависит от расстояния до кончика иглы, поэтому, определяя величину туннельного тока, ученые могут понять, каков рельеф поверхности образца.

Специалисты из немецкого института био- и наносистем при помощи СТМ исследовали строение молекулы сложной органической молекулы PTCDA (перилен-3,4,9,10-тетракарбон-3,4,9,10-диангидрид). Ранее они выяснили, что разрешение метода существенно улучшается, если между иглой и образцом поместить холодный водород. В ходе своего нового исследования специалисты показали, что добавление молекул газа заодно позволяет увидеть водородные связи между молекулами PTCDA (это те же самые связи, которые, например, обеспечивают уникальные свойства воды — подробнее о них можно прочитать тут). Пока ученые не могут объяснить природу наблюдаемого эффекта, но сам факт, что невещественные связи между молекулами можно увидеть воочию, уже очень впечатляет.

Еще одно впечатляющее достижение сделали физики из Харьковского физико-технического института — им впервые удалось сфотографировать электронные облака — именно в таком виде, а не в виде дискретных частиц, согласно положениям квантовой механики, существуют в атоме электроны.

Помимо разработки всех этих хитроумных методов в последние годы ученым удалось создать технологию, которая позволяет в принципе обойти дифракционный предел. Инструмент, позволяющий преодолеть фундаментальное физическое ограничение, был назван суперлинзой, и секрет его работы кроется в материале. Суперлинзы изготавливают из метаматериалов с отрицательным коэффициентом преломления, свойства которых определяются, в первую очередь, их необычной структурой. Метаматериалы очень необычным образом искажают пути прохождения лучей света, и при помощи некоторых из них физики научились разрешать объекты, недоступные оптическим приборам. Подробнее о метаматериалах и их свойствах можно прочитать здесь.

Если технологии микроскопии будут развиваться такими же темпами, как сейчас, то очень скоро на уроках биологии (по крайней мере, в старших классах) школьники будут рассматривать не амеб и хламидомонад, а, например, займутся подсчетом атомов в молекулах полиэтилена. Или будут исследовать как взаимодействуют внутри амеб отдельные белки.

Путешествие в микромир / Хабр

В предыдущей статье мы говорили

о числах-гигантах

. Можно сказать, что мы совершили путешествие к бесконечности, а когда подошли к Числу Грэма, то лично у меня создалось ощущение, что вот еще чуть-чуть – и мы прикоснемся к ней рукой. Сегодня я предлагаю вам еще одно путешествие. На этот раз в микромир – мир малых объектов. Настолько малых, что среди всех тех, которые мы рассмотрим, песчинка будет самой крупной. Сразу скажу, что эта статья не о физике. Мы не будем говорить о квантовых эффектах, принципе неопределенности и теории струн. Я не физик (впрочем, я думаю, что вы поняли это и на основании моего предыдущего текста). Это статья о цифрах, масштабах и красоте. Добро пожаловать.


Но начнем мы совсем с другой стороны. Прежде чем отправиться в путешествие к глубинам материи, давайте обратим свой взор вверх. Мне кажется, что макромасштабы знакомы нам все-таки чуть лучше, чем микро. Образованный читатель более-менее представляет себе, как велики расстояния во Вселенной. Например, известно, что до Луны в среднем почти 400 тысяч километров, до Солнца – 150 миллионов, до модного ныне Плутона (который уже не виден без телескопа) – 6 миллиардов, до ближайшей звезды Проксимы Центавра (не видна тоже) – 40 триллионов, до ближайшей крупной галактики туманности Андромеды (а вот она как раз замечательно видна без всяких приборов) – 25 квинтиллионов и наконец до окраин обозримой Вселенной (видны они или нет – вопрос спорный) – 130 секстиллионов. Впечатляюще конечно, но все мы любим космические новости и, честно говоря, где-то глубоко внутри уже смирились с тем, что космос очень, очень, очень велик. Да и разница между всеми этими «квадри-», «квинти-» и «сексти-» не кажется столь уж огромной, хотя они и различаются между собой в тысячу раз. Совсем другое дело микромир. Разве в нем может быть скрыто так уж много интересного, ведь ему просто негде там поместиться. Так говорит нам здравый смысл и ошибается.

Попробуйте ответить на такой вопрос. Если на одном конце логарифмической шкалы отложить самое маленькое известное расстояние во Вселенной, а на другом – самое большое, то что будет посередине? Что представляет собой это самое «среднее» расстояние? Если только что вы думали о галактиках и звездах, то наверное предположите, что оно должно быть достаточно большим, ведь Вселенная так огромна. Но на самом деле это расстояние будет равно примерно 0.1 миллиметра. Удивительно, правда? Что-то очень необъяснимое творится в этом самом микромире, раз он перевешивает громады целого космоса. Итак, 0.1 мм — размер песчинки, давайте с нее и начнем.

Песчинка является одним из мельчайших объектов из тех, которые мы все еще видим невооруженным глазом. 100 песчинок, поставленных в ряд, уместятся на ногте человеческого пальца. 10 тысяч песчинок – и вот перед нами уже метр. А если расположить их «бок о бок» вдоль земного экватора, то нам понадобится 400 миллиардов штук. Всего-то. Отдаете ли вы себе отчет, что все эти песчинки можно собрать в один большой, но совсем даже не громадный, мешок, и весить он будет всего лишь около тонны?

Что еще у нас есть такого, что едва можно рассмотреть? Человеческий волос. Волосы у людей бывают разными, но в среднем их толщина равна 50-70 микронам, то есть их 15-20 штук на миллиметр. Для того чтобы выложить ими расстояние до Луны, потребуется 8 триллионов волос (если складывать их не по длине, а по ширине, конечно). Поскольку на голове у одного человека их около 100 тысяч, то если собрать волосы у всего населения России, до Луны хватит с лихвой и даже еще останется.

Двигаемся дальше — в мир уже невидимых невооруженным глазом объектов. Бактерии. Их размер может различаться в 10 раз — от 0.5 до 5 микрон (хотя есть и уникальные экземпляры размером вплоть до 1 миллиметра). Таким образом, в толщине человеческого волоса их поместится до 100, а в сантиметре — до 20 тысяч штук. Если увеличить среднюю бактерию до такого размера, что она удобно ляжет нам в ладонь (в 100 тысяч раз), толщина волоса станет равной 5 метрам. Кстати, внутри человеческого тела обитает целый квадриллион бактерий, а их общий вес составляет 2 килограмма. На секунду остановитесь и задумайтесь, сколь значительную часть вас самих составляют бактерии. Их, собственно, даже больше, чем клеток самого тела. Так что вполне можно сказать, что человек — это просто такой организм, состоящий из бактерий и вирусов с небольшими вкраплениями чего-то еще.

Вирусы. Легко могу допустить, что кому-то они кажутся примерно тем же, что и бактерии, — я и сам иногда использую эти слова как синонимы. Размеры вирусов различаются еще больше, чем бактерий, — чуть ли не в 100 тысяч раз. Если бы дело обстояло так с людьми, то они были бы ростом от 1 сантиметра до 1 километра, и их социальное взаимодействие стало бы любопытным зрелищем. Но в целом вирусы меньше, чем бактерии. Средняя длина наиболее распространенных разновидностей — 100 нанометров или 10-7 степени метра. Если мы снова выполним операцию приближения таким образом, чтобы вирус стал размером с ладонь, то длина бактерии будет 1 метр, а толщина волоса — 50 метров.

И, кстати, именно на этом масштабе мы подходим к размерам, которые уже не сможем разглядеть в оптический микроскоп. И вот почему. Длина волны видимого света — 400-750 нанометров, и увидеть объекты, меньшие этой величины, попросту невозможно (если только не применить какую-нибудь хитрость, например заставив их излучать). Попытавшись осветить объект, волна просто обогнет его и не отразится. Иногда задают вопрос, как выглядит атом или какого он цвета. Когда-то очень давно мне казалось, что для ответа на него нужно просто посмотреть в микроскоп, и если не хватит увеличения, то взять еще один и присоединить к первому, а потом еще и еще, пока не получится яркое и отчетливое изображение, которое уж очевидно будет какой-то формы и какого-то цвета (да, я был смышленым малым и мне это казалось отличной идеей). На самом же деле, атом не выглядит никак. Просто вообще никак. И не потому, что у нас недостаточно хорошие микроскопы, а потому что размеры атома меньше расстояния, для которого существует само понятие «видимости»… Мне просто показалось важным это отметить еще и потому, что все дальнейшие иллюстрации будут, скорее, просто картинками, а не чем-то реально отражающим формы рассматриваемых объектов.

Возвращаемся к вирусам. Если мы снова возьмем для сравнения толщину человеческого волоса, то их там поместится около 500 штук среднего размера. Когда в следующий раз будете рассматривать найденный в супе волос, представьте, как вокруг него идет хоровод из 1.5 тысяч вирусов. А вдоль окружности земного шара можно плотно разместить 400 триллионов вирусов. Много. Такое расстояние в километрах свет проходит за 40 лет. Но если собрать их всех вместе, то они легко поместятся на кончике пальца. Всего-то.

Вообще, на масштабах нанометров имеется много разных интересных объектов, но мы будем останавливаться только на тех, названия которых широко известны. Поэтому наша следующая остановка — молекулы. Например, молекула ДНК с шириной 3 на 10-9 метра. То есть при увеличении в миллион раз ее ширина станет равной 3 миллиметрам, а если в миллиард — 3 метрам (с другой стороны, если просто взять миллиард молекул, то их даже не будет видно без очков). Таким образом, молекула ДНК меньше среднего вируса в несколько десятков раз. Хотя это не совсем честно, ведь мы сравниваем ширину (ДНК) с длиной (вируса). Но все равно соотношения здесь примерно таковы. Давайте еще для сравнения возьмем молекулу воды. Ее примерный размер — 3 на 10-10 метра. В стакане воды таких молекул 10 септиллионов — примерно столько миллиметров от нас до Галактики Андромеды. А в кубическом сантиметре воздуха молекул 30 квинтиллионов (в основном, азота и кислорода).

Молекулы, как известно, состоят из атомов, и их размеры вполне сопоставимы. Например, диаметр атома углерода (основы всей жизни на Земле) — 3.5 на 10-10 метра, то есть даже чуть больше, чем молекулы воды. Атом водорода в 10 раз меньше — 3 на 10-11 метра. Это, конечно, мало. Но насколько мало? Поражающий всякое (здоровое) воображение факт состоит в том, что мельчайшая, едва различимая крупинка соли состоит из 1 квинтиллиона атомов. И я имею в виду не крупную соль с большими, хорошо различимыми гранулами, а мелкую, — ту, которая в солонках. При случае, попробуйте выделить из них одну, рассмотрите на свет и скажите про себя: «кви-нти-лли-он» (между прочим, это 1018). Давайте обратимся к нашему стандартному масштабу и приблизим атом водорода так, чтобы он удобно лег в руку. Вирусы тогда будут 300-метрового размера, бактерии 3-километрового, а толщина волоса станет равна 150 километрам, и даже в лежащем состоянии он выйдет за границы атмосферы (а в длину может достать и до Луны).

Погружаемся еще на один шаг вглубь. Небольшой такой «шажок» сразу на 4 порядка, — как от размера футбольного стадиона до размера пчелы, сидящей в центре его поля. Частицы. Сразу следует сказать, что на таких масштабах само понятие размера достаточно условно. И если мы говорим об элементарных частицах, то уже приходится учитывать, какую модель мы применяем, квантовую или классическую. Так называемый «классический» диаметр электрона — 5.5 фемтометров или 5.5 на 10-15 метра. Размеры протона и нейтрона еще меньше и составляют около 1.5 фемтометров. Ирония в том, что протоны тяжелее электронов в 1 836 раз, — уже одно это должно кое-что сказать об условностях приведенных выше размеров. Протонов в метре примерно столько же, сколько муравьев на планете Земля, хотя я не уверен, что эти два значения как-то связаны друг с другом (лично меня шокирует в этом даже не то, что протон такой маленький, а то, что муравьев у нас как-то уж чересчур много). Используем уже привычное нам увеличение. Протон удобно лежит у нас в ладони, — и тогда размер среднего вируса окажется равным 7 000 километрам (почти как вся Россия с запада на восток, между прочим), а толщина волоса в 2 раза превысит размеры Солнца.

Вам не кажется, что дальше быть уже просто нечему? Да, мы что-то слышали о кварках, но об их размерах вообще сложно сказать что-то определенное. Предполагается, что они находятся где-то в пределах 10-19 — 10-18 метра. Самый маленький — истинный кварк — «диаметром» (давайте для напоминания о вышесказанном будем писать это слово в кавычках) 10-22 метра. Есть еще такая штука как нейтрино. Посмотрите на свою ладонь. Через нее ежесекундно пролетает триллион нейтрино, испущенных Солнцем. И можете не прятать руку за спину. Нейтрино с легкостью пройдут и сквозь ваше тело, и сквозь стену, и сквозь всю нашу планету, и даже сквозь слой свинца толщиной в 1 световой год. «Диаметр» нейтрино равен 10-24 метра — эта частица в 100 раз меньше истинного кварка, или в миллиард раз меньше протона, или в 10 септиллионов раз меньше тираннозавра. Почти во столько же раз сам тираннозавр меньше всей обозримой Вселенной (точнее, был меньше, пока не вымер). Если увеличить нейтрино так, чтобы он был размером с апельсин, то даже протон будет в 10 раз больше Земли. Вот так.

А сейчас я искренне надеюсь, что вас должна поразить одна из двух нижеследующих вещей. Выбирайте любую из них и наслаждайтесь. Первая — мы можем продвинуться еще дальше (и даже сделать какие-то осмысленные предположения о том, что там будет). Вторая — но при этом двигаться вглубь материи бесконечно все-таки нельзя, и вскоре мы уткнемся в тупик. Какое из этих утверждений кажется вам более удивительным? Лично мне, наверное, все-таки второе. Вот только для достижения этих самых «тупиковых» размеров нам придется опуститься еще на 11 порядков, если считать от нейтрино. То есть эти размеры меньше нейтрино в 100 миллиардов раз. Во столько же раз песчинка меньше всей нашей планеты, кстати. Если вас это не поражает, то я просто не знаю, о чем с вами можно разговаривать…

Итак, на размерах 10-35 метра нас ждет такое замечательное понятие, как планковская длина, — минимальное расстояние из возможных в реальном мире (насколько это принято считать в современной науке). Еще здесь обитают квантовые струны — объекты весьма примечательные с любой точки зрения (например, они одномерны, — у них нет толщины), но для нашей темы важно, что их длина тоже находится в пределах 10-35 метра. Давайте проделаем наш стандартный «увеличительный» эксперимент в последний раз. Квантовая струна становится удобного размера, и мы держим ее в руке как карандаш. При этом нейтрино будет в 7 раз больше Солнца, а атом водорода в 300 раз превысит размеры Млечного Пути.

Наконец мы подошли к самой структуре мироздания — масштабу, на котором пространство становится похожим на время, время на пространство, и происходят разные другие причудливые штуки. Дальше уже ничего нет (наверное)…

Ну что ж, я надеюсь, что вам было интересно, и что если вы дочитали до этого места, то не пожалели о потраченном времени. Если так, то не поленитесь зайти по следующей ссылке, и вы сможете увидеть всё то же самое и многое другое, но только в картинках и со шкалой реальных масштабов объектов микро- и макромира.

А если вы заметите в моем тексте какую-то ошибку, то напишите, пожалуйста, об этом в комментариях. Я буду рад исправить данный текст, чтобы он более точно отражал окружающую нас действительность, такую удивительную и многообразную.

Еда из воздуха. Финны предлагают производить продукты из воды, электричества и углекислоты

  • Николай Воронин
  • Корреспондент по вопросам науки и технологий

Автор фото, Solar Foods

Подпись к фото,

Так выглядит «еда из воздуха»

Можно ли производить еду прямо из воздуха? Революционная идея финских ученых звучит настолько амбициозно, что больше похожа на вымысел писателя-фантаста или сказку про скатерть-самобранку. Однако, с точки зрения науки, ничего фантастического в этом предложении нет.

Более того, соответствующие эксперименты уже проведены и завершились успешно, образцы продовольствия получены, а в 2021 году даже запланировано строительство первого завода по производству «воздушной еды».

За амбициозным проектом стоят команда исследователей из ЛТУ-Университета в Финляндии (бывший Лаппеенрантский технологический университет) и созданный ими стартап Solar Foods. Однако ученые скромно отмечают, что придумали только технологию, сама же идея родилась еще в 1960-е годы, на заре космической эры.

Советские и американские ученые думали, как обеспечить пропитанием людей, находящихся на орбите или совершающих долгие космические перелеты — то есть полностью оторванных от привычных нам способов добычи продовольствия.

Производство еды из воздуха рассматривалось в качестве одного из вариантов. Впрочем, на тот момент этот вариант был не слишком эффективным и крайне дорогостоящим, так что от него быстро отказались, и замысел остался нереализованным.

Только теперь, спустя более полувека, идея нашла свое практическое применение, только уже не в космосе, а на земле. И «воздушная еда» стала реальностью.

Но как это вообще возможно?

Атомный конструктор

Воздух, которым мы дышим, — это смесь газов: преимущественно азота (N), кислорода (O) и углекислого газа (CO2), а также растворенного в них водяного пара (h3O).

Но ровно из этих же элементов — углерод, водород, кислород и азот (в различных конфигурациях) — состоит и любой белок. Так что необходимое сырье для производства в воздухе есть — задача фактически сводится к тому, чтобы правильно сгруппировать атомы.

Все, что для этого нужно — электричество, чтобы разбить молекулы воды на составные части, и несколько бактерий, которые начинают размножаться, питаясь продуктами этой реакции.

«Этот процесс немного похож на выращивание дрожжей, — объясняет один из авторов технологии, профессор Юха-Пекка Питканен, — только вместо сахара тут — электричество и углекислый газ. При помощи электричества разбиваются молекулы водяного пара — и образуется водород, который является источником энергии для микроорганизмов. А CO2 — источник углерода. Из этих деталей бактерии производят белки, жиры, углеводы и даже витамины».

Автор фото, Solar Foods

Подпись к фото,

Юха-Пекка Питканен — сотрудник ЛТУ-Университета в Финляндии и один из основателей Solar Foods

Понятно, что стоимость такого производства зависит в первую очередь от цены на электроэнергию. В Финляндии, где собираются построить первый завод, электричество недорогое. А углекислый газ можно даже не брать из воздуха, где его не так много, а использовать отходы производства биотоплива — заодно попутно снижая вредные выбросы.

Расчетная мощность завода — 1 млн тонн в год; этого хватит, чтобы обеспечить белком примерно 5 млн человек, то есть почти все население страны.

В будущем предложенная технология может помочь решить проблему голода в развивающихся странах (почти 800 млн человек в мире недоедает), поскольку не зависит от климата или типа почвы и позволяет производить еду в любых условиях — даже в пустыне или на Крайнем Севере.

Проект Solar Foods уже отобран для бизнес-инкубатора Европейского космического агентства — там тестируют возможность обеспечивать «воздушной едой» космические миссии на Марс.

Причем как в полете туда-обратно, так и на самой Красной планете: солнечного света там предостаточно, а атмосфера почти полностью состоит из углекислого газа. Впрочем, основная проблема состоит в отсутствии подтвержденных запасов воды.

Это вкусно?

По вкусу и по внешнему виду полученная еда напоминает обычную пшеничную муку. Это очень питательное вещество: примерно наполовину оно состоит из белков, еще на четверть — из углеводов, остальное — жиры и нуклеиновые кислоты.

Но остается главный вопрос: насколько это вкусно? По словам разработчиков, ответ на него не так важен, поскольку есть «воздушную еду» в сыром виде никто и не предлагает.

«Это ингредиент — такой же, как мука, соевый протеин или белок молочной сыворотки, — поясняет профессор Питканен. — Он не предназначен для употребления в сыром виде. Из него можно и нужно делать готовые продукты. Хоть хлеб, хоть сосиски. Своего ярко выраженного вкуса у этой еды нет, он довольно нейтральный».

Так что соль, сахар и другие ингредиенты в теории позволят производить из искусственного протеина хоть закуски, хоть десерты, хоть основные блюда, как сейчас происходит с мукой.

Автор фото, Solar Foods

Подпись к фото,

Такую еду можно производить и в космосе

Ученый подчеркивает: у искусственного протеина нет задачи полностью заменить привычную нам пищу. Но в долгосрочной перспективе — с учетом борьбы с изменением климата — Solar Foods должна стать основным источником белка для горячей еды.

Со временем это поможет почти полностью отказаться от животноводства, одного из основных источников выбросов углекислого газа, и частично от земледелия — главной причины вырубки лесов.

А для начала им можно хотя бы заменить животный корм. Хотя 6 евро за кило для животного корма — дороговато. Тот же соевый протеин стоит в несколько раз дешевле. Впрочем, по мере роста производства и в местах, где дешевая солнечная энергия, себестоимость будет снижаться.

Бактерии на ужин?

Запатентовать саму технологию производства еды из воздуха невозможно, так что в теории этим может заниматься кто угодно, без всякой лицензии.

Единственное, на что можно получить патент — это на производство конкретных микроорганизмов. Ведь в конечном счете получаемый продукт — это не просто искусственный абстрактный белок с добавлением углеводов. Это вполне себе живые бактерии.

И тут возникает другой важный вопрос — психологический. Не секрет, что регулярно звучащие в последнее время призывы экологов употреблять в пищу насекомых, мягко говоря, не вызывают особого энтузиазма в цивилизованных странах. Готовы ли мы ежедневно питаться на завтрак, обед и ужин бактериями?

Однако нужно вспомнить, что, строго говоря, мы и так ежедневно едим бактерии — причем в огромном количестве. Дрожжи, кисломолочные и широко разрекламированные бифидобактерии — и множество других. И даже не задумываемся об этом.

Автор фото, Getty Images

Подпись к фото,

Любите кисломолочные продукты? Значит, любите и молочнокислые бактерии

«Конечно, у слова «бактерии» есть неприятные ассоциации, — согласен профессор Питканен, — но есть ведь не только плохие бактерии, но и хорошие, очень полезные, даже необходимые. Да что говорить, человек почти наполовину состоит из бактериальных клеток».

Более того, поскольку бактерии не относятся ни к растениям, ни к животным, то еду из воздуха можно считать даже не вегетарианской, а вполне себе веганской.

«Мне лично многие говорили, что скорее будут есть бактерии, чем насекомых, — улыбается Питканен. — Так что основной вопрос, на который предстоит найти ответ — это каким будет конечный продукт, чтобы люди захотели его есть? Он должен быть вкусным, что бы это ни было. Вкусным, доступным по цене и удобным».

«В конце концов, забота о природе — обычно не самое главное, о чем думают люди, когда выбирают себе ужин», — говорит он.

Что такое графен и как он изменит нашу жизнь?

Вокруг графена образовалось немало хайпа — и среди ученых, и среди бизнеса. Но графен так и не стал нашей повседневной реальностью. Почему? Разбираемся вместе с автором YouTube-канала «Индустрия 4.0» Николаем Дубининым

Впервые о графене заговорили в 2004 году, когда Андрей Гейм и Константин Новоселов — британские ученые российского происхождения — опубликовали статью в журнале Science [1]. В ней говорилось о новом материале, который получили с помощью обычного карандаша и скотча. Ученые просто снимали клейкой лентой слой за слоем, пока не дошли до самого тонкого — в один атом. В 2010-м за это их наградили Нобелевской премией. С тех прошло уже десять лет.

Как графен меняет нашу жизнь?

Что такое графен и чем он так уникален?

Углерод — это материал, состоящий из кристаллической решетки, которую образуют шестиугольники атомов. Графен — это один слой решетки толщиной в 1 атом.

Отсюда — его первое уникальное свойство: самый тонкий.

  • Графен в 60 раз тоньше мельчайшего из вирусов.
  • В 3 тыс. раз тоньше бактерии.
  • В 300 тыс. раз тоньше листа бумаги.

Так выглядит структура углерода. Если отделить один из слоев — получим графен

Такую структуру графен приобретает за счет sp2-гибридизации. Дело в том, что на внешней оболочке атома углерода расположены четыре электрона. При sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. В результате графен еще и прекрасно проводит электрический ток.

Уникальность графена в том, что он обладает такой же структурой, как и полупроводники, при этом он сам проводит электричество — как проводники. А еще у него высокая подвижность носителей заряда внутри материала. Поэтому графен в фото- и видеотехнике обнаруживает сигналы намного быстрее, чем другие материалы.

Графен обладает хорошей теплопроводностью, гибкостью и упругостью, он на 97% прозрачный. При этом, графен — самый прочный из известных материалов: прочнее стали и алмаза.

Наглядная графика о свойствах графена

Миф о токсичности графена

Влияние графена на человеческий организм до конца не изучено, но и токсичность графена никто не доказал. Единственную опасность представляет графен, который получают путем размешивания графита или углерода в воде: попадая в клетку, такие мельчайшие частицы действительно могут ее убить [2].

Однако сейчас в биоэлектронике используют другой способ получения графена — путем химического осаждения из газовой фазы. Частицы получаются достаточно крупными. Потом их закрепляют на подложке, и проникнуть сквозь клеточную мембрану они уже не могут.

Где уже используют графен?

Сейчас графен успешно применяют в электронике. Самый массовый продукт — это пауэрбанк [3]: производители обещают, что сам он заряжается за 20 минут, а топовый смартфон заряжает наполовину за полчаса.

Существуют также графеновые куртки и платья. Последние, в частности, оснащены светодиодами [4], которые реагируют на дыхание и температуру тела, меняя цвет.

Теннисные ракетки с графеном весят до 300 грамм меньше, чем обычные, при той же силе удара.

Наконец, машинное масло с графеном призвано снизить износ двигателя.

Где можно применять графен в будущем?

Есть и еще одно свойство графена: он биосовместим, то есть взаимодействует с живыми клетками. Ученые обещают, что материал поможет диагностировать и лечить рак [5]. Это делают с помощью чипа с графеном, который придает повышенную чувствительность. На поверхность чипа высаживают раковые клетки и тестируют на них различные лекарства.

Такие чипы можно использовать и для тестирования других лекарств, а также — определения биомаркеров: иммуноглобулина, ДНК, нейрональных биорецепторов.

Из графена также планируют делать дешевые солнечные батареи, опресняющие устройства для морской воды, гибкие дисплеи, сверхпрочные бронежилеты, сверхчувствительные микропроцессоры, элементы для беспилотников и космических ракет, телефоны с бесконечной зарядкой и умную одежду.

Для России самым перспективным применением графена могут стать нефте- и газодобыча. На основе графена делают жидкости, которые позволят управлять толщиной и свойствами фильтрационной корки буровых растворов. А еще можно делать полимерные трубы и покрытия для нефте- и газопроводов с применением графена.

Графеновый бум

За 7 лет после вручения премии вышло больше 130 тыс. научных работ, посвященных графену и его свойствам. Доля таких исследований среди всех остальных выросла с 0,2% в 2010 году до 1% в 2016-м.

Профессор Катарина Паукнер в Будапеште, 2016 год

Исследователь Прабхурадж Балакришнан в Лондоне, 2017 год

Доктор Хан Лин в Мельбурне, 2019 год

В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помет, чтобы проверить, как это отразится на его качествах [6].

Всего в мире зарегистрировано более 50 тыс. патентных заявок с упоминанием графена. Больше половины из них принадлежит Китаю, следом идут Южная Корея, США, Япония и Тайвань.

В Китае исследованиями занимаются государственные вузы. В 2013 году здесь создали Инновационный альянс графеновой промышленности, который пророчит Китаю в этой сфере долю в 80% от общемировой.

В остальных странах в графен активно вкладываются коммерческие компании. В Евросоюзе за это отвечает проект Graphene Flagship с инвестициями в €1 млрд [7]. В США — Национальная графеновая ассоциация, в консультативный совет которой входят представители Apple, IBM и Cisco.

В графене заинтересованы гиганты аэрокосмической отрасли: Boeing, Lockheed Martin, Airbus и Thales. Они рассчитывают, что новые материалы позволят им в разы снизить расход топлива — как композиты, которые экономят до 30% горючего в Boeing 787. Электронные корпорации включились в графеновую гонку в надежде, что это принесет им лидерство на рынке смартфонов и аксессуаров к ним.

Среди них — Samsung [8]: компания уже скупила десятки патентов, которых хватит на целую линейку продуктов с графеном. В частности, она представила новый тип аккумуляторов, которые можно будет заряжать за рекордные 12 минут. Такие появятся в новых смартфонах бренда не позднее 2021-го года. Их главный конкурент — Apple — запатентовала акустические диафрагмы с графеном для использования в устройствах следующих поколений. И это, судя по всему — только начало.

В России тоже занимаются изучением графена и даже патентуют электронные устройства на его основе — на базе в Центра фотоники и двумерных материалов МФТИ. Двое ученых-выпускников этого вуза — гендиректор ведущего производителя Graphene 3D Lab Inc. Елена Полякова и профессор Свободного университета Берлина Кирилл Болотин — входят в ту самую американскую ассоциацию.

Почему же графен до сих пор не изменил нашу жизнь?

Во-первых, он все еще очень дорогой. При этом пока нельзя однозначно посчитать, сколько его нужно и для каких целей. Для этого материала нет единой шкалы измерения, так как он может иметь разную структуру — в зависимости от способа получения.

  • 1 грамм чистого графена, который используют в электронике, стоит около $28 млрд.
  • 1 грамм графена, смешанного с пылью — около $1 тыс.

Во-вторых, массовое производство графена пока не налажено, потому что нет технологий, которые бы позволили бы это: например, сложные электронные устройства с графеном делают вручную. Для графена нужна какая-то подложка — например, кварцевая — которая и определяет свойства конечного продукта. При этом пока еще не совсем понятно, какие именно это должны быть свойства.

Что еще почитать и посмотреть о графене

Фотография молекулы воды под микроскопом. Молекулы под микроскопом

Физикам из США удалось запечатлеть на фото отдельные атомы с рекордным разрешением, передает Day.Az со ссылкой на Vesti.ru

Ученым из Корнеллского университета в США удалось запечатлеть на фото отдельные атомы с рекордным разрешением — меньше половины ангстрема (0,39 Å). Предыдущие фотографии обладали вдвое низким разрешением — 0,98 Å.

Мощные электронные микроскопы, способные увидеть атомы, существуют уже полвека, однако их разрешающая способность ограничена длинной волны видимого света, которая больше диаметра атома средней величины.

Поэтому ученые используют некий аналог линз, фокусирующих и увеличивающих изображение в электронных микроскопах — им выступает магнитное поле. Однако колебания магнитного поля искажают полученный результат. Чтобы убрать искажения, используют дополнительные устройства, которые корректируют магнитное поле, но вместе с тем увеличивают сложность конструкции электронного микроскопа.

Ранее физики из Корнеллского университета разработали устройство Electron Microscope Pixel Array Detector (EMPAD), заменяющее сложную систему генераторов, фокусирующих входящие электроны одной небольшой матрицей с разрешением 128х128 пикселей, чувствительных к отдельным электронам. Каждый пиксель регистрирует угол отражения электрона; зная его, ученые при помощи техники птайкографии реконструируют характеристики электронов, включая координаты точки, откуда он был выпущен.

Атомы в самом большом разрешении

David A. Muller et al. Nature, 2018.

Летом 2018 года физики решили улучшить качество получаемых снимков до рекордного до сегодняшнего дня разрешения. Ученые закрепили на подвижной балке лист 2D материала — сульфида молибдена MoS2, и выпустили пучки электронов, поворачивая балку под разными углами к источнику электронов. С помощью EMPAD и птайкографии ученые определили расстояния между отдельными атомами молибдена и получили изображение с рекордным разрешением — 0,39 Å.

«Практически мы создали самую маленькую в мире линейку», — объясняет Сол Грюнер (Sol Gruner), один из авторов эксперимента. На полученном снимке удалось разглядеть атомы серы с рекордным разрешением 0,39 Å. Причем удалось даже разглядеть место, где одного такого атома не хватает (указано стрелочкой).

Атомы серы в рекордном разрешении

Молекула воды Н2О состоит из одного атома кислорода, связанного ковалентной связью с двумя атомами водорода.

В молекуле воды главным действующим лицом является атом кислорода.

Поскольку атомы водорода друг от друга заметно отталкиваются, угол между химическими связями (линиями, соединяющими ядра атомов) водород — кислород не прямой (90°), а немного больше — 104,5°.

Химические связи в молекуле воды – полярные, так как кислород подтягивает к себе отрицательно заряженные электроны, а водород — положительно заряженные электроны. В результате вблизи атома кислорода скапливается избыточный отрицательный заряд, а у атомов водорода — положительный.

Поэтому вся молекула воды является диполем, то есть молекулой с двумя разноименными полюсами. Дипольная структура молекулы воды во многом определяет ее необычные свойства.

Молекула воды – это диамагнетик.

Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура — тетраэдр. Таково строение самой молекулы воды.

При изменении состояния молекулы воды длина сторон и угол между ними изменяются в тетраэдре.

Например, если молекула воды находится в парообразном состоянии, то угол, образованный ее сторонами, равняется 104°27″. В водном состоянии угол составляет 105°03″. И в состоянии льда угол равен 109,5°.

Геометрия и размеры молекулы воды для различных состояний
а — для парообразного состояния
б — для низшего колебательного уровня
в — для уровня, близкого к образованию кристалла льда, когда геометрия молекулы воды соответствует геометрии двух египетских треугольников с соотношением сторон 3: 4: 5
г — для состояния льда.

Если разделить пополам эти углы, то получим углы:
104°27″: 2 = 52°13″,
105°03″: 2 = 52°31″,
106°16″: 2 = 53°08″,
109,5°: 2 = 54°32″.

Значит, среди геометрических рисунков молекулы воды и льда находится знаменитый египетский треугольник, в основу построения которого заложены соотношения золотой пропорции — длины сторон относятся как 3:4:5 с углом 53°08″.

Молекула воды приобретает строение золотой пропорции на пути, когда вода переходит в лед, и наоборот, когда лед тает. Очевидно, за это состояние и ценится талая вода, когда ее структура в построении имеет пропорции золотого сечения.

Теперь становится понятным, что знаменитый египетский треугольник с соотношением сторон 3:4:5 «взят» из одного из состояний молекулы воды. Сама же геометрия молекулы воды образована двумя египетскими прямоугольными треугольниками, имеющими общий катет равный 3.

Молекула воды, имеющая в основе соотношение золотой пропорции, является физическим проявлением Божественной Природы, которая участвует в создании жизнь. Именно поэтому в земной природе заложена та гармония, которая присуща всему космосу.

И поэтому древние египтяне обожествляли числа 3, 4, 5, а сам треугольник считали священным и старались заложить его свойства, его гармонию в любую конструкцию, дома, пирамиды и даже в разметку полей. Кстати, украинские хаты строились тоже с применением соотношения золотой пропорции.

В пространстве молекула воды занимает некоторый объем, и покрыта электронной оболочкой в виде вуали. Если представить вид гипотетической модели молекулы в плоскости, то она похожа на крылья бабочки, на Х-образную хромосому, в которой записана программа жизни живого существа. И это является показательным фактом того, что сама вода — это обязательный элемент всего живого.

Если представить вид гипотетической модели молекулы воды в объеме, то она передает форму треугольной пирамиды, у которой имеется 4 грани, а у каждой грани по 3 ребра. В геометрии треугольная пирамида называется тетраэдром. Такое строение свойственно кристаллам.

Таким образом, молекула воды образует прочную уголковую структуру, которую она сохраняет даже, когда находится в парообразном состоянии, на грани перехода в лед, и когда превращается в лед.

Если «скелет» молекулы воды так устойчив, то и его энергетическая «пирамида» — тетраэдр тоже стоит непоколебимо.

Такие структурные свойства молекулы воды в различных условиях объясняются прочными связями между двумя атомами водорода и одним атомом кислорода. Эта связь примерно в 25 раз сильнее, чем связь между соседними молекулами воды. Поэтому легче отделить одну молекулу воды от другой, например, при нагревании, чем разрушить саму молекулу воды.

За счет ориентационных, индукционных, дисперсионных взаимодействий (сил Ван-дер-Ваальса) и водородных связей между атомами водорода и кислорода соседних молекул молекулы воды способны образовывать как случайные ассоциаты, т.е. не имеющие упорядоченной структуры, так и кластеры – ассоциаты, имеющие определенную структуру.

Согласно статистическим данным, в обычной воде находится случайных ассоциатов — 60% (деструктурированная вода) и кластеров — 40% (структурированная вода).

В результате исследований, проведенных российским ученым С. В. Зениным, были обнаружены стабильные долгоживущие кластеры воды.

Зенин установил, что молекулы воды первоначально образуют додекаэдр. Четыре додекаэдра соединяясь, образует основной структурный элемент воды — кластер, состоящий из 57 молекул воды.

В кластере додекаэдры имеют общие грани, а их центры образуют правильный тетраэдр. Это объёмное соединение молекул воды, в том числе гексамеров, которое имеет положительные и отрицательные полюса.

Водородные мостики позволяют молекулам воды объединяться самыми различными способами. Благодаря этому в воде наблюдается бесконечное разнообразие кластеров.

Кластеры могут взаимодействовать друг с другом за счет свободных водородных связей, что приводит к появлению структур второго порядка в виде шестигранников. Они состоят из 912 молекул воды, которые практически не способны к взаимодействию. Время существования такой структуры весьма велико.

Эту структуру, похожую на маленький острый кристаллик льда из 6 ромбических граней, С.В. Зенин назвал «основным структурным элементом воды”. Многочисленные эксперименты подтвердили; в воде — мириады таких кристалликов.

Эти кристаллики льда почти не взаимодействуют друг с другом, поэтому не образуют более сложных устойчивых конструкций и легко скользят гранями относительно друг друга, создавая текучесть. В этом смысле вода напоминает переохлажденный раствор, который никак не может кристаллизоваться.

Впервые в мире учёным удалось получить визуальное изображение молекулы в разрешении единичных атомов в процессе перестройки её молекулярных связей. Полученное изображение оказалось удивительным образом похоже на картинки из учебников химии.

До сегодняшнего дня учёные могли только делать предположительные выводы о молекулярных структурах. Но с помощью новой технологии отдельные атомные связи – каждая длиной в несколько десятимиллионных долей миллиметра – соединяющие 26 атомов углерода и 14 атомов водорода в этой молекуле, становятся отчётливо видимы. Результаты этого исследования были опубликованы 30 мая в журнале «Science».

Команда экспериментаторов изначально была нацелена на точную сборку наноструктур из графена – однослойного атомарного материала, в котором атомы углерода выстроены в повторяющемся гексагональном паттерне. Создание углеродных сот требует перестройки атомов из линейной цепи в шестиугольную сеть; такая реакция может создавать несколько разных молекул. Химик из Университета Беркли Феликс Фишер и его коллеги хотели визуализировать молекулы, чтобы быть уверенными, что они всё делают правильно.

Углеродосодержащая молекула на фото показана до и после её перестройки, с включением двух наиболее часто встречающихся продуктов реакции. Масштаб изображения – 3 ангстрема, или 3 десятимиллиардных доли метра

Чтобы задокументировать рецепт графена, Фишеру был необходим очень мощный оптический прибор, и он использовал атомарный микроскоп, расположенный в лаборатории Университета Беркли. Бесконтактные атомарные микроскопы используют чрезвычайно чувствительную иглу для считывания электрических сил, производимых молекулами; по мере того, как наконечник иглы движется вдоль поверхности молекулы, он отклоняется под действием различных зарядов, создавая изображение того, как расположены атомы и связи между ними.

С его помощью команда исследователей сумела не только визуализировать углеродные атомы, но и созданные электронами связи между ними. Они поместили кольцевидную молекулу на серебряную поверхность и нагрели её, чтобы молекула изменила свою форму. Последующее охлаждение сумело зафиксировать продукты реакции, среди которых оказалось три неожиданных компонента и одна молекула, которую ожидали учёные.

Предлагаем оценить снимки финалистов, претендующих на звание« Фотограф года» Королевского фотографического общества. Победителя объявят уже 7 октября, а выставка лучших работ пройдет с 7 октября по 5 января в Музее науки в Лондоне.

Редакция ПМ

«Структура мыльного пузыря», автор Ким Кокс

Мыльные пузыри оптимизируют пространство внутри себя и минимизируют площадь их поверхности для заданного объема воздуха. Это делает их полезным объектом исследования во многих областях, в частности, в области материаловедения. Стенки пузырьков как бы стекают под действием силы тяжести: они тонкие вверху и толстые внизу.


«Разметка на молекулах кислорода», Ясмин Кроуфорд

Снимок входит в последний крупный проект автора в рамках магистерской работе по фотографии в университете Фалмута, где основное внимание уделялось исследованию миалгического энцефаломиелита. Кроуфорд говорит, что создает образы, которые связывают нас с неоднозначным и неизвестным.


«Спокойствие вечности», автор Евгений Самученко

Снимок сделан в Гималаях на озере Госаикунда на высоте 4400 метров. Млечный Путь — это галактика, в которую входит и наша Солнечная система: смутная полоса света на ночном небе.


«Смущенный мучной жук», автор Дэвид Спирс

Этот маленький жук-вредитель заводится зерновых и мучных изделиях. Изображение было получено с помощью сканирующей электронной микрофотографии, а затем окрашено в Photoshop.


«Туманность «Северная Америка», Дэйв Уотсон

Туманность «Северная Америка» NGC7000 — это эмиссионная туманность в созвездии Лебедя. Форма туманности напоминает форму Северной Америки — можно увидеть даже Мексиканский залив.


«Жук-олень», автор Виктор Сикора

Фотограф использовал световую микроскопию с увеличением в пять раз.


«Телескоп Ловелла», автор Мардж Брэдшоу

«Я была очарована телескопом Ловелла в Джодрелл Бэнк с тех пор, как увидела ее на школьной экскурсии», — говорит Брэдшоу. Она хотела сделать несколько более детальных фотографий, чтобы показать его износ.


«Медузы вверх ногами», автор Мэри Энн Чилтон

Вместо того, чтобы плавать, этот вид проводит время, пульсируя в воде. Цвет медуз — результат поедания водорослей.


другие презентации о молекулярной физике

«Энергия связи ядра» — Максимальную энергию связи (8,6 МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60. — Дефект массы. Кулоновские силы стремятся разорвать ядро. Энергия связи нуклонов на поверхности меньше, чем у нуклонов внутри ядра. Uchim.net. Энергия связи атомных ядер. Удельная энергия связи. Уравнение Эйнштейна между массой и энергией:

«Строение атомного ядра» — Счетчик Гейгера Камера Вильсона. Радий (лучистый). Применение радиоактивного излучения. Мария Склодовская-Кюри и Пьер Кюри. Беккерель Антуан Анри- 1897г. Термоядерный синтез – реакция слияние легких ядер. М -массовое число — масса ядра, число нуклонов, количество нейтронов М-Z. Полоний. Цепная ядерная реакция.

«Применение фотоэффекта» — Государственное образовательное учреждение НПО Профессиональный лицей №15. История открытия и исследования фотоэффекта. Выполнила: преподаватель физики Варламова Марина Викторовна. Уравнение Эйнштейна для фотоэффекта А. Эйнштейн. Наблюдение фотоэффекта. Столетов А.Г. Сила тока насыщения пропорциональна интенсивности падающего на катод излучения.

«Строение ядра атома» — A. 10 -12. Радиоактивное превращение атомных ядер. Следовательно, излучение состоит из потоков положительных частиц, отрицательных и нейтральных. 13 — 15. 1896 г. Анри Беккерель (франц.) открыл явление радиоактивности. Обозначается — , имеет массу? 1а.е.м. и заряд равный заряду электрона. 5. Атом нейтрален, т.к. заряд ядра равен общему заряду электронов.

«Состав атомного ядра» — Массовое число. ЯДЕРНЫЕ СИЛЫ – силы притяжения, связывающие протоны и нейтроны в ядре. Ядерные силы. Общий вид обозначения ядра. Зарядовое число. Зарядовое число равно заряду ядра, выраженному в элементарных электрических зарядах. Зарядовое число равно порядковому номеру химического элемента. Во много раз больше кулоновских сил.

«Синтез плазмы» — Срок строительства 8-10 лет. Спасибо за внимание. Сооружение и инфраструктура ИТЭР. Создание ТОКАМАКА. Проектные параметры ИТЭР. Создание ИТЭР(ITER). 5. Примерная стоимость 5 млрд. евро. Термоядерное оружие. Вклад России в реактор ИТЭР. 2. Преимущество термоядерной энергетики. Требования к энергетике.

Химики СПбГУ с помощью компьютерной модели обнаружили возможности для более «зеленого» использования карбида кальция

Научная работа опубликована в журнале Королевского химического общества Chemical Science.

Карбид кальция известен человечеству уже более 150 лет — это твердое вещество желтовато-белого, бежевого или серого цвета, полученное в результате соединения кальция с углеродом. Сегодня карбид кальция используют для получения газообразного ацетилена, который широко применяется в промышленности — от производства уксусной кислоты и этилового спирта, до пластмассы, каучука и ракетных двигателей.

Углерод, необходимый для синтеза карбида кальция, добывается не оптимальным с точки зрения концепции устойчивого развития способом — в шахтах. В результате запасы ископаемого ресурса истощаются (не устойчивый подход), а над поверхностью земли растет количество углерода. «Мы работаем над стратегией углерод-нейтрального цикла производства. В частности, для получения карбида кальция можно использовать углерод, добываемый при термическом разложении (пиролизе) отходов, а полученное в результате вещество — применять в промышленности для создания новых соединений», — отметил Константин Родыгин, научный сотрудник лаборатории кластерного катализа СПбГУ.

Исследование было поддержано грантом СПбГУ и проводилось в рамках проекта по актуальной химии карбида кальция, которым занимается лаборатория кластерного катализа Университета при участии исследователей из Института органической химии имени Н. Д. Зелинского РАН. Значительная часть моделирования была проведена с помощью мощностей РЦ «Вычислительный центр» Научного парка СПбГУ.

«Главным вызовом для человечества сегодня является создание промышленных процессов нового поколения, позволяющих получать важнейшие органические соединения и материалы в рамках углерод-нейтрального подхода. Особое значение имеет замена ископаемых ресурсов на возобновляемые и решение таким образом экологических задач. Как было показано в наших работах, органический синтез на базе карбида кальция открывает новые возможности для реализации углерод-нейтральных технологий. Причем ключевое значение имеет понимание химических процессов трансформации карбидных частиц в химических процессах в растворе», — отметил руководитель лаборатории кластерного катализа СПбГУ, заведующий лабораторией металлокомплексных и наноразмерных катализаторов Института органической химии имени Н. Д. Зелинского РАН академик РАН Валентин Анаников.

Предложить новую стратегию использования вещества химики смогли с помощью моделирования процессов, возникающих на уровне атомов и молекул при взаимодействии карбида кальция с водой и растворителем диметилсульфоксидом. Карбид кальция — это, по сути, соль, включающая отрицательно заряженные кислотные остатки ацетилена (так называемые ацетиленид-анионы с зарядом −2) и положительно заряженные ионы кальция. В работе исследовались кислотно-основные свойства ацетиленид-анионов, воды и некоторых других веществ в растворителе диметилсульфоксиде. В таком растворителе можно наблюдать необычную ситуацию: взаимодействие ацетиленид-анионов и воды, называемое гидролизом, идет не полностью. Образуются анионы с зарядом −1, которые потом могут вступать в широкий спектр ключевых для органического синтеза химических реакций.

«После проведения анализа выяснилось, что вместо воды можно использовать и другие протонирующие вещества для перевода ацетиленида в раствор, а в качестве растворителя для реакций с карбидом кальция можно искать альтернативные диметилсульфоксиду, еще менее токсичные и «зеленые» растворители», — рассказал соавтор статьи, ассистент Института химии СПбГУ Михаил Полынский.

Таким образом, производство с участием карбида кальция в перспективе может стать более «зеленым» не только из-за потенциально более безопасных способов добычи углерода, но и благодаря возможности карбида кальция вступать в реакции с менее токсичными растворителями.

Ассистент Института химии СПбГУ Михаил Полынский

Отметим, что одним из авторов статьи стала выпускница СПбГУ Мария Сапова, начавшая работу над проектом во время обучения в магистратуре. «Задача меня сразу привлекла: идея комбинации различных расчетных методов открывает большие возможности для моделирования сложных процессов, как, например, процесс растворения в нашем случае. Эта работа помогла не просто расширить кругозор, а выйти за рамки задач по моделированию кристаллов, которыми я занималась, и почувствовать границы применимости различных методов расчетной химии. Думаю, что такие сложные многоступенчатые подходы в моделировании должны развиваться дальше: это позволит нам приблизиться к описанию реальных экспериментов», — отметила Мария Сапова.

Как уточнил Михаил Полынский, работа на данном этапе — полностью теоретическая и заключалась в компьютерном моделировании процесса получения ацетиленидов из карбида кальция. «Для моделирования мы использовали так называемые квантово-химические методы, борн-оппенгеймеровскую молекулярную динамику. В результате такого моделирования можно сделать короткое молекулярное кино, показывающее, как выглядит движение атомов и молекул на очень коротких, пикосекундных временных интервалах», — заключил Михаил Полынский.

Вода — уникальная молекула «Обзор Мирового океана

Вода ведет себя иначе, чем большинство других химических соединений. Почти во всех веществах атомы и молекулы сближаются по мере того, как становятся холоднее. Затем они затвердевают. Вода, однако, достигает своей максимальной плотности при четырех градусах Цельсия, потому что при этой температуре молекулы воды упакованы наиболее плотно. Многие пресноводные озера имеют температуру в четыре градуса в самой глубокой точке, потому что тяжелая вода опускается на дно.Но что удивительно, чтобы достичь твердой фазы льда, молекулы воды снова отдаляются друг от друга. Это явление называется водной аномалией. Лед легче и плавает на поверхности. Это видно в обширных районах океана на полярных широтах, которые частично покрыты льдом. Причина этой аномалии кроется в необычных свойствах молекулы воды (H 2 O). Его атом кислорода (O) и два атома водорода (H) расположены асимметрично. Это дает диполь, молекулу с одним отрицательно и одним положительно заряженным концом.
В зависимости от температуры эти диполи выстраиваются в агрегаты в соответствии с их зарядом, например, при образовании кристалла льда. Дипольный характер воды — критический фактор для климата. Поскольку диполи воды имеют тенденцию держаться вместе, как маленькие магниты, вода вяло реагирует на нагревание или охлаждение. Фактически, вода имеет самую высокую теплоемкость из всех жидких и твердых веществ, за исключением аммиака. Это означает, что вода может поглотить большое количество тепла, прежде чем закипит.И точки замерзания, и точки кипения воды (ноль и 100 градусов по Цельсию соответственно), являющиеся неотъемлемой частью нашей повседневной жизни, действительно довольно необычны. Если бы молекула воды была симметричной (не дипольной), то вода (лед) таяла бы при минус 110 градусах Цельсия и закипала бы при минус 80 градусах. Инерция климата — это в первую очередь результат высокой теплоемкости воды.
Вода влияет на климат не только в жидком и твердом состоянии. H 2 O в виде водяного пара в атмосфере оказывает решающее влияние на тепловой баланс Земли; Один только водяной пар является причиной примерно двух третей естественного парникового эффекта.Кроме того, он усиливает влияние других веществ на климат. Например, если температура повышается в результате более высокого уровня углекислого газа, то содержание водяного пара также увеличивается, потому что более теплая атмосфера может устойчиво удерживать больше водяного пара. Благодаря своей дипольной молекуле вода очень эффективно поглощает инфракрасное излучение. В результате он примерно вдвое увеличивает потепление, первоначально вызванное углекислым газом.
Еще одним важным свойством воды является ее способность растворять соли, что значительно меняет ее плотность.Средняя соленость океана составляет 34,7 частей на тысячу (‰). При такой солености вода имеет наибольшую плотность — 3,8 градуса по Цельсию, что ниже точки замерзания морской воды со средней соленостью. На самом деле это минус 1,9 градуса по Цельсию. Таким образом, охлаждение поверхности может вызвать конвекцию до образования льда. Эта характеристика плотности является двигателем конвекции, одного из важнейших элементов климатической системы; холодная, соленая вода тяжелая и опускается на большую глубину. Его заменяет вода, поступающая с поверхности моря.

1,7> Молекула воды асимметрична и поэтому заряжена противоположно на двух концах. Это называется диполем. Таким образом, он во многом отличается от других веществ. Лед менее плотный и плавает на поверхности. Пресная вода имеет наибольшую плотность при четырех градусах и опускается на дно. Затем его заливают теплой водой. Соленая вода имеет разные характеристики. Abb. 1.7: © maribus

Вода и лед — Science Learning Hub

Глядя на Землю из космоса, вы можете понять, сколько там воды.Фактически, около 71% поверхности Земли покрыто водой. Океаны составляют около 97% воды в мире, но поскольку это соленая вода, мы не можем пить ее, не удалив предварительно соли. Таким образом, у нас остается всего 3% пресной воды, а это означает, что мы полагаемся на наши реки, озера, лед и дождь в получении этой жизненно важной жидкости.

Что такое вода?

Вода — это молекула, состоящая из двух атомов водорода (H) и одного атома кислорода (O). Жидкая вода состоит из полярных молекул с водородными связями между молекулами.

Когда мы произносим слово «вода», мы обычно представляем ее в виде жидкости. Но вода способна проходить через все состояния материи. Это означает, что это может быть газ (пар), жидкость (вода) и твердое тело (лед).

Мы можем использовать такие слова, как газ, жидкость или твердое тело, чтобы описать физические свойства воды. Мы также можем сказать, что вода прозрачная и бесцветная. Прозрачный означает, что мы можем видеть сквозь него, бесцветный означает, что он не имеет собственного цвета. Эти два термина часто путают, но на самом деле они отличаются друг от друга.Например, если вы заварите чашку чая (без молока) и посмотрите на нее, вы увидите, что чай был прозрачным (потому что вы могли видеть сквозь него), но коричневого цвета.

Почему вода замерзает и становится льдом?

Молекулы постоянно движутся, потому что у них есть энергия. В жидкой форме молекулы воды обладают большей энергией, чем в твердом — они быстро перемещаются, по существу отскакивая друг от друга. По мере охлаждения жидкости количество потенциальной энергии уменьшается, и молекулы начинают двигаться медленнее.Когда температура воды достигает около 0 ° C, молекулы слипаются и образуют твердый лед. Даже на этой твердой стадии молекулы все еще движутся — мы просто этого не видим.

Для того, чтобы вода превратилась в лед, нужна еще одна вещь — кристалл-семя. Это небольшая примесь, из которой вырастет кристалл льда. Примесь может быть другой частицей в воде, или она может быть вызвана контейнером, в котором находится вода. Вот почему не вся вода замерзает при 0 ° C. В некоторых условиях вода может стать холодной до -40 ° C — этот процесс называется сверхохлаждением.Это происходит в совершенно чистой воде и обычно в очень гладкой посуде.

Таким образом, вода превратиться в лед не так просто, как просто остыть. На замерзание воды также влияют и другие факторы, включая растворенные твердые вещества, плотность воды, давление и движение (например, течения).

Химия: атомная структура

Атомная структура

Атомная структура

Вы когда-нибудь задумывались, из чего сделана вода? Возможно, вы много раз видели символ h3O и, возможно, часто задавались вопросом о его значении.Символ h3O обозначает молекулу воды. Молекулы — очень маленькие частицы.

Разве не интересно знать, что небольшое количество воды, которое вы можете держать на ладони, может содержать более 100 000 000 000 000 000 000 000 молекул (что в 100 раз больше, чем миллиард раз триллион!)? Молекулы воды настолько малы, что мы не видим их даже в очень мощные микроскопы.

А теперь позвольте мне рассказать вам кое-что более интересное. Молекулы состоят из еще более мелких частиц! Их называют атомами.Каждая молекула воды состоит из трех атомов, двух атомов водорода и одного атома кислорода. Фактически, каждый объект в вашем окружении состоит из атомов. Атомы можно рассматривать как строительные блоки для всего химического вещества.

Существует более 100 типов атомов; они перечислены в периодической таблице. Но чем эти атомы отличаются друг от друга? Чем атом водорода отличается от атома кислорода? Чтобы ответить на эти вопросы, мы должны узнать о частицах, составляющих атом.

Атомы в основном состоят из трех частиц; это нейтроны, протоны и электроны.В центральной части атома присутствуют нейтроны и протоны. Эта центральная часть называется ядром. Электроны находятся вне ядра и вокруг него.

Протонам, находящимся в ядре, приписывается положительный заряд. Электроны имеют заряд, противоположный заряду протона, и, следовательно, им присваивается отрицательный заряд. Нейтроны заряжены нейтрально; т.е. они бесплатны.

У атомов всегда одинаковое количество электронов и протонов. Атомный номер атома — это количество протонов, присутствующих в нем.В периодической таблице типы атомов расположены на основе их атомных номеров (и химических свойств… вы узнаете об этом позже).

Давайте теперь посмотрим на атом кислорода. Он обозначается буквой «O» (O в h3O — это кислород).

Он содержит 8 протонов и 8 электронов. Таким образом, атомный номер равен 8. В дополнение к протонам и электронам кислород имеет еще 8 нейтронов.
Кислород: атомный номер 8
электронов: 8
протонов: 8
нейтронов: 8

А что насчет атома водорода? Обозначается символом «H» (H в h3O означает водород).Водород имеет один электрон и один протон, его атомный номер 1. Это первый элемент в периодической таблице.

Водород: атомный номер 1
электронов: 1
протонов: 1
нейтронов: 0
Атомные числа и атомные веса

Наука об электричестве — Управление энергетической информации США (EIA)

Все состоит из атомов

Для понимания электричества полезны некоторые основные сведения об атомах.Атомы — это строительные блоки вселенной. Все во Вселенной состоит из атомов — каждая звезда, каждое дерево и каждое животное. Человеческое тело состоит из атомов. Воздух и вода тоже состоят из атомов. Атомы настолько малы, что миллионы их поместятся на булавочной головке.

Атомы состоят из еще более мелких частиц

Центр атома называется ядром . Ядро состоит из частиц, называемых протонов и нейтронов . Электроны вращаются вокруг ядра в оболочках . Если бы ядро ​​было размером с теннисный мяч, атом был бы размером со сферу диаметром около 1450 футов или размером с один из крупнейших спортивных стадионов в мире. Атомы — это в основном пустое пространство.

Если бы невооруженный глаз мог видеть атом, он был бы немного похож на крошечное скопление шаров, окруженное гигантскими невидимыми пузырями (или оболочек ). Электроны будут на поверхности пузырьков, постоянно вращаясь и перемещаясь, чтобы держаться как можно дальше друг от друга.Электроны удерживаются в своих оболочках за счет электрической силы.

Протоны и электроны атома притягиваются друг к другу. Оба они несут электрический заряд . Протоны имеют положительный заряд (+), а электроны — отрицательный заряд (-). Положительный заряд протонов равен отрицательному заряду электронов. Противоположные заряды притягивают друг друга. Атом находится в равновесии, когда в нем равное количество протонов и электронов.Нейтроны не несут заряда, и их количество может меняться.

Число протонов в атоме определяет вид атома, или элемент , которым он является. Элемент — это вещество, состоящее из одного типа атомов. Периодическая таблица элементов показывает элементы с их атомными номерами — количеством протонов, которые они имеют. Например, каждый атом водорода (H) имеет один протон, а каждый атом углерода (C) имеет шесть протонов.

Электричество — это движение электронов между атомами

Электроны обычно остаются на постоянном расстоянии от ядра атома в точных оболочках.Ближайшая к ядру оболочка может содержать два электрона. Следующий снаряд может вместить до восьми штук. Внешние оболочки могут вместить даже больше. Некоторые атомы с большим количеством протонов могут иметь до семи оболочек с электронами в них.

Электроны в ближайших к ядру оболочках обладают сильной силой притяжения к протонам. Иногда электроны в самых внешних оболочках атома не обладают сильной силой притяжения к протонам. Эти электроны можно вытолкнуть со своих орбит.Применение силы может заставить их переходить от одного атома к другому. Эти перемещающиеся электроны представляют собой электричество.

В природе существует статическое электричество

Молния — это форма электричества. Молния — это электроны, перемещающиеся из одного облака в другое, или электроны, прыгающие из облака на землю. Вы когда-нибудь испытывали шок, когда дотрагивались до предмета после прогулки по ковру? От этого объекта к вам прыгнул поток электронов. Это называется статическим электричеством .

Вы когда-нибудь заставляли волосы встать дыбом, натирая их воздушным шариком? Если да, то вы стерли с воздушного шара несколько электронов. Электроны переместились в ваши волосы из воздушного шара. Электроны пытались уйти подальше друг от друга, двигаясь к кончикам ваших волос. Они толкались или отталкивались друг от друга, заставляя ваши волосы шевелиться. Подобно тому, как противоположные заряды притягиваются друг к другу, как заряды отталкиваются.

Последнее обновление: 8 января 2020 г.

Атомная структура

Атомная структура Атомные спектры — что мы видим из атомов?

Что составляет атом? Атом состоит из тяжелого ядра протонов. (положительно заряженные частицы, записываемые как p + ) и нейтроны (нейтральные частицы, записанные как n 0 ), вокруг которых вращается облако чрезвычайно легкие электроны (отрицательно заряженные частицы, обозначаемые как e ).

Что определяет элемент? Число протонов в ядре каждый атом.

  • Атомы водорода (H) имеют 1 протон.
  • Атомы водорода с 1 протоном и 1 электроном нейтральные водород ( 1 H 1 ).
  • Атомы водорода с 1 протоном, 1 электроном и 1 нейтроном тяжелые изотоп водорода называется дейтерий ( 2 H 1 ).
  • Если к водороду добавить протон, мы получим другой элемент — гелий ( 4 He 2 ).
  • Номенклатура: для каждого элемента верхний индекс обозначает количество протоны и нейтроны, а нижний индекс — число протонов.
  • Сколько нейтронов содержится в нейтральном углероде ( 12 C 6 )?
  • Сколько нейтронов содержится в радиоактивном изотопе называется углерод-14 ( 14 C 6 )?
    [NMSU, N. Vogt]

Как состав атома или элемента говорит нам, как будет выглядеть его спектр?

  • Электроны существуют в стационарных состояниях внутри атомов, каждое из которых определяется дискретный, уникальный уровень энергии.Только определенные уровни энергии, например, орбиты с определенными радиусами.
  • Свет или излучение, испускаемое или поглощаемое атомами при движении электронов из один энергетический уровень на другой можно представить как поток квантов называемые фотонами. Каждый фотон несет энергию E = h × v . Мы определяем эти уровни энергии выглядят следующим образом, говоря, что электрон находится в возбужденное состояние , когда в нем есть дополнительная энергия (представьте ребенка, отскакивающего от стены от волнения).
    [NMSU, N. Vogt]

  • Основное состояние , минимально возможный уровень энергии
  • Первое возбужденное состояние, следующий наивысший допустимый уровень энергии
  • Второе возбужденное состояние, следующий наивысший допустимый уровень энергии
  • Третье возбужденное состояние, следующий наивысший допустимый уровень энергии
  • До момента, когда электрон больше не связан с атомом
  • Атом обычно имеет одинаковое количество протонов и электронов.Потому что протоны имеют положительный заряд, а электроны — отрицательный, он несет бесплатно в этом состоянии. Когда атом теряет (или приобретает) электрон, мы говорим: что он ионизирован, , а затем несет электрический заряд.

Энтропия говорит нам, что все вещи естественным образом тянутся к минимально возможному энергетическое состояние:

  • Бревна и катятся под гору.
  • Прыгающие шары медленно останавливаются.
  • Ночью люди падают в постель, а утром им трудно встать.
  • Таким же образом атомы водорода стремятся находиться в основном состоянии.
Что происходит, когда мы добавляем энергию к атому водорода, бомбардируя его фотонами?
  • Большинство фотонов проносятся мимо, не взаимодействуя с атомом.
  • Но фотоны с правильной энергией поглощаются атомом.
  • В данном случае справа означает, что энергия фотона соответствует разница уровней энергии между позволила орбитам в водороде атом, а поглощено означает, что энергия фотона будет попадает в атом (оставляя атом в более высоком энергетическом состоянии).
    [NMSU, N. Vogt]

  • Фотон с частотой v будет поглощен атомом, если энергия фотона соответствует разнице уровней энергии между разрешенными состояния в атоме.

Что будет дальше?

  • Помните, что энтропия стремится к наименьшему доступному уровню энергии для всех. вещи, поэтому электрон, который был поднят на возбужденную орбиту, будет в конечном итоге вернуться в основное состояние.
  • Сохранение энергии , говорит нам, что разница в энергии между возбужденным состоянием и основным состоянием должно появиться где-то, когда электрон совершает переход. Он испускается атомом в виде фотона с та же энергия, что и исходная, которая была поглощена.
    [NMSU, N. Vogt]

Вот схематическая диаграмма разрешенных орбит в атоме водорода. Если вы можете ответить на вопросы, перечисленные ниже, вы поняли!

    [NMSU, N.Vogt]

  • Какой переход (ы) соответствует (ам) поглощению фотона? A&D
  • Какой переход соответствует испускаемому фотону с наивысшей энергией ? C
  • Какой переход соответствует самому коротковолновому испускаемому фотону ? C
  • Какой переход соответствует самому низкоэнергетическому поглощенному фотону ? А
  • Какой переход соответствует самой высокой частоте испускаемого фотона ? C

Спасибо Майку Болте (Калифорнийский университет в Санта-Круз) за основное содержание этого слайда.

2.2 Вода — Концепции биологии — 1-е канадское издание

К концу этого раздела вы сможете:

  • Опишите свойства воды, которые имеют решающее значение для поддержания жизни

Посмотрите видео о том, зачем нам кислород и как он вызывает проблемы для живых существ.

Вы когда-нибудь задумывались, почему ученые тратят время на поиски воды на других планетах? Это потому, что вода необходима для жизни; даже мельчайшие его следы на другой планете могут указывать на то, что жизнь могла существовать или существовала на этой планете.Вода — одна из наиболее распространенных молекул в живых клетках и наиболее важная для жизни, какой мы ее знаем. Примерно 60–70 процентов вашего тела состоит из воды. Без него жизни просто не было бы.

Атомы водорода и кислорода в молекулах воды образуют полярные ковалентные связи. Общие электроны проводят больше времени, связанного с атомом кислорода, чем с атомами водорода. У молекулы воды нет общего заряда, но есть небольшой положительный заряд на каждом атоме водорода и небольшой отрицательный заряд на атоме кислорода.Из-за этих зарядов слегка положительные атомы водорода отталкиваются друг от друга и образуют уникальную форму. Каждая молекула воды притягивает другие молекулы воды из-за положительных и отрицательных зарядов в разных частях молекулы. Вода также притягивает другие полярные молекулы (например, сахара), образуя водородные связи. Когда вещество легко образует водородные связи с водой, оно может растворяться в воде и обозначается как гидрофильный («любящий воду»). Водородные связи не образуются легко с неполярными веществами, такими как масла и жиры.Эти неполярные соединения являются гидрофобными («водобоязненными») и не растворяются в воде.

Рис. 2.7. Как видно из этого макроскопического изображения нефти и воды, нефть является неполярным соединением и, следовательно, не растворяется в воде. Масло и вода не смешиваются.

Водородные связи в воде позволяют ей поглощать и отдавать тепловую энергию медленнее, чем многие другие вещества. Температура — это мера движения (кинетической энергии) молекул. По мере увеличения движения увеличивается энергия и, следовательно, выше температура.Вода поглощает много энергии, прежде чем ее температура повышается. Повышенная энергия разрушает водородные связи между молекулами воды. Поскольку эти связи могут создаваться и быстро разрушаться, вода поглощает увеличение энергии, а температура изменяется лишь минимально. Это означает, что вода смягчает изменения температуры внутри организмов и окружающей их среды. По мере того, как подвод энергии продолжается, баланс между образованием и разрушением водородных связей смещается в сторону разрушения. Связей разорвано больше, чем образовано.Этот процесс приводит к высвобождению отдельных молекул воды на поверхности жидкости (например, в водоеме, листьях растений или коже организма) в процессе, называемом испарением . Испарение пота, который на 90 процентов состоит из воды, позволяет охладить организм, потому что разрыв водородных связей требует затрат энергии и отводит тепло от тела.

И наоборот, по мере того, как движение молекул уменьшается и температура падает, требуется меньше энергии для разрыва водородных связей между молекулами воды.Эти связи остаются неповрежденными и начинают образовывать жесткую решетчатую структуру (например, лед) (рис. 2.8 a ). В замороженном состоянии лед менее плотен, чем жидкая вода (молекулы находятся дальше друг от друга). Это означает, что лед плавает на поверхности водоема (рис. 2.8 b ). В озерах, прудах и океанах на поверхности воды образуется лед, создавая изолирующий барьер для защиты животных и растений под ними от замерзания в воде. Если бы этого не произошло, растения и животные, живущие в воде, замерзли бы в глыбе льда и не могли бы свободно передвигаться, что сделало бы жизнь при низких температурах трудной или невозможной.

Рис. 2.8 (а) Решетка льда делает его менее плотным, чем свободно текущие молекулы жидкой воды. Меньшая плотность льда позволяет ему (б) плавать по воде. (кредит а: модификация работы Джейн Уитни; кредит б: модификация работы Карлоса Понте)

Поскольку вода является полярной, с небольшими положительными и отрицательными зарядами, ионные соединения и полярные молекулы могут легко растворяться в ней. Таким образом, вода является так называемым растворителем — веществом, способным растворять другое вещество.Заряженные частицы образуют водородные связи с окружающим слоем молекул воды. Это называется сферой гидратации и служит для отделения или диспергирования частиц в воде. В случае поваренной соли (NaCl), смешанной с водой, ионы натрия и хлора разделяются или диссоциируют в воде, и вокруг ионов образуются сферы гидратации. Положительно заряженный ион натрия окружен частично отрицательными зарядами атомов кислорода в молекулах воды. Отрицательно заряженный хлорид-ион окружен частично положительными зарядами атомов водорода в молекулах воды.Эти сферы гидратации также называют гидратными оболочками. Полярность молекулы воды делает ее эффективным растворителем и играет важную роль в ее многочисленных функциях в живых системах.

Рис. 2.9. Когда поваренная соль (NaCl) смешивается с водой, вокруг ионов образуются сферы гидратации.

Вы когда-нибудь наполняли стакан воды до самого верха, а затем медленно добавляли еще несколько капель? Прежде чем переливаться через край, вода фактически приобретает куполообразную форму над краем стакана. Эта вода может оставаться над стеклом из-за свойства когезии .В когезии молекулы воды притягиваются друг к другу (из-за водородных связей), удерживая молекулы вместе на границе раздела жидкость-воздух (газ), хотя в стекле больше нет места. Когезия приводит к поверхностному натяжению , способности вещества выдерживать разрыв при воздействии растяжения или напряжения. Когда вы роняете небольшой клочок бумаги на каплю воды, бумага плавает поверх капли, хотя объект плотнее (тяжелее), чем вода.Это происходит из-за поверхностного натяжения, создаваемого молекулами воды. Сплоченность и поверхностное натяжение сохраняют молекулы воды нетронутыми, а предмет — плавающим наверху. Можно даже «плавать» стальную иглу над стаканом с водой, если поместить ее осторожно, не нарушая поверхностного натяжения.

Рисунок 2.10 Вес иглы на поверхности воды понижает поверхностное натяжение; в то же время поверхностное натяжение воды тянет ее вверх, удерживая иглу на поверхности воды и не давая ей утонуть.Обратите внимание на углубление в воде вокруг иглы.

Эти силы сцепления также связаны со свойством воды адгезией или притяжением между молекулами воды и другими молекулами. Это наблюдается, когда вода «поднимается» по соломке, помещенной в стакан с водой. Вы заметите, что вода кажется выше по бокам соломинки, чем в середине. Это связано с тем, что молекулы воды притягиваются к соломке и, следовательно, прилипают к ней.

Силы сцепления и сцепления важны для поддержания жизни.Например, из-за этих сил вода может течь вверх от корней к верхушкам растений, чтобы прокормить растение.

Концепция в действии

Чтобы узнать больше о воде, посетите сайт Геологической службы США «Наука о воде для школ: все о воде!» интернет сайт.

pH раствора является мерой его кислотности или щелочности. Вы, вероятно, использовали лакмусовую бумагу , бумагу, обработанную натуральным водорастворимым красителем, чтобы ее можно было использовать в качестве индикатора pH, чтобы проверить, сколько кислоты или основания (щелочности) существует в растворе.Возможно, вы даже использовали их, чтобы убедиться, что вода в открытом бассейне очищена должным образом. В обоих случаях этот тест pH измеряет количество ионов водорода, которые существуют в данном растворе. Высокие концентрации ионов водорода приводят к низкому pH, тогда как низкие уровни ионов водорода приводят к высокому pH. Общая концентрация ионов водорода обратно пропорциональна его pH и может быть измерена по шкале pH (рис. 2.11). Следовательно, чем больше присутствует ионов водорода, тем ниже pH; и наоборот, чем меньше ионов водорода, тем выше pH.

Шкала pH находится в диапазоне от 0 до 14. Изменение на одну единицу шкалы pH представляет собой изменение концентрации ионов водорода в 10 раз, изменение на две единицы представляет собой изменение концентрации ионов водорода на величину коэффициент 100. Таким образом, небольшие изменения pH представляют собой большие изменения концентрации ионов водорода. Чистая вода нейтральна. Он не является ни кислым, ни основным, и его pH составляет 7,0. Все, что ниже 7,0 (от 0,0 до 6,9), является кислотным, а все, что выше 7.0 (от 7,1 до 14,0) — щелочной. Кровь в ваших венах слегка щелочная (pH = 7,4). Среда в желудке очень кислая (pH от 1 до 2). Апельсиновый сок имеет умеренную кислотность (pH = приблизительно 3,5), тогда как пищевая сода является щелочной (pH = 9,0).

Рисунок 2.11 Шкала pH измеряет количество ионов водорода (H +) в веществе.

Кислоты — это вещества, которые обеспечивают ионы водорода (H + ) и понижают pH, тогда как оснований обеспечивают ионы гидроксида (OH ) и повышают pH.Чем сильнее кислота, тем легче она отдает H + . Например, соляная кислота и лимонный сок очень кислые и легко выделяют H + при добавлении в воду. И наоборот, основания — это те вещества, которые легко отдают OH . Ионы OH соединяются с H + с образованием воды, которая повышает pH вещества. Гидроксид натрия и многие бытовые чистящие средства очень щелочные и быстро выделяют OH при помещении в воду, тем самым повышая pH.

Большинство клеток нашего тела работают в очень узком диапазоне шкалы pH, обычно в пределах от 7,2 до 7,6. Если pH тела выходит за пределы этого диапазона, дыхательная система не работает, как и другие органы тела. Клетки больше не функционируют должным образом, и белки будут разрушаться. Отклонение от диапазона pH может вызвать кому или даже смерть.

Так как же мы можем проглотить или вдохнуть кислые или основные вещества и не умереть? Буферы — это ключ. Буферы легко абсорбируют избыток H + или OH , тщательно поддерживая pH тела в вышеупомянутом узком диапазоне. Двуокись углерода является частью заметной буферной системы в организме человека; он поддерживает pH в нужном диапазоне. Эта буферная система включает анион угольной кислоты (H 2 CO 3 ) и бикарбонат (HCO 3 ). Если слишком много H + попадает в организм, бикарбонат соединяется с H + , образуя угольную кислоту и ограничивая снижение pH.Аналогичным образом, если в систему вводится слишком много OH , угольная кислота быстро диссоциирует на ионы бикарбоната и H + . Ионы H + могут объединяться с ионами OH , ограничивая увеличение pH. Хотя угольная кислота является важным продуктом в этой реакции, ее присутствие мимолетно, потому что углекислота выделяется из организма в виде углекислого газа каждый раз, когда мы дышим. Без этой буферной системы pH в нашем организме будет слишком сильно колебаться, и мы не сможем выжить.

Вода обладает многими свойствами, которые имеют решающее значение для поддержания жизни. Он полярный, что позволяет образовывать водородные связи, которые позволяют ионам и другим полярным молекулам растворяться в воде. Поэтому вода — отличный растворитель. Водородные связи между молекулами воды дают воде способность удерживать тепло лучше, чем многие другие вещества. По мере повышения температуры водородные связи между водой непрерывно разрываются и преобразуются, позволяя общей температуре оставаться стабильной, хотя в систему добавляется повышенная энергия.Силы сцепления воды учитывают свойство поверхностного натяжения. Все эти уникальные свойства воды важны для химии живых организмов.

pH раствора является мерой концентрации ионов водорода в растворе. Раствор с большим количеством ионов водорода кислый и имеет низкое значение pH. Раствор с большим количеством гидроксид-ионов является основным и имеет высокое значение pH. Шкала pH находится в диапазоне от 0 до 14, при этом pH 7 является нейтральным. Буферы — это растворы, которые замедляют изменение pH при добавлении кислоты или основания в буферную систему.Буферы важны в биологических системах из-за их способности поддерживать постоянный уровень pH.

кислота: вещество, которое отдает ионы водорода и, следовательно, снижает pH

адгезия: притяжение между молекулами воды и молекулами другого вещества

основание: вещество, поглощающее ионы водорода и, следовательно, повышающее pH

буфер: раствор, который сопротивляется изменению pH за счет поглощения или высвобождения ионов водорода или гидроксида

когезия: межмолекулярные силы между молекулами воды, вызванные полярной природой воды; создает поверхностное натяжение

испарение: высвобождение молекул воды из жидкой воды с образованием водяного пара

гидрофильный: описывает вещество, растворяющееся в воде; водолюбивый

гидрофобный: описывает вещество, которое не растворяется в воде; водобоязненный

лакмусовая бумага : фильтровальная бумага , обработанная натуральным водорастворимым красителем, поэтому ее можно использовать в качестве индикатора pH.

Шкала pH: шкала от 0 до 14, которая измеряет приблизительную концентрацию ионов водорода в веществе

растворитель: вещество, способное растворять другое вещество

поверхностное натяжение: сила сцепления на поверхности тела жидкости, которая не дает молекулам разделиться

температура: мера молекулярного движения

Список литературы

Хамфри, W., Далке, А. и Шультен, К., «VMD — визуальная молекулярная динамика», J. Molec. Графика , 1996, т. 14. С. 33-38. http://www.ks.uiuc.edu/Research/vmd/

Атрибуция в СМИ

  • Рисунок 2.7. Автор Gautam Dogra
  • Рисунок 2.8
    • ледяная решетка Джейн Уитни
    • (b) Карлос Понте
  • Рисунок 2.10 Кори Занкер
  • Рисунок 2.11. Автор Эдвард Стивенс

Первые изображения водородной связи

Здесь показаны пять молекул воды и водородные связи между ними.Символ 8+ означает, что в той части молекулы (где расположены белые атомы водорода) имеется небольшой положительный заряд, в то время как символ 8 означает небольшой отрицательный заряд (более крупные красные атомы кислорода). Эти связи придают воде особые свойства, делающие возможной жизнь на Земле. Википедия / Magasjukur2 Ученые только что впервые увидели одно из важнейших физических взаимодействий в нашем мире — особый тип связи, называемый водородной связью, который удерживает нашу ДНК вместе и придает воде ее уникальные свойства, включая поверхностное натяжение.

Когда крошечный атом водорода находится в молекуле с гораздо большим атомом, например, азота или кислорода (например, в воде), этот более крупный атом оттягивает часть отрицательного заряда от меньшего, придавая меньшему атому немного положительный заряд на одном краю. Этот слегка положительный заряд электрически притягивается к слегка отрицательному заряду большого атома другой молекулы.

На изображении справа вы можете видеть, что большие красные атомы (в данном случае кислорода) притягивают атомы водорода в других молекулах воды вокруг себя.Эти пунктирные линии — водородные связи.

Теперь мы можем увидеть реальную картину водородной связи между молекулами 8-гидроксихинолина на изображениях ниже. Химическое вещество образует водородные связи и лежит в одной плоскости, поэтому его легче визуализировать.

В левом столбце показаны изображения с микроскопа, а в правом — модели в виде шариков и палочек, показывающие, как расположены атомы. Красные молекулы — это кислород, синие — азот, а белые — водород.

Водородная связь образуется между водородом, связанным с красным кислородом, и атомом азота.Наука / Чжан Еще несколько изображений молекул с разными водородными связями: Zhang, et.др., Science Express, 2013 г. Команда из Китайской академии наук опубликовала свое исследование в журнале Science 26 сентября.

Ученые использовали подход, называемый атомно-силовой микроскопией, для получения изображений, которые позволяют видеть детали на уровне долей нанометра.

Другая группа исследователей из Национальной лаборатории Лоуренса Беркли использовала аналогичный метод в мае для получения первых изображений ковалентных связей, которые связывают атомы в молекулы.Они опубликовали исследование в Science 30 мая. Ниже вы можете увидеть ковалентные связи между атомами углерода. Теоретические модели находятся рядом с реальными изображениями.

Наука / Отейза .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *