Site Loader

Содержание

Как определить параметры светодиода ⋆ diodov.net

Разбирая на детали старые или нерабочие устройства часто можно найти светодиоды. Однако в большинстве случаем на них отсутствует какая-либо маркировка или другие опознавательные знаки. Поэтому определить их параметры по справочнику попросту невозможно. Отсюда возникает вполне естественный вопрос: как определить параметры светодиода?

Опытные электронщики таким вопросом практически не задаются, поскольку могут с достаточной точностью определить параметры такого полупроводникового прибора, ориентируясь лишь на его внешний вид и зная некоторые нюансы, присущие большинству светодиодов. Эти нюансы рассмотрим и мы.

Электрические параметры светодиодов

Первым делом заметим, что светодиод характеризуется тремя электрическими параметрами (световые характеристики мы рассматривать не будем):

1) падение напряжения, измеряемое в вольтах. Когда говорят 2-х вольтный или 3-х вольтный светодиод, то это имеется в виду данный параметр;

2) номинальный ток. Часто его значение приводится в справочниках в миллиамперах. 1 мА = 0,001 А;

3) мощность рассеяния – это мощность, которую способен рассеять (выделить в окружающую среду) полупроводниковый прибор не перегреваясь. Измеряется в ваттах. Значение данного параметра с высокой точностью можно определить самостоятельно, умножив ток на напряжение.

В большинстве случае достаточно знать два первых параметра, а то и вовсе только номинальный ток.

Условно я выделил два основных способа, с помощью которых можно с высокой долей вероятности узнать или определить указанные параметры. Первый способ – информационный. Это наиболее быстрый и простой способ. Одна он не всегда дает положительный результат. Второй способ, нам – электронщикам, более интересный. Я назвал его «электрический», так как ток и напряжение будут определяться с помощью мультиметра (тестера). Рассмотрим подробно оба варианта.

Как определить параметры светодиода по внешнему виду?

Самый легкий путь – это узнать характеристики светодиода по его внешнему виду. Для этого достаточно набрать в строке поисковой системы такую фразу: «купить светодиод». Далее из предоставленного списка следует выбрать наиболее крупный интернет магазин и найти соответствующий раздел каталога. После чего внимательно просмотреть все имеющиеся позиции и если вам улыбнется удача, то вы найдете то, что ищете. Как правило, в серьёзных интернет-магазинах, где продаются радиоэлектронные элементы, на каждую позицию имеется соответствующая документация, даташит или приводятся основные характеристики. Сопоставив по внешнему виду имеющийся светодиод с тем, что в каталоге, можно таким образом узнать его характеристики.

Следующим подходом пользуются более опытные электронщики. Однако в нем нет ничего сложного. Преимущественное большинство светодиодов разделяется на индикаторные и общего назначения. Индикаторные, как правило, менее ярко светят, чем остальные. Это и понятно, ведь для индикации очень яркий свет не нужен. Индикаторные светодиоды применяются для сигнализации работы различных электронных устройств. Например, при включении в розетку, они показывают, что устройство находится под напряжением. Они встречаются в чайниках, ноутбуках, выключателях, зарядных устройствах, компьютерах и т.п. Электрические параметры их вне зависимости от внешнего вида следующие: ток – 20 мА = 0,02 А; напряжение в среднем 2 В (от 1,8 В до 2,3 В).

Светодиоды общего назначения светят ярче предыдущих, поэтому могут использоваться в качестве осветительных приборов. Однако для индикации тоже пойдут, если снизить ток. Как ни странно, но преобладающее большинство и таких светодиодов имеют значение номинального тока потребления тоже 20 мА. А вот напряжение их может находиться в пределах от 1,8 до 3,6 В. В этом классе находятся и сверхяркие светодиоды. При том же токе напряжение у них, как правило выше – 3,0…3,6 В.

В целом светодиоды подобного типа имеют стандартный размерный ряд, основным параметром которого есть диаметр круга линзы или ширина и толщина стороны, если линза прямоугольной формы.

Диаметр линзы, мм: 3; 4,8; 5; 8 и 10.

Стороны прямоугольника, мм: 3×2; 5×2.

Как определить параметры светодиода мультиметром?

Теперь, когда мы знаем, что номинальный ток многих светодиодов 20 мА, то достаточно просто определить их напряжение опытным путем. Для этого нам понадобится блок питания с регулировкой напряжения и мультиметр. Соединяем последовательно блок питания со светодиодом и мультиметром, предварительно установленным в режим измерения тока.

Блок питания изначально должен быть установлен на минимальное значение. Далее, изменяя величину подводимого к светодиоду напряжения, устанавливаем по показанию мультиметра ток 20 мА. После этого фиксируем значение величины подводимого напряжения либо по штатному вольтметру блока питания либо с помощью мультиметра, установленного в режим измерения напряжения.

Для страховки светодиода лучше последовательно к нему подсоединить резистор ом на 300. Но в этому случае напряжение необходимо фиксировать непосредственно на нем.

Поскольку не у всех есть блок питания с регулировкой напряжения, то можно определять параметры и исправность маломощных светодиодов с помощью следующих элементов:

  1. Крона (батарейка на 9 В).
  2. Резистор ом на 200.
  3. Переменный резистор, он же потенциометр на 1 кОм.
  4. Мультиметр.

Испытуемый светодиод соединяем последовательно с постоянным резисторов, потом с переменным, далее с кроной и щупами мультиметра, установленного в режим измерения постоянного тока.

Очередность соединения всех элементов не имеет никакого значения, поскольку цепь последовательная, а это значит, что через все компоненты протекает один и тот же ток.

Изначально переменным резистором следует установить минимальное напряжение, а потом постепенно увеличивать до тех пор, пока ток не достигнет 20 мА. После этого выполняется измерение напряжения.

С помощью рассмотренного способа не получится определить параметры мощного светодиода вследствие протекания значительного тока через резисторы. В результате чего последние могут перегреться. Однако определить исправность его вполне возможно.

Еще статьи по данной теме

Как узнать ток светодиода

Последние достижения в области светодиодов внесли огромное разнообразие в ассортимент этих радиодеталей. Красные, зеленые, синие, мигающие, большие и маленькие. Однако каждый тип обладает своими параметрами, которые существенно отличаются от другого типа. Например, ток красных светодиодов в большинстве случаев равен 20мА, а ток зеленых находится в пределах от 5 до 20мА. В некоторых случаях надо узнать ток светодиода, не зная его характеристик.Вам понадобится

Сначала надо узнать полярность светодиода. Для этого к обоим электродам присоедините 2 отрезка монтажного провода. С целью упрощения операции, электроды можно обрезать кусачками под острым углом и надеть на них отрезкимонтажного провода. Этот способ хорош тем, что не потребуется каждый раз перепаивать светодиод, он к тому же боится перегрева, а изоляция будет прижимать электроды к проводящим жилам провода, что очень удобно. Затем, к одному из проводов аналогичным образом подсоедините постоянный резистор 2,2кОм и подключите в произвольной полярности к блоку питания.Если светодиод не загорелся, поменяйте полярность. Если загорелся, тут же отключите, промаркируйте провод, подключенный к плюсу блока питания, как «+».

Теперь соберите относительно сложную электрическую цепь: постоянный резистор 2,2кОм замените на 560Ом для красных светодиодов, последовательно к этой цепи подсоедините переменный резистор и миллиамперметр. Параллельно светодиоду, подключите вольтметр, с разрешением 0,1В. Установите переменный резистор на максимальное сопротивление.

Подключите эту цепь к блоку питания в соответствии с выявленной полярностью. Светодиод будет слабо светиться.

Запишите показания приборов.

Постепенно уменьшайте сопротивление переменного резистора и наблюдайте за показаниями вольтметра. По началу, напряжение будет возрастать в пределах 0,3-0,5В, в относительно линейной зависимости от угла поворота переменного резистора. Будет возрастать ток, яркость свечения светодиода тоже будет увеличиваться. Записывайте показания приборов через каждые 0,1В возрастающего напряжения.

В момент, когда напряжение будет возрастать в меньшей степени, чем ток, следует прекратите уменьшение сопротивления резистора. В этот момент достигнут оптимальный ток светодиода, когда дальнейшее увеличение тока не будет сопровождаться увеличением яркости свечения, а вызовет лишь уменьшение срока его службы.

Как определить мощность светодиода

С годами рынок предлагает все большее разнообразие светодиодов. Они отличаются цветом, напряжением, мощностью и т.д.
Если вам в руки попался светодиод и вы хотите его использовать, то непременно нужно разобраться какой мощности это устройство, иначе можно элементарно спалить его.
Как определить мощность светодиода? Об этом расскажем в данной статье.
Светодиод представляет собой полупроводниковый кристалл. Он может быть в корпусе или без него, но в любом случае у него будет два вывода: положительный и отрицательный. Мощностью светодиодов часто называют показатели в ваттах. Однако это не совсем верно. Это делается для простоты понимания. У светодиодов есть показатель максимума рабочего тока, при котором он может работать. А мощность зависит от количества тока, который вы ему дадите.

Содержание статьи

Светодиоды малой мощности

Так же их называют индикаторными. Их смело можно назвать самым распространенным видом светодиодов. Они небольшого размера (2-20 миллиметров в диаметре). Индикаторными их называют по самому частому применению – вы наверняка их видели практически во всей бытовой технике. Практически все белые маломощные светодиоды обладают параметрами 20МА 3,2 вольт. То есть его мощность – 0,06ватт.
Так же к этому виду светодиодов относят светодиоды поверхностного монтажа или SMD – светодиоды. Это светодиоды, которые подсвечивают экраны, кнопки и т.п. Так же из них делают светодиодные ленты, часто используемые для декорирования помещений.
Ленты бывают либо SMD 3528, либо 5050. SMD 3528 делается как раз из таких индикаторных светодиодов. А вот SMD 5050 сделаны из соединенных по трое светодиодов. Их мощность – в районе 0,2 ватта.

Мощные светодиоды

Условно можно поделить на:

  • Брендовые (фирмы CREE, Nichia, Osram и другие…)
  • Китайские

Что касается брендовых, они всем хороши, кроме, пожалуй, завышенной цены. Зато приобретая такие светодиоды, вы будете уверены в их качестве, к тому же все показатели, в том числе и мощность, указаны в инструкции. Так же нужно учитывать, что подобные компании выпускают светодиоды для заводской сборки. Вручную это тоже можно сделать, но будет гораздо сложнее.
Китайские светодиоды обладают гораздо большим ассортиментом. Но при всем многообразии китайские светодиоды грешат отклонениями от стандартов (точнее одних стандартов просто нет), и невысоким качеством.
Обычный светодиод китайского производства обладает мощностью примерно в 2,6 ватта.
Так же выпускают светодиоды с увеличенным кристаллом.

Какой ток даст максимальную мощность светодиода?

Если вам нужно добиться максимальной экономичности светильника – используйте светодиоды, которые дают около 120 Лм на ватт. Ток для них должен быть не более 300 мА. При хорошем отводе тепла такие светодиоды будут работать бесконечно долго.
Если главное яркость, то чипы 35-38 mil на токе в 600мА будут неплохим решением.

Как определить мощность светодиода?

Допустим, вы просто нашли у себя на столе светодиод. Никаких данных о нем нет. Как быть в таком случае?
Самый простой способ – включаете его на низковольтном питании последовательно с резистором на 1 – 1,5 кОМ. Практически любой светодиод будет работать. Но если нужны более точные показатели, делаем следующее: соотносим показатели по внешнему виду.
Маленькие (3-10 мм):

  • Инфракрасный (ток – менее 2 ватт, напряжение – около 20 мА)
  • Красный (ток – от1,7 до 2 ватт, напряжение – от 15 до 20 мА)
  • Оранжевый (ток –около 2 ватт, напряжение –20 мА)
  • Желтый (ток – 2,1-2,2 ватт, напряжение – 20 мА)
  • Зеленый (ток – 1,9-3,6 ватт, напряжение – 20 мА)
  • Голубой (ток — 2,5-3,6 ватт, напряжение – 20 мА)
  • Фиолетовый (ток – 2,7-4 ватт, напряжение –20 мА)

Большие:

  • Желтый (обычно на радиаторе) (ток – 2,1-2,2 ватт, напряжение –300 мА)
  • Белый, розовый (ток – 3,2-3,6 ватт, напряжение –20 мА)

Светодиодные ленты (ток – 12 или 24 ватт, напряжение – рассчитывается в зависимости от длины ленты).

Точное определение мощности

Вам понадобятся:

  • Мультиметр
  • Блок питания, в котором можно плавно повышать напряжение
  • Резистор на 500 Ом

К лазерным светодиодам эта техника неприменима!
Подключаете светодиод к резистору и блоку питания. Соблюдайте полярность! Ее тоже можно определить с помощью мультиметра.
Плавно увеличивайте напряжение на блоке питания, сравнивая показатели на нем и на светодиоде.
Удобнее будет использовать блок питания, который показывает рабочее напряжение, или использовать два вольтметра.
Что будет происходить? одинаковое изначально напряжение будет постепенно изменяться на блоке и светодиоде. Важно, чтобы светодиод светился с нормальной яркостью.

Почему он может не светится?

  • если он инфракрасный
  • если он сломан
  • если напряжение на двух точках пропорционально меняется от нуля до максимума, но светится он начинает с 3 воль, значит внутри светодиода находится резистор, ограничивающий подачу тока. В этом варианте ограничиваете тока на значении не больше 20 мА, смотря на то, как ярко светится светодиод.

Далее на блоке питания ставим 0 вольт, подключаем напрямую (или через резистор на 10Ом) светодиод. В цепь подключаем и миллиамперметр. Постепенно поднимаете напряжение до рассчитанного.

Совет
Не зная точных показателей светодиода, не давайте ему ток более 350 мА. Если все-таки необходимо больше – подготовьте сильный теплоотвод. Примерно при токе в 700мА светодиоду будет нужно около 80 кв. см радиатора. Оптимальная температура – 60 по Цельсию.

Как определить мощность светодиода: способы, примеры рассчета

Самый лучший способ узнать мощность светодиода – это посмотреть рабочие характеристики на упаковке изделия. Зная марку и модель можно найти его характеристики в Интернете. В противном случае, останется только два способа: проверить мультиметром или постараться определить по внешнему виду, о них мы и поговорим в этой статье.

Зачем нужно знать мощность

Мощность светодиода нужна для выбора подходящего источника питания. Зная потребление светодиода, мы можем подобрать нужный ему блок питания. Расчет по мощности позволит избежать проблем при дальнейшей работе или сэкономить средства.

Рассмотрим примеры, чтобы стало понятно, о чем идет речь. Например, имеем светоизлучающий диод с рабочим напряжением 3,5 Вольта и током 0,1 Ампера. По формуле расчета мощности P=I*U, получаем значение P=3,5*0,1 => P=0,35 Ватт. Мощность десяти составит 3,5 Ватта или 1 Ампер. Отсюда делаем вывод, что для подключения одного светодиода нам потребуется блок питания (БП) мощностью 0,385 Ватта (с запасом 10%). Для подключения десяти понадобится БП на 3,85 Вт (также с запасом 10%).

Блок питания для светодиодов рекомендуется выбирать с запасом в 10-20%. Это предотвратит работу БП на пределе, что в свою очередь продлит его срок службы.

Способы определения мощности светодиода

На самом деле способов как узнать потребление не так уж и много, поэтому давайте остановимся на каждом из них и рассмотрим более подробно.

Мультиметром

Этот способ самый сложный и не является точным, прибегать к нему советую только в крайнем случае, когда достаточно хотя бы примерных значений.

Определить мощность лазерного светодиода при помощи мультиметра нельзя!

Имея на руках только один мультиметр (он же тестер), для измерения следует выполнить следующую последовательность действий:

  1. Собрать схему с подключенным светодиодом через токоограничивающий резистор на 500 Ом от блока питания с плавной регулировкой напряжения от 0 до 12 В. 
  2. Плавно поднимая напряжение на блоке питания, следует постоянно измерять напряжение на блоке питания и светоизлучающем диоде, т.е. до резистора и после (в местах V1 и V2). В таком способе удобно использовать два мультиметра или два вольтметра. Изначально, значения напряжений будут почти одинаковы (разница не более 0,1В). При достижении определенного уровня, начнется ощутимый рост разницы измеряемых значений.
  3. Зафиксировать значение напряжение
  4. Подключить проверяемый светоизлучающий диод через резистор 10 Ом последовательно с амперметром. Если нет амперметра, используйте мультиметр. 
  5. Поднимите напряжение до зафиксированного ранее значения V
  6. Зафиксируйте значение тока и, используя закон Ома, определите мощность светодиода.

Как это сделать, читайте ниже.

Иногда люди сталкиваются с интересной особенностью, проверяемый светоизлучающий диод исправен (проверяют светодиод мультиметром), но никак не светится при подаче на него питания. Оказывается, что он инфракрасный. Определить ИК — светодиод можно посмотрев на него через объектив камеры. Он будет светиться.

По закону Ома

В самом начале статье мы упоминали формулу мощности, которая вытекает из закона Ома. Там же приведен пример расчета потребления. Зная формулу (P=I*U), а также силу тока (I) и напряжение (U) светодиода, Вы без труда узнаете сколько потребляет светодиод.

По внешнему виду

Определить сколько потребляет светодиод по внешнему виду практически не возможно, поэтому этим способом также рекомендую пользоваться только в крайнем случае, так сказать в безвыходной ситуации. Методика визуального определения сводится к возможности отнесения «узнаваемого» к какому-либо известному Вам типу светоизлучающего диода. Определяем для «подопытного» тип светодиода (а лучше марку и модель, это можно сделать по маркировке) и ищем к нему даташит, в котором можно найти точные характеристики, в том числе и мощность.

Давайте посмотрим, как применить способ на практике. Например, на руках у нас имеется светоизлучающий диод, как на фото ниже.

Сразу видим, что это SMD LED. Зная то, что в названии SMD LED зашифрованы габариты. Берем штангенциркуль и меряем размеры. Получив значения ширины – 28 и длины – 35 мм, можно с уверенностью сказать, что это светодиод SMD 3528. Мощность SMD 3528 белого цвета составляет 0,06 Вт. Это значение является средним, т.к. оно может варьироваться плюс – минус 15% в зависимости от производителя.

Мощность светодиода зависит от излучаемого им цвета. Поэтому узнав характеристики для светодиода белого цвета, стоит знать, что для красного или зеленого они будут другие.

Рассмотренная выше методика применима к любому SMD LED и даже для светодиодной ленты, т.к. в ее основе лежат данные LED. Узнав мощность одного светоизлучающего диода на ленте, и посчитав их количество, Вы без труда узнаете мощность всей светодиодной ленты.

Для наглядной демонстрации определения мощности светодиодной ленты, рекомендуем посмотреть соответствующее видео с ютуба. При расчетах автор пользуется законом Ома.

Итоги

Часто в руки радиолюбителя попадаются светодиоды без надписей и упаковочных коробок, по которым можно без труда определить мощность светодиода. Владея описанными в статье способами Вы знаете как рассчитать хотя бы примерные характеристики, и в большинстве случаев этого достаточно для решения широкого круга задач.

Напряжение светодиода. Как узнать напряжение светодиода?

Напряжение светодиода. Как узнать напряжение светодиода?

Ток светодиода. Как делают светодиоды

Светодиоды – это кристаллы, выращенные или наращенные из химических элементов на основе полупроводников. Они помещаются в специальный для каждого вида светодиодов корпус. Технологии изготовления светодиодов разнятся в зависимости от вида светодиода. Изготавливают светодиоды с добавлением различных химических элементов. Среди них полупроводники и не полупроводниковые металлы и их соединения. А также легирующие, то есть придающие составу определенные характеристики, примеси.

Изготовление светодиодов

Процесс изготовления светодиодов выглядит, примерно, следующим образом:

Пластины, служащие в качестве подложки будущих кристаллов светодиодов, помещают в специальную герметичную камеру. Такие пластины изготавливают из удобных для наращивания светодиодов материалов. Например, из искусственного сапфира, у которого подходящая для этого кристаллическая решетка. Прежде всего камеру заполняют смесью газообразных химических веществ на основе полупроводников и легирующих добавок. Затем внутренность такой камеры начинают нагревать. В процессе этого нагрева химические элементы, находящиеся до этого в газообразном состоянии, осаждаются на пластинах.

Процесс длится несколько часов. В итоге на подложке наращивается несколько десятков слоев общей толщиной лишь несколько микрон. Отличие в толщине пластины до и после наращивания не различимо на глаз.

Затем с помощью трафарета на пластину напыляются золотые контакты. После чего ее разрезают на мельчайшие части. Каждая такая часть – это отдельный кристалл светодиода со своими контактами. Размеры ее очень малы. По крайней мере, разглядеть ее в деталях можно лишь под микроскопом.

На следующем этапе готовые кристаллы вставляют в корпус. После того, по необходимости покрывают слоем люминофора. Тип корпуса и количество кристаллов зависят от того, где и как данный светодиод будет использоваться.

Все светодиоды отличаются друг от друга как отпечатки пальцев. То есть нет двух идентичных по своим характеристикам светодиодов. Потому на следующем этапе и происходит сортировка светодиодов по двум-трем сотням параметров. Чтобы отобрать наиболее близкие друг другу по мощности, цветовой температуре и другим характеристикам светодиоды.

В конце концов светодиоды проверяют на работоспособность на испытательных стендах. И лишь затем из них изготавливают светодиодные лампы, ленты или используют в других сферах применения.

Стандартное напряжение светодиода. Как определить параметры светодиода по внешнему виду?

Самый легкий путь – это узнать характеристики светодиода по его внешнему виду. Для этого достаточно набрать в строке поисковой системы такую фразу: «купить светодиод». Далее из предоставленного списка следует выбрать наиболее крупный интернет магазин и найти соответствующий раздел каталога. После чего внимательно просмотреть все имеющиеся позиции и если вам улыбнется удача, то вы найдете то, что ищете. Как правило, в серьёзных интернет-магазинах, где продаются радиоэлектронные элементы, на каждую позицию имеется соответствующая документация, даташит или приводятся основные характеристики. Сопоставив по внешнему виду имеющийся светодиод с тем, что в каталоге, можно таким образом узнать его характеристики.

Следующим подходом пользуются более опытные электронщики. Однако в нем нет ничего сложного. Преимущественное большинство светодиодов разделяется на индикаторные и общего назначения. Индикаторные, как правило, менее ярко светят, чем остальные. Это и понятно, ведь для индикации очень яркий свет не нужен. Индикаторные светодиоды применяются для сигнализации работы различных электронных устройств. Например, при включении в розетку, они показывают, что устройство находится под напряжением. Они встречаются в чайниках, ноутбуках, выключателях, зарядных устройствах, компьютерах и т.п. Электрические параметры их вне зависимости от внешнего вида следующие: ток – 20 мА = 0,02 А; напряжение в среднем 2 В (от 1,8 В до 2,3 В).

Светодиоды общего назначения светят ярче предыдущих, поэтому могут использоваться в качестве осветительных приборов. Однако для индикации тоже пойдут, если снизить ток. Как ни странно, но преобладающее большинство и таких светодиодов имеют значение номинального тока потребления тоже 20 мА. А вот напряжение их может находиться в пределах от 1,8 до 3,6 В. В этом классе находятся и сверхяркие светодиоды. При том же токе напряжение у них, как правило выше – 3,0…3,6 В.

В целом светодиоды подобного типа имеют стандартный размерный ряд, основным параметром которого есть диаметр круга линзы или ширина и толщина стороны, если линза прямоугольной формы.

Диаметр линзы, мм: 3; 4,8; 5; 8 и 10.

Стороны прямоугольника, мм: 3×2; 5×2.

Расчет резистора для светодиода. Лада 2107 Плакса

Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.

Падение напряжения — напряжение U (измеряется в вольтах, V ) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
Оно же — напряжение питания . Не путать с напряжением источника питания.
Рабочий ток — ток I (измеряется в амперах, А . мы будем измерять в миллиамперах — 1 мА = 0.001 А ).
Сопротивление — R измеряется в омах — Ом . Именно в этих единицах измеряются резисторы (сопротивления).
Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

С терминологией вроде всё. Перейдём к теории.
Вот примерное падение напряжения для каждого из основных цветов светодиодов.

Красный — 1,6-2,03
Оранжевый — 2,03-2,1в
Жёлтый — 2,1-2,2в
Зелёный — 2,2-3,5в
Синий — 2,5-3,7в
Фиолетовый — 2,8-4в
Белый — 3-3,7в

Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА .
В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.

Напряжение на светодиоде в лампе. Особенности терминологии

Проблема выбора начинается с весьма запутанной терминологии.

Блоком питания (БП) принято называть источник питания для радиоэлектронной аппаратуры, преобразующий электрическую энергию от сети для согласования ее параметров с входными параметрами отдельных узлов аппаратуры.

Подавляющее большинство светодиодов питаются от постоянного тока и имеют напряжение питания менее 4 В. Если соединить светодиоды последовательно, то такая цепочка будет иметь большее напряжение питания. По ряду причин соединение светодиодов в цепочки длиной более 15 штук практикуется очень редко. То есть напряжение питания массива светодиодов в осветительном приборе обычно не превышает 60 В. В то же время, сети электропитания, в зависимости от страны, дают напряжение 100 – 240 В переменного тока. Для согласования параметров питания светодиодов и параметров сети электропитания обязательно требуется блок питания.

Следует отметить, что термин «блок питания» является устоявшимся понятием, широко используемым в инженерной практике. Тем не менее, он не закреплен официально ГОСТ Р 52907-2008, в котором присутствует только определение источника питания. В прежнем варианте ГОСТ официально также было закреплено понятие «вторичный источник питания», которое в ГОСТ Р 52907-2008 отсутствует. Использование термина «блок питания» позволяет дистанцироваться от автономных источников питания, т.е. гальванических элементов и аккумуляторов.

\Кроме этого, для обозначения БП часто жаргонно используется термин «драйвер». На самом деле, драйвер — это устройство, которое стабилизирует ток, питающий светодиоды. Также некоторые драйверы способны регулировать световой поток у светодиодов, т.е. диммировать их. Но драйвер не выполняет функций преобразования питающего напряжения и выпрямления тока. Поэтому узел, отвечающий за питание светодиодов в светильниках на напряжение 12 или 24 В — это драйвер. Но при питании от сети 220 В речь идет именно о БП. Тем не менее, на некоторых БП можно встретить слово driver, означающее в данном контексте стабилизацию выходного тока.

Диммируемый БП Helvar со стабилизацией выходного тока

В светотехнике устройства, осуществляющие согласование параметров питания источников света и электросети, исторически назывались балластами или ПРА. Специалисты по светотехнике при переходе на светодиоды не стали отказываться от привычного для них терминов и стали использовать их применительно к БП для светодиодов.

Еще одним термином, которым не всегда правильно обозначают блоки питания в светодиодных светильниках, является «электронный трансформатор». Данное устройство, на самом деле, только преобразует напряжение в более низкое и повышает частоту переменного тока с 50 (или 60, в зависимости от стандарта электросети, принятого в стране) до нескольких единиц или десятков килогерц. Питание светодиодов напрямую от электронного трансформатора применяется только в гирляндах и другой аналогичной декоративной светотехнической продукции.

Терминология для светодиодных светильников в части устройств электропитания пока не закреплена ГОСТ, в проектах стандартов используется термин «электронное управляющее устройство».

Справедливости ради следует заметить, что путаница с терминологией распространена и за рубежом. Термин power supply unit (блок питания) или просто power supply (источник питания) в светотехнике используется крайне редко. В рекламных материалах часто встречается обозначение блока питания как driver (драйвер), а вообще, широко распространено использование обозначение БП в светодиодных светильниках как ballast (балласт).

Видео КАК УЗНАТЬ ПАРАМЕТРЫ ЛЮБОГО СВЕТОДИОДА

Простая схема для проверки рабочего напряжения LED приборов. Как и у любого диода, у светодиода есть некоторая барьерная точка, до которой сопротивление диода велико. Но, после достижения напряжением этой точки диод (и светодиод) открывается, — диод проявляет свои свойства односторонней проводимости, а светодиод начинает светиться. Дальнейшее повышение напряжения приводит только к резкому снижению сопротивления диода. Напряжение на нем повышается несильно, но ток возрастает стремительно. Фактически, светодиод стремится стабилизировать напряжение источника на уровне своего барьерного напряжения. Можно сказать, что начинается «борьба» между источником напряжения и светодиодом. При напряжении источника 4,5V и напряжении падения на светодиоде 1,5V идет борьба за 3V. И, при свежей «батарейке», в проигрыше часто оказывается светодиод. Ток через него превышает допустимое значение, и он перегорает. Именно поэтому, в схемах на светодиодах всегда последовательно светодиоду включен токоограничительный резистор. Этот резистор нужен, чтобы на нем «повисли» эти «спорные», в данном случае, 3V, и каждый остался при своем. Так как же измерить «на какое напряжение» светодиод? Если есть мультиметр (или другой вольтметр) можно собрать схему, показанную на рисунке:

Поскольку, сейчас часто встречаются светодиоды на 6 или 7V желательно взять «батарейку» с напряжением 12В и выше. Подключить к ней, через токоограничительный резистор, сопротивлением, например, 1К, светодиод, так чтобы он светился, и измерить на нем напряжение. То, что покажет мультиметр и будет тем самым напряжением, «на которое» этот светодиод. Можно обойтись и без мультиметра, если есть сетевой источник с переключаемым выходным напряжением (например, универсальный сетевой адаптер с выходными напряжениями 1,5V, 3V, 4,5V, 6V, 9V, 12V). Подключаете к нему светодиод через токоограничительный резистор и повышаете напряжение от минимального до тех пор, пока светодиод не загорится. Это и будет, примерно, то напряжение «на которое» этот светодиод.

Как определить напряжение светодиода мультиметром

В этой статье объясним подробно как определить напряжение светодиода мультиметром.

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…

Все светодиоды имеют очень важную характеристику — рабочее напряжение (напряжение падения). Величина рабочего напряжения зависит от материалов из которых они сделаны. По рабочему напряжению все светодиоды можно разделить на 2 группы:

  1. светодиоды с напряжением от 3 В до 3,8 В (синие, белые и некоторые виды сине-зеленые)
  2. светодиоды с напряжением от1,8 В до 2,1 В (красные, желтые, оранжевые и большинство зеленых)

В связи с тем, что производители часто создают новые модели светодиодов, мы советуем сперва определить напряжение светодиодов, прежде чем использовать их  в своих конструкциях.

Определить это напряжение очень легко. Для этого нам потребуется только источник питания с выходным напряжением от 9 до 16 В, мультиметр и резистор сопротивлением 1 кОм (1000 Ом). Это значение сопротивления гарантирует оптимальный ток для нашего светодиода, не слишком высокий и не слишком низкий.

Ниже приводим действия, необходимые для измерения рабочего напряжения светодиода.

ШАГ 1: Определение полярности выводов нашего светодиода.

Чтобы определить полярность нашего светодиода, в его корпусе есть два элемента, которые мы можем оценить.

Первый — длина выводов. Как вы можете видеть на рисунке, самая короткий вывод – это минусовой вывод.

Второй — элемент находится по окружности светодиода. На корпусе есть скос – это минусовой вывод.

Описанный метод определения работает в отношении всех 3 мм и 5 мм светодиодов.

Можно использовать еще и третий метод, состоящий в том, чтобы заглянуть внутрь светодиода, треугольный вымпелобразный сегмент является отрицательным выводом, а другой, без особой формы, является положительным. Конечно же, этот метод небезопасен, поскольку есть несколько типов светодиодов, где расположение противоположное.

ШАГ 2: Подключаем наш светодиод

После того как мы определили полярность нашего светодиода, мы подключаем один из выводов резистора 1 кОм (1000 Ом) последовательно с положительным выводом светодиода, как показано на рисунке.

Затем мы соединяем другой вывод резистора с плюсом источника питания. Наконец, мы подключаем свободный вывод светодиода к минусу источника питания. Светодиод должен загореться.

ШАГ 3: Подготавливаем наш мультиметр

Теперь мы готовим наш мультиметр для проведения измерения. Переместите селектор тестера в положение измерения постоянного напряжения со шкалой до 20 В. Если наш мультиметр не имеет этой шкалы напряжения, то мы можем выбрать 30 В или 50 В.

Подключаем отрицательный щуп (черный) к входу, который имеет обозначение «COM», в то время как положительный (красный) подключаем к входу V-mA-ῼ. На дисплее вы должны увидеть значение «0.00»

ШАГ 4: Определение напряжения светодиода

Прикладываем положительный щуп (красный) к положительному выводу светодиода, в то время как отрицательный (черный) щуп мультиметра прикладываем с отрицательному выводу. На дисплее мультиметра мы должны увидеть рабочее напряжение светодиода.

Мы можем записать это значение, так как оно будет полезно для вычисления значения сопротивления светодиода. Для расчета сопротивления светодиодов используйте онлайн калькулятор.

www.inventable.eu

HILDA — электрическая дрель

Многофункциональный электрический инструмент способн…

Как определить мощность светодиода

Как правильно определить ток светодиода, а также узнать падение напряжения на светодиоде с помощью теоретического и практического методов.

Зачем нужно знать мощность

Мощность светодиода нужна для выбора подходящего источника питания. Зная потребление светодиода, мы можем подобрать нужный ему блок питания. Расчет по мощности позволит избежать проблем при дальнейшей работе или сэкономить средства.

Рассмотрим примеры, чтобы стало понятно, о чем идет речь. Например, имеем светоизлучающий диод с рабочим напряжением 3,5 Вольта и током 0,1 Ампера. По формуле расчета мощности P=I*U, получаем значение P=3,5*0,1 => P=0,35 Ватт. Мощность десяти составит 3,5 Ватта или 1 Ампер. Отсюда делаем вывод, что для подключения одного светодиода нам потребуется блок питания (БП) мощностью 0,385 Ватта (с запасом 10%). Для подключения десяти понадобится БП на 3,85 Вт (также с запасом 10%).

Блок питания для светодиодов рекомендуется выбирать с запасом в 10-20%. Это предотвратит работу БП на пределе, что в свою очередь продлит его срок службы.

Светодиоды малой мощности

Так же их называют индикаторными. Их смело можно назвать самым распространенным видом светодиодов. Они небольшого размера (2-20 миллиметров в диаметре). Индикаторными их называют по самому частому применению – вы наверняка их видели практически во всей бытовой технике. Практически все белые маломощные светодиоды обладают параметрами 20МА 3,2 вольт. То есть его мощность – 0,06ватт.
Так же к этому виду светодиодов относят светодиоды поверхностного монтажа или SMD – светодиоды. Это светодиоды, которые подсвечивают экраны, кнопки и т.п. Так же из них делают светодиодные ленты, часто используемые для декорирования помещений.
Ленты бывают либо SMD 3528, либо 5050. SMD 3528 делается как раз из таких индикаторных светодиодов. А вот SMD 5050 сделаны из соединенных по трое светодиодов. Их мощность – в районе 0,2 ватта.

Как проверить мощность светодиодов?

Светодиод – это кристалл, который имеет полупроводниковую конструкцию. Эти элементы производятся в специальном корпусе или без него, но в любом из этих вариантов прибор будет иметь два вывода: один отрицательный, а другой положительный по режиму работы. Многих людей интересует вопрос, как узнать мощность светодиода, чтобы на него ответить, потребуется подробно рассмотреть, какие показатели мощности существуют у этих приборов. Потребляемая мощность светодиода, чаще всего указывается в Ваттах. Но, такое определение не совсем верное, потому как у данного элемента имеется важный рабочий показатель, указывающий на допустимые значения тока, когда светодиод может исправно работать. При этом значение мощности, будет зависеть именно от показателей тока, который подан на полупроводниковый элемент.

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

Диод – это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по-другому:

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Мощные светодиоды

Условно можно поделить на:

  • Брендовые (фирмы CREE, Nichia, Osram и другие…)
  • Китайские

Что касается брендовых, они всем хороши, кроме, пожалуй, завышенной цены. Зато приобретая такие светодиоды, вы будете уверены в их качестве, к тому же все показатели, в том числе и мощность, указаны в инструкции. Так же нужно учитывать, что подобные компании выпускают светодиоды для заводской сборки. Вручную это тоже можно сделать, но будет гораздо сложнее.
Китайские светодиоды обладают гораздо большим ассортиментом. Но при всем многообразии китайские светодиоды грешат отклонениями от стандартов (точнее одних стандартов просто нет), и невысоким качеством.
Обычный светодиод китайского производства обладает мощностью примерно в 2,6 ватта.
Так же выпускают светодиоды с увеличенным кристаллом.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

Как определить параметры светодиода по внешнему виду

Определить рабочие параметры или тип по внешнему виду очень непросто. Редко встречаются люди, способные узнать тот или иной вид светодиода по внешним признакам. Обычно, они по роду деятельности постоянно имеют с ними дело и начинают узнавать элементы с первого взгляда.

Возможность определить тип визуально значительно ограничена.  Можно попробовать проверить тип элемента по фотографиям в интернете. Составить поисковый запрос с указанием признаков неизвестного светодиода не сложно, после чего попытаться идентифицировать его, сличая с подобными устройствами на картинках. Проще всего определиться с типом устройств, если иметь дело со светодиодными лампами.

Важно! Тип диода определяется достаточно легко — по форме корпуса, размеру и цвету линзы, прочим характерным признакам. Более подробные характеристики можно получить только методом измерений с помощью мультиметра или подобных приспособлений.

Какой ток даст максимальную мощность светодиода?

Если вам нужно добиться максимальной экономичности светильника – используйте светодиоды, которые дают около 120 Лм на ватт. Ток для них должен быть не более 300 мА. При хорошем отводе тепла такие светодиоды будут работать бесконечно долго.
Если главное яркость, то чипы 35-38 mil на токе в 600мА будут неплохим решением.

Способы определения мощности светодиода

На самом деле способов как узнать потребление не так уж и много, поэтому давайте остановимся на каждом из них и рассмотрим более подробно.

Мультиметром

Этот способ самый сложный и не является точным, прибегать к нему советую только в крайнем случае, когда достаточно хотя бы примерных значений.

Определить мощность лазерного светодиода при помощи мультиметра нельзя!

Имея на руках только один мультиметр (он же тестер), для измерения следует выполнить следующую последовательность действий:

  1. Собрать схему с подключенным светодиодом через токоограничивающий резистор на 500 Ом от блока питания с плавной регулировкой напряжения от 0 до 12 В. 
  2. Плавно поднимая напряжение на блоке питания, следует постоянно измерять напряжение на блоке питания и светоизлучающем диоде, т.е. до резистора и после (в местах V1 и V2). В таком способе удобно использовать два мультиметра или два вольтметра. Изначально, значения напряжений будут почти одинаковы (разница не более 0,1В). При достижении определенного уровня, начнется ощутимый рост разницы измеряемых значений.
  3. Зафиксировать значение напряжение
  4. Подключить проверяемый светоизлучающий диод через резистор 10 Ом последовательно с амперметром. Если нет амперметра, используйте мультиметр. 
  5. Поднимите напряжение до зафиксированного ранее значения V
  6. Зафиксируйте значение тока и, используя закон Ома, определите мощность светодиода.

Как это сделать, читайте ниже.

Иногда люди сталкиваются с интересной особенностью, проверяемый светоизлучающий диод исправен (проверяют светодиод мультиметром), но никак не светится при подаче на него питания. Оказывается, что он инфракрасный. Определить ИК — светодиод можно посмотрев на него через объектив камеры. Он будет светиться.

По закону Ома

В самом начале статье мы упоминали формулу мощности, которая вытекает из закона Ома. Там же приведен пример расчета потребления. Зная формулу (P=I*U), а также силу тока (I) и напряжение (U) светодиода, Вы без труда узнаете сколько потребляет светодиод.

По внешнему виду

Определить сколько потребляет светодиод по внешнему виду практически не возможно, поэтому этим способом также рекомендую пользоваться только в крайнем случае, так сказать в безвыходной ситуации. Методика визуального определения сводится к возможности отнесения «узнаваемого» к какому-либо известному Вам типу светоизлучающего диода. Определяем для «подопытного» тип светодиода (а лучше марку и модель, это можно сделать по маркировке) и ищем к нему даташит, в котором можно найти точные характеристики, в том числе и мощность.

Давайте посмотрим, как применить способ на практике. Например, на руках у нас имеется светоизлучающий диод, как на фото ниже.

Сразу видим, что это SMD LED. Зная то, что в названии SMD LED зашифрованы габариты. Берем штангенциркуль и меряем размеры. Получив значения ширины – 28 и длины – 35 мм, можно с уверенностью сказать, что это светодиод SMD 3528. Мощность SMD 3528 белого цвета составляет 0,06 Вт. Это значение является средним, т.к. оно может варьироваться плюс – минус 15% в зависимости от производителя.

Мощность светодиода зависит от излучаемого им цвета. Поэтому узнав характеристики для светодиода белого цвета, стоит знать, что для красного или зеленого они будут другие.

Рассмотренная выше методика применима к любому SMD LED и даже для светодиодной ленты, т.к. в ее основе лежат данные LED. Узнав мощность одного светоизлучающего диода на ленте, и посчитав их количество, Вы без труда узнаете мощность всей светодиодной ленты.

Для наглядной демонстрации определения мощности светодиодной ленты, рекомендуем посмотреть соответствующее видео с ютуба. При расчетах автор пользуется законом Ома.

Проверка светодиода с помощью мультиметра

Проверка светодиодов мультиметром

Мультиметр – это специальный тестер для электротехнических изделий, объединяющий функции разных устройств. На внешней панели расположен переключатель и несколько положений, одно из них – для проверки светодиодов. Порядок действий:

  1. Включить прибор, установить нужный режим.
  2. Специальными щупами коснуться «ножек» светодиода (отходящих проводов).
  3. Если на экране появилась цифра 1 – сменить полярность, повторить касание щупами.
  4. Если появился звук и диод начал светиться – все исправно, если нет – светодиод нерабочий.

Когда заведомо известно, что LED-светильник исправен, но мультиметр показывает другое, нужно проверить правильность сборки схемы: положение тестера, соединение контактов. Если и в данном случае мультиметр показывает неисправность, из строя вышел резистор.

Как узнать на какое напряжение рассчитан светодиод

Все вышесказанное относится к обычным LED, работающим без дополнительных встроенных элементов. Существующие технологии позволяют встраивать в корпус прибора добавочные комплектующие. Например, гасящие резисторы. Так получают светодиоды на большее напряжение – 5,12 или 220 В. Визуально определить напряжение зажигания таких приборов практически невозможно. Поэтому остается один путь.

Если предыдущие способы не дали результата и есть уверенность, что LED исправен, надо пробовать подавать на него повышенное напряжение. Сначала 5 В, потом увеличить напряжение до 12 В, если результата нет – можно попробовать повышать далее, вплоть до 220 В. Но до таких величин лучше не экспериментировать – это напряжение опасно для человека. Кроме того, в случае ошибки можно получить разрушение корпуса светодиода. При этом может произойти небольшой хлопок, оплавление изоляции проводов, возгорание и т.д. В настоящее время технологии шагнули далеко вперед, и светодиод стоит не настолько дорого, чтобы из-за него рисковать оборудованием и здоровьем.

Закрепляем знания при помощи видео:

Цветовая маркировка световых диодов

С одной стороны, цветовая маркировка позволяет определить вид и характеристики светодиода, с другой – единых обозначений не существует. Каждый производитель использует свои значения. В России есть цветовая маркировка, но ее редко используют – список элементов из цифр и букв слишком большой, запомнить достаточно сложно, расшифровка неудобна для обычного покупателя.

Более простое буквенное обозначение принимают за общепринятое (неофициально). Используют в основном для светодиодных лент. Кроме общих характеристик указывают степень защиты элемента от проникновения мусора и влаги – IP и цифры от 0 до 6.

Чтобы выбрать хороший вариант для замены устаревших лампочек, необходимо выяснить, какие бывают светодиоды, и установить параметры подключаемой электрической сети: соответствие напряжения, силы тока, сопротивления.

Ориентироваться на стоимость нельзя – марки дешевых светодиодов часто имеют завышенные параметры, используют неустойчивые материалы.

Почему он может не светится?

  • если он инфракрасный
  • если он сломан
  • если напряжение на двух точках пропорционально меняется от нуля до максимума, но светится он начинает с 3 воль, значит внутри светодиода находится резистор, ограничивающий подачу тока. В этом варианте ограничиваете тока на значении не больше 20 мА, смотря на то, как ярко светится светодиод.

Далее на блоке питания ставим 0 вольт, подключаем напрямую (или через резистор на 10Ом) светодиод. В цепь подключаем и миллиамперметр. Постепенно поднимаете напряжение до рассчитанного.

Совет
Не зная точных показателей светодиода, не давайте ему ток более 350 мА. Если все-таки необходимо больше – подготовьте сильный теплоотвод. Примерно при токе в 700мА светодиоду будет нужно около 80 кв. см радиатора. Оптимальная температура – 60 по Цельсию.

Как рассчитать мощность светодиода

При работе со светодиодным освещением, особенно когда эти светодиоды являются частью проекта с батарейным питанием, может быть важно рассчитать энергопотребление светодиодов в цепи. Это простая задача с мультиметром, способным измерять ток, сопротивление и напряжение, но если у вас его нет, можно оценить энергопотребление светодиода, просмотрев упаковку и листы производителя, поставляемые со светодиодами. Вам нужно только найти ток и напряжение ваших светодиодов.

TL; DR (слишком долго; не читал)

Расчет энергопотребления светодиодного освещения — важный шаг для любого проекта электроники с батарейным питанием, и, к счастью, это просто сделать. Чтобы рассчитать мощность светодиода, вам необходимо знать ток и напряжение вашего светодиода, которые вы можете узнать либо с помощью электрического мультиметра, либо проконсультировавшись с упаковкой и материалами производителя. Мощность светодиода рассчитывается путем умножения силы тока светодиода на его напряжение. Будьте осторожны при работе с электрическими цепями и токами, даже при их измерении.

Определение напряжения

Первым шагом к вычислению потребляемой мощности светодиода является определение напряжения светодиода. Если у вас нет мультиметра под рукой, посмотрите паспорт производителя и найдите типичное прямое напряжение светодиодного блока или измерьте его с помощью мультиметра, когда светодиод включен. В качестве альтернативы вы можете оценить напряжение по цвету светодиода. Белые светодиоды обычно имеют напряжение 3,5, красные — 1,8 вольт, синие — 3,6 вольт и 2,1 вольт для зеленого, оранжевого или желтого светодиода.

Определение тока

После того, как вы заметили напряжение вашего светодиода, вам нужно будет определить ток. Его можно измерить напрямую с помощью мультиметра, чтобы определить точное значение, но материалы производителя должны давать приблизительную оценку типичного тока. Получив это значение, вы можете очень быстро и очень легко рассчитать энергопотребление ваших светодиодов.

Расчет мощности светодиода

Чтобы рассчитать потребляемую мощность светодиода, просто умножьте напряжение светодиода (в вольтах) на ток светодиода (в амперах).Результат, измеряемый в ваттах, — это количество энергии, потребляемой вашими светодиодами. Например, если ваш светодиод имеет напряжение 3,6 и ток 20 миллиампер, он будет потреблять 72 милливатта мощности. В зависимости от размера и масштаба вашего проекта, ваши показания напряжения и тока могут измеряться в меньших или больших единицах, чем базовый ампер или ватт, и может потребоваться преобразование единиц. При выполнении этих расчетов помните, что 1000 милливатт равны одному ватту, а 1000 миллиампер равны одному ампер.

Тестирование неизвестных светодиодов | LEDnique

У многих из нас есть разные светодиоды в сумках, коробках, ящиках и старых печатных платах. С устройствами в прозрачной упаковке мы даже не можем сказать, какого они цвета! Без маркировки требуется простое средство проверки светодиодов. Вот безопасный метод проверки для большинства типов светодиодов.

Для светодиодов

требуется источник питания с ограничением по току. Для большинства светодиодов достаточно напряжения 5 В, и оно достаточно низкое, чтобы не повредить светодиод при обратном подключении.Для ограничения тока до безопасного значения требуется последовательный резистор, но об этом позже.

Светодиоды

являются диодами, поэтому важна полярность питающего напряжения. Если светодиод не горит, поменяйте полярность и попробуйте еще раз.

Нанесение линии нагрузки резистора на кривые светодиода позволяет нам быстро оценить ток через каждый цвет светодиода. Например, для желтого светодиода найдите, где желтая линия пересекает линию нагрузки, и проведите линию к текущей оси слева. На этом мы видим, что он потребляет 15 мА.

Нанесение линии нагрузки резистора на кривые светодиода позволяет нам быстро оценить ток через каждый цвет светодиода. Например, для желтого светодиода найдите, где желтая линия пересекает линию нагрузки, и проведите линию к текущей оси слева. На этом мы видим, что он потребляет 15 мА.

Можно использовать резистор большего номинала, но это приведет к меньшему току. Большинство светодиодов, кроме инфракрасных и настоящих УФ-светодиодов, будут светиться достаточно ярко при токе 5 мА. Вы можете рассчитать сопротивление, подходящее для вашего напряжения питания, с помощью приведенной выше информации.

Измерение Vf.

Прямое напряжение светодиода зависит от цвета. Измерения, как показано выше, должны дать вам значение прямого напряжения, близкое к ожидаемому на графике нагрузки. Обратите внимание, что многие «белые» светодиоды на самом деле синие или ультрафиолетовые светодиоды с люминофором, которые переизлучают в видимом спектре. Вы можете использовать эту технику, чтобы выяснить, какой метод использует светодиод для создания белого света.


Самые маленькие светодиоды 3 мм и 5 мм без труда выдерживают ток 20 мА. Нет простого метода определения максимального тока от неизвестного светодиода, кроме испытания некоторых образцов на разрушение.

Расчет значений резисторов, ограничивающих ток для светодиодных цепей


Светодиод — это один из тех компонентов продукта, который просто обязан работать. Если я смотрю на свой компьютер через комнату и не вижу, как его светодиодный индикатор мигает мне в ответ, я предполагаю, что он выключен; Никогда не ожидал, что светодиод мог перегореть. Для этого есть веская причина: при работе в соответствии со спецификациями срок службы светодиода составляет 100000 часов или более.

Ключом к увеличению срока службы светодиода является ограничение протекающего через него тока.Часто это делается с помощью простого резистора, значение которого рассчитывается по закону Ома. В этой статье рассматривается, как применить закон Ома к одиночным и кластерным схемам светодиодов. Я также предоставил электронную таблицу Excel, чтобы упростить и ускорить процесс.

Одиночные светодиоды

При вычислении значения резистора, ограничивающего ток для одного светодиода, основная форма закона Ома — V = IR — становится:

где:

  • V batt — напряжение между резистором и светодиодом.
  • V led — прямое напряжение светодиода.
  • I led — прямой ток светодиода.

На рисунке 1 (а) показан пример схемы с одним светодиодом. Между прочим, V batt — V led — это падение напряжения на резисторе, а (I led ) 2 R — мощность, рассеиваемая резистором. Расчет рассеиваемой мощности — это шаг, который многие люди — как любители, так и профессионалы — склонны пропускать.Итак, что вы называете резистором на 1/8 Вт, который должен рассеивать 1/2 Вт? Древесный уголь.

светодиодов серии

Приведенное выше уравнение становится лишь немного сложнее, если вы соедините несколько светодиодов последовательно. Падение напряжения на светодиодах увеличивается, уменьшая падение напряжения на резисторе. Ток через резистор (и светодиоды) остается прежним:

, где n — количество последовательно включенных светодиодов. Рисунок 1 (b) показывает пример с тремя последовательно включенными светодиодами.Падение напряжения на светодиодах в три раза больше, чем у одного светодиода.

светодиодов параллельно

Если вы подключите несколько светодиодов параллельно, ток через резистор возрастет (хотя ток через каждый светодиод останется прежним). Падение напряжения на светодиодах не изменяется, как и падение напряжения на резисторе:

, где m — количество параллельно включенных светодиодов. На рис. 1 (c) показан пример с тремя параллельно включенными светодиодами.Ток в цепи в три раза превышает ток одного светодиода.

РИСУНОК 1. Простые светодиодные схемы. (а) Схема с одним светодиодом. (б) светодиоды последовательно. (c) параллельные светодиоды.


Светодиодные массивы

Если вы соединяете несколько светодиодов в массив, вам просто нужно объединить последовательную и параллельную формы уравнений:

Важно, чтобы в каждой из m параллельных ветвей цепи было n светодиодов (подключенных последовательно) и чтобы все светодиоды имели одинаковый светодиод V и светодиод .В противном случае все ставки отменены. На рис. 2 (а) показаны четыре светодиода, подключенных таким образом, что предыдущее уравнение не применяется. Рисунок 2 (b) показывает один из нескольких «правильных» способов подключения четырех светодиодов.

РИСУНОК 2. Светодиодные матрицы .


Регулировка яркости

Контроль яркости полезен для гаджетов, которые могут использоваться в различных условиях окружающего освещения (снаружи / внутри, ночью / днем ​​и т. Д.). Для этой функции требуется два резистора — один фиксированный (R f ) и один переменный (R v ).R f ограничивает ток, когда R v находится на минимальном значении — обычно 0 Ом — что позволяет максимальному току протекать через светодиод. Стоимость рэндов f рассчитывается, когда рэндов против = 0:

.

, где Iled (max) — это максимальный ток, который вы хотите через светодиод.

Увеличение значения R v увеличивает сопротивление цепи, уменьшая ток через светодиод. Когда R v установлен на максимальное значение, через светодиод проходит минимальный ток.Стоимость рэндов против определяется по формуле:

, где I led (мин.) — минимальный ток, который вы хотите через светодиод.

РИСУНОК 3. Регулировка яркости.


Этапы проектирования

Существует четыре шага для выбора подходящего номинала (значений) токоограничивающего резистора:

  • Используя желаемые рабочие характеристики и спецификации светодиода, решите соответствующие уравнения для «идеальных» номиналов резистора.
  • Выберите подходящие «реальные» значения резистора.Если в расчетах указан резистор 132,27 Ом, ближайшие «реальные» значения резистора составляют 130 Ом и 150 Ом (допуск 5%). Конечно, вы можете выбрать другие значения в зависимости от того, что у вас есть под рукой.
  • Вставьте значения резисторов, которые вы выбрали, снова в вычисления, чтобы увидеть, будут ли они удовлетворять желаемым рабочим характеристикам.
  • Выполните вычисления, используя выбранные значения резисторов с крайними допусками. Резистор 150 Ом с допуском 5% может иметь диапазон от 142 Ом.От 5 Ом до 157,5 Ом и редко бывает точно 150 Ом. Также рассчитайте ток, потребляемый схемой, и необходимую мощность, рассеиваемую резисторами.

Некоторые люди не выполняют ни одного из этих шагов и просто угадывают значение. Большинство из них проходят первые два шага, что обычно нормально, если вы не работаете слишком близко к пределам светодиода, где допуски могут подтолкнуть вас к краю. Выполнив все четыре шага, вы можете гарантировать, что ваши светодиоды, по крайней мере, работают безопасно и прослужат долгое время.

Множественные итерации — это перетаскивание

Подсчитать резисторы для цепей светодиодов довольно просто. Это займет всего несколько минут, даже если вы пройдете все четыре этапа проектирования. В этом нет ничего страшного, если вам нужно сделать это только один раз, но что, если вы хотите увидеть влияние различных резисторов в цепи? Что делать, если у вас есть набор светодиодов, и вы хотите определить, как лучше всего их подключить? ( На рис. 4 показаны четыре способа подключения шести светодиодов.) Расчеты по-прежнему просты; вам просто нужно повторить их еще несколько раз.Это утомительно, и именно тогда люди склонны совершать ошибки.

Чтобы избавиться от скуки и связанных с ней ошибок, я составил электронную таблицу Excel, в которой выполняются все необходимые вычисления, включая поиск «реальных» значений резисторов. Это реальная экономия времени!

РИСУНОК 4. Способы подключения шести светодиодов.


Использование электронной таблицы

Электронная таблица (доступна на веб-сайте Nuts & Volts по адресу www.nutvolts.com ) разбит на три раздела. В первом разделе «Характеристики цепи» вы вводите параметры цепи. Во втором разделе, «Расчетные значения I & R и предлагаемые резисторы», вычисляются необходимые номиналы резисторов и предлагаются «настоящие» резисторы для использования в схеме. Последний раздел, «Расчетная производительность с использованием выбранных резисторов», позволяет вам подключать значения резисторов (предлагаемые значения или значения по вашему выбору) и рассчитывать токи светодиодов, токи источника питания и рассеиваемую мощность резистора.Также учитывается допуск резистора. Примечание. Вам следует изменить только значения, выделенные синим полужирным шрифтом. Обычный черный текст изменять нельзя. NV

РИСУНОК 5. Вид электронной таблицы.


Загрузки

Что в почтовом индексе? Таблица для расчета резисторов

Как рассчитать номинал резистора для светодиодного освещения

Определить номинал резистора для освещения светодиодов просто и понятно, но мы должны принимать во внимание цвет светодиода, а также номинальную мощность требуемого резистора и количество светодиодов в цепи.Мы надеемся, что чтение «Как рассчитать номинал резистора для светодиодного освещения» даст вам то, что вам нужно для вашего проекта.

Светодиоды

становятся все более популярными для различных световых проектов и нужд. Это связано с превосходной энергоэффективностью и увеличенным сроком службы светодиодов по сравнению с лампами накаливания. Кроме того, по мере совершенствования технологии и увеличения производства стоимость продолжает снижаться.

Выполните следующие действия, чтобы рассчитать номинал резистора для светодиодного освещения от 12 В постоянного тока:
  1. Определите напряжение и ток, необходимые для вашего светодиода.
  2. Мы будем использовать следующую формулу для определения номинала резистора: резистор = (напряжение батареи — напряжение светодиода) / желаемый ток светодиода.
  3. Для типичного белого светодиода, который требует 10 мА при питании от 12 В, значения следующие: (12–3,4) /. 010 = 860 Ом.
  4. Чтобы использовать несколько светодиодов параллельно, просуммируйте текущие значения. Из приведенного выше примера, если мы используем 5 белых светодиодов, потребляемый ток составляет 10 мА x 5 = 50 мА. Итак (12-3,4) /. 050 = 172 Ом.
Объясните идею расчета номинала резистора для светодиодного освещения

Светодиодный куб RGB 8x8x8 по GPL3 +

LED — это аббревиатура от Light Emitting Diode.Это означает, что светодиод имеет определенную полярность, которую необходимо применять, чтобы он излучал свет. Несоблюдение этого требования полярности может вызвать катастрофическое повреждение светодиода. Это связано с тем, что светодиод имеет относительно низкое допустимое значение напряжения обратной полярности (обычно около 5 вольт). Поскольку светодиод по сути является диодом, он имеет максимальное значение тока, которое нельзя превышать в течение любого периода времени.

Применение светодиодов

Имея это в виду, мы рассмотрим требования к ограничивающему резистору, который должен использоваться в цепи светодиода.Поскольку светодиоды доступны в различных цветах, требуемое значение сопротивления будет варьироваться в зависимости от цвета светодиода. Это связано с тем, что цвет светодиода определяется материалами, из которых он изготовлен, и эти различные материалы имеют разные характеристики напряжения. Значение прямого напряжения — это напряжение, необходимое для включения светодиода. Обычные красный, зеленый, оранжевый и желтый светодиоды имеют прямое напряжение приблизительно 2,0 В; но белый и синий светодиоды имеют значение прямого напряжения 3.4 вольта. Из-за этого изменения значение сопротивления резистора будет варьироваться в зависимости от цвета светодиода.

Процедура заключается в выборе номинала резистора, который будет обеспечивать правильное количество тока, протекающего через светодиод, на основе этого значения прямого напряжения и значения источника питания, запитывающего схему.

Так как автомобильные приложения — одно из самых популярных применений светодиодов, я рассмотрю пример проекта светодиодного освещения, в котором в качестве источника питания используется 12 вольт.Требуемая формула — это закон Ома, который гласит, что сопротивление равно напряжению, деленному на ток. Здесь важно отметить, что значение напряжения используется в расчетах. Разница между напряжением источника питания (аккумулятора) и значением прямого напряжения светодиода. Это потому, что мы хотим, чтобы резистор «понижал» напряжение от источника питания до значения прямого напряжения светодиода.

Формула
Резистор = (напряжение батареи — напряжение светодиода) / желаемый ток светодиода.

Итак, предположим, что источник питания 12 В и белый светодиод с желаемым током 10 мА; Формула принимает вид Резистор = (12–3,4) /. 010, что составляет 860 Ом. Поскольку это нестандартное значение, я бы использовал резистор на 820 Ом. Нам также необходимо определить номинальную мощность (ватт) необходимого резистора. Это вычисляется путем умножения значения напряжения, падающего на резистор, на значение тока, протекающего в нем. Для нашего примера, приведенного выше, (12–3,4) X 0,010 = 0,086, поэтому мы можем безопасно использовать в этом приложении резистор Вт, поскольку мы должны использовать следующий по величине стандартный номинальный ток.

Если требуется более одного светодиода, несколько светодиодов (одного цвета) могут быть подключены параллельно. Это сохранит то же требование напряжения, но значение тока будет увеличиваться прямо пропорционально количеству светодиодов. Номинальная мощность резистора также может увеличиться. В качестве примера мы возьмем тот же белый светодиод, но мы подключим 5 светодиодов параллельно. Следовательно, требуемое значение тока будет 10 мА, умноженным на 5 (0,010 X 5 = 0,050). Используя это в нашей формуле; (12-3.4) /. 050 = 172 Ом. Используйте стандартное значение 180 Ом. Номинальная мощность теперь будет выше (12–3,4) X 0,050 = 0,43, поэтому в этом случае нам нужно использовать резистор не менее ½ Вт.

Заключение

Эти два примера будут повторяться для красных светодиодов. Для одного красного светодиода: (12–2,0) /. 010 = 1000 Ом, что составляет 1 кОм, а номинальная мощность составляет (12–2,0) X (0,010) = 0,100, поэтому Вт достаточно. Для 5 красных светодиодов, включенных параллельно: (12-2.0) /. 05 = 200 Ом, что является стандартным значением, а номинальная мощность составляет (12-2.0) X 0,050 = 0,5, поэтому я бы использовал резистор на 1 Вт, чтобы дать нам некоторый допуск для компенсации колебаний напряжения источника питания и т. Д.

Как мы видим, определить номинал резистора для освещения светодиодов просто и понятно, но мы должны принимать во внимание цвет светодиода, а также номинальную мощность требуемого резистора и количество светодиодов в цепи. Вы можете посетить наш магазин, где представлен широкий выбор светодиодов и резисторов.

Учебное пособие по

LED — изучение основ

Практически каждое потребительское устройство использует светоизлучающий диод (LED).Это универсальное устройство предлагает простой способ добавить индикатор в любой проект, потребляя при этом относительно небольшой ток. Как только их принцип работы будет понят, добавить их в любой проект — простая задача. Это руководство представляет собой упрощенное объяснение того, как работает светодиод и как выбрать резистор, ограничивающий ток. Учебного пособия по светодиодам здесь достаточно для использования светодиодов в проекте, но оно не предназначено для исчерпывающего объяснения.

Диод — это электронный компонент, который проводит электричество только в одном направлении.Номинальное «прямое напряжение» диода определяет минимальную разницу напряжений между анодом и катодом, позволяющую току течь. Например, рассмотрим диод с прямым напряжением 0,7 В. Если вы подадите +1 вольт на анод и 0 вольт на катод, то ток будет течь. Однако реверсирование напряжений для подачи 0 В на анод и + 1 В на катод предотвращает протекание тока!

«Светоизлучающий диод» (LED) — это вариант стандартного диода с такими же характеристиками.Очевидная разница в том, что когда ток проходит через светодиод, он генерирует видимый (невидимый) свет.

При рассмотрении технических характеристик светодиода следует обратить внимание на два основных показателя: «прямое напряжение» и «прямой ток».

Прямое напряжение определяет величину напряжения, необходимого для протекания тока через диодный переход. Любое напряжение ниже этого уровня приводит к тому, что светодиод остается «разомкнутым» или непроводящим. Это открытое состояние также означает, что любые компоненты, включенные последовательно со светодиодом, также не будут иметь тока, протекающего через них!

Ток может проходить через светодиод, когда падение напряжения на нем достигает прямого напряжения.И не только это, но и в любой момент времени на светодиодах падает только прямое напряжение. Это то, что отличает диод или светодиод от резистора.

Резистор называется линейным устройством, потому что ток, протекающий через него, напрямую зависит от приложенного напряжения и его сопротивления. (Возможно, вы знаете это как закон Ома.) Диод или светодиод — другое дело. Напряжение и ток имеют нелинейную зависимость.

А теперь рассмотрим практический пример. Рассмотрим светодиод с прямым напряжением 3.0 вольт. Что произойдет, если вы присоедините анод к положительной (+) клемме батареи AA (LR-6), а катод — к отрицательной (-) клемме? Светодиод что-нибудь сделает? Нет! Батарея AA (LR-6) имеет номинальное напряжение 1,5 В. Пока вы не добавите вторую батарею, светодиод не загорится.

То есть, если вы используете последовательно две штатные батарейки AA (LR-6) и подключите их к этому диоду, он загорится, и все в порядке, верно? Ну, нет. Внутри светодиода диодный переход превращается в (почти) короткое замыкание при приложении прямого напряжения.Такое поведение означает, что светодиод может потреблять ВЕСЬ ток, который он может от батареи. Это не очень хорошо, потому что вы закорачиваете аккумулятор! Это не только повредит аккумулятор, но и приведет к перегреву или разрушению светодиода!

Как упоминалось ранее, подача прямого напряжения приводит к короткому замыканию светодиода. Короче говоря, светодиод будет потреблять весь ток, который позволяет источник питания, и повредит себя. Таким образом, вы должны ограничить количество прямого тока, который может проходить через светодиод. Отсюда и название «токоограничивающий резистор ».Резистор, установленный последовательно со светодиодом, ограничивает ток, протекающий через него.

Диоды и светодиоды понижают постоянное напряжение независимо от протекающего через них тока. Таким образом, резистор и светодиод работают вместе. Резистор поддерживает постоянную величину тока, а светодиод удерживает падение напряжения на каждой константе. Следующий вопрос, который нужно решить, — какой резистор необходим?

Желтый светодиод Пример

Для расчета необходимого токоограничивающего резистора необходимо знать два свойства светодиода: его прямой ток (If) и прямое напряжение (Vf).В последнем разделе упоминается, что светодиод будет поддерживать постоянное падение напряжения на нем. Независимо от приложенного напряжения, он снизит только прямое напряжение (Vf) на себе. Используя таблицу для желтого светодиода (доступного на Sparkfun), мы видим эти два значения:

И…

Цель состоит в том, чтобы установить ток в прямом направлении для светодиода на уровне 20 мА, что означает, что светодиод упадет на 1,8–2,2 В. В этом случае сделайте предположение, что на ЭТОМ светодиоде упадет 2 В.

Распространенным недоразумением является определение прямого тока.В таблице данных светодиода указан максимальный прямой ток, который может выдержать светодиод. В большинстве случаев этот ток составляет 20 мА. Использование светодиода на этом максимуме сокращает срок службы. Кроме того, он обеспечивает максимальную яркость светодиода. Если вам просто нужен световой индикатор, подумайте о гораздо меньшем значении, например 5 мА или даже 1 мА.

Закон Ома определяет значение R_LIMIT. R_LIMIT и светодиод включены последовательно. Это соединение означает, что их напряжения складываются, и величина тока, проходящего через них, одинакова.Светодиод падает на 2 вольта, оставляя 3 вольта для падения на R_LIMIT. Поскольку эти два компонента подключены последовательно, через оба будет протекать ток 20 мА.

Закон

Ома гласит, что сопротивление = напряжение / ток. Это означает, что R_LIMIT = 3,0 В / 20 мА = 150 Ом.

Значение используемого резистора зависит от того, какой светодиод выбран. Обычно он находится в диапазоне 150–470 Ом. В случае сомнений выберите немного большее значение сопротивления.

Диоды — это простые, но универсальные компоненты.Светодиоды расширяют эти свойства, включая свет. У светодиодов есть множество интересных проектов на основе Матрицы, а также более практических применений, таких как индикаторы состояния. Информация, показанная здесь, показывает, как найти прямое напряжение и прямой ток светодиода из его таблицы данных. Затем показан закон Ома для расчета правильного ограничивающего резистора.

Это видео AddOhms о светодиодах и токоограничивающих резисторах может быть интересно. Вы можете увидеть, что произойдет, если не ограничить ток!

У вас есть вопрос, который здесь не был рассмотрен? Оставьте это ниже.

Калькулятор резисторов серии

LED

Калькулятор резисторов серии

LED

Для всех светодиодов требуется некоторая форма ограничения тока . Подключение светодиода напрямую к источнику питания сгорит в мгновение ока. Даже кратковременная перегрузка значительно сократит срок службы и светоотдачу.

К счастью, управление одним или цепочкой светодиодов с низким током (20-30 мА) является простой задачей — добавление небольшого резистора в серию — самый простой и дешевый способ ограничить ток.Однако имейте в виду, что светодиоды с большим током (выше нескольких сотен мА) сложнее управлять, и, хотя они могут работать с последовательным резистором, для минимизации потерь мощности и обеспечения надежности рекомендуется использовать более дорогие переключатели . регулятор тока .

Наш калькулятор светодиодов поможет вам определить номинал токоограничивающего последовательного резистора при подключении одного или нескольких слаботочных светодиодов. Для начала введите необходимые значения и нажмите кнопку «Рассчитать».

Программа нарисует небольшую схему, отобразит рассчитанное сопротивление и сообщит вам значение и цветовой код ближайшего стандартного резистора более низкого и высокого уровня. Он рассчитает мощность, рассеиваемую резистором и светодиодами, рекомендуемую мощность резистора, общую мощность, потребляемую схемой, и эффективность конструкции (мощность, потребляемая светодиодами / общая потребляемая мощность схемы) x 100. ).

Поля ввода

Напряжение питания : Введите напряжение, превышающее падение напряжения светодиода для одной цепи светодиода и параллельного подключения, или сумму всех падений напряжения при последовательном подключении нескольких светодиодов.

Ток светодиода : Введите ток одного светодиода в миллиамперах. Обычные светодиоды 3 мм и 5 мм обычно работают в диапазоне 10-30 мА, но силовые светодиоды, используемые в осветительных и автомобильных приложениях, могут иметь ток более 200 мА. Ток 20 мА обычно является безопасным значением, если у вас нет доступа к техническому описанию компонента.

Цвет светодиода и Падение напряжения : Выберите цвет светодиода. Падение напряжения Поле автоматически заполнится типичным значением для выбранного цвета (например.г. 2В для стандартного красного светодиода; 3,6 В для белого светодиода, используемого в освещении, стробоскопе и т. Д .; 1,7 В для инфракрасного светодиода, используемого в пультах дистанционного управления и т. Д.). Однако падение напряжения сильно различается между разными типами светодиодов, а также незначительно изменяется в зависимости от тока, поэтому, пожалуйста, измените его, если вы знаете правильное значение для вашего компонента.

Количество светодиодов : Выберите количество светодиодов, которое вы хотите использовать в своей цепи. Для нескольких светодиодов появится второе раскрывающееся меню, в котором вы можете выбрать либо соединение серии , либо параллельное соединение .

Примечание. Не следует подключать светодиоды параллельно с одним общим резистором. Идентичные светодиоды могут быть успешно подключены параллельно, но у каждого светодиода может быть немного разное падение напряжения, и яркость светодиодов будет отличаться. Если вы хотите подключить светодиоды параллельно, у каждого из них должен быть свой резистор. Рассчитайте значение для одного светодиода и подключите все пары светодиод-резистор параллельно.

Точность резистора : выберите желаемую стандартную точность резистора: 10% (E12), 5% (E24), 2% (E48) или 1% (E96).Воспользуйтесь нашим калькулятором цветового кода резистора, чтобы узнать цветовые полосы для различных (20%, 0,5% …) прецизионных резисторов.

Как интерпретировать результаты

Простая схема генерируется при каждой загрузке страницы. На схеме показано только ближайшее значение стандартного резистора, и показаны только два подключения светодиодов, независимо от того, сколько светодиодов в цепи (но я уверен, что вы легко можете заполнить недостающие биты).

Справа показаны два резистора .Это ближайшие (верхние и нижние) стандартные значения, наиболее близкие к исходному рассчитанному сопротивлению. Вы должны использовать только один в своей схеме — лучше выбрать тот, который ближе (тот, который отмечен * после значения).

Рекомендуемая мощность резистора Мощность рассчитана с небольшим запасом прочности, так что рассеиваемая мощность остается в пределах 60% от номинального значения.

Эффективность [%] покажет вам, какая часть общей мощности, потребляемой схемой, фактически используется светодиодами.

Как определить выводы светодиода

Светодиод имеет два вывода: положительный (анод) и отрицательный (катод). На схематических диаграммах его символ похож на простой диод, с двумя стрелками, направленными наружу. Анод (+) отмечен треугольником, а катод (-) — линией. Иногда встречаются дополнительные метки: A или + для анода и K или для катода.

Есть несколько способов определить выводы светодиода:

  1. Катод (отрицательный) обычно маркируется плоской кромкой в нижней части корпуса светодиода.
  2. Большинство светодиодов изготавливаются с одной длинной ножкой, указывающей на плюс (анод).
  3. Загляните внутрь самого светодиода — меньшая металлическая деталь внутри светодиода подключается к положительному электроду, а большая — к отрицательному.

Руководство по проектированию светодиодных схем, основам и эксплуатации светодиодов

Аннотация: В течение многих лет светоизлучающие диоды (LED) были популярным выбором для использования в дисплеях состояния и матричных панелях.Теперь вы можете выбирать между недавно разработанными синими и белыми типами (широко используемыми в портативных устройствах), а также широко распространенными зелеными, красными и желтыми типами. Например, белые светодиоды считаются идеальным фоновым освещением для цветных дисплеев. Но при проектировании источников питания для них следует учитывать особенности, присущие этим новым светодиодным устройствам. В этой статье описаны свойства старых и новых светодиодов, а также характеристики, необходимые для источников питания, которые их активируют.

Стандартные красный, зеленый и желтый светодиоды

Самый простой способ управлять светодиодом — это подать на него источник напряжения с последовательно включенным резистором.Светодиод излучает свет постоянной интенсивности, пока рабочее напряжение (V B ) остается постоянным (хотя интенсивность уменьшается с увеличением температуры окружающей среды). Вы можете изменять интенсивность света по мере необходимости, изменяя номинал резистора.

Для стандартного светодиода диаметром 5 мм: Рисунок 1 показывает прямое напряжение (V F ) в зависимости от прямого тока (I F ). Обратите внимание, что падение напряжения на светодиоде увеличивается с увеличением прямого тока. Предполагая, что один зеленый светодиод с прямым током 10 мА должен иметь постоянное рабочее напряжение 5 В, последовательный резистор R В равен (5 В-В F, 10 мА ) / 10 мА = 300 Ом.Прямое напряжение составляет 2 В, как показано на графике типичных рабочих условий, приведенном в техническом паспорте (, рисунок 2, ).


Рисунок 1. Стандартные красный, зеленый и желтый светодиоды имеют прямое напряжение в диапазоне от 1,4 В до 2,6 В, в зависимости от желаемой яркости и выбора прямого тока. Для прямого тока ниже 10 мА прямое напряжение изменяется всего на несколько сотен милливольт.


Рис. 2. Последовательный резистор и источник постоянного напряжения обеспечивают простой способ работы светодиода.

Товарные диоды, подобные этому, производятся на основе комбинации галлия, арсенида и фосфида. Простые в обращении и известные большинству инженеров-проектировщиков, они обладают рядом преимуществ:

  • Излучаемый цвет (длина излучаемой волны) остается относительно постоянным при изменении прямого тока, рабочего напряжения и температуры окружающей среды. Стандартные зеленые светодиоды излучают длину волны около 565 нм с небольшим допуском всего 25 нм. Параллельная работа нескольких таких светодиодов не представляет проблемы (, рис. 3, ), поскольку цветовые различия очень малы.Нормальные колебания прямого напряжения вызывают небольшие различия в интенсивности света, но они также незначительны. Как правило, различиями между светодиодами одного производителя и одной партии можно пренебречь.
  • Прямые напряжения мало изменяются при прямом токе примерно до 10 мА. Разница составляет около 200 мВ для красных светодиодов и около 400 мВ для других цветов (рисунок 1).
  • Для прямых токов ниже 10 мА прямое напряжение намного меньше, чем для синих или белых светодиодов, что позволяет недорого работать непосредственно от элемента Li + или тройного элемента NiMH.

Рис. 3. Показанная конфигурация задействует несколько красных, желтых или зеленых светодиодов параллельно, с очень небольшой разницей в цвете или изменением яркости.

Таким образом, стоимость электроэнергии для эксплуатации стандартных светодиодов довольно низкая. Повышающие преобразователи или сложные и дорогие источники тока не нужны, если рабочее напряжение светодиода выше, чем его максимальное прямое напряжение.

Эти светодиоды могут работать даже непосредственно с Li + или тройными NiMH элементами, если приложение допускает снижение интенсивности света по мере разряда аккумуляторных элементов.

Синие светодиоды

Светодиоды, излучающие синий свет, долгое время отсутствовали. Только инженеры-конструкторы могли прибегнуть к уже существующим цветам — красному, зеленому и желтому. Ранние «синие» устройства на самом деле были не синими светодиодами, а небольшими лампочками накаливания, окруженными диффузором синего цвета.

Первые «настоящие синие» светодиоды были разработаны несколько лет назад с использованием чистого кремний-углеродного материала (SiC), но их световая эффективность была низкой. В устройствах следующего поколения использовался базовый материал из нитрида галлия, который достиг световой эффективности в несколько раз по сравнению с первыми версиями.Сегодняшний материал для эпитаксии синих светодиодов называется нитрид индия-галлия (InGaN). Излучающие длины волн в диапазоне от 450 до 470 нм, светодиоды InGaN производят в пять раз большую интенсивность света, чем светодиоды из нитрида галлия.

Белые светодиоды

Настоящие светодиоды, излучающие белый свет, недоступны. Такое устройство сложно построить, потому что светодиоды обычно излучают одну длину волны. Белый не появляется в спектре цветов; вместо этого для восприятия белого требуется сочетание длин волн.

Уловка используется для изготовления белых светодиодов.Основной материал InGaN, излучающий синий цвет, покрыт материалом-преобразователем, который излучает желтый свет при воздействии синего света. В результате получается смесь синего и желтого света, которая воспринимается глазом как белый ( Рисунок 4 ).


Рис. 4. Длина волны излучения белого светодиода (сплошная кривая) включает пики в синей и желтой областях, но человеческий глаз интерпретирует их как белый свет. Относительная светочувствительность человеческого глаза (пунктирная кривая) показана для сравнения.

Цвет белого светодиода определяется цветовыми координатами. Значения для этих координат X и Y рассчитываются в соответствии с инструкциями, содержащимися в публикации 15.2 Международной комиссии по охране окружающей среды (CIE). В таблицах данных для белых светодиодов часто указывается изменение этих цветовых координат с увеличением прямого тока ( Рисунок 5 ).


Рис. 5. Изменение прямого тока приводит к сдвигу координат цветности белого светодиода (LE Q983 от OSRAM Opto Semiconductors) и, следовательно, качества его белого света.

К сожалению, светодиоды InGaN не так просты в обращении, как стандартные зеленые, красные и желтые светодиоды. Доминирующая длина волны (цвет) светодиода InGaN изменяется в зависимости от прямого тока (, рис. 6, ). Белые светодиоды, например, демонстрируют изменение цвета из-за различных концентраций материала преобразователя в дополнение к изменению длины волны с прямым напряжением для излучающего синий материал материала InGaN. Это изменение цвета можно увидеть на рисунке 5, где смещение координат X и Y означает изменение цвета.(Как упоминалось ранее, белые светодиоды не имеют определенной длины волны.)


Рис. 6. Увеличение прямого тока изменяет оттенок синего светодиода, изменяя его излучаемую длину волны.

Прямое напряжение сильно изменяется при прямом токе до 10 мА. Диапазон изменения составляет около 800 мВ (некоторые типы диодов меняются еще больше). Таким образом, изменение рабочего напряжения, вызванное разрядом батареи, меняет цвет, потому что изменение рабочего напряжения изменяет прямой ток.При прямом токе 10 мА прямое напряжение составляет около 3,4 В (это количество зависит от производителя и колеблется от 3,1 до 4,0 В). Вольт-амперная характеристика также сильно меняется от светодиода к светодиоду (см. Ниже). Управлять светодиодом напрямую от батареи сложно, потому что состояние разряда большинства аккумуляторов ниже минимально необходимого прямого напряжения светодиода.

Работа белых светодиодов параллельно

Многие портативные устройства и устройства с батарейным питанием используют белые светодиоды для фоновой подсветки.В частности, для цветных дисплеев КПК требуется белая подсветка для получения цветопередачи, близкой к исходной. Будущие мобильные телефоны 3G будут поддерживать данные изображения и видео, для которых требуется белая подсветка. Цифровые фотоаппараты, MP3-плееры и другое видео- и аудиооборудование также включают дисплеи, для которых требуется белая подсветка.

В большинстве случаев одного белого светодиода недостаточно, поэтому необходимо использовать несколько одновременно. Необходимо предпринять специальные меры, чтобы убедиться, что их интенсивность и цвет совпадают, даже если заряд аккумулятора и другие условия различаются.

На рисунке 7 показаны вольт-амперные кривые для группы случайно выбранных белых светодиодов. Подача напряжения 3,3 В на эти светодиоды (верхняя пунктирная линия) создает прямые токи в диапазоне от 2 мА до 5 мА, что, в свою очередь, дает различные оттенки белого цвета. Координата Y, в частности, сильно изменяется в этой области (рис. 5), что приводит к неверному воспроизведению цвета на освещенном дисплее. Светодиоды также имеют разную интенсивность света, что создает неоднородное освещение.Еще одна проблема — необходимое минимальное напряжение питания. Для работы светодиодов необходимо напряжение значительно выше 3 В. Ниже этого уровня некоторые светодиоды могут оставаться полностью темными.


Рис. 7. Эти кривые демонстрируют значительные различия вольт-амперных характеристик белых светодиодов, даже если они были выбраны случайным образом из одной и той же производственной партии. Таким образом, параллельная работа нескольких таких светодиодов при постоянном напряжении 3,3 В (верхняя пунктирная линия) дает разные оттенки белого и разную яркость.

Литий-ионный аккумулятор при полной зарядке обеспечивает выходное напряжение 4,2 В, которое падает до номинального 3,5 В после короткого периода работы. Это напряжение далее снижается до 3,0 В по мере разряда батареи. Если белые светодиоды работают непосредственно от батареи, как показано на рисунке 3, возникают следующие проблемы:

Сначала, когда батарея полностью заряжена, все светодиоды светятся, но с разными оттенками интенсивности и цвета света. Когда напряжение батареи падает до номинального уровня, яркость света уменьшается, а различия в белом цвете становятся сильнее.Поэтому разработчик должен учитывать значение напряжения батареи и прямого напряжения диода, на которое рассчитывается последовательный резистор. (При полностью разряженной батарее некоторые светодиоды будут полностью темными.)

Нагнетательный насос с регулятором тока

Целью источника питания светодиодов является обеспечение достаточно высокого выходного напряжения и протекание одного и того же тока через все светодиоды, подключенные параллельно. Обратите внимание (рисунок 5), что если все белые светодиоды параллельной конфигурации имеют одинаковые токи, все они будут иметь одинаковые координаты цветности.Для этой цели компания Maxim предлагает зарядный насос с регулировкой тока (MAX1912).

В параллельной конфигурации из трех светодиодов, показанной на рис. 8 , накачка заряда представляет собой крупномасштабный тип, который увеличивает входное напряжение в 1,5 раза. Более ранние зарядные насосы просто удваивали входное напряжение, но этот новый метод обеспечивает лучшую эффективность. Входное напряжение повышается до уровня, при котором светодиоды могут работать. Резисторные сети, подключенные к SET (контакт 10), обеспечивают одинаковые токи во всех светодиодах.Внутренняя схема поддерживает напряжение SET на уровне 200 мВ, поэтому ток через любой светодиод можно рассчитать как I LED = 200 мВ / 10 Ом = 20 мА. Если для некоторых диодов требуются более низкие уровни тока, вы можете использовать более трех параллельно, потому что MAX1912 выдает до 60 мА. См. Лист данных MAX1912 для получения дополнительных сведений о применении и схемах.


Рис. 8. Эта ИС сочетает в себе накачку заряда и управление током. Зарядный насос обеспечивает достаточное рабочее напряжение для белых светодиодов, а управление током обеспечивает однородный белый свет, пропуская одинаковые токи через каждый светодиод.

Простое управление током

Белыми светодиодами можно легко управлять, если система обеспечивает напряжение выше прямого напряжения диодов. Цифровые фотоаппараты, например, обычно включают источник питания +5 В. В этом случае вам не нужна функция повышения, потому что напряжение питания имеет запас, достаточный для работы светодиодов. Для схемы на Рисунке 8 следует выбрать согласованный источник тока. Например, MAX1916 может управлять одновременно тремя светодиодами (, рис. 9, ).


Рисунок 9. Один внешний резистор (R SET ) программирует значение идентичных токов, подаваемых на каждый светодиод. Применение сигнала с широтно-импульсной модуляцией к разрешающему выводу (EN) этой ИС обеспечивает простую регулировку яркости (функция затемнения).

Операция проста: резистор R SET программирует ток, который пропускается через подключенные светодиоды. Такой подход занимает очень мало места на доске. Помимо микросхемы (небольшой 6-выводной корпус SOT23) и нескольких байпасных конденсаторов, требуется только один внешний резистор.Микросхема обеспечивает отличное согласование тока между светодиодами — 0,3%. Эта конфигурация обеспечивает идентичные местоположения цветности и, следовательно, идентичные типы белого света от каждого светодиода.

Регулировка яркости зависит от интенсивности света

Некоторые портативные устройства регулируют интенсивность своего светового потока в соответствии с условиями окружающего освещения, а другие снижают интенсивность света с помощью программного обеспечения после короткого интервала ожидания. Обе эти операции требуют, чтобы светодиоды были затемнены, и такая функция затемнения должна одинаково влиять на каждый прямой ток, чтобы избежать возможных сдвигов в координации цветности.Этого единообразия можно добиться с помощью небольшого цифро-аналогового преобразователя, который регулирует ток через резистор R SET .

Преобразователь 6-битного разрешения, такой как MAX5362, с интерфейсом, совместимым с I 2 C *, или MAX5365, с интерфейсом, совместимым с SPI ™, делает возможной функцию затемнения с 32 ступенями интенсивности света ( Рис. ). Тип белого света светодиодов меняется с изменением яркости, потому что прямой ток влияет на координаты цветности.Это не должно быть проблемой, потому что одинаковые прямые токи заставляют каждый диод в группе излучать идентичный свет.


Рис. 10. Этот цифро-аналоговый преобразователь управляет затемнением светодиодов, изменяя их прямые токи в унисон.

Функция затемнения, для которой координаты цветности не перемещаются, называется широтно-импульсной модуляцией. Это может быть реализовано с большинством устройств питания, которые обеспечивают функцию включения или выключения. MAX1916, например, ограничивает ток утечки через светодиоды до уровня всего 1 мкА, как только компонент отключается путем понижения уровня EN.Результат — нулевое излучение света. Повышение уровня EN до высокого уровня направляет запрограммированный прямой ток через светодиоды. Если вы применяете сигнал с широтно-импульсной модуляцией к EN, яркость пропорциональна скважности этого сигнала.

Координаты цветности не меняются, потому что каждый светодиод продолжает видеть один и тот же прямой ток. Однако человеческий глаз воспринимает изменение рабочего цикла как изменение яркости. Частоты выше 25 Гц не распознаются человеческим глазом, поэтому частота переключения 200–300 Гц является хорошим выбором для ШИМ-диммирования.Более высокие частоты могут вызвать проблемы, потому что координаты цветности могут смещаться в течение короткого интервала, необходимого для включения и выключения светодиодов. Сигнал PWM может подаваться с вывода ввода / вывода микропроцессора или одного из его периферийных устройств. Количество доступных шагов яркости зависит от ширины регистра счетчика, используемого для этой цели.

Импульсный повышающий преобразователь с контролем тока

Помимо упомянутого выше зарядного насоса (MAX1912), вы также можете реализовать повышающий преобразователь с контролем тока.Импульсный преобразователь напряжения MAX1848, например, генерирует выходное напряжение до 13 В, что достаточно для последовательного включения до трех светодиодов (, рис. 11, ). Этот подход, вероятно, самый чистый, потому что все светодиоды, соединенные последовательно, имеют одинаковый ток. Ток светодиода определяется R SENSE и напряжением, подаваемым на вход CTRL.


Рис. 11. Этот импульсный повышающий преобразователь обеспечивает последовательную работу нескольких светодиодов. Все имеют одинаковый прямой ток, который регулируется через вход CTRL (например) цифро-аналоговым преобразователем.

MAX1848 может реализовать функцию затемнения в соответствии с любым из методов, описанных выше. Прямой ток через светодиоды пропорционален напряжению, приложенному к выводу CTRL. Поскольку MAX1848 переходит в режим выключения, когда напряжение, подаваемое на CTRL, становится ниже 100 мВ, вы также можете реализовать функцию затемнения с ШИМ.

Сводка

Белые светодиоды могут работать параллельно, если вы позаботитесь об обеспечении однородного белого света, уравняв их прямые токи.Для работы светодиодов выберите либо управляемый источник тока, либо комбинацию повышающего преобразователя с контролем тока.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.