Site Loader

Содержание

Как из переменного тока сделать постоянный 12в

Осциллограмма постоянного напряжения

Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) – это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.

Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:

Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).

Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.

Но как же нам из пульсирующего постоянного напряжения

получить самое что ни на есть настоящее постоянное напряжение?

Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:

В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.

Зависимость пульсаций от емкости конденсатора

Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:

Рассмотрим первый. Замеряем его номинал с помощью нашего LC – метр. Его емкость 25,5 наноФарад или 0,025микроФарад.

Цепляем его к диодному мосту по схеме выше

И цепляемся осциллографом:

Как вы видите, пульсации все равно остались.

Ну что же, возьмем конденсатор емкостью побольше.

Получаем 0,226 микрофарад.

Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.

А вот собственно и осциллограмма

Не… почти, но все равно не то. Пульсации все равно видны.

Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.

Цепляем его к диодному мосту снимаем с него осциллограмму.

А вот собственно и она

Ну вот. Совсем ведь другое дело!

Итак, сделаем небольшие выводы:

– чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.

– чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.

Как подобрать радиоэлементы для выпрямителя

Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать действующее напряжение.

Umax – максимальное напряжение, В

Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!

Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).

Ну и напоследок, чтобы лучше запомнилось:

Читаем в обязательном порядке продолжение этой статьи.

Очень часто пользователей световых электроприборов и СБТ интересует: «Как без трансформатора из 220 вольт получить 12в или другое низкое напряжение?». Обычно этим вопросом задаются владельцы электронной техники и аппаратуры, работающей от источников питания на понижающем сетевом трансформаторе. Это тем более актуально, поскольку весогабаритные показатели блока питания (БП) нередко превосходят аналогичные параметры запитываемого гаджета или стационарного устройства.

Основные способы понижения

Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.

На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».

Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.

Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.

Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:

  • С помощью балластного конденсатора понижение напряжения.
  • При помощи балластного резистора гасится избыточное напряжение.
  • Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.

Балластный конденсатор

Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.

Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:

В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии.

Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.

Заметно снизит зависимость выходного напряжения от сопротивления нагрузки БП симбиоз выпрямителя и параметрического стабилизатора с регулирующим элементом. Осуществляется такая доработка впаиванием параллельно P1 стабилитрона на 12 вольт.

При помощи резистора

Способ подходит для запитки слаботочной нагрузки, например, светодиода или маломощного LED-светильника. Основной недостаток резистивной схемы – низкий КПД по причине рассеивания большого количества активной мощности, затрачиваемой на нагрев резистора. В самом простом варианте БП представляет собой делитель напряжения на резисторах, установленный после диодного выпрямителя, с нижнего плеча которого снимается напряжение.

Стабилизация осуществляется посредством изменения сопротивления одного из плеч делителя: номиналы резисторов подбираются таким образом, чтобы понизить выходное напряжение до приемлемых значений.

Автотрансформатор или дроссель с подобной логикой намотки

В автотрансформаторе отсутствует вторичная обмотка: выходное напряжение снимается с одной единственной обмотки на тороидальном магнитопроводе, которая одновременно используется для подачи сетевого напряжения 220 В, 50 Гц.

Принцип действия аналогичен ЛАТР, только снимаемое с витков напряжение имеет определенную фиксированную величину. Поэтому замена силового трансформатора на автотрансформатор повышает КПД блока питания, заметно снижает размеры и вес девайса (при прочих равных условиях весогабаритные характеристики трансформатора в 1,5 раза больше заменяющего изделия).

Схема автотрансформатора с фиксированным напряжением U2.

Однако нерегулируемый автотрансформатор имеет существенный недостаток: он не защищает от бросков напряжения и наведенных в сети импульсов. Низкочастотные (НЧ) и высокочастотные (ВЧ) пульсации, сетевые помехи и паразитные гармоники значительно снизятся, если в выходную цепь установить дроссель. В тандеме с автотрансформатором используют дроссель с высокой индуктивностью ≤ 0,5–1,0 ГН, устанавливаемый последовательно с нагрузкой.

Индуктивный элемент накапливает в магнитном поле катушки энергию питающей сети, а затем отдает в нагрузку. Дроссель в электрической цепи противодействует изменению тока в электрической цепи. При резком падении катушка поддерживает протекающий ток, а при резком повышении ограничивает, не давая быстро возрасти. Компактные дроссели переменного тока применяются в бустерах энергосберегающих ламп и LED-драйверах, питающих светодиодные светильники.

Технические требования к конденсатору

Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 * = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.

Бестрансформаторное электропитание: возможные схематические решения

Микросхема линейного стабилизатора

Можно своими руками собрать простой драйвер (источник стабилизированного тока) на недорогой (0,3 $) микросхеме линейного стабилизатора LM317АMDT. На вход преобразователя DС-AC подается напряжение сети 220 В, 50 Гц.

Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке (в самом простом варианте используется только R1 и R2). Подбирая номинал резисторов, можно регулировать ток в нагрузке, при суммарном токе светодиодов до 0,3 А микросхема отлично работает без радиатора. Ниже приведена типовая схема устройства на микросхеме LM317:

Зарядное устройство

Самым бюджетным вариантом, безусловно, считается использование зарядного устройства (ЗУ) от сотового телефона. Плата зарядника имеет совсем небольшие габариты и подойдет для питания 12 В гаджета с мощностью ≤ P ном. блока питания. Необходимо только заменить в ней однополупериодный выпрямитель на выпрямитель с удвоенным напряжением (добавляется по одному диоду и конденсатору). После модернизации получаем искомые 12 вольт с током 0.5А и полноценной развязкой от сети.

В качестве альтернативы, не требующей вмешательства в конструкцию, можно к выходу ЗУ через переходник подключается повышающий DС-DС преобразователь напряжения (например, 2-х амперный, размером 30мм х 17мм х 14мм, стоимостью 1$) с USB-разъемом. Требуется только выставить подстроечным резистором требуемое напряжение 12 В и подключить преобразователь к гаджету или стационарному электроприемному устройству.

Для чего может использоваться напряжение 12 или 24 вольт в быту

В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:

  • аккумуляторные электродрели, шуруповерты и электропилы;
  • стационарные насосы для полива огородов;
  • аудио-видеотехника и радиоэлектронная аппаратура;
  • системы видеонаблюдения и сигнализации;
  • батареечные радиоприемники и плееры;
  • ноутбуки (нетбуки) и планшеты;
  • галогенные и LED-лампы, светодиодные ленты;

  • портативные ультрафиолетовые облучатели и портативное медицинское оборудование;
  • паяльные станции и электропаяльники;
  • зарядные устройства мобильных телефонов и повербанков;
  • слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;
  • детские игрушки, елочные гирлянды, помпы аквариумов;
  • различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.

Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.

Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.

Очень часто пользователей световых электроприборов и СБТ интересует: «Как без трансформатора из 220 вольт получить 12в или другое низкое напряжение?». Обычно этим вопросом задаются владельцы электронной техники и аппаратуры, работающей от источников питания на понижающем сетевом трансформаторе. Это тем более актуально, поскольку весогабаритные показатели блока питания (БП) нередко превосходят аналогичные параметры запитываемого гаджета или стационарного устройства.

Основные способы понижения

Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.

На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».

Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.

Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.

Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:

  • С помощью балластного конденсатора понижение напряжения.
  • При помощи балластного резистора гасится избыточное напряжение.
  • Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.

Балластный конденсатор

Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.

Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:

В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии.

Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.

Заметно снизит зависимость выходного напряжения от сопротивления нагрузки БП симбиоз выпрямителя и параметрического стабилизатора с регулирующим элементом. Осуществляется такая доработка впаиванием параллельно P1 стабилитрона на 12 вольт.

При помощи резистора

Способ подходит для запитки слаботочной нагрузки, например, светодиода или маломощного LED-светильника. Основной недостаток резистивной схемы – низкий КПД по причине рассеивания большого количества активной мощности, затрачиваемой на нагрев резистора. В самом простом варианте БП представляет собой делитель напряжения на резисторах, установленный после диодного выпрямителя, с нижнего плеча которого снимается напряжение.

Стабилизация осуществляется посредством изменения сопротивления одного из плеч делителя: номиналы резисторов подбираются таким образом, чтобы понизить выходное напряжение до приемлемых значений.

Автотрансформатор или дроссель с подобной логикой намотки

В автотрансформаторе отсутствует вторичная обмотка: выходное напряжение снимается с одной единственной обмотки на тороидальном магнитопроводе, которая одновременно используется для подачи сетевого напряжения 220 В, 50 Гц.

Принцип действия аналогичен ЛАТР, только снимаемое с витков напряжение имеет определенную фиксированную величину. Поэтому замена силового трансформатора на автотрансформатор повышает КПД блока питания, заметно снижает размеры и вес девайса (при прочих равных условиях весогабаритные характеристики трансформатора в 1,5 раза больше заменяющего изделия).

Схема автотрансформатора с фиксированным напряжением U2.

Однако нерегулируемый автотрансформатор имеет существенный недостаток: он не защищает от бросков напряжения и наведенных в сети импульсов. Низкочастотные (НЧ) и высокочастотные (ВЧ) пульсации, сетевые помехи и паразитные гармоники значительно снизятся, если в выходную цепь установить дроссель. В тандеме с автотрансформатором используют дроссель с высокой индуктивностью ≤ 0,5–1,0 ГН, устанавливаемый последовательно с нагрузкой.

Индуктивный элемент накапливает в магнитном поле катушки энергию питающей сети, а затем отдает в нагрузку. Дроссель в электрической цепи противодействует изменению тока в электрической цепи. При резком падении катушка поддерживает протекающий ток, а при резком повышении ограничивает, не давая быстро возрасти. Компактные дроссели переменного тока применяются в бустерах энергосберегающих ламп и LED-драйверах, питающих светодиодные светильники.

Технические требования к конденсатору

Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 * = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.

Бестрансформаторное электропитание: возможные схематические решения

Микросхема линейного стабилизатора

Можно своими руками собрать простой драйвер (источник стабилизированного тока) на недорогой (0,3 $) микросхеме линейного стабилизатора LM317АMDT. На вход преобразователя DС-AC подается напряжение сети 220 В, 50 Гц.

Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке (в самом простом варианте используется только R1 и R2). Подбирая номинал резисторов, можно регулировать ток в нагрузке, при суммарном токе светодиодов до 0,3 А микросхема отлично работает без радиатора. Ниже приведена типовая схема устройства на микросхеме LM317:

Зарядное устройство

Самым бюджетным вариантом, безусловно, считается использование зарядного устройства (ЗУ) от сотового телефона. Плата зарядника имеет совсем небольшие габариты и подойдет для питания 12 В гаджета с мощностью ≤ P ном. блока питания. Необходимо только заменить в ней однополупериодный выпрямитель на выпрямитель с удвоенным напряжением (добавляется по одному диоду и конденсатору). После модернизации получаем искомые 12 вольт с током 0.5А и полноценной развязкой от сети.

В качестве альтернативы, не требующей вмешательства в конструкцию, можно к выходу ЗУ через переходник подключается повышающий DС-DС преобразователь напряжения (например, 2-х амперный, размером 30мм х 17мм х 14мм, стоимостью 1$) с USB-разъемом. Требуется только выставить подстроечным резистором требуемое напряжение 12 В и подключить преобразователь к гаджету или стационарному электроприемному устройству.

Для чего может использоваться напряжение 12 или 24 вольт в быту

В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:

  • аккумуляторные электродрели, шуруповерты и электропилы;
  • стационарные насосы для полива огородов;
  • аудио-видеотехника и радиоэлектронная аппаратура;
  • системы видеонаблюдения и сигнализации;
  • батареечные радиоприемники и плееры;
  • ноутбуки (нетбуки) и планшеты;
  • галогенные и LED-лампы, светодиодные ленты;

  • портативные ультрафиолетовые облучатели и портативное медицинское оборудование;
  • паяльные станции и электропаяльники;
  • зарядные устройства мобильных телефонов и повербанков;
  • слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;
  • детские игрушки, елочные гирлянды, помпы аквариумов;
  • различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.

Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.

Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.

Как получить постоянное напряжение из переменного

Осциллограмма постоянного напряжения

Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток)  –  это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.

Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:

Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).

Для того, чтобы преобразовать переменное однофазное напряжение одного значения в  однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный  трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.

Но как же   нам из пульсирующего постоянного напряжения

получить самое что ни на есть настоящее постоянное напряжение?

Для этого нам нужен всего один радиокомпонент: конденсатор.  А вот так он должен подключаться к диодному мосту:

В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.

Зависимость пульсаций напряжения от емкости конденсатора

Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:

Рассмотрим первый. Замеряем его номинал с помощью нашего LC – метр. Его емкость 25,5 наноФарад или 0,025микроФарад.

Цепляем его к диодному мосту по схеме выше

И цепляемся осциллографом:

Смотрим осциллограмму:

Как вы видите, пульсации все равно остались.

[quads id=1]

Ну что же, возьмем конденсатор емкостью побольше.

Получаем 0,226 микрофарад.

Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.

А вот собственно и осциллограмма

 

Не… почти, но все равно не то. Пульсации все равно видны.

Берем наш третий конденсатор. Его емкость 330 микрофарад.  У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.

Цепляем его к диодному мосту снимаем с него осциллограмму.

А вот собственно и она

Ну вот. Совсем ведь другое дело!

Итак, сделаем небольшие выводы:

 – чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.

 – чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.

Как подобрать радиоэлементы для выпрямителя

Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд?  Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт?  А вот и не угадали!  Со вторичной обмотки трансформатора мы будем получать действующее напряжение.

где

UД – действующее напряжение, В

Umax – максимальное напряжение, В

Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!

Кстати,  у меня получился 17 Вольтовый источник постоянного напряжения, так как у  трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).

Ну и напоследок, чтобы лучше запомнилось:

 

Показываем на примере в видео:

Преобразователь / инвертор 12 В постоянного тока в 12 В переменного тока (50 Гц) для низких нагрузок (

Решение, которое у вас уже есть, является лучшим компромиссом в данных условиях, и позвольте мне объяснить:

Это плохая идея иметь переключаемый источник питания рядом с аудиоустройством. Они шумные.

Но самодельный импульсный блок питания хуже. Вы не получите низкий уровень EMI, который может быть достигнут (и наложен правилами) на коммерческий продукт.

В то же время я предполагаю, что от той же батареи вы будете поставлять другие устройства. Скорее всего, заземление сигнала привязано к заземлению 12 В.

Но, не заглядывая внутрь блока микшера, вы не знаете, как вход питания переменного тока связан с заземлением сигнала, поэтому ваш источник питания переменного тока должен быть изолирован от 12 В батареи / сигнального заземления, в противном случае вы можете замкнуть или перегрузить некоторые внутренние цепи внутри смесителя. Подумайте, что произойдет, если у вас есть полуволновой выпрямитель внутри и вы подключите землю к «горячему» проводу.

Чистое аналоговое решение, такое как генератор 50 Гц, за которым следует усилитель, а затем трансформатор 50 Гц для поднятия напряжения с пика до пика 12 В (конфигурация моста) до пика до пика 17 В, имеет очень низкую эффективность и требует трудного поиска от 12 В до 17 В 1A. трансформатор.

Изменение инвертора с 230 В на 12 В практически невозможно и, безусловно, изменит соответствие требованиям EMI.

Что вы можете сделать, так это найти самый маленький инвертор, самый маленький, который я мог найти, был 50 Вт, чтобы у вас не было проблем с охлаждением, и использовать его с трансформатором 12 В, который вы уже сделали.

Это лучший вариант по размеру, шуму, затраченному времени и стоимости.

Следующий лучший вариант — это разобрать микшер и увидеть схему внутреннего источника питания, это может сэкономить немного денег и места с помощью многих простых решений.

Простой преобразователь постоянного напряжения 12В в переменное 220В

Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть.

Все это поправимо, если у вас есть автомобильный аккумулятор. К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (или по западной терминологии DC-AC преобразователь). На рис.1 и 2 показаны две основные схемы таких преобразователей.

Принципиальная схема

В схеме на рис.1 используются четыре мощных транзистора VT1…VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4.

Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4.

Рис. 1. Принципиальная схема преобразователя постоянного напряжения 12В в переменное 220В.

Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2.

В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6. При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.

Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе.

На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8.

От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго — через усилитель тока VT6 на пару VT1, VT4. Если в качестве VT1…VT4 использовать транзисторы с высоким коэффициентом передачи тока («супербета»), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.

В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку.

Рис. 2. Схема выходной части импульсного преобразователя напряжения на двух мощных транзисторах.

Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.

Рис. 3. Схема сигнализатора разряда аккумуляторной батареи.

Детали и налаживание

Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:

Т(ч) = (0,7WU)/P

где W — емкость аккумулятора, Ач; U — номинальное напряжение аккумулятора, В; Р — мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85…0,9.

Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы составит 10…12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.

Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.

В таблице: S — площадь сечения магнитопровода; W1, W2 — количество витков первичной и вторичной обмоток; D1, D2 — диаметры проводов первичной и вторичной обмоток.

Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.

Если использовать в качестве мощных транзисторов VT1…VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее.

Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора.

При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность — 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.

Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках.

Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит.

Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром).

Этот конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ.

При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U.

Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора. Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02…0,05, поэтому КПД преобразователя снижается примерно на 2…5%.

Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3.

Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает.

Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает «пищать». Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.

После использования преобразователя аккумулятор необходимо зарядить. Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В.

Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.

В. Д. Панченко, г.Киев, Украина.

Преобразователи напряжения 220в 12в


Преобразователь напряжения из 220 в 12 вольт, устройство и различия

Инверторы с 220 на 12 вольт производятся разной формы и размеров. По своему типу бывают трансформаторные и импульсные. Трансформаторный преобразователь 220 на 12 вольт В основе конструкции, как следует из названия, лежит понижающий трансформатор.

Трансформатор представляет собой изделие, состоящее из двух основных частей:

  • сердечника, собранного из электротехнической стали;
  • обмоток, выполненных в виде витков из проводникового материала.

Его работа основана на появлении электродвижущей силы в замкнутом проводящем контуре. При протекании по первичной обмотке переменного тока образовываются переменные линии магнитного потока. Эти линии пронизывают сердечник и все обмотки, на которых появляется электродвижущая сила. Когда вторичная обмотка находится под нагрузкой, то под действием этой силы начинает протекать ток.

Значение разности потенциалов будет определяться отношением количества витков первичной обмотки и вторичной. Таким образом, изменяя это соотношение, можно получить любое значение.

Для снижения значения напряжения количество витков во вторичной обмотке делается меньше. Стоит отметить, что описанное выше работает только при подаче на первичную обмотку переменного тока. При использовании постоянного тока создаётся постоянный магнитный поток, который не наводит ЭДС и энергия передаваться не будет.

Бестрансформаторный преобразователь с 220 на 12 вольт

Такие устройства питания называют импульсными. Главной частью такого устройства обычно является специализированная микросхема (широтно-импульсный модулятор).

Инвертирование 220 в 12 вольт происходит следующим образом. Сетевое напряжение поступает на выпрямительную цепь, а далее сглаживается ёмкостью номиналом 300-400 вольт. Затем выпрямленный сигнал с помощью транзисторов преобразуется в высокочастотные прямоугольные импульсы с требуемой скважностью. Преобразователь импульсного типа за счёт применения инвертирующей схемы, выдаёт на выходе стабильное напряжение. При этом преобразование происходит как с гальванической развязкой от выходных цепей, так и без неё.

В первом случае используется импульсный трансформатор, на который поступает высокочастотный сигнал до 110 кГц.

При изготовлении сердечника используют ферромагнетики, что ведёт к снижению веса и размеров. Во втором вместо трансформатора используется фильтр нижних частот.

Преимущества импульсных источников заключаются в следующем:

  1. малый вес;
  2. улучшенный КПД;
  3. дешевизна;
  4. наличие встроенной защиты.

К недостаткам относят то, что используя в работе высокочастотные импульсы, устройство само создаёт помехи. Это требует устранения и приносит усложнения электрических схем.

Как из 220 вольт сделать 12 вольт самостоятельно

Проще всего сделать аналоговое устройство на базе трансформатора вида тор. Такое устройство несложно выполнить самостоятельно. Для этого понадобится любой трансформатор с первичной обмоткой, рассчитанной на 220 вольт. Вторичная обмотка рассчитывается согласно несложным формулам или подбирается практическим путём.

Для подбора может понадобиться:

  • прибор для измерения напряжения;
  • изолирующая лента;
  • киперная лента;
  • медная проволока;
  • паяльник;
  • инструмент для разборки (кусачки, отвёртки, плоскогубцы, нож и т. п. ).

В первую очередь необходимо определить, с какой стороны переделываемого трансформатора расположена вторичная обмотка. Аккуратно снять защитный слой для получения к ней доступа. Используя тестер, измерить напряжение на выводах.

В случае меньшего напряжения к любому из концов обмотки допаять проволоку, тщательно заизолировав место соединения. Используя эту проволоку сделать десять витков и опять измерить напряжение. В зависимости от того насколько увеличилось напряжение и рассчитать дополнительное количество витков.

В случае если напряжение превышает требуемое, делаются обратные действия. Отматываются десять витков, измеряется напряжение и рассчитывается, сколько их необходимо их убрать. После этого лишний провод обрезается и запаивается на клемму.

По окончании работ трансформатор собирается в обратной последовательности. Если все правильно рассчитано, то получится преобразователь из 220 в 12 вольт переменного напряжения. Для получения постоянного напряжения необходимо добавить выпрямитель. Это простейшее электронное устройство, состоящее из диодного моста и конденсатора. Используя свойства диодов, напряжение выпрямляется, а с помощью конденсатора убираются паразитные влияния.

Следует отметить, что при использовании диодного моста выходная разность потенциалов поднимется на величину, равную произведению переменного напряжения и величины 1.41.

Главным преимущество трансформаторного преобразования является простота и высокая надёжность. А недостатком — габариты и вес.

Самостоятельная сборка импульсных инверторов возможна только при хорошем уровне подготовке и знаний электроники. Хотя можно купить готовые наборы КИТ. Такой набор содержит печатную плату и электронные компоненты. В набор также входит электрическая схема и чертёж с подробным расположением элементов. Останется только всё аккуратно распаять.

Используя импульсную технологию, можно сделать и преобразователь с 12 на 220 вольт. Что очень полезно при использовании в автомобилях. Ярким примером может служить источник бесперебойного питания, сделанный из стационарного оборудования.

Преобразователь с 12 на 220: принцип действия, особенности подключения и эксплуатации. 120 фото лучших моделей

Все привыкли к электроприборам, работающим от сети 220В. Но как быть, если отправляешься в поход или какую-нибудь дальнюю поездку, а удобные бытовые приборы хочется взять с собой? Работать напрямую от аккумулятора автомобиля они не смогут, им просто не хватит мощности. Тут на помощь могут прийти преобразователи напряжения с 12 на 220В.

Что такое преобразователь и его суть

Благодаря техническому прогрессу, эти приборы стали на порядок меньше, и удобнее. Их легко переносить, и они не займут много места. Преобразователи способны поднять аккумуляторное напряжение до 220В. Работают даже от прикуривателя. С помощью подобных инверторов можно легко установить освещение в палатке, а так же питать от них планшет, ноутбук, и телефон.

ШИМ контролеры сделали такие устройства более продвинутыми. Заметно повысилось КПД, и форма тока стала подобна чистому синусу. Но это только в дорогих устройствах. Появилась возможность повышать мощность до нескольких кВт.

Продолжительность работы зависит от мощности, и емкости аккумуляторных батарей. Поэтому отправляясь в поездку лучше ограничиться электроприборами с низким потреблением энергии.

Сегодня, возможно, купить различные виды преобразователей тока, которые могут производить мощность от нескольких сотен ватт, до нескольких кВт. Но для туристических поездок стоит приобрести маломощный инвертор.

Единственным препятствием их всестороннего применения является измененная форма тока. Из обычной синусоиды, она превращается практически в прямоугольную форму. Не все бытовые приборы способны на ней работать.

Есть 3 вида конструкции преобразователя:

  • Автомобильный;
  • Компактный;
  • Стационарный.

Стоит отметить, что повышая нагрузку, КПД преобразователя снижается. Стационарные инверторы могут производить синусоиду. Их удобно использовать для повышения напряжения от ветряных генераторов, и солнечной батареи.

Характеристики преобразователей

Перед покупкой надо знать, как выбрать преобразователь напряжения. Первое на что стоит обратить внимание – это его характеристики. Часто продавцы говорят неправильные показатели инвертора. Указывают его пиковую мощность, на которой прибор может работать несколько минут, после чего отключается от перегрева. Так рекламируют самые доступные преобразователи.

Мощные преобразователи DC-AC увеличивают напряжение с 12В до 220В, форма тока и частота равны обычным показателям домашней сети. Поэтому все устройства и инструменты способны от него работать.

Все преобразователи тока имеют следующие параметры:

  • Рабочую мощность;
  • КПД;
  • Тип охлаждения;
  • Затраты энергии при холостой работе;
  • Максимальное потребление тока на входе;
  • Защитные механизмы от КЗ, и перегрева;
  • Форма тока на выходе;
  • Уровень напряжения для питания.

Высокий КПД современных инверторов обусловлен импульсными контролерами, примененными в конструкции. Практически 95% энергии уходят на полезную нагрузку. Остальная часть, рассеиваясь в устройстве, и нагревает его.

В самых простых и доступных преобразователях изменяется синусоида тока. Она становится прямоугольная, а в дорогих и мощных приборах форма тока остается такой же плавной синусоидой, как и в стандартной розетке.

Иногда, мощности преобразователей напряжения может не хватать для запуска строительных инструментов. Например, если дрель потребляет 750Вт, то она не будет работать от инвертора в 1000Вт. Для решения этой проблемы продаются устройства плавного пуска.

Преобразователи стационарного типа применяются для домашних работ. Это мощные устройства, способные выдавать несколько тысяч ватт. Более серьезные преобразователи используются на предприятиях, их мощность составляет десятки тысяч ватт.

Для автомобилей используются маломощные инверторы в несколько сотен ватт. Потому что аккумулятор не способен при больших нагрузках длительно работать.

Не рекомендуется использовать преобразователь на максимальных нагрузках. Его срок службы будет быстро сокращаться. Дорогие приборы имеют запас мощности, а в самых доступных этот показатель немного меньше того, что указан на корпусе.

Покупать устройство нужно на 20% мощнее предполагаемого потребления. Так же нужно интересоваться типом мощности указанной на корпусе. Она может быть:

  • номинальной;
  • продолжительной;
  • кратковременной.

Тип охлаждения

Алюминий – это металл, обладающий высокой теплопроводностью, а преобразователи (особенно мощные) работая на больших нагрузках, способны перегреваться. Поэтому корпуса изготавливаются именно из этого металла.

Для активной системы охлаждения в корпус монтируется вентилятор. Включается он, когда термодатчик зафиксирует превышение температуры. В автомобильных инверторах вентиляторы могут забиваться пылью, что приводит к плохой вентиляции воздуха, и перегреву.

На корпусе могут иметься элементы пассивного охлаждения. На вид – это алюминиевые ребра, которые помогают рассеивать тепло.

Самодельный преобразователь

У радиолюбителей есть возможность сделать с помощью схемы простой инвертор. В результате получится компактное устройство, способное питать, различные карманные гаджеты.

В схеме имеются всего четыре транзистора. Каждый, умеющий пользоваться паяльником сможет ее собрать. Полученным прибором удобно пользоваться в автомобиле. Он способен дать полноценную бортовую розетку на 220В.

Фото преобразователей с 12 на 220

Преобразователь с 12 на 220в: применение и свойства инверторов напряжения, однофазные электропреобразователи

Инвертор, или преобразователь, с 12 на 220 В — аппарат для трансформации постоянного тока в переменный с изменением величины напряжения. Чаще представляет собой генератор сигналов напряжения, по форме близких к синусоиде или разделенному импульсу. Прибор применяется как отдельное устройство, так в комплексе источников и систем бесперебойной подачи потребителям электроэнергии.

Способы применения

Особенно широко преобразователи тока с 12 на 220 В применяются в местах, где отсутствует снабжение электроэнергией. От любого автомобильного аккумулятора можно сделать 220 В для обеспечения подачи электричества в загородный дом.

Следует помнить, что инверторы напряжения из 12 В в 220 В преобразуют форму электрического тока, которая ограничивает его использование. То есть не все электрические приборы способны воспринимать напряжение, подающееся графически почти по прямоугольной форме. Конструктивно инверторы бывают:

  • автомобильными;
  • стационарными;
  • мобильными.

Если рассматривать выходную мощность, то автомобильные АКБ максимально выдают 500 Вт, а стационарные — до 10 тыс. Вт. Если при выезде за город на отдых или дачный участок необходимо в вечернее время осветить помещение или место ночевки, то самый простой способ заключается в подсоединении к преобразователю светодиодного светильника.

Расход энергии автомобильного аккумулятора — очень невыгодный процесс, так как с увеличением нагрузки уменьшается коэффициент полезного действия батареи.

Стационарные преобразователи напряжения 12—220 вольт в основном применяются для трансформирования электрической энергии солнечных батарей и ветряных конструкций. Мобильные инверторные преобразователи подключаются к сети от 12 до 50 В и считаются неприхотливыми в выборе источника питания. Для обслуживания автомобилей это устройство представляет собой зарядное устройство с розеткой.

Технические характеристики

Все электропреобразователи на выходе выдают стандартную частоту 50 Гц и напряжение 220 В. Эти выходные данные соответствуют требованиям домашнего электричества и совместимы со всеми потребителями. К основным параметрам относятся:

  • номинальная мощность;
  • КПД;
  • активная или пассивная система охлаждения;
  • потребление электроэнергии на холостом ходу;
  • величина максимального тока потребления на входе;
  • напряжение питания;
  • устройства защиты от короткого замыкания и перегрева оборудования.

Старые конструкции инверторов представляют собой трансформаторы тока, а современные модели собраны на импульсных контроллерах, обеспечивающих высокий КПД приборов. Иногда это значение достигает 95%, а оставшиеся 5% рассеиваются самим аппаратом, за счет чего происходит его нагрев.

В зависимости от модели инвертора 12—220 вольт, потребители на выходе получают прямоугольную синусоиду напряжения или в более дорогих конструкциях она соответствует стандартному значению. Некоторые приборы, обладающие большой пусковой мощностью, невозможно запустить от преобразователя.

Для этого необходимо применять переходники, состоящие из конденсаторов, которые могут обеспечить достаточный пусковой ток. Иногда просто необходимо ограничить применение некоторого электрического оборудования.

Полезные свойства аппаратов

Часто инверторы из 12 В в 220 В обеспечивают предохранение или ослабление функционирования информационных систем от качества сетей переменного тока. Если внезапно произойдет отключение электроэнергии, то с помощью запасной батареи и выпрямителя восстановится резервное питание и можно прекратить работу компьютера без потери необходимых данных.

В сложных и ответственных конструкциях эти устройства функционируют в более длительном и контролируемом режиме. Работа эта осуществляется как отдельно, так и параллельно с основной электрической сетью. Кроме того, инвертор может работать в качестве промежуточного звена в комплексе преобразователей.

Отличительной чертой в этом случае считается наличие высокой частоты напряжения — до 100 кГц. Для эффективной работы дополнительно используются полупроводниковые ключи, магнитные материалы и специальные контроллеры. Чтобы быть удобным для применения, инвертор должен обладать высоким коэффициентом полезного действия, надежностью и иметь компактные габаритные характеристики.

Выходное напряжение обязательно должно соответствовать техническим характеристикам общей сети, особенно это касается Grid-tie инверторов, которые используются для преобразования энергии солнечных батарей, ветровых генераторов и других экологически чистых источников.

Однофазные преобразователи

Отличаются они характеристиками синусоидального выходного напряжения. Более серьезные модели способны выдавать синусоиду, близкую к стандартному напряжению основной сети. Другая группа инверторов выдает график в упрощенной форме, который больше напоминает трапецеидальную форму.

Строение синусоиды напряжения большую роль играет для многих бытовых приборов. Некоторые из них не работают от напряжения, поступающего по упрощенной синусоиде. Она важна для устройств, обладающих:

  • электродвигателями;
  • трансформаторами;
  • телекоммуникационными приборами.

Кроме того, некоторое медицинское оборудование, аудио и видеоаппаратура просто не будут работать при неправильном выходном напряжении. Обычно инверторы работают в трех режимах. При длительном функционировании используется номинальная мощность агрегата.

В краткосрочном режиме перегрузки возможен расход энергии, в 1,5 раза превышающий номинальную мощность. При пусковом режиме происходит моментальная отдача повышенной мощности, которая используется для запуска электрических двигателей и других нагрузок с повышенной емкостью.

Дополнительная защита

Современный инвертор должен обладать защитой от короткого замыкания. В нем устанавливается предохранитель от случайного воздействия на предмет посторонних вмешательств, особенно если это касается детей.

Защита от перегрузки должна срабатывать своевременно, чтобы не произошло перегревания проводки и последующего возгорания. Блок защиты осуществляет предохранение преобразователя от короткого замыкания и большого значения входного напряжения. Для этого существуют индикаторы, которые показывают состояние электрической сети.

Дополнительные датчики и установленные вольтметры помогут выявить соответствующую неисправность. Расположенные на радиаторе охлаждения указатели температуры системы позволят осуществить управление вентилятором, когда показания превысят допустимое значение.

Популярные модели

Очень много моделей инверторов выпускается в нашей стране. Применяться они могут как в промышленном производстве, так и в бытовых условиях. Популярными считаются:

  1. AIRLINE API-150−01 — допустимый порог мощности прибора составляет 150 Вт. Корпус изготовлен из прочного пластика, который способен выдерживать высокие температуры. Автомобильный инвертор подключается от прикуривателя, который находится в салоне. К этому аппарату можно подключить несколько электрических приборов, общая мощность которых составляет не более 150 Вт. Аппарат имеет защиту от короткого замыкания и скачков входящего напряжения.
  2. Jet A JA-P11 — если поблизости нет сети электрической энергии, то этот аппарат выручит в любой ситуации. Максимальная мощность устройства составляет около 300 Вт. Существует защита от низкого питающего напряжения, перегрева и перегрузок.
  3. Titan HW-150E1 150 Вт — осуществляет возможность пользоваться электроприборами до 150 Вт. Подключается от автомобильного прикуривателя и выходное напряжение составляет 220—240 В. Вес аппарата не превышает 0,5 кг, что делает его очень удобным в дальних поездках.

Можно отметить и другие неплохие инверторы: Kensington Ultra Portable Inverter 150—33362EU, Inverter 150W AVS, Robiton 150W.

Выбираем преобразователь с 12 на 220 вольт

За долгие годы после появления электричества мы окончательно привыкли к сети 220, что любой прибор может от неё работать. Различную бытовую технику нам хочется взять с собой в путешествия или на отдых, но в автомобиле только 12 или 24. Для решения этой проблемы лучше всего использовать преобразователь напряжения с 12 до 220 вольт. Благодаря современной элементной базе и ШИМ контроллерам, такой блок стал миниатюрным и лёгким.

Второе распространённое название, это «автомобильный инвертор». Соответственно в интернет-магазине может называться по-разному, не всегда бывает легко найти.

Как всегда китайцы заманивают нас низкими ценами и большими мощностями инверторов 12 в 220. Об этом расскажу отдельно, вас вряд ли интересуют китайские ватты, у которых один нолик бывает лишний.

Содержание

  • 1. Применение
  • 2. Технические характеристики
  • 3. Мощность
  • 4. Охлаждение
  • 5. Пример характеристик
  • 6. Типовое энергопотребление
  • 7. Дополнительная защита
  • 8. Подключение в авто
  • 9. Как сделать своими руками
  • 10. Подключение ноутбука в авто
  • 11. Цены на преобразователи

Применение

Инверторы напряжения DC-AC нашли широкое применение  в местности без электрификации. От стандартного аккумулятора на 12В можно получить  бытовые 220В. Форма электрического тока на выходе немного ограничивает применение, не все электрические приборы могут переносить синусоиду почти прямоугольной формы.

По количеству Ватт на выходе в основном бывают:

  • автомобильные на 100вт, 300вт, 500 Ватт;
  • мощные стационарные 2000вт, 3000вт, 5000вт, 10000вт.

По конструкции делятся на:

  1. на автомобильные;
  2. стационарные;
  3. компактные.

Рассматривать преобразователь с 12 на 220 в машину буду для использования питания светодиодного освещения, так как весь сайт этому посвящен. Но всё это распространяется и на любую бытовую технику с питанием от сети 220В.

При выезде на пикник или отдаленную дачу бывает необходимость осветить помещение или место ночёвки. Самый простой способ, подключить светодиодный светильник или лампу для дома в автомобильный инвертор 12 220v. Это конечно не очень оптимально с точки зрения экономного расхода энергии аккумулятора авто, КПД снижается вместе с увеличением нагрузки. В лампочке  тоже стоит ШИМ драйвер для питания светодиодов.

Стационарный  инвертор 12 в 220 с чистым синусом незаменим при использовании энергии солнечных батарей или ветряков. Изначально такие генераторы выдают 12В, 24В, 36В, которые можно напрямую аккумулировать.

Компактные модели могут питаться от 12в до 50в, более неприхотливы в выборе источника питания.  В автомобильном варианте выглядят как большая зарядка с розеткой.

Технические характеристики

Все DC — AC преобразователи тока с 12 на 220 на выходе имеют стандартные параметры, частота 50 Герц и 220V. Они соответствуют параметрам в нашей домашней сети и  совместимы практически со всеми домашними устройствами.

Основные параметры:

  1. номинальная мощность;
  2. коэффициент полезного действия;
  3. активное или пассивное охлаждение;
  4. энергопотребление на холостом ходу;
  5. максимальный ток потребления на входе;
  6. напряжение питания;
  7. защита от замыкания и перегрева;
  8. вид синусоиды на выходе.

Все современные преобразователи конструктивно реализованы на импульсных контроллерах, которые обеспечивают высокий коэффициент полезного действия. Это значение может достигать 95%, остальные 5% энергии будут рассеиваться самим прибором, за счет которых он нагревается.

Самые доступные модели имеют модифицированную синусоиду на выходе, прямоугольного вида. У дорогих «чистая синусоида», такая же плавная, как обычной домашней розетке.

Некоторые электроприборы при включении потребляют энергии в 2 раза больше. Например, бытовая дрель на 750вт не сможет запуститься от инвертора на 1000вт. Пиковой кратковременной мощности повышающего преобразователя напряжения может не хватить для старта двигателя.  Решением такой проблемы будет использование электроприборов с плавным пуском.

Мощность

Реальная мощность дешевых DC-AC преобразователей с 12 на 220 может быть  в 2 – 3 раза ниже. Интернет-магазины и производители используют китайский маркетинг для увеличения продаж. Крупно указывают кратковременную пиковую мощность, на которой прибор может работать 5 минут, пока не отключится из-за перегрева и перегрузки.

Для домашнего можно смело покупать стационарные на 2000 вт, 3000 вт, 5000 вт, всегда найдется чем его загрузить. Промышленные уже на 10000вт, 15000вт и выше, рассчитаны на энергоснабжение электроинструментов. Для легковых автомобилей достаточно 100вт, 300вт, 500 Ватт, 2000вт. Если больше, то требуется серьёзная подготовка транспорта.

При выборе уточняйте, как мощность указана, номинальная долговременная или кратковременная.  При подсчёте предполагаемой нагрузки делайте запас  на 20%, чтобы не эксплуатировать преобразователь не пределе, это значительно продлит его ресурс.  У дорогих есть запас, у дешевых наоборот, слегка не хватает до нормы.

Подключение лучше проводит у специалистов, сила тока  от аккумулятора для автомобильного инвертора на 500W будет около 50А. По неосторожности можно спалить провода и много чего другого. Лучше перестраховаться и поставить дополнительный предохранитель или систему защиты. Джиперы ставят отдельную кнопку отключения массы. Я сторонник максимальной безопасности, на себе попробовал все виды воздействия электричества, даже когда отвертка в руках плавится.

Охлаждение

Пассивное с ребрами из алюминия

..

Нагрев зависит от полной мощности инвертора и подключенной нагрузки. В качестве системы охлаждения используется алюминиевый корпус устройства. Когда  мощность большая, то устанавливается вентилятор, за счёт которого циркулирует воздух внутри. Активное охлаждение работает не постоянно,  только когда температура корпуса превышает установленную и термодатчик включает вентилятор.

Автомобильный транспорт и любой другой подвержены сильному воздействию пыли. Поэтому при большой нагрузке вентилятор может просто не включится, потому что забился  пылью.

Активное охлаждение с вентилятором

Пример характеристик

В качестве наглядного примера рассмотрим типовые параметры обычного повышателя.

1. Номинальная рабочая  1000вт, работать на ней может любое количество времени.

2. Максимальная 2000вт, только в течение короткого промежутка времени 5-10 минут, некоторые приборы на старте потребляют в 2 раза больше.

3. Ток без нагрузки 1А, энергопотребление самого преобразователя напряжения от батареи без нагрузки. При 12В это будет 12 Ватт в час.

4. Форма сигнала, модифицированная синусоида — колебания тока прямоугольной формы, все дешевые повышатели дают только такую форму.

5. Входное напряжение 11-15В, при выходе за эти значения сработает защита, и всё отключится.

6. Напряжение на выходе 220В ±10%. Показатель зависит от нагрузки на инвертор и его качества. Обычно питание электроники рассчитано на изменения питания в этих пределах.

7. Частота тока 50Гц, частота колебаний в секунду.

8. КПД 94%, средний коэффициент полезного действия. Остальные 6% потребляет сам прибор, за счёт которых и нагревается. Хорошим КПД считается от 90%.

Типовое энергопотребление

В таблице указано  минимальное потребление энергии для популярной бытовой техники. Чтобы узнать  количество Ватт для конкретного прибора, посмотрите  количество Ватт на его блоке питания или поищите на корпусе. Если известна только маркировка и название модели, то всегда можно погуглить характеристики. Точнее всего будет замерять ваттметром еще дома, чтобы узнать точные реальные показатели, которые сильно зависят от режима работы.

 НаименованиеПримерное энергопотребление
Зарядное для смартфона или планшетаот 10вт
Нетбукот 15вт
Ноутбукот 30вт
Принтер струйныйот 30вт
Компьютерот 50вт
Бритваот 10вт
ЖК телевизорот 20вт
Фенот 700вт
Утюгот 1000вт
Чайник обычныйот 2000вт
Микроволновкаот 1000вт

Дополнительная защита

Хорошая модель с индикаторами

Хороший преобразователь напряжения с 12 на 220 должен иметь защиту от короткого замыкания, перегрузки и перегрева. Обязательно должен быть предохранитель  в самом устройстве. Мощность подключаемых приборов может меняться, да и дети случайно могут подключить утюг. Чтобы инвертор не сгорел, защита от перегрузки должна его своевременно отключить. Короткое замыкание приводит к возникновению большой силы тока, которая моментально разогревает провода и они воспламеняются. Блок защиты должен отключить выход инвертора, и не включать пока есть замыкание.

В качественных моделях блок защищен от неправильной полярности, слишком низкого и слишком высокого входного напряжения. Дополнительные индикаторы и встроенные вольтметры покажут текущее состояние, и помогают заблаговременно выявить неисправность.

Начинка и конструкция

Наличие термозащиты можно определить по наличию датчика температуры на радиаторе охлаждения силовых транзисторов. Этот датчик включает вентилятор, когда температура системы охлаждения превысила допустимую.

Подключение в авто

Чаще всего подключают в автомобилях, по неосторожности многие спалили не один предохранитель в блоке защиты электрики машины.  Прикуриватель имеет ограничение по мощности подключаемой нагрузки, смартфон и планшет вы можете заряжать без проблем. Во всех авто прикуриватель защищён предохранителем  около 15 Ампер от короткого замыкания. Это около 180W. В инструкции по эксплуатации производитель пишет, что не надо подключать в прикуриватель нагрузку более 130-150W, то есть максимум 12 ампер. При  перегрузке сгорит предохранитель и всё отключится. Если такое случилось, то можно временно взять предохранитель со второстепенной электрики, типа задних стеклоподъемников или противотуманных фар.

Только толстые провода или хорошие крокодилы

Мощную нагрузку на 12V можно подключать  только напрямую к аккумулятору или делать отдельную толстую проводку в салон авто. Провода не должны касаться подвижных частей силового агрегата и других механизмов под капотом.  Должны иметь защиту от истирания и замыкания на массу. С этим  сам сталкивался, когда прямо находу на трассе резко потухли все приборы в машине.

Нельзя использовать

Не используйте переходники с прикуривателя на крокодилы. Они бывают собраны только на обжиме, без пропайки. Избегайте любого плохого контакта на линиях питания, это приведет к нагреву этих участков.

Как сделать своими руками

Многим будет интересно собрать преобразователь напряжения с 12 на 220 своими руками. Чтобы сберечь своё время, предпочитаю использовать готовые блоки или подручные приборы. В интернете есть хорошие схемы на 2000, 2500 и 3000 Вт, они отличаются в основном количеством силовых транзисторов на выходе.

На Ебее и Алиэкспресс продаётся около 10  разновидностей готовых высоковольтных модулей. От простейших до качественных с кулером на радиаторе. Остаётся добавить провода и клеммы, установить розетку и дополнительную защиту.

Старый ИБП

Но  самый лучший вариант изготовления инвертора 12 в 220 своими руками, это использование источника бесперебойного питания ИБП. Это полностью готовое устройство, продвинутые модели снабжены экранами и индикаторами. Остаётся только вывести кабель на 12 вольт наружу. В ИБП есть основные виды защиты, на корпусе от 1 до 6 розеток.

Старый ИБП стоит 100-300руб, иногда их отдают бесплатно, у меня их валялось 3 штуки. Проще и быстрее их найти на Авито, встречаются очень хорошие модели по сказочным ценам.

Подключение ноутбука в авто

Отдельно рассмотрим подключение к прикуривателю ноутбука с  питанием на 19V. Использовать  автомобильный инвертор на 220V не рационально, придется с 12V делать 220V и потом 19V. Слишком много энергии будет уходить на преобразование. Оптимальный вариант, использование повышающего преобразователя с 12 на 19В.

Я купил универсальный блок за 250руб вместе с доставкой на Aliexpress. В российских магазинах за него просят слишком много, но можно поискать на Авито по доступной цене. Протестировал его своим ноутбуком, держит ток до 4А, количество вольт не проседает при нагрузке, нагрев в норме.

XL4016

Дешевые китайские блоки конечно имеют реальные параметры ниже заявленных  Но всегда можно доработать конструкцию и элементную базу.

Цены на преобразователи

Россияне любят затариваться мелкой электроникой на китайском базаре Aliexpress. По роду своей деятельности постоянно слежу за ценами на Алиэкспресс и сравниваю с российскими. На октябрь 2016 года покупать на Алиэкспресс не выгодно из-за курса доллара. Можно дешевле и лучше купить в России, к тому же получите гарантию и возможность обмена в течение 2 недель.

Китайцы любят завысить технические характеристики, ведь 99% из вас не будут проверять соответствие обещанных параметрам. А оставшийся 1% потребует небольшой компенсации за обман со стороны продавца. По опыту коллег обещанные китайцами 3000вт можно смело делить на 3, и получите реальное долговременную мощность.

Если вы прочитали обзор про китайский преобразователь с 12 на 220, где им довольны и пишут, что хорошо работает, не бросайтесь идти и покупать по ссылке. Их выпускают разные заводы, начинка бывает разные даже в пределах одной партии. Контроль качества у них низкий, процент брака относительно высокий. Отзывы пишут в основном люди, которые купили его недавно и пользуются ими в первый раз. То есть объективность мнения очень низкая, верьте только результатам измерений и тестов.

Особенности преобразователя напряжения с 12В в 220 В

Речь пойдёт о преобразователях постоянного напряжения 12 Вольт, в переменное 220 Вольт. Так как именно этот вопрос более актуален. Повышение переменного напряжения меньшей величины, в переменное большей, не является сложным, так как это можно сделать с помощью любого повышающего трансформатора. Для этого также можно использовать и обычный понижающий трансформатор с 220 на 12 Вольт, только вот включить его в обратную сторону. То есть на вторичную обмотку подать 12 В, тогда на первичной генерируется 220 В. Другое дело состоит в увеличении постоянного тока, а тем более с преобразованием его в переменный.

Применение

Где же может использоваться такой преобразователь? Вот самые распространенные сферы его применения:

  1. Если существует необходимость запитать какие-либо бытовые приборы от аккумуляторной батареи автомобиля. Использование этого устройства может пригодиться в дороге, например, если нет переходника для мобильной подзарядки, или же существует необходимость подключения в автомобиле любого домашнего электроприбора;
  2. Если есть отопительный котёл на квартиру или дом, то его насосы тоже рассчитаны на переменное напряжение 220 Вольт. Для котлов напряжения аккумуляторной батареи, естественно, не подойдёт. Бывают такие случаи когда происходят аварийные отключения в сетях электроснабжения, и нужно чтобы не заморозить систему отопления, выполнять циркуляцию горячей воды по отопительной системе. Для этого можно воспользоваться автомобильным аккумулятором подключив к нему электронный блок, инвертирующий постоянное напряжение в переменное, ещё и повышающий его до стандартных 220 Вольт. Это даст возможность на какой-то период времени восстановить циркуляцию горячей воды в системе.

Это основные примеры использования данного преобразователя, так как в жизни их может быть ещё несколько в зависимости от местных бытовых условий.

Простой преобразователь напряжения

Принцип работы и особенности источников бесперебойного питани

Простейший преобразователь можно собрать тремя способами:

  1. Покупка и сборка уже готовых электронных блоков, и соединение их в одну сеть. Китайские интернет-магазины пестрят различными устройствами и блоками данного типа.
  2. Бесперебойные блоки питания имеют в своём вооружении элементы этого инвертора, то для изготовления данного устройства придется переделать исправный бесперебойник.
  3. Изготовление плат и применение радиолюбительских схем.

Принцип работы

Особенности применения и устройства сварочных трансформаторов

Принцип действия всех современных преобразователей напряжения основывается на работе высокочастотного ШИМ (широтоно — импульсной модуляции) контролера, который и задаёт весь режим преобразования. Силовая часть выполнена на достаточно мощных транзисторах, в качестве теплоотвода которых, используются алюминиевые радиаторы или же сам корпус устройства. На входе чаще всего устанавливается предохранитель, защищающий от коротких замыканий в цепи автомобильного аккумулятора. Ведь от этого он будет испорчен. Внутри его нет никаких токоограничивающих устройств. Для того чтобы избежать перегрева устанавливается один или даже несколько вентиляторов. Некоторые бюджетные преобразователи напряжения могут работать в нормальном режиме при постоянно включенной принудительной вентиляции. Главное, чтобы на выходе устройства было стабильное переменное напряжение чистой синусоидальной формы. Иногда некоторые некачественные приборы выдают модифицированную синусоиду, от которой не каждый бытовой прибор будет работать в нормальном режиме, а может и попросту выйти из строя.

Как выбрать преобразователь напряжения 12 220 вольт

Особенности работы и применения резонансного трансформатора Тесла

Для того чтобы правильно подобрать инвертор постоянного напряжения 12В в переменное 220В необходимо:

  • Чётко понимать какое устройство от него будет питаться в будущем. То есть тип нагрузки;
  • Узнать суммарную мощность всех подключаемых электроприборов. Лучше выбирать с запасом по мощности, чтобы избежать частых перегревов;
  • Продолжительность работы будет зависеть от ёмкости источника постоянного тока, то есть аккумуляторной батареи;
  • Если покупать уже готовый прибор, то желательно выполнять это на официальных ресурсах с хорошей репутацией, и гарантийными условиями.

Рейтинг преобразователей напряжения 12в 220в

Согласно исследованиям и отзывам людей, которые уже испробовали данной аппарат можно отметить некоторые из них:

  1. «Порто Е 150» многие из покупателей уже оценили качество этого преобразователя. Главным преимуществом его является ценовая категория, которая значительно ниже других марок. Правда, небольшая мощность его не даст подключить к нему мощных потребителей. Хочется отметить также компактные размеры модели, и качественный штекер, позволяющий подключить его прямо от прикуривателя автомобиля. Однако в комплекте прилагаются и специальные зажимы к аккумулятору.
  2. «Тесла ПН 2200» Хорошая производительность этой модели основывается на качественной двух вентиляторной системе охлаждения. Имеет защиту от перегрузок в выходной цепи. В комплект входят различные разъёмы для подключения внешних потребителей электроэнергии. Корпус изготовлен из качественного алюминия, который служит дополнительным отводящим тепло материалом.

Ремонт преобразователя напряжения 12 220

Ремонт 12 вольтовых аппаратов чаще всего сводится к замене силовых выходных транзисторов. Так как они являются самыми уязвимыми элементами этого устройства. Если конструктивно он выполнен с блоков, то стоит попробовать заменить весь блок, перед этим, конечно, проверив предохранители на входе и выходе, если такие имеются. Остальной мелкий ремонт нецелесообразен. Если ремонтируется простейшие инверторы, то в них применяются чаще всего простые радиодетали которые проверяются с помощью омметра.

В итоге хотелось бы снова напомнить о безопасности работы с электрооборудованием, так как 12 Вольт считается безопасным напряжением, а вот выходное может существенно навредить здоровью даже физически крепкого человека. Поэтому перед выполнением подключения рекомендуется сразу подключить потребителя, а уж потом подавать входное напряжение 12 Вольт. Если, конечно, аппарат не оборудован стандартными диэлектрическими розетками.

Видео обзор преобразователя



Постоянный и переменный ток. Значение трансформаторов.

Без электричества и электрических приборов уже попросту невозможно представить современный мир. Всё к чему мы так привыкли: освещение, бытовые приборы, компьютеры, телевизоры – так или иначе связано с электропитанием. Однако, стоит отметить, что одни приборы работают от переменного тока, а другие – питаются от источников постоянного тока.

Постоянным током называют ток, который в течение некоторого промежутка времени не меняет своего направления и величины. Таким образом, постоянный ток имеет постоянное напряжение и силу тока.

Постоянный ток используется:

  • Для передачи электроэнергии на высоковольтных линиях электропередач (например, 500 кВ). Это связано с тем, что если применять переменный ток того же напряжения, с учетом амплитудных значений напряжений и их перепада, то такие напряжения могут превышать величину напряжения постоянного тока в несколько раз. Использование переменного тока в высоковольтных проводах приведет к дополнительным тратам на изоляционные материалы, что значительно увеличит стоимость ЛЭП.
  • В контактных сетях электрического транспорта – троллейбусов и трамваев – до 3000 В.
  • В сетях до 1000 В для электродвигателей с тяжелыми условиями пуска – прокатные станы, центрифуги и прочее.
  • Для электросетей до 500 В, используемых для грузоподъемных механизмов – подъемных электрических кранов.
  • В качестве источника питания различных переносных бытовых приборов – фонарики, аудиоприёмники, диагностические приборы, мультиметры, мобильные телефоны.


Поток электронов идет строго по прямой линии, никак не колеблясь и не изменяясь. У такого тока нет частоты, потому что нет колебаний. Поток электронов (каждый электрон) двигается строго в одном направлении от «минуса» к «плюсу». Поэтому в батарейках так важно соблюдать полярность. Если подключите два «минуса» или два «плюса», ток просто не потечет.

Стоит отметить, что в условиях тяжелого пуска – то есть если пусковой момент высок, а требуется плавное регулирование скорости, тягового усилия и пускового момента – применяются двигатели постоянного тока. Таковыми, например, являются двигатели электротранспорта, электрических мельниц, центрифуг.

Постоянный ток, чаще всего можно встретить в различных элементах питания – аккумуляторах и батарейках. Скажем, в автомобилях используется аккумуляторы постоянного тока напряжением 12 В; для строительной техники, например, экскаваторов, бульдозеров используются аккумуляторы, имеющие напряжение в 24 В. Аккумулятор мобильного телефона автора статьи – постоянного тока напряжением 3,7 В.

Каждый источник постоянного тока имеет две клеммы или разъема, обозначаемые как плюс (+) и минус (-). Считается, что постоянный ток движется от плюсовой клеммы (+) к минусовой (-), при этом, между ними можно подключить оборудование (например лампочку). 

На самом деле, процессы, протекающие в электросети постоянного тока происходят очень быстро, и изобразить их в реальном времени не представляется возможным.

Схематично, действие постоянного тока в простейшей сети, многократно замедленное. Оно дает наиболее полное представление о процессах, происходящих в сети постоянного тока.

Переменный ток – это ток, который за определенный промежуток времени, меняет свое направление. Частота смены направления измеряется в герцах. 1 герц (Гц) означает, что за одну секунду совершен полный цикл смены направления (туда-обратно). В Европейских странах, в том числе и в России, в бытовых электросетях используется однофазный переменный ток, имеющий частоту 50 Гц, то есть меняющий своё направление 100 раз в секунду.

Таким образом, за одну секунду через нить лампы, горящей на обычном письменном столе, ток проходит 50 раз в одном направлении и пятьдесят раз в обратном.

В американских и канадских электросетях используется переменный ток с частотой в 60 Гц, вместо общепринятого переменного тока с частотой в 50 Гц.

Также, как источник постоянного тока имеет две клеммы – плюсовую и минусовую, источник однофазного переменного тока имеет две клеммы или разъема, называемые «фаза» и «ноль».

Кстати, переменный ток в домашней розетке называется однофазным, как раз из-за наличия одного разъема «фаза». Величина напряжения переменного однофазного тока равна 220 В.

Переменный ток действует следующим образом: переменный ток начинает движение из «фазы» в сторону «нуля», доходит до него, останавливается, и затем, движется в обратном направлении.

Особенностями переменного однофазного тока являются:

  • Среднее значение силы переменного тока за период равняется нулю.
  • Переменный ток за период меняет не только направление движения, но и свою величину.
  • Действующее значение силы переменного тока – это сила такого постоянного тока, при которой средняя мощность, которая выделяется в проводнике в цепи переменного тока, равна мощности, которая выделяется в том же проводнике в цепи постоянного тока. Когда говорят о токах и напряжении в сети переменного тока, имеют в виду их действующие значения.


Поток электронов постоянно колеблется с определенной частой (в 50 герц), образуя синусоиду (волнистую линию).
Поток электронов двигается как угодно, отдельные электроны в потоке тоже движутся хаотично. Для переменного тока не требуется соблюдать полярность.

 

Действующее напряжение сети переменного тока в обыкновенной бытовой розетке составляет напряжение в сети 220 вольт.

Широкое применение переменного тока в технике и для бытовых нужд вызвано тем, что, переменный ток легко трансформируется. Напряжение в сети переменного тока может быть легко повышено или понижено при помощи специального устройства –трансформатора.

Трансформатор — электромагнитное устройство, которое преобразует посредством электромагнитной индукции переменный ток таким образом, что напряжение в сети уменьшается либо увеличивается в несколько раз без изменения частоты, и практически без потери мощности.

Для преобразования напряжения переменного тока в сторону уменьшения (например, силовые трансформаторы с 10 000 В городских сетей до 220 В домашней сети) применяются понижающие трансформаторы. Для преобразования напряжения сетей в сторону повышения – повышающие трансформаторы.

 

Как получить постоянное напряжение из переменного. Как получить постоянное напряжение из переменного Как 12в переменный сделать в постоянный

Источник бесперебойного питания постоянного тока «Штиль» PS1205B предназначен для обеспечения гарантированного электроснабжения постоянным напряжением 12 В различных типов устройств, требовательных к качеству сети:

Потребляемый ток подключенного оборудования не должен превышать 5 А. При выборе ИБП также необходимо учитывать, что указанный выходной ток должен обеспечивать как питание нагрузки, так и заряд АБ. Если выходного тока ИБП PS1205B Вам недостаточно, обратите внимание на более мощные модели.

Конструктивно источник питания выполнен в виде модуля настенного крепления с отсеком для установки аккумуляторной батареи емкостью 7 Ач. Передняя панель изделия снабжена светодиодными индикаторами наличия входного и выходного напряжения. Внутри модуля размещены клеммные колодки для подключения к ИБП сети, нагрузки и вывода дистанционной сигнализации. Для лучшего охлаждения кожух ИБП имеет вентиляционные отверстия.

ИБП постоянного тока «Штиль» PS1205B построено по схеме ШИМ преобразователя переменного тока напряжением 220 В в постоянный ток с напряжением 12 В. Такой принцип работы позволяет обеспечить требуемые нагрузочные характеристики при минимальных массогабаритные показателях. Для соответствия требованиям электромагнитной совместимости в изделии установлены помехоподавляющие входные и выходные фильтры.

Источник питания осуществляет автоматический переход на режим работы от АБ при пропадании сетевого напряжения. Реализованная в изделии схема ограничения тока заряда аккумуляторной батареи и защита от «глубокого» разряда позволяют оптимальным образом использовать ее ресурс. Автоматический переход в режим работы от сети происходит при восстановлении параметров входного напряжения.

Здравствуйте. Расскажу сегодня про достаточно полезный в некоторых моментах автомобильный прибор — инвертор, который преобразовывает бортовое напряжение 12 вольт постоянного тока в переменное напряжение 220 вольт 50 герц.
В обзоре немного текста, фотографии прибора снаружи и внутри, а также осциллограммы выходного напряжения при разных нагрузках.
Сначала зачем это надо: В связи с отсутствием гаража, моя машина «живёт» на улице. Т.к. живу я на юге нашей страны, то это совсем не страшно для машины, но вот иногда появляется необходимость воспользоваться паяльником, а он у меня обычный на 220 вольт. Вот и приходится использовать различные варианты последовательного включения удлинителей, чтобы дотащить заветные 220 вольт с 3 этажа дома до машины. Вот чтобы больше не мучаться и был заказан маломощный инвертор.
Пришел в бумажном конверте:

Блистер обмотан «пупыркой», а также в комплекте уже почти традиционный подарок. Упаковка практически не пострадала:

Комплект состоит из инвертора, оборудованного разъёмом вставляемым в «прикуриватель», переходником под разные виды вилок (наши советские вилки вставляются и без переходника), а также инструкцией на китайском и английском языках:

Сразу предостережение: разъём для «прикуривателя» не оборудован предохранителем, поэтому пользоваться нужно учитывая данный факт:
Рассмотрим инвертор поближе:


Размеры прибора небольшие, примерно 9х6х5 см. На передней панели присутствует зелёный светодиод индицирующий работу, USB разъём для зарядки различных гаджетов, позволяющих это делать от USB, ну и выходная «розетка», в которую можно вставлять вилки маломощных потребителей (в моём случае паяльник и ноутбук).
Разбираем:

Корпус прибора сделан из алюминиевого сплава, который является сразу и радиатором для мощных транзисторов. Также можно заметить трансформатор с ферромагнитным сердечником. Для получения 5 вольт необходимых для USB разъёма, используется линейный стабилизатор 7805, который не оборудован радиатором, поэтому я бы не рекомендовал заряжать что-либо от этого разъёма.
Посмотрим что мы имеем на выходе:

Как и ожидалось, на выходе не синусоида, а меандр с паузой. В большинстве бытовых источниках бесперебойного питания (ИБП) форма выходного сигнала именно такая. Напряжение такой формы производители ИБП называют «ступенчатым приближением к синусоиде» (англ. — stepped approximation to a sine wave). Эта форма кривой позволяет, при правильно подобранных амплитуде напряжения и длительности пауз, выполнить требования разных нагрузок. Например при длительности паузы около 3 мс (для частоты 50 Гц) действующее значение напряжения совпадает с действующим значением синусоидального напряжения той же амплитуды. Амплитудное значение напряжения без нагрузки около 310 вольт, что соответствует напряжению в бытовой сети. Мультиметр показывает потребляемый ток от 12 вольтового аккумулятора. Т.о. ток «холостого хода» примерно 0,2А.
Нагрузим инвертор 25 ваттным паяльником:
Потребляемый ток поднялся до 2,2А, что и составляет примерно 25 ватт, однако уменьшилась амплитуда выходного напряжения до 250 вольт, но изменилась и форма выходного сигнала — уменьшились паузы, что должно скомпенсировать падение амплитуды. Могу констатировать, что паяльник нагрелся до необходимой для пайки температуры.
Нагрузим инвертор 60 ваттной лампой накаливания:
Потребляемый ток увеличился до 4,5 ампер, что соответствует 54 ваттам. Почему не 60? Потому, что инвертор уже не выдаёт требуемую мощность, амплитудное напряжение упало почти до 200 вольт, паузы также уменьшились, но это не помогло, т.к. падение мощности свечения лампы по сравнению с подключением к бытовой сети электроснабжения заметно на глаз.
100 ваттной лампы не нашлось, да и особого смысла нет. И так примерно всё ясно.
Что мы имеем в итоге: Небольших габаритов преобразователь напряжения, который можно использовать для приборов небольшой мощности: маломощных паяльников, ноутбуков…
В принципе я доволен результатом.
По цене сказать ничего не могу, т.к. рынок инверторов не изучал, а этот образец мне был предоставлен бесплатно магазином ChinaBuye.

Планирую купить +24 Добавить в избранное Обзор понравился +38 +78

Использование в повседневной жизни различных электрических приборов и устройств, работающих благодаря электроэнергии, обязывает нас иметь минимальные познания в области электротехники. Это знания, которые сохраняют нам жизнь. Ответы на вопросы о том, как из постоянного тока сделать переменный, какое напряжение должно быть в квартире и какой современный человек должен знать, чтобы избежать поражения и гибели от него.

Способы получения электричества

Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.

Существует несколько способов получения электричества:

  • из тепловой энергии;
  • из энергии воды;
  • из атомной (ядерной) энергии;
  • из ветровой энергии;
  • из солнечной энергии и др.

Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.

Электричество из энергии ветра

Электрический ток — это Самый простой способ его получения — энергия природных сил.

В данном примере от энергии ветра. Природный феномен дующего с различной силой ветра люди научились использовать давно. Укрощает ветер простой ветряк, оборудованный приводом и соединённый с генератором. Генератор и вырабатывает электрическую энергию.

Излишки тока при постоянном использовании ветряка можно накапливать в аккумуляторных батареях. Выработанный постоянный экологически чистый ток в быту и производстве не применяется.

Полученный и преобразованный в переменный ток, он идет для бытового использования. Накопленные излишки электричества хранятся в аккумуляторных батареях. При отсутствии ветра запасы электричества, хранящиеся в аккумуляторах, преобразуются и поступают на нужды человека.

Электроэнергия из воды

К большому сожалению, этот вид природной энергии, дающий возможность получать электричество, не везде имеется. Рассмотрим там, где воды много.

Простейшая ГЭС, сделанная из дерева по принципу мельницы, размер которой порядка 1,5 метров, способна обеспечить электричеством, используемым и на отопление, частное подсобное хозяйство. Такую бесплотинную ГЭС сделал русский изобретатель, уроженец Алтая — Николай Ленев. Он создал ГЭС, перенести которую могут два взрослых мужчины. Все дальнейшие действия аналогичны получению электричества от ветряка.

Вырабатывают электричество и крупные электростанции и гидростанции. Для промышленного получения электричества применяют огромные котлы, дающие пар. Температура пара достигает 800 градусов, а давление в трубопроводе поднимается до 200 атмосфер. Этот перегретый пар с высокой температурой и огромным давлением поступает на турбину, которая начинает вращаться и вырабатывать ток.

То же самое происходит и на гидроэлектростанциях. Только здесь вращение происходит за счёт больших скорости и объема воды, падающей с огромной высоты.

Обозначение тока и применение его в быту

Постоянный ток обозначается DC. На английском языке пишется как Direct Current. Он в процессе работы со временем не меняет своих свойств и направления. Частота постоянного тока равна нулю. Обозначают его на чертежах и оборудовании прямой короткой горизонтальной черточкой или двумя параллельными черточками, одна из которых пунктирная.

Используется постоянный ток в привычных нам аккумуляторах и батарейках, используемых в огромном числе различного типа устройств, таких как:

  • счетные машинки;
  • детские игрушки;
  • слуховые аппараты;
  • прочие механизмы.

Все ежедневно пользуются мобильным телефоном. Зарядка его происходит через блок питания, компактный преобразователь DC/AC, включаемый в бытовую розетку.

Электрические приборы потребляют переменный однофазный ток. Электроприборы заработают только с подключением трансформатора и Многие производители устанавливают преобразователь DC/AC непосредственно в сам агрегат. Это намного упрощает эксплуатацию электрооборудования.

Как из постоянного тока сделать переменный?

Выше говорилось, что все аккумуляторы, батарейки для фонариков, пультов телевизоров имеют постоянный ток. Чтобы преобразовать ток, существует современное устройство под названием инвертор, он с легкостью из постоянного тока сделает переменный. Рассмотрим, как это применимо в повседневности.

Бывает, что во время нахождения в автомашине человеку необходимо срочно распечатать на ксероксе документ. Ксерокс имеется, машина работает и, включив в прикуриватель переходник на инвертор, он может подключить к нему ксерокс и распечатать документы. Схема преобразователя достаточно сложна, особенно для людей, которые имеют отдаленное понятие о работе электричества. Поэтому в целях безопасности лучше не пытаться самостоятельно соорудить инвертор.

Переменный ток и его свойства

Протекая, переменный ток в течение одной секунды меняет направление и величину 50 раз. Изменение движения тока — это его частота. Обозначается частота в герцах.

У нас частота тока 50 герц. Во многих странах, например США, частота равна 60 герц. Также бывает трёхфазный и однофазный переменный ток.

Для бытовых нужд приходит электричество, равное 220 вольтам. Это действующее значение переменного тока. Но амплитуда тока максимального значения будет больше на корень из двух. Что в итоге даст 311 вольт. То есть фактическое напряжение бытовой сети составляет 311 вольт. Для изменения постоянного тока на переменный применяются трансформаторы, в которых используются различные схемы преобразователей.

Передача тока по высоковольтным линиям

Все электрические наружные сети несут по своим проводам переменный ток различного напряжения. Оно может колебаться от 330000 вольт до 380 вольт. Передача осуществляется только переменным током. Данный способ транспортировки — самый простой и дешёвый. Как из переменного тока сделать постоянный, давно известно. Поставив трансформатор в нужном месте, получим необходимое напряжение и силу тока.

Схемы преобразователей

Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.

Вторая схема преобразователя переменного тока — это на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.

Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.

Какой электрический ток опаснее — постоянный или переменный?

В повседневной жизни мы постоянно сталкиваемся на работе и в быту с электроприборами, подключенными в розетки. Ток, бегущий от электрического щита до розетки, однофазный переменный. Происходят случаи поражения электрическим током. Меры безопасности и знания о поражении током необходимы.

В чем принципиальная разница между попаданием под напряжение переменным током и постоянным? Имеется статистика, что переменный DC однофазный ток в пять раз опаснее постоянного AC тока. Поражение током, вне зависимости от его типа, само по себе отрицательный факт.

Последствия от поражения током

Небрежность в обращении с электроприборами может, мягко говоря, негативно сказаться на здоровье человека. Поэтому не стоит экспериментировать с электричеством, если на то нет специальных навыков.

Действие тока на человека зависит от нескольких факторов:

  • сопротивления тела самого потерпевшего;
  • напряжения, под которое попал человек.
  • от силы тока на момент контакта человека с электричеством.

С учетом всего перечисленного можно сказать, что действие переменного тока намного опаснее, чем постоянного. Имеются данные экспериментов, подтверждающие факт, что для получения равного результата при поражении сила постоянного тока должна быть в четыре — пять раз выше, чем переменного.

Сама природа переменного тока отрицательно сказывается на работе сердца. При поражении током происходит непроизвольное сокращение сердечных желудочков. Это может привести к его остановке. Особенно опасно соприкосновение с оголенными жилами людям, имеющим сердечный стимулятор.

У постоянного тока частота отсутствует. Но высокие напряжение и сила тока могут привести также к летальному исходу. Выйти из под контакта с постоянным электрическим током проще, чем из-под контакта с переменным.

Этот небольшой обзор природы электрического тока, его преобразования должен быть полезен людям, далеким от электричества. Минимальные познания в области происхождения и работы электроэнергии помогут понять суть работы обычных бытовых приборов, которые так необходимы для комфортной и спокойной жизни.

Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.

Получаем 12 Вольт из 220

Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

  1. Понизить напряжение без трансформатора.
  2. Использовать сетевой трансформатор 50 Гц.
  3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

Понижение напряжения без трансформатора

Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

  1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
  2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
  3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

Гасящий конденсатор

Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

  • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
  • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

Схема изображена на рисунке ниже:

R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

Или усиленный вариант первой схемы:

Номинал гасящего конденсатора рассчитывают по формуле:

С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

С(мкФ) = 3200*I(нагрузки)/√Uвход

Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

Конденсаторы должны быть такими – пленочными:

Или такие:

Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

Блок питания на сетевом трансформаторе

Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

Uвых=Uвх*Ктр

Ктр – коэффициент трансформации.

Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

12 Вольт из 24 Вольт или другого повышенного постоянного напряжения

Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.

Схема с линейным стабилизатором упоминалась в предыдущем пункте.

К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.

Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.

Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.

Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.

Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.

12 Вольт из 5 Вольт или другого пониженного напряжения

Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.

Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.

Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.

Как получить 12В из подручных средств

Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео

Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) – это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.

Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации :

Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).

Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор . А для того, чтобы преобразовать в постоянное пульсирующее напряжение , мы с вами после трансформатора подключали Диодный мост . На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.


Но как же нам из пульсирующего постоянного напряжения

получить самое что ни на есть настоящее постоянное напряжение?

Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:


В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.

Зависимость пульсаций от емкости конденсатора

Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:


Рассмотрим первый. Замеряем его номинал с помощью нашего LC – метр . Его емкость 25,5 наноФарад или 0,025микроФарад.


Цепляем его к диодному мосту по схеме выше


И цепляемся осциллографом:


Смотрим осциллограмму:


Как вы видите, пульсации все равно остались.

Ну что же, возьмем конденсатор емкостью побольше.

Получаем 0,226 микрофарад.


Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.


А вот собственно и осциллограмма


Не… почти, но все равно не то. Пульсации все равно видны.

Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.


Цепляем его к диодному мосту снимаем с него осциллограмму.


А вот собственно и она


Ну вот. Совсем ведь другое дело!

Итак, сделаем небольшие выводы:

– чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.

– чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью , а также используют интегральные стабилизаторы напряжения , которые выдают чистейшее постоянное напряжение.

Как подобрать радиоэлементы для выпрямителя

Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать .


где

U Д – действующее напряжение, В

U max – максимальное напряжение, В

Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула . Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!

Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).

Ну и напоследок, чтобы лучше запомнилось:


Рекомендуем также

Преобразование переменного тока в постоянный: 3 ступени

Большая часть бытовой электроники преобразует переменный ток в постоянный ток. У некоторых есть большая черная бородавка на стене, которая неприглядна, и почти невозможно подключить более одной к удлинителю, не занимая два или три слота каждый. В других встроена схема преобразования. Большую часть веса устройства составляет сам трансформатор, который обычно состоит из нескольких стальных пластин, соединенных между собой, а затем эпоксидных смол, и двух или более обмоток из медной проволоки с покрытием.Каждая обмотка может быть любой, от нескольких до нескольких тысяч витков. Количество обмоток определяет, насколько сильно вы измените напряжение. Когда ток вводится через одну обмотку (или катушку), он создает магнитное поле с полюсами, образующимися вдоль оси обмотки. Если рядом расположить другую катушку вдоль той же оси, магнитное поле будет индуцировать ток и, следовательно, напряжение во второй катушке. Добавление магнитопроницаемого сердечника между ними значительно усиливает эффект, уменьшая потери.Поскольку обе обмотки сделаны из изолированного провода, вы можете обернуть одну вокруг другой, обернув обе вокруг сердечника. Это очень эффективно и экономит место, тем более что вы можете добавить несколько отдельных обмоток для получения любого напряжения, которое вам нужно. Это делают компьютерные блоки питания. Единственное, что на выходе всегда переменный ток, так как для работы магнитной муфты магнитное поле должно менять полярность. Единственный способ сделать это — использовать переменный ток, который переключается между положительным и отрицательным напряжением с частотой 50-60 Гц.Чтобы электронные схемы работали, мы должны преобразовать это пониженное переменное напряжение в ровное стабильное постоянное напряжение.

Вот тут-то и пригодится мостовой выпрямитель, и в данном случае двухполупериодный выпрямитель. Мы можем сделать его из отдельных дискретных диодов или использовать специально созданный. Идея состоит в том, что мы переключаем отрицательные импульсы переменного тока на положительные и оставляем там уже положительные импульсы. Существует некоторая потеря напряжения из-за требований к напряжению диодов, но она минимальна, и если вы ее планируете, это вообще не повлияет на результат.Конечным результатом является импульсное напряжение постоянного тока, изменяющееся от 0 до максимального напряжения при 120 Гц. Мы используем конденсатор на выводах «+» и «-», чтобы сгладить пульсации. Когда напряжение повышается от 0 до максимального, конденсатор заряжается. Когда напряжение начинает падать, конденсатор разряжается по цепи, но с гораздо меньшей скоростью, фактически поддерживая напряжение, пока напряжение падает до 0, а затем снова поднимается. Как только напряжение повышается до уровня напряжения конденсатора, он перезаряжает конденсатор и снова возвращается к максимальному значению.Конденсаторы большего размера позволят напряжению оставаться на более высоком уровне дольше, поэтому вы получите меньше пульсаций. Пока пульсация не опускается ниже определенного значения, например +12 В постоянного тока, мы можем использовать его для питания регулятора напряжения, который просто стабилизирует шаткое входное напряжение до определенного выходного напряжения. Двухполупериодные выпрямители здесь лучше, чем полуволновые, так как между высокими и низкими импульсами меньше времени, что приводит к более стабильному выходу.

Схемы показаны для двухполупериодного выпрямления с использованием трансформатора с центральным отводом и для однополупериодного выпрямления, если вам интересно.В оставшейся части этого руководства я буду использовать вариант двухполупериодной схемы, показанной на изображении 1.

Для более подробных и лучших объяснений см. Статьи о выпрямителях, диодных мостах, трансформаторах и регуляторах напряжения в Википедии.

PMP7883 Преобразователь переменного тока в автономный режим, обеспечивающий выход 5 В или 12 В постоянного тока при 2 А


См. Важное примечание и Заявление об ограничении ответственности, касающиеся эталонных проектов и других ресурсов TI.


Описание

Следующая конструкция, управляемая LM5023, принимает вход переменного тока, как и те, которые находятся в общей розетке в США, и генерирует выход 5 В / 12 В, сигнал постоянного тока 2 А, выходы, обычно используемые для подключений USB.

См. Важное примечание и заявление об ограничении ответственности, относящиеся к эталонным проектам и другим ресурсам TI.

Устройства TI (1)

Закажите образцы, получите инструменты и найдите дополнительную информацию о продуктах TI в этом справочном дизайне.

Символы CAD / CAE

Texas Instruments и Accelerated Designs, Inc. сотрудничали друг с другом, чтобы предоставить клиентам TI схематические символы и посадочные места на печатных платах для продуктов TI.

Шаг 1 : Загрузите и установите бесплатную загрузку.

Шаг 2 : Загрузите символ и посадочное место из таблицы файла CAD.bxl.

Texas Instruments и Accelerated Designs, Inc. сотрудничали друг с другом, чтобы предоставить клиентам TI схематические символы и посадочные места на печатных платах для продуктов TI.

Шаг 1 : Загрузите и установите бесплатную загрузку.

Шаг 2 : Загрузите символ и посадочное место из таблицы файла CAD.bxl.

Шаг 3 : Откройте файл .bxl с помощью программного обеспечения Ultra Librarian.

Вы всегда можете получить доступ к полной базе данных символов CAD / CAE по адресу https://webench.ti.com/cad/

Посадочные места печатной платы и условные обозначения доступны для загрузки в формате, не зависящем от производителя, который затем может быть экспортирован в ведущие инструменты проектирования EDA CAD / CAE с помощью Ultra Librarian Reader. Читатель доступен в виде (скачать бесплатно).

UL Reader — это подмножество набора инструментов Ultra Librarian, которое может создавать, импортировать и экспортировать компоненты и их атрибуты практически в любом формате EDA CAD / CAE.


Техническая документация

См. Важное примечание и Заявление об ограничении ответственности, относящиеся к эталонным проектам и другим ресурсам TI.

Руководство пользователя (1)
Файлы дизайна (2)

Поддержка и обучение

Выполните поиск в нашей обширной онлайн-базе знаний, где доступны миллионы технических вопросов и ответов круглосуточно и без выходных.

Найдите ответы от экспертов TI

Контент предоставляется «КАК ЕСТЬ» соответствующими участниками TI и Сообществом и не является спецификациями TI.
См. Условия использования.

Если у вас есть вопросы о качестве, упаковке или заказе продукции TI, посетите нашу страницу поддержки.


Адаптеры питания постоянного тока 12 В. 1, 2, 3, 4, 5 А, 12 В (1 А, 2 А, 2.5A, 3A, 3.5A, 4A, 5A, 6A)

Краткая инструкция по выбору блока питания:

Единственная информация, которую вам нужно иметь, чтобы найти правильный источник питания для вашего устройства, — это напряжение / вольты (В) и сила тока / амперы (A).

Напряжение должно точно совпадать. Для устройства на 12 В постоянного тока требуется адаптер на 12 В постоянного тока.

Сила тока — это количество энергии, которое использует ваше устройство. Адаптер, который вы заказываете, должен обеспечивать по крайней мере то количество ампер, которое потребляет ваше устройство.Если ваше устройство заявляет, что оно составляет 12 В 3 А, адаптер на 3 А может справиться с этой нагрузкой, но также с 4 А и 5 А. Блок питания с большей силой тока (ампер) работать не будет. так же трудно справиться с меньшей нагрузкой, и он будет работать холоднее и стабильнее.

Если сила тока вашего устройства неравномерная, например 3,13 А или 4,16 А, всегда округляйте в большую сторону. 3,13 А округляется до 3,5 А, а 4,16 А устройство округлит до 4,5 А или 5 А.

Если вы соответствуете этим двум спецификациям (V и A), блок питания будет работать для вашего устройства.

Подробные инструкции:

Чтобы найти подходящий блок питания для вашего устройства, вам понадобятся две части информации. Это напряжение (измеряется в вольтах или В) и сила тока (измеряется в амперах или А). Вы можете найти эту информацию на задней панели старого блока питания, или с задней стороны самого устройства. Если вы не нашли его на устройстве, вы можете проверить на сайте производителя или в инструкции к устройству в разделе «Технические характеристики».

Напряжение:
Все продаваемые нами блоки питания рассчитаны на 12 В постоянного тока.Они принимают любой вход от 100 В до 220 В переменного тока, который выходит из вашей сетевой розетки, и выход 12 В постоянного тока. Это то, что большинство цифровых устройств, таких как ЖК-экраны, DVD-плееры, жесткие диски, аудио Gear и большинство других цифровых устройств используют. Мы поставляем только блоки питания 12 В постоянного тока, поэтому, если ваш блок не 12 В, вы не найдете здесь подходящего адаптера.

Сила тока:
После того, как вы подтвердите, что вам нужен источник питания на 12 В, вам нужно будет узнать, сколько мощности ваше устройство. рисует.Это называется силой тока. Рядом с 12 В в технических характеристиках будет еще один номер, за которым следует заглавная буква «А» для ампер. Вам понадобится блок питания, который может обеспечить достаточное количество энергии для вашего устройства. Если ваше устройство говорит, что потребляет 3 А (3 А), вам необходимо использовать блок питания. который может выдать хотя бы такое количество ампер. Если ваше устройство заявляет, что ему требуется 3А, вы можете использовать блок на 3А, 4А или 5А. Все будет работать.

Если сила тока вашего устройства неравномерная, например 3,13 А или 4,16 А, всегда округляйте в большую сторону.3,13 А округляется до 3,5 А, а 4,16 А устройство округлит до 4,5 А или 5 А.

Разъем:
Все наши блоки питания имеют разъем, который является стандартным для устройства 12 В постоянного тока. В большинстве устройств 12 В постоянного тока используется стандартный наконечник. Этот наконечник имеет размер 5,5 мм (внешний цилиндр) на 2,5 мм (внутренний цилиндр) и положительный по центру. Это простой круглый цилиндрический соединитель. Повторяю, если вы соответствуете напряжению и силе тока, вам не нужно беспокоиться о типе разъема, принятом в Редкий случай, когда у вашего устройства есть необычный разъем, такой как двойной цилиндр или 4-контактный, но их легко обнаружить как разъем, на котором адаптер В заглушках не будет простой круглой бочки со штифтом внутри.

В чем разница между переменным и постоянным током

Что такое переменный ток (AC)?

AC или переменный ток относится к шкале напряжения или тока, размер и направление которой регулярно и периодически меняются с течением времени.

Диаграмма формы сигнала переменного тока показана на рисунке ниже :

Что такое постоянный ток (DC)?

Постоянный ток, называемый постоянным током ,, также известный как «постоянный ток». Величина и направление постоянного тока остаются неизменными.Общие источники питания постоянного тока включают батареи, свинцово-кислотные батареи и сухие батареи.

Форма сигнала постоянного тока показана на рисунке ниже:

Несколько основных понятий о текущем :

Возьмем для примера синусоидальный переменный ток:

  • Пик: Максимальное значение синусоидального переменного тока в цикле, обозначаемое как Vpk.
  • среднее значение: Форма волны синусоидального переменного тока симметрична, поэтому среднее значение синусоидального переменного тока за цикл равно 0.Такое среднее значение не может описать характеристики переменного тока. Поэтому мы часто вычисляем абсолютное среднее значение переменного тока, формула выглядит следующим образом:
  • Мгновенное значение: Его также можно выразить как:
    ω — угловая частота переменного тока, ϕ — начальный фазовый угол переменного тока.
  • Допустимое значение: Действующее значение переменного тока обычно определяется тепловым эффектом тока, и формула имеет следующий вид:

Обратите внимание, что следующие сигналы также относятся к переменному току, и все они могут быть преобразованы в синусоидальные волны с помощью преобразования Фурье.

Поскольку величина и направление постоянного тока постоянны, пиковое значение, мгновенное значение, эффективное значение и среднее значение постоянного тока равны константе.

В чем разница между переменным и постоянным током?

Теперь мы используем питание 12 В постоянного тока и 12 В переменного тока для анализа разницы между мощностью постоянного и переменного тока в зависимости от потерь, использования, измерения и безопасности.

Loss
DC: Постоянный ток больше подходит для передачи на большие расстояния и большой емкости.Поэтому передача HVDC стала горячей темой.
AC: Цепь переменного тока имеет параметры индуктивности, поэтому при передаче на большие расстояния потери велики.

Используйте
стабильность напряжения постоянного тока, без большого шума, он подходит для использования электронных продуктов. (например, телевизоры, радиокомпьютеры и т. д.)
Питание переменного тока для прохождения через выпрямитель / импульсный источник питания в источник постоянного тока может использоваться для электронных продуктов.

Измерьте разницу между 12 В переменного и постоянного тока:
A) с помощью цифрового универсального измерения, соответственно, при измерении файла напряжения 20 В переменного тока и 20 В постоянного тока результаты будут разными.
B) простой метод измерения: с помощью стилуса (нестандартного) на проводе крайней плоти, 12 В переменного тока все равно будет отображаться, а 12 В постоянного тока — нет.

Безопасность
12 В постоянного тока безопаснее, чем 12 В переменного тока. Сопротивление тела уменьшилось, когда 12 В переменного тока все еще может привести к смерти, 12 В постоянного тока не будет в 100%. Однако степень опасности поражения электрическим током для человеческого тела в основном зависит от силы тока, проходящего через человеческое тело, и продолжительности времени подачи энергии.

Пиковое значение
В соответствии со схемой напряжения мгновенное пиковое напряжение постоянного и переменного тока 12 В переменного тока не одно и то же, мгновенное пиковое напряжение (прямое напряжение 12 В) ≡ 12 В, мгновенное пиковое напряжение:

О схеме выпрямителя и инвертора

Выпрямитель: Преобразование переменного тока в постоянный называется выпрямителем.Принципиальная схема однофазного мостового выпрямителя представлена ​​ниже. VT1 и VT4 — это набор переключателей. VT2 и VT3 — еще один набор переключателей. Два набора переключателей включаются поочередно для получения постоянного тока.

Схема инвертора: Преобразование постоянного тока в переменный называется схемой инвертора. Принципиальная схема однофазного мостового инвертора показана ниже. S1 и S2 — один набор цепей; S3 и S4 — еще один набор схем. В простых случаях для резистивной нагрузки поочередно включаются два набора переключателей, чтобы получить переменный ток на обоих концах нагрузки.

Примечания: Чтобы получить хорошие формы сигналов для схем выпрямителя и инвертора, в реальных ситуациях следует использовать фильтры.

Seeed Fusion является пионером в области мгновенных онлайн-предложений по производству и сборке печатных плат. Если вы обнаружите необходимость превратить свои схемы в настоящие профессиональные печатные платы, Seeed Fusion предложит вам быстрые и доступные прототипы или высокоуровневые разработки для массового производства. Получите мгновенное предложение онлайн.

Следите за нами и ставьте лайки:

Продолжить чтение

Как сделать схему преобразователя / инвертора с 12 В постоянного тока в 220 В переменного тока?

Инверторы часто необходимы в местах, где невозможно получить питание переменного тока от сети. Схема инвертора используется для преобразования мощности постоянного тока в мощность переменного тока. Инверторы могут быть двух типов: истинные / чистые синусоидальные инверторы и квази или модифицированные инверторы. Эти инверторы истинной / чистой синусоидальной волны дороги, в то время как модифицированные или квазиинверторы недороги.

Эти модифицированные инверторы генерируют прямоугольную волну и не используются для питания чувствительного электронного оборудования. Здесь построена простая инверторная схема, управляемая напряжением, использующая силовые транзисторы в качестве переключающих устройств, которая преобразует сигнал 12 В постоянного тока в однофазный 220 В переменного тока.

Принцип, лежащий в основе этой схемы

Основная идея каждой схемы инвертора состоит в том, чтобы создавать колебания с использованием заданного постоянного тока и применять эти колебания в первичной обмотке трансформатора путем усиления тока.Это первичное напряжение затем повышается до более высокого напряжения в зависимости от количества витков в первичной и вторичной катушках.

Также получите представление о схеме преобразователя постоянного тока 12 В в 24 В

Схема преобразователя с использованием транзисторов

Преобразователь 12 В постоянного тока в 220 В переменного тока также может быть разработан с использованием простых транзисторов. Его можно использовать для питания ламп мощностью до 35 Вт , но его можно использовать для управления более мощными нагрузками, добавив больше полевых МОП-транзисторов.

Инвертор, реализованный в этой схеме, представляет собой преобразователь прямоугольной формы и работает с устройствами, которым не требуется чистый синусоидальный переменный ток.

Принципиальная схема

Необходимые компоненты
  • Батарея 12 В
  • МОП-транзистор IRF 630-2
  • 2N2222 Транзисторы
  • 2,2 мкФ конденсаторы-2
  • , повышающий преобразователь
  • Резистор с центральным отводом
  • .
Рабочий

Схему можно разделить на три части: генератор, усилитель и трансформатор. Требуется генератор на 50 Гц, так как частота переменного тока составляет 50 Гц.

Этого можно достичь, сконструировав нестабильный мультивибратор, который генерирует прямоугольную волну с частотой 50 Гц. В цепи R1, R2, R3, R4, C1, C2, T2 и T3 образуют генератор.

Каждый транзистор генерирует инвертирующие прямоугольные волны. Значения R1, R2 и C1 (R4, R3 и C2 идентичны) будут определять частоту. Формула для частоты прямоугольной волны, генерируемой нестабильным мультивибратором:

F = 1 / (1,38 * R2 * C1)

Инвертирующие сигналы генератора усиливаются силовыми полевыми МОП-транзисторами T1 и T4.Эти усиленные сигналы подаются на повышающий трансформатор, центральный отвод которого подключен к 12 В постоянного тока.

Выходное видео
Коэффициент трансформации трансформатора должен быть 1:19, чтобы преобразовать 12 В в 220 В. Трансформатор объединяет оба инвертирующих сигнала для генерации переменного выходного сигнала прямоугольной формы 220 В.

К при использовании батареи на 24 В , нагрузки до 85 Вт могут питаться , но конструкция неэффективна. Чтобы увеличить мощность инвертора, необходимо увеличить количество полевых МОП-транзисторов.

Чтобы спроектировать инвертор на 100 Вт, прочтите Простой инвертор на 100 Вт

Схема преобразователя 12 В постоянного тока в 220 В переменного тока с использованием нестабильного мультивибратора

В схемах инвертора можно использовать тиристоры в качестве переключающих устройств или транзисторов. Обычно для приложений малой и средней мощности используются силовые транзисторы. Причина использования силовых транзисторов в том, что они имеют очень низкий выходной импеданс, позволяющий протекать на выходе максимальному току.

Одно из важных применений транзисторов — переключение.В этом случае транзистор смещен в области насыщения и отсечки.

Когда транзистор смещен в области насыщения, переходы коллектор-эмиттер и коллектор-база смещены в прямом направлении. Здесь напряжение коллектор-эмиттер минимально, а коллекторный ток максимален.

Еще одним важным аспектом этой схемы является генератор. Важное применение 555 Timer IC — это использование в качестве нестабильного мультивибратора.

Нестабильный мультивибратор генерирует выходной сигнал, который переключается между двумя состояниями и, следовательно, может использоваться в качестве генератора.Частота колебаний определяется номиналами конденсатора и резисторов.

[Также прочтите: Как сделать регулируемый таймер]

Принципиальная схема

Принципиальная схема преобразователя 12 В постоянного тока в 220 В переменного тока — ElectronicsHub.Org

Компоненты цепи

  • 12 В R1 = 10 кОм
  • R2 = 150 кОм
  • R3 = 10 Ом
  • R4 = 10 Ом
  • Q1 = TIP41
  • Q2 = TIP42
  • D1 = D2 = 1N4007
  • C3 =
  • 220137 TIP =
  • 220134 C3 =
  • 220137
Описание схемы

Конструкция осциллятора: В качестве осциллятора можно использовать нестабильный мультивибратор.Здесь сконструирован нестабильный мультивибратор с таймером 555. Мы знаем, что частота колебаний таймера 555 в нестабильном режиме определяется выражением:

f = 1,44 / (R1 + 2 * R2) * C

, где R1 — сопротивление между выводом разряда и Vcc, R2 — сопротивление. сопротивление между разрядным выводом и пороговым выводом, а C — это емкость между пороговым выводом и землей. Также рабочий цикл выходного сигнала определяется следующим образом:

D = (R1 + R2) / (R1 + 2 * R2)

Так как наше требование составляет f = 50 Гц и D = 50% и предполагается, что C равно 0.1 мкФ, мы можем рассчитать, что значения R1 и R2 составляют 10 кОм и 140 кОм соответственно. Здесь мы предпочитаем использовать потенциометр 150K для точной настройки выходного сигнала.

Также между выводом управления и землей используется керамический конденсатор емкостью 0,01 мкФ.

Схема коммутации: Наша главная цель — разработать сигнал переменного тока напряжением 220 В. Это требует использования транзисторов высокой мощности, чтобы обеспечить прохождение максимального количества тока к нагрузке. По этой причине мы используем силовой транзистор TIP41 с максимальным током коллектора 6 А, где ток базы определяется как ток коллектора, деленный на коэффициент усиления постоянного тока.Это дает ток смещения около 0,4 А * 10, то есть 4 А. Однако, поскольку этот ток больше максимального тока базы транзистора, мы предпочитаем значение меньше максимального тока базы. Предположим, что ток смещения равен 1А. Тогда резистор смещения равен

R b = (V cc — V BE (ON) ) / I bias

Для каждого транзистора V BE (ON) равен около 2В. Таким образом, R b для каждого рассчитывается как 10 Ом.Поскольку диоды используются для смещения, прямое падение напряжения на диодах должно быть равно прямому падению напряжения на транзисторах. По этой причине используются диоды 1N4007.

Конструкция транзисторов PNP и NPN одинакова. Мы используем силовой транзистор PNP TIP42.

Конструкция выходной нагрузки: Поскольку выходной сигнал схемы переключения является выходом с широтно-импульсной модуляцией, он может содержать гармонические частоты, отличные от основной частоты переменного тока.По этой причине необходимо использовать электролитический конденсатор, чтобы пропускать через него только основную частоту. Здесь мы используем электролитный конденсатор емкостью 2200 мкФ, достаточно большой, чтобы отфильтровать гармоники. Поскольку требуется выходное напряжение 220 В, предпочтительно использовать повышающий трансформатор. Здесь используется повышающий трансформатор 12 В / 220 В.

Работа цепи преобразователя 12 В постоянного тока в 220 В переменного тока
  • Когда это устройство питается от батареи 12 В, таймер 555, подключенный в нестабильном режиме, выдает прямоугольный сигнал с частотой 50 Гц.
  • Когда на выходе высокий логический уровень, диод D2 будет проводить, и ток пройдет через диоды D1, R3 на базу транзистора Q1.
  • При этом транзистор Q1 будет включен. Когда выход находится на низком логическом уровне, диод D1 будет проводить, и ток будет течь через D1 и R4 к базе Q2, вызывая его включение.
  • Это позволяет создавать постоянное напряжение через первичную обмотку трансформатора с чередующимися интервалами. Конденсатор обеспечивает требуемую основную частоту сигнала.
  • Этот сигнал 12 В переменного тока на первичной обмотке трансформатора затем повышается до сигнала 220 В переменного тока на вторичной обмотке трансформатора.
Применение схемы преобразователя 12 В постоянного тока в 220 В переменного тока
  1. Эта схема может использоваться в автомобилях и других транспортных средствах для зарядки небольших аккумуляторов.
  2. Эта схема может использоваться для управления двигателями переменного тока малой мощности
  3. Ее можно использовать в солнечной энергетической системе.
Ограничения
  1. Поскольку используется таймер 555, выходной сигнал может незначительно изменяться в пределах требуемого рабочего цикла 50%, т.е.е. Трудно достичь точного сигнала 50% рабочего цикла.
  2. Использование транзисторов снижает эффективность схемы.
  3. Использование переключающих транзисторов может вызвать перекрестные искажения в выходном сигнале. Однако это ограничение было до некоторой степени уменьшено за счет использования смещающих диодов.

Note

Вместо таймера 555 можно использовать любой нестабильный мультивибратор. Например, эти схемы также могут быть построены с использованием нестабильного мультивибратора 4047, выходной ток которого усиливается и подается на трансформатор.

[Читать: Солнечный инвертор для дома ]

Схема преобразователя переменного тока в постоянный

В современную эпоху почти каждая бытовая электроника работает на постоянном токе (DC), но мы получаем переменный ток (AC) от электростанций через линии передачи, потому что переменный ток может передаваться более эффективно, чем постоянный ток, при меньших затратах. Таким образом, каждое устройство, которое работает от постоянного тока, имеет схему преобразователя переменного тока в постоянный. Ранее мы создали зарядное устройство для сотового телефона на 5 В, которое также имеет схему преобразователя переменного тока в постоянный.

Существует два типа преобразователей, широко используемых для разговора переменного тока в постоянный.

One — это традиционный линейный преобразователь на базе трансформатора , в котором используется простой диодный мост, конденсатор и регулятор напряжения. Простой диодный мост может быть построен либо с одним полупроводниковым устройством, например DB107, либо с 4 независимыми диодами, например 1N4007. Другой тип преобразователя — это SMPS или импульсный источник питания , в котором используется высокочастотный небольшой трансформатор и импульсный стабилизатор для обеспечения выхода постоянного тока.

В этом проекте мы обсудим конструкцию на основе традиционного трансформатора , в которой используются простые диоды и конденсатор для преобразования переменного тока в постоянный ток и дополнительный регулятор напряжения для регулирования выходного постоянного напряжения. Проектом будет преобразователь AC-DC, использующий трансформатор с входным напряжением 230 В и выходом 12 В 1A .

Необходимые компоненты

1. Трансформатор с номиналом 1 А 13 В

2.4 шт. 1N4007 диодов

3.A 1000 мкФ Электролитический конденсатор с номиналом 25 В.

4. несколько одножильных проводов

5. Макетная плата

6.LDO или линейный регулятор напряжения согласно спецификации (здесь используется LM2940).

7. Мультиметр для измерения напряжения.

Принципиальная схема и пояснения

Схема преобразователя AC-DC проста. Трансформатор используется для понижения напряжения 230 В переменного тока до 13 В переменного тока.

Четыре выпрямительных диода общего назначения 1N4007 используются здесь для защиты входа переменного тока. 1N4007 имеет пиковое повторяющееся обратное напряжение 1000 В со средним выпрямленным прямым током 1 А. Эти четыре диода используются для преобразования выходного напряжения 13 В переменного тока через трансформатор. Диоды используются для изготовления мостового преобразователя, который является важной частью схемы преобразования переменного тока в постоянный. Чтобы узнать больше о схеме мостового выпрямителя, перейдите по ссылке.

Конденсатор фильтра C1 добавлен после мостового преобразователя для сглаживания выходного напряжения.

LDO, IC1 также подключается для регулирования выходного напряжения.

Работа цепи преобразователя переменного тока в постоянный

Понижающий трансформатор используется для преобразования переменного тока высокого напряжения в переменный ток низкого напряжения. Трансформатор смонтирован на печатной плате и представляет собой трансформатор на 1 ампер и 13 вольт. Однако во время нагрузки напряжение трансформатора падает примерно на 12,5-12,7 вольт.

Неотъемлемой частью схемы является диодный мост , состоящий из четырех диодов.Диод — это электронное полупроводниковое устройство, преобразующее переменный ток в постоянный.

Поток тока внутри диодного моста можно увидеть на изображении ниже.

Здесь два диода D2 и D4 блокируют отрицательный пик переменного тока и заставляют ток течь в одном направлении. Это полный мостовой выпрямитель, который означает, что диодный мост выпрямляет как положительный, так и отрицательный пик сигнала переменного тока.

Большой конденсатор C1 заряжается во время преобразования и сглаживает выходное напряжение. Но в конечном итоге это не регулируемое выходное напряжение. Здесь регулировка напряжения осуществляется LDO, LM2940, , который на схеме является IC1.

LDO, LM2940 — это 3-выводное устройство в корпусе TO220. LDO означает низкое падение напряжения. Схема контактов может быть показана на изображении ниже.

Некоторые регуляторы напряжения имеют ограничения по входному напряжению, которое требуется для обеспечения гарантированного регулирования напряжения на выходе регулятора.В некоторых линейных регуляторах это означает, что требуется минимум 2 вольта разницы между входным напряжением и выходным напряжением, что означает, что для регулируемого выхода 12 вольт регулятору требуется входное напряжение не менее 14 вольт для гарантированного стабилизированного выходного напряжения 12 вольт. Как правило, регуляторы с малым падением напряжения (LDO) требуют минимальной разницы напряжений между входом и выходом. Для таблицы данных LM2940 требуется минимальная разница в 0,5 вольта между входом и выходом. Мы использовали стабилизатор LDO серии с фиксированным напряжением от Texas Instruments.LM2940 с номинальным выходным напряжением 12 В.

Результат хорошо виден на изображении ниже.

Проверьте работу в видео , приведенном в конце.

Трансформаторный преобразователь переменного тока в постоянный очень часто используется там, где требуется преобразование переменного тока в постоянное высокое напряжение. Чаще всего используется в усилителях, различных адаптерах питания, паяльных станциях, испытательном оборудовании и т. Д.

Ограничения схемы преобразователя переменного тока в постоянный на основе трансформатора

Трансформаторное преобразование переменного тока в постоянный — это обычный выбор, когда требуется постоянный ток, но он имеет определенные недостатки.

1. Любые ситуации, когда входное переменное напряжение может колебаться или если переменное напряжение значительно падает, выходное переменное напряжение на трансформаторе также падает. Таким образом, преобразователь 230 В переменного тока в 12 В постоянного тока не может питаться от сети 110 В переменного тока.Для решения этой проблемы предусмотрена дополнительная настройка для различных уровней входного напряжения.

2. Несмотря на отсутствие универсального диапазона входных напряжений, это дорогостоящий выбор, поскольку стоимость самого трансформатора превышает 60% от общей стоимости изготовления схемы преобразователя.

3. Еще одним ограничением является низкая эффективность преобразования. Трансформатор нагревается и расходует ненужную энергию.

4. Трансформатор — это тяжелый предмет, который излишне увеличивает вес изделия.

5. Из-за трансформатора внутри изделия требуется больше места для размещения схемы преобразователя или, по крайней мере, трансформатора.

Для преодоления этих ограничений предпочтительным выбором является импульсный источник питания или импульсный источник питания.

Адаптер питания с 110 В на 12 В

Источник питания от 100 до 240 В переменного тока до 12 В постоянного тока с 4-контактным разъемом Molex (5 А / 5000 мА)

840556088776

Блок питания RS Преобразователь / адаптер Molex (5000 мА)
Блок питания / трансформатор с 110 В на 12 В с 4-контактным выходом Molex.
Модель RS-500/120-S355

Возможность использования по всему миру:
Это устройство работает от сети переменного тока 100-240 В, поэтому оно будет работать по всему миру, вам просто нужно адаптировать вилку к тому, что используется в вашем регионе. наши низковольтные вентиляторы для охлаждения шкафов.
Отличный адаптер для питания развлекательного центра охлаждения или источника освещения.
Стандартный 4-контактный разъем Molex
Расширяемый — может питать до 5 А вентиляторов и осветительных приборов
Воспользуйтесь преимуществами тихих компьютерных вентиляторов на 12 В.
Они требуют меньше энергии и имеют минимальный фоновый шум.
Этот адаптер может питать сразу несколько вентиляторов.
Проверьте требования к питанию в спецификациях производителя.

Отлично подходит для подключения вентиляторов или осветительных приборов на 12 В постоянного тока без необходимости в блоке питания компьютера.

  • Линейный ферритовый шарик для предотвращения воздействия высокочастотных электрических шумов на вашу систему.
  • Зарегистрировано в UL
  • 4-контактный адаптер Molex с 40-дюймовым шнуром питания
  • 6 футов — 3 штыря с заземлением — шнур питания 110 В
  • Светодиод, зеленый свет / индикатор включения

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗДЕЛИЯ:
Размеры: 112x62x25 мм (ВШГ), 4.4x 2,4x 1 «
Модель: Модель RS-500/120-S355
Вход: 100–240 В переменного тока 50/60 Гц 1,2 А
Выход: 12 В + — 5 А

Эти блоки питания изначально являются 4-контактными Molex, если вам необходимо адаптировать их к 3-контактным, доступны следующие элементы:
Один 3-контактный вентилятор на 4-контактный адаптер Molex
Двойной 3-контактный вентилятор на 4-контактный адаптер Molex
Тройной 3-контактный вентилятор на 4-контактный адаптер Molex
Шестипортовый 3-контактный вентилятор на 4-контактный адаптер Molex.

Если вы хотите управлять устройствами на 12 В с помощью этого источника питания, совместимы следующие устройства.
Переменный двойной контроллер Molex с 3 на 4 контакта
Переменный контроллер Molex с 4 на 4 контакта
Предустановленный терморегулятор (ограничение 2 А на контроллер)

ПРИМЕЧАНИЕ:
Заменяет старую модель # Модель CS-1205000 7/14

СЕРТИФИКАЦИЯ:
Зарегистрировано в cULus

Мы доверяем своей продукции в Coolerguys и тестируем все, что присылают! Мы с радостью продлим трехлетнюю гарантию на замену на все товары под маркой Coolerguys.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *