DC-DC преобразователь 12>3 Вольт | all-he
DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.
При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.
Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом.
После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.
Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.
Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.
Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.
Схема преобразователя с 12 на 3 вольта
DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.
При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.
Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом.
После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.
Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.
Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.
Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.
Сразу после первого вояжа на машине с семьёй на море возникла идея сделать в автомобиле стационарную разводу розеток под USB для зарядки мобильных устройств. Кстати сейчас новые автомобили стали уже комплектовать с инверторами на 220В и соответственно розетками на 5В.
Я таких машин ещё не встречал.
Да, в продаже если и есть адаптеры на для мобильных ПК то они предназначены для зарядки одного, максимум двух устройств при условии, что второе устройство не такое уж мощное. У меня в машине и так постоянно подключены 3 адаптера, но спрятаны они под колодкой предохранителей.
А пассажиры пользуются адаптером, который втыкается в разъём в пепельнице, что мне не очень удобно, так как его постоянно задеваю при переключении передач. После дня пути обычно у пассажиров разрежаются все устройства и начинается возня с зарядками мобильников. Приходится даже свой навигатор отключать, чтобы зарядить чьё-нибудь устройство.
Можно было сделать, как делают многие, покупают колодку на несколько адаптеров и сопли проводов тянутся по всему салону. И так требуется устройство выдающие положенные 5 вольт и мощностью 10 А. Много? Прикинем: 4 телефона, потребляют около 1 А каждый, планшет порядка 2 А, навигатор больше 0,5 А видеорегистратор тоже 0,5 А и радар-детектор около 0,5 А. И того 7, 5 А.
В процессе было собрано 3 преобразователя, но не один не мог выдерживать и 3 А продолжительное время. Один так вообще загорелся.
Нормально заработала только эта схема.
Схема преобразователя DC/DC на MC34063
Плата устройства
Сборочный чертёж
Да, моя плата далека от идеала, умение разводить плату сравнимо с талантом. Полевик с диодом расположил так, чтобы можно было прицепить практически любой радиатор, сделав плату чуть длиннее, а крепёж уже по месту. Специально подгонять плату под корпус не стал в виду отсутствия такового. Все детали нашлись в первом раскуроченном блоке питания компьютера.
Для изготовления устройства понадобилось:
1. Конденсатор керамический С1 470 пФ (1шт)
2. Конденсатор электролитический С3,С5,С6 1000 мкФ, 16В (3шт)
3. Конденсатор электролитический С2 100 мкФ, 16В (1шт)
4. Конденсатор электролитический С4 470 мкФ, 25В лучше 50В(1шт)
5. Индуктивности DR1, DR2 типа гантелька (2шт)
6. Трансформатор импульсный DR3 кольцевой (1шт)
7. Индуктивность типа пенёк DR4 (1шт)8. Винтовой клемник J1 (1шт)
9. Резистор R1 1,2 кОм (1шт)
10. Резистор R2 3,6 кОм (1шт)
11. Резистор R3 5,6 кОм (1шт)
12. Резистор R4 2,2 кОм (1шт)
13. Резистор R5 2,2 кОм или 1 кОм на 1ват (1шт)
14. Микроконтроллер U1 MC34063
15. Диод VD1, VD3 FR155 (2шт)
16. Диод VD2 SBL25L25CT (1шт)
17. Транзистор биполярный VT1 2SC1846 (1шт)
18. Полевой транзистор IRL3302 (1шт)
19. Панелька DIP8 (1шт)
20. Корпус по произвольным размерам
Основные компоненты: это сама микросхема U1, импульсный трансформатор DR3, мощный N канальный полевик VT2(может быть любым используемый в цепях питания) и диодная сборка VD2. Трансформатор VD3 изготовил из такого же трансформатора с того самого БП. Кольцо из пресспермалоя, желтого цвета. 27мм. Первичную обмотку набил проводом 2мм 22 витка, вторичную обмотку намотал проводом тоньше, 0,55 мм 44 витка.
Индуктивности DR1 DR2 типа гантелька взял как есть из БП. Индуктивность типа пенёк DR4 тоже самое. Транзистор и диод разместил на радиаторе от того же БП.
Всё собрал на печатной плате собственной разработки. В ходе лабораторных испытаний пришлось внести изменения в предложенную автором схему. Дело в том что сам автор указывает на то что резистор R5 греется, даже замена на более мощный резистор проблему не решает. В течении часа резистор этот у меня почернел и обуглился.
Решил попробовать увеличить сопротивление до 2,2кОм и всё греться он перестал. Транзистор VT1, перестраховался, заменил на более мощный. Трансформатор DR3 тоже сначала не много грелся, перемотал, добавил количество витков в первичную и во вторичную обмотки, стало 30 и 60.
Не знаю, что там с фронтами открытия полевого транзистора но схема работает нормально, при нагрузке в 2А устройство остаётся холодным. Радиаторы на транзистор и диод можно большие не ставить. Поставил на выходе +5В ферритовое кольцо, для уменьшения помех.
Вот мой первый, рабочий, испытательный прототип.
Испытание на сопротивление 1Ом сопротивление быстро нагрелось сила тока на фото.
И последние, кипятильник на 5В в работе. Смотрите силу тока на фото. Да вот тут уже начали греться транзистор с диодом.
Испытывал свой преобразователь на 5 А работал почти весь день так немного тёплый. Потом нашёл старый блок питания от монитора которого уже нет. Плату пустил в разбор, в корпус уместил свою схему. Транзистор и диод расположил на кулере от старого ноутбука. В противоположной стороне коробки просверлил ряд отверстий. Очень даже получилось ничего. Воздух будет прокачиваться через всю схему.
Готовое устройство на установку в автомобиль.
Розетки двойные под USB планирую врезать в одну в переднюю панель вместо кнопки-зглушки и вторую к задним пассажирам в подлокотник передних сидений. Также думаю одинарную розетку в панель передней левой стойки и подвести питание к видеорегистратору который находится у зеркала. По данной схеме можно собрать вообще универсальный блок питания, то есть добавить каскад преобразования из 12В в 19В для питания ноутбука, что планирую в будущем.
Архив к статье: скачать…
Автор; Максим Батурин г.Мурманск
Похожие статьи:
Исходные данные: мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.
Собираем схему приведенную ниже: аккумулятор литий-ионный 18650 напряжением 2К,8 -4,2 Вольт без внутренней схемы зарядного устройства -> присоединяем модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)
К модулю TP4056 подключаем модуль на микросхеме MT3608 — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.
Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.
Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.
Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!
Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения
Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.
Наименование | MP1584EN | Монолитные Power Systems | ||
Описание | 3А, 1.5MHz, 28В Step-Down конвертер | |||
MP1584EN Технический паспорт PDF (datasheet) : | ||||
|
*Описание MP1584EN
**Приобрести можно в магазине Your Cee
Наименование | MP2307 | Монолитные Power Systems | ||
Описание | 3A, от 4.75 Вольт до 23 Вольт, 340KHz, понижающий преобразователь | |||
MP2307 Спецификация PDF (datasheet) : | ||||
|
MP2307N
*Приобрести можно в магазине Your Cee
Наименование | XL6009 | XLSEMI | ||||||||||||||||||||||||||||||||||||||
Описание | 4A, 400kHz, входное напряжение 5~32V / выходное напряжение 5~35V, коммутируемый повышающий преобразователь DC / DC | |||||||||||||||||||||||||||||||||||||||
XL6009 Технический паспорт PDF (datasheet) : | ||||||||||||||||||||||||||||||||||||||||
|
http://dwiglo.ru/mp2307dn-PDF.html
Китайские стабилизаторы для самоделкиных. Часть 1.
Китайские стабилизаторы для самоделкиных. Часть 2.
Китайские стабилизаторы для самоделкиных. Часть 3.
как с 12 вольтвого аккумулятора сделать выход 9 вольт
для начала-какой ток будет потреблять 9-ти вольтовая нагрузка? ибо есть несколько путей решения поставленной задачи: 1)линейный стабилизатор 2)сделать отвод 9 вольт от секции банок аккумулятора. 3)ШИМ стабилизатор 4) диоды не помогут.
ШИМ стабилизатор
В принципе, если не нужна особая стабильность выходного напряжения, то могут помочь и диоды. Достаточно включить последовательно с нагрузкой примерно четыре кремниевые, достаточно мощные диоды и на нагрузке будет примерно девять вольт. Диоды, естественно, греться будут. Скажем, если ток нагрузки порядка одного ампера, а диоды выбрать в корпусе ТО-220 (довольно мощные) , то на каждом будет рассеиваться без малого один ватт. И без радиатора даже в этом случае есть риск их перегрева и сгорания, если не обеспечить хороший обдув. Лучше в этом случае поставить на каждый диод по небольшому радиатору. Если ток нагрузки ещё больше, то и греться они будут значительно сильнее. Лучше всего, естественно, ШИМ-стабилизатор. Или, в крайнем случае, линейный стабилизатор с малым падением напряжения. Стандартный 7809 вряд ли подойдёт. Ведь, если двигатель машины не будет заведён, то под нагрузкой напряжение на не очень свежем аккумуляторе может падать ниже двенадцати вольт. И стабилизатор будет уже на пределе нормальной работы.
<img src=»//otvet.imgsmail.ru/download/dc957c9c3b8d04ab63eb672e1789b8d0_i-197.jpg» >
на 12А — только ШИМ. Линейный стабилизатор должен будет иметь радиатор килограмм на 5
Подключение светодиода к питанию 5 и 12 Вольт: схемы с описанием
С тех пор, как сверхъяркие светодиоды (LED) стали доступны широкому кругу потребителей, к ним сразу проявился большой интерес. На основе LED можно создавать множество интересных светотехнических конструкций. Однако, подключение светодиода к 12 вольтам, принципиально отличается от подключения к 12 вольтам той же лампы накаливания. В этом материале будет подробно рассказано о подключении светоизлучающих диодов к источникам питания, имеющим различное напряжение.
Какие светодиоды подключают к 12 вольтам?
Если коротко ответить на вопрос, вынесенный в качестве подзаголовка, то ответ будет звучать так: никакие! Неспециалисту такой ответ покажется парадоксальным, ведь в продаже имеются светодиоды, которые, как заявляют продавцы, рассчитаны на питание от источника 12 вольт.
Возьмемся утверждать, что на конкретное напряжение могут быть рассчитаны только изделия на основе светодиодов. Говорить о конкретном рабочем напряжении LED не корректно. Это связанно с физическими процессами, протекающими в нем при испускании света.
Главными характеристиками этих процессов являются рабочий ток и максимально допустимый ток прибора. В справочниках и даташитах указывают напряжения на светодиодах при протекании рабочего тока. Эти величины используют для расчетов LED конструкций, а не для выбора источника питания.
Кстати, напряжение в рабочем режиме лежит всего лишь в пределах от 1.5 В до 3.5 В. Величина зависит, в основном, от цвета испускаемого LED. Меньшие напряжения падают на красных светодиодах, большие значения относятся к сверхъярким. Имеющиеся в продаже светоизлучающие диоды на 12 вольт не являются единичными приборами.
Двенадцативольтовые LED это матрицы, состоящие из нескольких светоизлучающих диодов. Матрицы представляют собой светодиодные сборки, собранные из цепочек последовательно подключенных приборов.
В каждой матрице имеется несколько цепочек, которые подключены параллельно между собой. Когда говорят, что светодиод рассчитан на двенадцать вольт, то подразумевают, что падение напряжения на последовательной цепочке из них при протекании рабочего тока составляет примерно 12 В.
Подключение сверхярких и мощных LED к 12В
Сначала рассмотрим способ подключения одного мощного сверхъяркого светодиода к 12 Вольтам. Допустим, в нашем распоряжении имеется прибор, рабочий ток которого 350 мА. При этом падение напряжения на нем в рабочем режиме составляет примерно 3.4 Вольта. Нетрудно подсчитать, что потребляемая мощность такого прибора составляет 1 W.
Понятно, что подключать его напрямую к 12 Вольтам нельзя. Нам придется, каким-то образом, «погасить» часть напряжения. В простейших случаях для этих целей применяются гасящие (токоограничивающие) резисторы. Его соединяют со светодиодом последовательно. Схема питания одного LED показана на фото.
Чтобы рассчитать номинал токоограничивающего резистора пользуются формулой:
R=(Uпит – Uраб)/Iраб.
Вооружившись калькулятором легко подсчитать, что сопротивление будет составлять около 25 Ом. На нем будет рассеиваться мощность, которую рассчитывают по формуле:
P=I2*R.
В нашем примере мощность составит около 3 ватт. Найти сопротивление такой мощности довольно трудно, поэтому в качестве гасящего резистора можно применить два резистора по 100 Ом мощностью 2 Вт, соединенные параллельно.
В принципе на основе этих расчетов уже можно создавать практическую конструкцию. Выполнив подключение светодиода к 12В через выключатель, можно организовать дополнительную подсветку подкапотного пространства автомобиля, багажника или перчаточного бокса.
Мы показали, что создание такой схемы возможно, но применение ее нерационально. Нетрудно заметить, что две трети мощности потребляемой конструкцией приходится на гасящий резистор и, следовательно, тратится впустую. Ниже мы расскажем, как избежать ненужных потерь.
Сколько LED можно подключить к 12В?
Очевидно, что по простейшей схеме к источнику 12 Вольт можно подключить сколько угодно. Главное, чтобы у подключаемого источника питания хватало мощности. Однако мы видели, что при такой схеме подключения много энергии расходуется бесполезно.
Простейшим выходом из этой ситуации является снижение мощности рассеиваемой на токоограничивающем резисторе. Для снижения бесполезно рассеиваемой мощности, несколько светодиодов подключают последовательно и питают через один гасящий резистор. В этом случае падение напряжения на сопротивлении оказывается значительно меньше. Следовательно, существенно снижаются потери энергии. Расчет сопротивления для последовательного подключения светоизлучающих диодов выполняют по формуле:
R=(Uпит – nUраб)/Iраб.
Где n – количество последовательно подключенных LED.
В случае источника 12 Вольт разумно подключать последовательно три светодиода и один гасящий резистор. Падение напряжения на светодиодах не превысит 10.5 Вольта и на долю резистора останется всего 1,5 Вольт.
Такое техническое решение широко применяют, когда количество подключаемых к 12 Вольтам светодиодов кратно трем. Т. е. так можно подключить 6, 9, 12, …, 3N LED. Например, так поступают производители светодиодных лент. В них светодиоды сгруппированы по три и питаются через одно общее сопротивление.
Если нужно подключить 4 светодиода к 12 Вольтам, то целесообразно сгруппировать их по 2, и каждую пару питать через токоограничивающий резистор.
Последовательно следует подключать светодиоды с одинаковым рабочим током. Иначе разные приборы будут светить с различной яркостью или будет превышен ток какого-либо LED, и он выйдет из строя.
Что касается подключения светодиодов «рассчитанных на 12 В» то лучше установить их «рабочее напряжение» опытным путем. Для этого их надо подключить к лабораторному блоку питания и, постепенно поднимая напряжение, контролировать потребляемый ток. Напряжение, при котором рабочий ток будет достигнут, можно использовать для расчета токоограничивающего резистора.
Как подключить LED к 3 или 5 вольтам
Большинство маломощных светодиодов нормально работают и от 3 и тем более от 5 вольт. Выполнить для них расчет токоограничивающих сопротивлений можно по приведенной выше формуле.
При изготовлении конструкций с автономными источниками питания, особенно если в них используются сверхъяркие «мощные» LED, такой подход не приемлем. Мощность, рассеиваемая на гасящем резисторе, значительно сокращает время работы устройства.
Поэтому в современных ручных фонарях, работающих от низковольтных батарей применяют электронные преобразователи напряжения – драйверы. Потери в драйверах намного ниже, чем на токоограничивающих резисторах. Сейчас драйверы доступны и их можно легко найти в магазинах.
Имея некоторые познания в электронике и навыки работы с паяльником, простой драйвер можно изготовить самостоятельно. Одна из простых схем преобразователя для мощного светодиода приведена ниже.
Как подключить к 12 вольтам автомобиля
Подключение светодиодов к бортовой сети автомобиля не имеет существенных отличий от подключения к другим источникам питания. Просто не нужно забывать, что аккумуляторная батарея автомобиля в нормальном состоянии выдает не 12 Вольт, а примерно 14 Вольт.
Еще при подключении надо помнить, что не в каждом автомобиле надежно работает система стабилизации напряжения бортовой сети. Поэтому при расчетах гасящих резисторов лучше принимать напряжение питания равным 15 – 17 вольт. Это несколько снизит яркость свечения, но зато значительно продлит срок службы, так как светодиод будут работать в «щадящем» режиме.
Видео о подключении
Перед подключением советуем посмотреть хорошее видео для закрепления полученных знаний. Автор подробно и доступным языком рассказывает, как подключить светодиод к 12 вольтам от блока питания компьютера, как рассчитать резистор и другие нюансы.
Итоги
В заключении можно сказать, что при подключении сверхъярких светодиодах нужно принимать во внимание следующие соображения:
- важнейшим параметром светодиода является его рабочий ток;
- на гасящих резисторах бесполезно рассеивается энергия;
- применяя последовательное подключение можно уменьшить потери, одновременно уменьшив количество и мощность применяемых резисторов;
- в бортовой сети автомобиля не 12 Вольт, а несколько больше, и для надежной работы подключаемых светоизлучающих диодов нужно обязательно учитывать этот фактор.
Запомнив все вышеперечисленные аспекты подключения, Вы с легкостью запитаете любой светодиод, в любом количестве, от любого источника питания постоянного тока 12 Вольт.