Site Loader

Содержание

Как работать индикаторной отверткой, способы ее применения

Как работать индикаторной отверткой, правила ее стандартного использования и способы ее различного применения вы узнаете из данной статьи.

Обычная отвертка индикатор представляет собой изолированную прозрачную рукоять, через которую пропущен стержень с жалом отвертки на конце.

Чтобы лучше понимать, как работает простой тестер рекомендуется узнать его устройство и принцип действия.

Содержание статьи

  • 1 Устройство и принцип действия индикаторной отвертки
  • 2 Как проверить индикаторную отвертку?
  • 3 Основные виды проверки
    • 3.1 Контактный способ
    • 3.2 Бесконтактный способ
  • 4 Как пользоваться индикаторной отверткой
    • 4.1 Как найти фазу и ноль?
    • 4.2 Как определить утечку тока?
    • 4.3 Как найти обрыв провода?
    • 4.4 Как проверить удлинитель индикаторной отверткой?
    • 4.5 Проверка исправности ламп накаливания
    • 4.6 Проверка нагревательного ТЭНа
    • 4. 7 Определение правильного положения выключателя
    • 4.8 Проверка напряжения на изолированном проводе
    • 4.9 Что делать если индикатор светится на всех проводах?
  • 5 Заключение

Устройство и принцип действия индикаторной отвертки

В корпусе рукоятки находится резистор сопротивления, понижающий силу тока до минимальной, безопасной для человека величины.

За ним идет непосредственно индикаторная лампа, прижимная токопроводящая пружина и контактная пластина.

Принцип работы простейшей индикаторной отвертки заключается в прохождении тока через жало и элемент индикации с последующим его уходом через тело мастера, которое является заземлением.

В этом случае человек пальцем замыкает цепь, за счет чего и происходит загорание лампочки.

Такая отвертка устроена максимально просто, но и сфера ее применения ограничена.

Таким инструментом можно лишь определить фазу и ноль, да и то последний — методом исключения.

Более широким функционалом обладают варианты со встроенными элементами питания.

Они позволяют определять наличие тока в проводнике, не касаясь его жалом.

ПРИМЕЧАНИЕ:

О том, какие бывают индикаторные отвертки читайте здесь

Для поиска скрытой электропроводки отвертка детектор со встроенным элементом питания также подходит.

Как известно, проводник, находящийся под напряжением, излучает электромагнитное поле.

Именно это поле и улавливает детектор, но точность поиска оставляет желать лучшего.

В любом случае перед использованием любого измерительного устройства необходимо проверить его на работоспособность.

Как проверить индикаторную отвертку?

Прежде чем приступать к поиску фазы, необходимо обязательно убедится в исправности индикаторной отвертки.

Для этого достаточно прикоснуться жалом к проводу, заведомо находящемуся под напряжением.

При этом нужно коснуться пальцем противоположной стороны инструмента, как показано на рисунке:

Отвертки с батарейками проверяются проще – нужно дотронуться одновременно до контакта на торце рукоятки и до жала.

Если инструмент рабочий, на его лицевой панели загорится за счет индукции свет индикатора.

Чтобы узнать как работать индикаторной отверткой рассмотрим основные виды проверки.

Основные виды проверки

Работать индикаторной отверткой, в зависимости от ее модели можно по разному.

Например: проверить наличие фазы на проводнике можно несколькими способами.

При использовании тестера с неоновой лампой подойдет только контактный способ, а вот индикаторы со встроенными батарейками позволяют определить присутствие напряжения, не прикасаясь к самому проводнику.

Разберем на примере обыкновенной розетки.

Контактный способ

Чтобы определить фазу в сети переменного тока, необходимо прикоснуться щупом отвертки непосредственно к одной из клемм розетки.

Аналогичным образом проверяют находится ли под напряжением провод, при этом нельзя допускать контакта жала отвертки с чем либо еще (другие провода, руки и т.п.), т.к. это может привести к поражению электричеством или к короткому замыканию.

Если светодиод загорелся – это фаза.

В противном случае на выбранной клемме ноль.

Внимание!

Следует помнить, если провод отключен от сети, либо же цепь оборвана, индикатор не будет гореть и на фазовом проводе.

Бесконтактный способ

Этот способ позволяет определить наличие переменного напряжения без прямого контакта с проводником.

Отвертка берется за жало, и подносится пятачком – контактом ручки к розетке.

Индикатор загорелся – напряжение есть.

Такой вариант подходит для поиска скрытой проводки в стене.

Помните!

Трение корпуса отвертки о какую-либо поверхность приводит к возникновению статического напряжения, из-за чего возможны ложные срабатывания.

Точность поиска проводки в стенах дома бесконтактным способом минимальна, а совсем бесполезна, если в стеновых панелях есть арматура, искажающая сигнал.

Как пользоваться индикаторной отверткой

Кроме вариантов для работы с бытовыми электросетями, существуют индикаторные отвертки для использования в автомобиле.

Они рассчитаны на поиск неисправностей проводки в сетях постоянного тока от 6В до 24В, а также для определения полярности проводов.

Вместо контакта на рукоятке, из ее торца выходит провод с зажимом (крокодилом).

Чтобы найти все плюсовые провода в авто, необходимо подключить клеммы аккумулятора.

Зафиксировав зажим отвертки на корпусе машины, поочередно прощупать все необходимые провода.

Сигнал индикатора свидетельствует о плюсе.

Подобным образом осуществляется поиск минусовых клемм, с разницей в том, что крокодил при использовании автомобильных тестеров подключается к плюсовой клемме аккумулятора или плюсовому проводу.

На корпусе прибора имеется переключатель вольтажа (как правило, 6В, 12В и 24В).

Его необходимо установить в положение, соответствующее напряжению сети автомобиля.

Внимание!

Во избежание короткого замыкания при работе с проводкой автомобиля, плюсовую клемму аккумулятора необходимо отключить.

Как найти фазу и ноль?

Что же касается бытовой сети, поиск фазы и ноля заключается в простой поочередной проверке проводов прикосновением жала отвертки к их токонесущим частям.

Например, для определения фазы в розетке нужно поочередно вставить жало индикаторной отвертки в каждое отверстие.

Аналогичным образом проверяют патрон для лампочек, где жалом индикатора по очереди прикасаются к внутренним контактам патрона (к центральному и боковому).

Внимание!

Категорически нельзя допускать одновременное касание жала индикатора обоих контактов! Подобное действие приведет к короткому замыканию и человека может поразить удар электрического тока.

Если индикатор горит – это фаза.

Следовательно, второй провод является нулевым.

Помните!

Индикатор может показывать фазу на обоих контактах.

Происходит такое, когда оборван нулевой провод.

Если на одном из проводников свечение заметно слабее – это свидетельствует о возникновении “наведенного” напряжения от фазы.

Как правило, случается это при плохом заземлении нуля.

Как определить утечку тока?

При возникновении пробоя на корпус электроприбора происходит утечка тока.

Определить ее можно, прикоснувшись жалом пробника к контакту заземления розетки.

Если индикатор засветился – есть утечка.

В поиске причины поможет метод исключения.

Все электрические приборы отключаются от сети, а затем поочередно включаются.

Каждый раз проверяется утечка описанным способом.

Как найти обрыв провода?

Если на входе в дом или квартиру ток есть, а в розетках комнат нет, это свидетельствует об обрыве контакта.

Место повреждения проводника приблизительно позволяет найти отвертка-индикатор.

Для этого жало проводится по месту укладки провода, замурованного в стену.

На обрыве индикатор престанет гореть.

Чтобы проверить целую линию проводки, нужно взять индикатор с батарейкой.

Дом необходимо обесточить, взять оголенный провод в одну руку, а жалом отвертки провести по жиле.

Индикатор перестанет гореть на обрыве.

Как проверить удлинитель индикаторной отверткой?

Чтобы проверить работоспособность обыкновенного бытового удлинителя, нужно, вставить тестер в одно из его отверстий, а потом в другое.

Если в одном есть ток, а в другом нет, то все работает правильно.

Второй вариант проверки чуть сложнее и для него, нужно обесточить удлинитель.

Затем кусочком проволоки замыкаются контакты одной из розеток.

Пальцами берется один электрод вилки, а ко второму нужно прикоснуться отверткой.

Индикатор загорелся – удлинитель исправен.

Дополнительные возможности применения индикатора

Кроме поиска фазы в электросети, индикаторные отвертки обладают и неочевидными функциями.

Проверка исправности ламп накаливания

Этим способом можно проверять обыкновенные лампы накаливания прямо в магазине.

Нужно взять в руку индикаторную отвертку с батарейками, пальцем коснуться контакту на рукояти, а жалом дотронуться до центрального контакта лампы.

Второй рукой взять лампу за металлический цоколь.

Лампа будет исправна, если индикатор загорится.

Проверка нагревательного ТЭНа

Проверить нагревательный ТЭН на исправность, не вытаскивая его из нагревательного прибора, имея под рукой индикаторную отвертку, очень просто.

Нужно палец положить на ее торцевой контакт, жалом коснуться одного из контактов ТЭНа, а второй рукой дотронуться до другого контакта.

Индикатор загорелся – ТЭН исправен.

Внимание!

Перед проверкой нужно обесточить оборудование и отсоединить от нагревательного элемента все провода.

Определение правильного положения выключателя

При монтировании выключателей, для удобства их устанавливают таким образом, чтобы в положении “вверх” они замыкали цепь, а в положении “вниз” размыкали.

Пробник позволяет до монтажа определить, какое положение за что отвечает.

Жалом отвертки с пальцем на торцевом контакте нужно дотронуться до одной из клемм выключателя, а скрепкой в другой руке – ко второй клемме.

Индикатор горит только во включенном состоянии.

Проверка напряжения на изолированном проводе

Иногда случается так, что при ремонте под слоем старой штукатурки находится неизвестный провод.

Перекусывать его можно только в том случае, если он обесточен.

На помощь опять приходит отвертка с индикатором.

Инструмент берется рукой за жало, а торцевой контакт прислоняется к проводу.

Свечение индикатора сигнализирует о наличии тока в проводнике.

Что делать если индикатор светится на всех проводах?

Бывают случаи, когда индикатор тестера горит на всех проводах, и может показаться, что по каждому из них идет фаза.

Если не знать один очень простой, но важный момент можно очень долго искать причину не понятного сбоя.

В видеоролике показано, как легко все исправить:

Заключение

Теперь вы знаете как работать индикаторной отверткой, остается выбрать подходящую для себя модель.

Ознакомиться с видами этого инструмента можно здесь

Как проверить заземление? 5 лучших способов

Если внимательно рассмотреть современную розетку или вилку для подключения бытовых электроприборов, можно увидеть на ней отдельный контакт-лепесток для заземляющего провода. Он должен обязательно присутствовать в домашней разводке и быть соединенным с системой отвода опасного потенциала, в противном случае пользование обычной бытовой техникой, розетками станет небезопасным. Например, при нарушении изоляции устройства, подключенного к сети 220 В, напряжение может попасть на его электрические части, и, если человек их коснется, поражение током не избежать.

Чтобы этого не случилось, применяется система заземления, которая перераспределяет ток между пользователем техники и заземляющим контуром. Как известно, ток идет по пути наименьшего сопротивления. При наличии заземления он устремляется по третьему лепестку в розетке в землю, т. к. сопротивление человека по сравнению с элементами защиты от поражения током, чрезвычайно велико. В итоге на тело «приходится» не более 10 мА: это значение безопасно для здоровья. Все «остальное» моментально уходит в грунт. Однако есть оговорка: развитие положительного сценария возможно только при исправном заземлении. А как его проверить? Для этого нужно понимание работы всей системы и ее отдельных элементов.


Из чего состоит и как действует заземление

Условно можно выделить пару основных частей. Одна из них – заземлитель, могущий быть естественным или искусственным. В первом случае это, например, арматура ж/б фундамента, имеющая общий вывод в виде отдельной проволоки. Во втором – сварная конструкция, состоящая из нескольких соединенных между собой металлических стержней, погруженных в грунт на глубину 1,5-2,5 м. Второй элемент системы – проводник, соединяющий заземлитель с розетками, т. е. бытовой техникой. По общепринятым нормам, чаще всего провод, играющий эту роль, помещается в изоляцию желтого цвета с зеленой полосой.

Зачем нужно проверять заземление и как

Даже если монтаж электросети в доме осуществлялся профессиональными электриками, регулярные проверки необходимы. Причин несколько:

  • существующие болтовые соединения с течением времени могут ослабевать: например, в розетках при чрезмерно частом включении/выключении вилок;
  • подверженность коррозии элементов заземлителя под слоем грунта: стержней, соединительной полосы, отходящего провода.

Если вы, например, только въехали в квартиру и вас убеждают, что заземление есть и оно работает, неплохо для начала проверить его наличие в принципе. Наличие желтого проводка с зеленой линией, подсоединенного к соответствующему лепестку в розетке – еще не повод говорить, что заземление в доме есть и оно работает. Проверить это несложно, процедура осуществляется несколькими способами.

С помощью тестера

Сначала желательно выяснить, где фазовый контакт с помощью индикатора в виде отвертки с прозрачной ручкой: при касании нужной клеммы щуп засветиться (пометьте или запомните контакт). далее понадобится обычный, можно из разряда недорогих, вольтметр. Поставьте предел измерений в секторе АС (переменный ток) на любое максимальное значение, близкое к 220 вольт, но превышающее его: например, 250 или 500. Один щуп вставьте в фазу розетки, другой в ноль. При исправной сети прибор покажет значение, примерно равное 220. Теперь одним щупом прикоснитесь к лепестку заземления, вторым к фазе. Если тестер покажет 220 или немного меньше, система заземления работает. Если реакция вольтметра отсутствует, значит, нет.


Посредством лампочки

Потребуется патрон с ввернутым и заведомо исправным источником света, изолированный двухжильный провод. Зачистите оба конца от изоляции. Алгоритм действий такой же, что и при проверке тестером. Если при касании заземляющего лепестка и фазы свет горит (свечение может быть немного тусклее), заземление функционирует. Если свет от лампочки становится чрезмерно тусклым, придется проверять все элементы системы заземления. Если лампочка не горит — его нет вообще или на линии обрыв. Бывает и так, что заземлитель свое отслужил – коррозия «съела» стержни в земле или отгнил соединяющий провод, не контачит болтовое соединение. Но если все работает? Проверить все равно надо: на этот раз не напряжение, а сопротивление.


Приборы для тестирования работоспособности заземления

Сегодня рынок представляет достаточное количество моделей, предназначенных для работы в определенных условиях или универсальных. Условно стоит выделить несколько больших групп изделий, используемых наиболее часто:

  1. Стрелочные омметры, используемые совместно с ручными генераторами. Чтобы получить измерения, их нужно крутить вручную: зато никакие химические источники питания не требуются.
  2. Тоже стрелочные приборы, получающие энергию от обычных гальванических батареек.
  3. Цифровые омметры. Результаты измерений выводятся на дисплей, в комплекте имеются бесконтактные клещи. Питание – от обычных низковольтных элементов.

Несмотря на развитие технологий в сфере измерительных приборов, наиболее простые из них, благодаря своей надежности, до сих пор пользуются популярностью. Поэтому работу с омметром стоит рассмотреть на примере оного из таких изделий – М416, хорошо известным профессионалам со стажем. В основе конструкции – стрелочный индикатор с несколькими пределами измерений, для питания используются три элемента напряжением по 1,5 вольта.

Проверка заземления прибором М416

Омметр установите на строго горизонтальную поверхность, при необходимости поменяйте батарейки. Прибор нужно располагать максимально близко к измеряемым точкам, чтобы длина щупов как можно меньше влияла на результаты исследований. Дальнейшие действия:

  • Калибровка. Переключатель диапазонов измерений установите в положение «Контроль 5 Ом». Нажмите красную кнопку и, вращая реохорд, поставьте стрелку как можно точнее в положение «0». Отпустите кнопку: шкала будет показывать 5 Ом, что означает готовность прибора к работе.
  • Замеры производятся в соответствии со схемами, нанесенными на внутреннюю часть крышки омметра.

Максимальное значение для частного дома – 30 Ом (на практике должно быть гораздо меньше). Если вы покупали комплект для заземления, более точные значения ищите в инструкции к нему.

Чтобы произвести измерения, нужно вкопать дополнительный заземляющий штырь на глубину 50 см и расстоянии 5-10 м от заземлителя: как минимум, в 5 раз больше длины стальной ленты, соединяющей стержни (стороны треугольника, если такая форма конструкции). На одинаковом расстоянии от дополнительно стержня и заземлителя установите потенциальный зонд-электрод для снятия напряжения (глубина 50 см). Теперь нужно собрать электрическую цепочку:

  • между вспомогательным контрольным и штатным стержнем заземлителя последовательно включите источник переменного напряжения: например, вторичную понижающую обмотку трансформатора от сварочного аппарата;
  • в разрыв провода, идущего к вкопанному заземлителю, тоже последовательно, включите амперметр;
  • между заглубленной штатной конструкцией, к этой же точке, подсоедините вольтметр, второй его контакт – к зонду-электроду.

Переставьте зонд в другое место, третье и снова повторите операцию. Правильным будет считаться худший результат. Вычисление сопротивления производится по закону Ома: R=U/I. Трансформатор нужно достаточно мощный, чтобы он хоть примерно имитировал энергопотребление дома. Такой способ измерения сопротивления наилучшим образом подходит для частного дома.


Другие способы проверки приборами

Есть и более простой метод, заключающийся в использовании токовых клещей. Они представляют собой инструмент-трансформатор с амперметром, в котором уже есть первичная обмотка, а роль вторичной играет измеряемый проводник (например, стальная полоса от заземлителя). Остается заранее измерить напряжение и разделить его на полученную при помощи клещей силу тока, согласно закона Ома. Метод привлекателен тем, что для проведения измерений не нужно отключать заземлитель от оборудования (домашней сети).

Еще можно «прозвонить» самые проблемные места: соединения. Это называется «измерение переходных сопротивлений». Например, между отводом, идущим от заземлителя (уже на поверхности) и проводом, идущим к лепестку в ближайшей к нему розетке. Т. е. измерения производятся вокруг соединения. Предварительно зачистите поверхность металлической полосы до блеска металла. Если сопротивление больше 0,05 Ом, проверьте, нормально ли закручена гайка на болте: подкрутите ее. При внешних проявлениях коррозии раскрутите соединение, зачистите отдельно гайку, болт, пластину и соедините вновь. На заключительно этапе все обработайте антикоррозийным составом. У полосы можно покрасить только видимую часть: не забывайте, что ток идет только по поверхности проводника.

Как улучшить сопротивление?

Это можно сделать двумя путями. Первый из них заключается в увеличении количества вертикальных стержней. Они вбиваются на расстоянии 1 м от того штыря, к которому прикручен болт с гайкой и отводным проводом. Новый штырь соединяется со старыми с помощью сварки и стальной полоски. Второй метод – увеличение содержания соли в окружающей заземлитель почве. Правда, это поможет временно. Растворите в ведре воды пачку соли и вылейте в районе заземлителя.

Периоды проверки сопротивления заземлителя

Согласно нормам ПУЭ, проверять вкопанные заземляющие элементы нужно не реже, чем раз в 12 лет. В этом случае проверяется не только надежность соединений и сопротивление заземлителя, но и состояние металлических частей в плане противостояния коррозии. Однако общие проверки с использованием измерительных приборов, без копок, стоит производить чаще: раз в 6 лет. Внеплановое тестирование проводится в случае стихийных бедствий, техногенных катастроф.

← Система уравнивания потенциалов — назначение и устройство  |  Заземление опорных конструкций →

Как определить чередование фаз на обесточенном двигателе • JM Test Systems

Тестер вращения двигателя и чередования фаз – мегомметр

  • Полное тестирование чередования фаз и вращения двигателя одним прибором
  • Обеспечивает правильное подключение фаз за один простой тест
  • Прочный портативный тестер
  • Выполняет дополнительные проверки полярности и непрерывности
ОПИСАНИЕ

Тестер вращения двигателя и чередования фаз Megger 560060 позволяет подрядчику-электрику или электрику по техническому обслуживанию промышленного предприятия постоянно подключать и заклеивать клеммы устанавливаемого двигателя без необходимости предварительного включения двигателя путем временного подключения к источнику питания.

источник, если он есть, для определения вращения двигателя. Таким образом, испытательный комплект устраняет необходимость во временных соединениях, которые могут занимать много времени, быть дорогостоящими и весьма опасными, особенно при наличии большого количества высоковольтных двигателей.

Кроме того, некоторые типы приводов никогда не следует вращать в неправильном направлении. В таких случаях временная связь или пробный метод, имея пятьдесят на пятьдесят шансов оказаться неверным, могут нанести серьезный вред. Три провода двигателя с левой стороны испытательного комплекта предназначены для подключения к клеммам двигателя, проверяемого для определения вращения.

Предохранители вставлены в измерительные провода А и С двигателя в качестве защиты в случае, если пользователь случайно прикоснется к этим проводам к цепи, находящейся под напряжением. Эти стандартные предохранители легко снимаются и заменяются из держателей, установленных на панели. Три линии, ведущие справа от испытательного комплекта, предназначены для прямого подключения к системам питания переменного тока напряжением до 600 вольт для определения последовательности фаз системы.

Четырехпозиционный переключатель выбирает тест, который необходимо выполнить — чередование фаз системы, вращение двигателя и полярность трансформатора. Селекторный переключатель подключает к цепи сухой элемент размера D, когда проверяется вращение двигателя или полярность трансформатора. В положении OFF счетчик и аккумулятор отключены от всех цепей.

Кнопочный переключатель подключается последовательно с батареей и размыкает цепь во время проверки полярности трансформатора. Сухая ячейка легко снимается и заменяется на держателе, установленном на панели, с помощью крышки с отверстием для монет. Амперметр постоянного тока с нулевым центром показывает правильное или неправильное вращение или полярность, отклоняя его стрелку вправо или влево. Для амперметра предусмотрен регулятор нуля или нуля.

ПРИМЕНЕНИЕ

Тестер вращения двигателя и чередования фаз обеспечивает надежный способ идентификации проводов отсоединенного многофазного двигателя; он также определяет истинную последовательность фаз линий электропередач переменного тока с частотой 60 Гц и напряжением до 600 вольт.

Оба необходимы для обеспечения того, чтобы двигатель вращался в заданном направлении при подаче питания.

Это уникальное испытательное устройство имеет еще три важных применения:

  1. Может определять полярность силовых и измерительных трансформаторов
  2. Может определять фазу и полярность секций обмоток многообмоточных (соединенных треугольником и звездой) двигателей
  3. И его можно использовать как тестер непрерывности при проверке электрических цепей.

ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА

  • Определяет направление вращения одно-, двух- или трехфазных двигателей перед подключением к сети
  • Определяет чередование фаз или последовательность цепей питания под напряжением
  • Определяет полярность измерительных и силовых трансформаторов
  • Определяет фазу/полярность немаркированных обмоток двигателя
  • Определяет истинную последовательность фаз линий электропередач переменного тока напряжением до 600 вольт (более высокие напряжения можно проверить, установив понижающий трансформатор).

Этот тестер используется для идентификации выводов отключенного многофазного двигателя, чтобы при подключении с чередованием фаз ABC (или с модификацией процедуры CBA) он вращался в нужном направлении. Тестер также используется для определения чередования фаз ABC (или с модификацией процедуры CBA) линий электропередач переменного тока напряжением до 600 вольт включительно. Другие области применения включают определение полярности трансформатора и проверку непрерывности цепи.

Вышеуказанные функции также обеспечивают в одном приборе средства для определения фазы и полярности секций обмотки многообмоточного двигателя. Если схемы соединений утеряны или стерта маркировка клемм, этот процесс идентификации необходим перед повторным подключением двигателя.

Принцип действия

При подаче постоянного тока на обмотки многофазного асинхронного двигателя создается поле, и железо ротора намагничивается. Если намагниченный ротор повернуть, поле будет вращаться вместе с ним в течение короткого времени из-за гистерезиса в железе. Движение этого поля индуцирует напряжение в обмотках. Направление индуцированного напряжения зависит от направления вращения. Те же самые факторы, которые определяют направление вращающегося поля в подключенном двигателе, определяют направление напряжения, индуцируемого при ручном вращении двигателя, когда он подключен к цепи вращения двигателя. Схема вращения двигателя использует вышеуказанные принципы для определения вращения двигателя.


Схема представляет собой мост, в котором две соседние фазные секции обмотки двигателя уравновешены потенциометром. Самый простой случай, когда каждая фазная секция представляет собой одну сторону катушки, показан на рисунке 13а. Когда ротор находится в состоянии покоя, ZERO ADJ. Потенциометр R1 настроен так, чтобы подавать нулевой ток в счетчике M1. В. в этой точке на каждой из двух фазных секций имеется одинаковое напряжение.

Когда постоянный ток входит в одну фазу (на клемме C) и выходит из соседней фазы (на клемме A), поле устанавливается, как показано стрелками воздушного зазора на рис. 13a. Теперь, когда ротор поворачивается так, что он движется от одной фазы к соседней фазе, в одной фазе будет индуцироваться напряжение, противоположное по направлению постоянному току. Напряжение также будет индуцироваться в соседней фазе, но оно будет иметь то же направление, что и постоянный ток. Когда индуцированное напряжение противоположно постоянному току, оно снижает общее напряжение на фазе. Когда индуцированное напряжение имеет то же направление, что и постоянный ток, оно добавляется к фазному напряжению. Поскольку перед вращением фазные напряжения были уравновешены, индуцированные напряжения складываются с одной фазой и вычитаются из другой, вызывая дисбаланс цепи. Несимметричное напряжение направляет ток через счетчик в положительном направлении и, следовательно, приводит к ПРАВИЛЬНЫМ показаниям.

Если бы двигатель был подключен к многофазной энергосистеме так, что фаза А следует за фазой С (последовательность A, B, C), ротор также двигался бы в том же направлении, что и только что описанное. Таким образом, маркировка двигателя при ПРАВИЛЬНОМ отклонении указывает на правильное подключение фаз. Чтобы показать, как эта простая теория применяется к более сложным обмоткам, рассмотрим двухполюсный, трехфазный двигатель, соединенный звездой, приведенный к простейшей форме, в которой все катушки одной фазной группы представлены одной катушкой, расположенной в центре обмотки. фазовая группа, которую он представляет.

Развертка обмотки показана на рис. 13б. Также показано схематическое расположение катушки. На всех схемах на рис. 13 направление приложенного постоянного тока указано стрелками на проводке. Направление индуцированных напряжений указано стрелками, параллельными проводке. На рисунке 13b поверхность ротора представлена ​​прямоугольником. Поток показан распределенным по всей поверхности ротора, чтобы показать эффект распределенной обмотки. Заштрихованная часть показывает поток, поступающий в ротор. Незаштрихованная область показывает уход флюса.

Нет необходимости указывать величину потока, но можно отметить, что величина равна нулю в точке, где происходит реверсирование. Эта нулевая точка поля находится в середине любой группы проводников, по которым течет ток в одном направлении. Стрелка сбоку от прямоугольника указывает направление движения ротора и потока. На рис. 13в показано соединение катушек по схеме «открытый треугольник» на трехфазном двигателе. На рис. 13d показан двухфазный двигатель. На рис. 13e показан трехфазный двигатель, соединенный треугольником. Загрузить продолжение этого обсуждения теории работы

Загрузить техпаспорт Megger 560060

JM Test Systems является дистрибьютором продуктов Megger

JM Test Systems имеет двигатель Megger 560060 и тестер чередования фаз для покупка и аренда. Позвоните нам сегодня, чтобы узнать цену, по телефону 800-353-3411 или отправьте нам сообщение.

Служба калибровки – С 1982 года компания JM Test Systems предоставляет нашим клиентам калибровки, соответствующие NIST. Мы стремимся к одной цели: обеспечить наилучший сервис как для наших продуктов, так и для наших клиентов.

ISO/IEC 17025 Аккредитация A2LA Аккредитация ISO/IEC 17025 является вашей гарантией того, что наша работа соответствует самым высоким стандартам.

Как проверить фазу звукоснимателя

С возвращением технарей! На этой неделе в пятничном выпуске Fix It Friday мы покажем, как проверить фазу ваших пикапов. Это быстро, просто и требует всего два инструмента.

Прежде чем мы начнем, некоторые из вас могут задаться вопросом: что означает фаза применительно к гитарным и басовым звукоснимателям? Не вдаваясь в запутанное определение из учебника, фаза — это просто направление электрического тока через катушку датчика. Это определяется направлением ветра звукоснимателя, магнитной полярностью и тем, какой конец катушки подключен к земле или к горячему.

Почему это важно? Когда звукосниматели не в фазе друг с другом, вы заметите очень тонкий и слабый звук. Типичное представление состоит в том, что вы хотите, чтобы ваши звукосниматели были в фазе друг с другом, так как это позволяет просвечивать предполагаемый тон звукоснимателей. Некоторые люди намеренно подключают звукосниматели не в фазе, чтобы добиться определенного звука, но обычно желательно, чтобы звукосниматели находились в фазе друг с другом.

Вы когда-нибудь устанавливали звукосниматель только для того, чтобы после всего потраченного времени обнаружить, что он не совпадает по фазе с другим звукоснимателем? Это может быть очень неприятно, особенно на гитарах, где замена звукоснимателей непроста. Не говоря уже о том, что удаление и переустановка более одного раза может привести к значительной потере дохода для загруженного магазина! Этого, конечно же, можно избежать, быстро протестировав фазу каждого звукоснимателя перед их установкой, что сэкономит вам массу времени и избавит от чудовищной головной боли. В Mojotone мы проверяем фазу каждого звукоснимателя, который изготавливаем, чтобы убедиться, что все они построены на одной и той же фазе; практика контроля качества.

Я обещал, что для этой процедуры потребуются только два инструмента, и я имел это в виду. Вот что вам понадобится:  

  • Мультиметр
  • Магнитная стальная отвертка большого диаметра

Приступим! Сначала установите мультиметр на сопротивление и подключите щупы мультиметра к выводам датчика. Обязательно подсоедините красный щуп измерителя к положительному проводу датчика, а черный щуп к отрицательному проводу. Вы должны получить показание (это будет варьироваться от пикапа к пикапу). См. изображение 2А ниже.

Теперь мы готовы выполнить фазовый тест. Чтобы проверить фазу звукоснимателя, вы поместите стальной стержень отвертки на все полюса на одной катушке. Стержень отвертки должен намагничиваться к полюсам (Изображение 3А).

Теперь нам нужно очень быстро вытащить отвертку из полюсных наконечников. Вы должны заметить, что показания мультиметра в омах быстро скачут вверх или вниз. Повторите этот процесс, если необходимо, чтобы убедиться, что показания прыгают вверх или вниз, и запишите это (изображения 4A и 5A).

После того, как вы сделали первый датчик, вам нужно будет повторить этот процесс со следующим датчиком и отметить, подскакивают ли показания мультиметра вверх или вниз, когда вы вытаскиваете отвертку из полюсных наконечников.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *