Как сделать блок питания регулируемым. Регулируемый или «лабораторный» блок питания из модулей своими руками
Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.
Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.
При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.
Индикатор для блока питания
Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.
Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:
Плёнка — самоклейка типа «бамбук». Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.
Дополнения от BFG5000
Максимальный ток ограничения можно сделать более 10 А. На кулер — кренка 12 вольт плюс температурный регулятор оборотов — с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ — появляется прирост проходящей мощности.
Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 — поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.
Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000 .
Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ
Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.
Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.
Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.
Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.
Так выглядит блок питания импульсный на видеокарте.
Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.
Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.
Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.
Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.
Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.
Посмотрим, как блок питания выглядит в работе
Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.
Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.
Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.
Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.
Как сделать регулирующий БП из обычного, от принтера
Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.
Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.
Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.
Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.
Как сделать регулировку?
Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.
Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.
Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.
Видео канала “Технарь”.
Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.
Простой блок с регулировкой
Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.
Самодельный регулированный блок на одном транзисторе
Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.
Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.
Приступаем к сборке
Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.
Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.
Видео Radioblogful. Видеоблог паяльщика.
В любой радиолюбительской мастерской не обойтись без источника питания с возможностью изменения величины напряжения в широких пределах. Представленное устройство предназначено для регулирования напряжения от полвольта почти до величины входного напряжения и регулирования величины ограничения тока нагрузки. При наличии готового нерегулируемого источника питания напряжением 20-30 В и допустимым током нагрузки до 5 А, этот блок позволит сделать источник универсальным.
Схема
За основу взята распространённая схема (рис.1), обсуждаемая на некоторых радиолюбительских форумах.
Честно говоря, стабилизированной эту схему назвать нельзя однозначно, но тем не менее я рекомендую её для начинающих радиолюбителей, нуждающихся в регулируемом источнике питания. Схема хороша тем, что позволяет регулировать напряжение в широких пределах, а также ограничивать ток нагрузки, что исключает перегрузку источника питания при коротких замыканиях.
У этой схемы есть один существенный недостаток. При регулировании напряжения, оно изменяется не равномерно. От минимума напряжение нарастает очень медленно, но ближе к максимуму процесс становится настолько стремительным, что точная установка требуемого значения весьма затруднительна. По этому поводу на многих форумах не мало соплей и плевков. Не советую уподобляться истерикам и размазывать сопли по этому поводу, всё, что требуется от настоящего радиолюбителя – включать мозг.
Суть проста. Чтобы получить линейный характер регулирования при нелинейном изменении величины регулирования линейным элементом, нужно скорректировать его характеристику в сторону обратной нелинейности… Вот такая не шуточная шутка получилась:)
Предлагаю Вам свой вариант схемы, в котором применена отечественная элементная база и добавлен элемент коррекции нелинейности регулировки напряжения – рисунок 2.
Обратите внимание на подстроечный резистор R7. Его роль как раз и заключается в коррекции характеристики регулирования.
В качестве регулирующего элемента я применил транзистор КТ819ГМ (просто оказался в наличии). Он выполнен в массивном металлическом корпусе и рассчитан на ток коллектора до 15А. Этот транзистор необходимо размещать на радиаторе для эффективного теплоотвода.
В качестве шунта R2 я использовал параллельную спайку пяти двухваттных резисторов 5,1 Ом по 2 Вт каждый. Этот шунт я так же вынес за пределы платы, расположив рядом с радиатором транзистора.
У меня не оказалось переменного резистора 470 Ом, поэтому мне пришлось для R5 использовать резистор 1 кОм, но и при этом номинале ток регулируется достаточно равномерно.
Настройка схемы
Исходная схема (рисунок 1) практически не нуждается в настройке. Переработанная схема (рисунок 2) требует настройки коррекции характера регулирования напряжения. Настройка очень проста.
Подайте на вход напряжение питания (желательно от того источника, который будете брать за основу). Переменный резистор R6 выведите в крайнее положение, при котором напряжение выхода будет максимальным. Измерьте напряжение на выходе схемы. Переведите движок резистора R6 как Вам кажется точно в среднее положение. Подстроечным резистором R7 добейтесь на выходе схемы ровно половины того напряжения, которое измеряли при установке на максимум. Собственно – всё.
Данная коррекция не гарантирует абсолютную линейность регулировки, но визуально Вам покажется, что напряжение меняется идеально равномерно.
Применение
Плюс этой схемы заключается в ограничении максимального тока. Её можно использовать для сборки относительно бюджетного варианта источника питания. Для примера, я использовал в качестве преобразователя сетевого напряжения электронный трансформатор для галогенных ламп. У них есть серьёзный недостаток – отсутствие защиты от перегрузки. Но поскольку регулирующая схема ограничивает ток нагрузки, то практически защищает схему первичного преобразования от КЗ.
Файлы
Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл —
Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.
Предупреждение
Показанный в данной статье способ коррекции пригоден далеко не во всех случаях и может быть непреемлем для отдельного ряда задач!
ВНИМАНИЕ!!! Показанный способ коррекции следует использовать с особой осторожностью, зная принцип работы настраиваемого устройства и хорошо представляя, что Вы делаете! В других схемах при определённых положениях движка резисторов могут возникать недопустимые токи, способные вывести из строя резисторы или иные детали рабочего устройства!!! Используя описанный способ коррекции в своём устройстве вы действуете на свой страх и риск, а ещё лучше, представляете, что делаете. Ни какой ответственности за возможные причинённые неисправности Ваших устройств при применении корректирующего резистора по моей схеме лично я не несу.
Данный способ коррекции в конкретной представленной схеме на рисунке 2 абсолютно безопасен при любых номиналах корректирующего резистора и любых положениях движков корректирующего и переменного резисторов R7 и R6.
Не только радиолюбителям, но и просто в быту, может понадобиться мощный блок питания. Чтоб было до 10А выходного тока при максимальном напряжении до 20 и более вольт. Конечно-же, мысль сразу направляется на ненужные компьютерные блоки питания ATX. Прежде чем приступать к переделке, найдите схему на именно ваш БП.
Последовательность действий по переделке БП ATX в регулируемый лабораторный.
1. Удаляем перемычку J13 (можно кусачками)
2. Удаляем диод D29 (можно просто одну ногу поднять)
3. Перемычка PS-ON на землю уже стоит.
4. Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши «вздутости», их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.
5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.
6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и «типа дроссель» L5.
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.
8. Меняем плохие: заменить С11, С12 (желательно на бОльшую ёмкость С11 — 1000uF, C12 — 470uF).
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 — у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:
10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (…2-ю ногу), С26, J11 (…3-ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем-то:) рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.
12. Отделяем 15-ю и 16-ю ноги микросхемы от «всех остальных», для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.
13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.
14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.
Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите
Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из , которые везде доступны и дешевы.
В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.
Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.
Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.
Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.
Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.
Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 10-20 вольт (обычно около 12-ти).
Мы будем использовать для питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
Если это выходное напряжение будет значительно выше 12-ти вольт, то вентилятор подключать к этому источнику нужно будет через дополнительный резистор, как будет далее в рассматриваемых схемах.
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.
Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.
Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.
После всех выполненных операций у нас должно получиться следующее.
Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.
Вид платы со стороны деталей.
Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;
В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio , участник форума DWD привёл такую цитату, приведу её полностью:
«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.
Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»
Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.
Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.
Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.
Можно конечно попробовать поступить и так, как написал выше DWD , то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.
Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.
Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.
Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.
Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.
Схема вновь установленных деталей.
Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.
Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.
Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!
Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.
Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 100 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Потом на место подстроечного резистора впаять постоянный.
Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (40-50 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.
Схема выпрямителя с диодным мостом.
С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;
Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.
Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.
Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.
В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.
Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.
Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.
Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.
Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.
Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.
В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).
Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.
Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.
Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.
Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;
Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.
Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их на форуме.
Удачи Вам в конструировании!
Как сделать блок питания регулируемым 3-25 В
Данная инструкция поможет вам переделать источник питания в регулируемый 3-25 В. Если у вас имеется блок питания от ноутбука на 19 В или блок от светодиодной гирлянды на 12 В, то все подобные источники можно превратить в регулируемые, и устанавливать на выходе любое напряжение легким вращением переменного резистора.
Понадобится
- Два конденсатора 470 мкФ 25 В.
- Переменный резистор 10 кОм.
- Резистор 2,2 кОм.
Переделка блока питания с фиксируемым напряжением в источник с регулируемым напряжением
Вскрываем корпус блока при помощи отвертки. Конечно не все корпуса имеют защелки, если он склеен, то как его разобрать читайте тут —
Перед нами предстает вся плата импульсного источника питания.
Все что левее синего трансформатора мы трогать не будем. Это высоковольтная часть и она нас не интересует. Справа, из нескольких элементов состоит низковольтная часть, вот ее то и будем дорабатывать.
Схемы и теория доработки
Блок имеет стабилизацию посредством обратной связи через оптрон. Этим оптроном управляет микросхема-стабилизатор TL431. Она имеет 3 вывода и внешне похожа на транзистор.
Схема управления выглядит так:
(Если у вас нет микросхемы TL431 в блоке, то возможно стабилизация достигается применением стабилитрона. Как доработать такой блок читайте тут — )
Один резистор в цепи оптрона ограничивающий, другие два делители на выходе микросхемы. Сзади платы эти резисторы отчетливо видны.
То есть, если менять коэффициент деления на входе микросхемы, то соответственно будет и меняться выходное напряжение на выходе блока питания.
Чтобы это сделать необходимо заменить один резистор, а вместо другого подключить переменный. Примерно вот так:
Выпаиваем резисторы делителя.
Обязательно нужно заменить выходные конденсаторы на другие с более высоким рабочим напряжением.
Также выпаиваем их.
Запаиваем новые.
Припаиваем резистор 2,2 кОм, согласно схемы доработки.
Берем переменный резистор, припаиваем к нему провода.
Припаиваем провода к плате вместо чип резистора.
Теперь, очень осторожно, включаем блок в сеть и проверяем работу. К выходу подключим мультиметр.
Если все работает исправно, то собираем корпус. Так как в корпусе нет дополнительного места, вынесем резистор за пределы, приклеив его с боку на клей.
Проверяем под нагрузкой. Источник хорошо регулируется и выдает напряжение в промежутке 3,4-21,5 В.
Все работает исправно.
Пару слов о технике безопасности
- Перед разборкой блока, если вы его только отключили от сети, обязательно подождите пару минут, пока все внутренние емкости разрядятся.
- Напряжение на выходе, при максимальном положении переменного резистора, не должно превышать 25 В, так как выходные конденсаторы могут выйти из строя. Чтобы уменьшить регулируемое напряжение, увеличьте сопротивление резистора 2,2 кОм.
Смотрите видео
пошаговое описание проектирования и постройки блока питания (фото, видео и схемы)
Какая вещь считается наиболее незаменимой у радиолюбителей и не только? Несомненно, это блок питания. К сожалению, готовые блоки питания не всегда бывают доступными в финансовом плане, поэтому для домашнего пользования они делают их самостоятельно.
Краткое содержимое статьи:
Как сделать блок питания?
У начинающего радиолюбителя когда-нибудь возникнет вопрос: как сделать простой блок питания самостоятельно в домашних условиях.
Перво-наперво необходимо определить, какой именно блок питания нужен и для каких точно целей. Блоки питания могут использоваться в разных сферах многими домашними мастерами.
Для того, чтобы сделать самостоятельно блок питания, необходимо разобраться с тем, как он устроен и как работает. Это поможет в дальнейшем осуществлять небольшой ремонт устройства при необходимости.
Определяем, какой именно блок нужен – регулируемый либо нет. Заранее, перед выполнением работ, необходимо найти все инструкции и схемы блоков питания, которые помогут сделать нужный вам прибор.
Регулируемый – это прибор, у которого можно изменить выходное напряжение (допускается изменение в пределах от 3 до 12 вольт). Например, если мы хотим получить 7 или 10 вольт – нам нужно будет всего лишь повернуть ручку регулятора.
Нерегулируемый прибор – имеет фиксированное выходное напряжение, которое нельзя изменить. К примеру, блок питания «Электроника» Д2-27 нельзя регулировать, и он выдает на выходе всегда 12 вольт.
К нерегулируемым блокам питания относят зарядные устройства для мобильных телефонов, разнообразные адаптеры для роутера либо модема.
Самые интересные для радиолюбителей являются регулируемые блоки питания. Они позволяют запитать достаточно много устройств (самодельных либо промышленных), которым понадобится разное напряжение питания.
Фото самодельного блока питания можно найти в журналах для радиолюбителей либо в интернете.
Собираем устройство самостоятельно
Для того, чтобы в домашних условиях собрать регулируемый блок питания своими руками, нужно предварительно выбрать одну из простых схем для производства подобного устройства.
Помните о том, что новичкам лучше работать с легкими чертежами. Это позволит быстро и без ошибок собрать конструкцию. Все необходимые материалы и детали можно приобрести в специальных магазинах.
Виды устройств
Блоки питания можно разделить на стабилизированные и бесперебойные (могут работать без электричества).
Согласно классификации бывают:
Импульсные (имеют инверторную систему с преобразованием переменного тока в постоянное напряжение). Данный прибор преобразует на входе переменное напряжение в высокочастотное.
Для того, чтобы трансформировать токи с высокой частотой, понадобятся небольшие электромагнитные катушки. Все это легко разместить в маленьком компактном корпусе.
Трансформаторные (имеют специальный выпрямитель, понижающий трансформатор). Благодаря данному прибору можно уменьшить пульсацию и колебания во время работы.
Сборка устройства
Подготовьте заранее все необходимые детали: микросхемы, трансформаторы, диодный мост, дроссель, блок защиты, конденсаторный фильтр, стабилизатор напряжения.
Обычно обмотка трансформаторов выдерживает напряжение до 250 Вт. Если делать вторичную обмотку – проводит напряжение до 50 Вт. Обмотку можно приобрести в специальном магазине либо снять со старого электроприбора.
Для того, чтобы сделать огромное количество электрических дорожек понадобится микросхема с маркировкой PDIP-8.
Чтобы получит диодный мост, понадобится четыре диода 0,2х0,5 мм. Блок защиты можно сделать из предохранителей (понадобится два) марки FU2.
Как только сработают данные изделия, будет вырабатываться ток 0,16А. Чтобы сделать своими руками дроссели, возьмите магнитный феррит.
Для подключения всех запчастей, пользуйтесь специальной схемой и инструкцией, на которой все предельно доступно описывается.
Зачастую после сухих схем может быть фото самодельных устройств, где наглядно показана конструкция. Дополнительно можно найти и схемы, как отремонтировать блок питания, в случае если он сломался.
Фото универсальных блоков питания своими руками
Вам понравилась статья? Поделитесь 😉Как собрать блок питания с регуляторами своими руками. Как сделать регулируемый блок питания? Как из обычного блока питания сделать регулируемый
Из статьи вы узнаете, как изготовить блок питания регулируемый своими руками из доступных материалов. Его можно использовать для питания бытовой аппаратуры, а также для нужд собственной лаборатории. Источник постоянного напряжения может применяться для тестирования таких устройств, как реле-регулятор автомобильного генератора. Ведь при его диагностике возникает необходимость в двух напряжениях — 12 Вольт и свыше 16. А теперь рассмотрите особенности конструкции блока питания.
Трансформатор
Если устройство не планируется использовать для зарядки кислотных аккумуляторов и питания мощной аппаратуры, то нет необходимости в использовании крупных трансформаторов. Достаточно применить модели, мощность у которых не более 50 Вт. Правда, чтобы сделать регулируемый блок питания своими руками, потребуется немного изменить конструкцию преобразователя. Первым делом нужно определиться с тем, какой диапазон изменения напряжения будет на выходе. От этого параметра зависят характеристики трансформатора блока питания.
Допустим, вы выбрали диапазон 0-20 Вольт, значит, отталкиваться нужно от этих значений. Вторичная обмотка должна иметь на выходе переменное напряжение 20-22 Вольта. Следовательно, на трансформаторе оставляете первичную обмотку, поверх нее проводите намотку вторичной. Чтобы вычислить необходимое количество витков, проведите замер напряжения, которое получается с десяти. Десятая часть этого значения — это напряжение, получаемое с одного витка. После того как будет сделана вторичная обмотка, нужно произвести сборку и стяжку сердечника.
Выпрямитель
В качестве выпрямителя можно использовать как сборки, так и отдельные диоды. Перед тем как сделать регулируемый блок питания, проведите подбор всех его компонентов. Если высокая на выходе, то вам потребуется использовать мощные полупроводники. Желательно их устанавливать на алюминиевых радиаторах. Что касается схемы, то предпочтение нужно отдавать только мостовой, так как у нее намного выше КПД, меньше потерь напряжения при выпрямлении Однополупериодную схему использовать не рекомендуется, так как она малоэффективна, на выходе возникает много пульсаций, которые искажают сигнал и являются источником помех для радиоаппаратуры.
Блок стабилизации и регулировки
Для изготовления стабилизатора и разумнее всего использовать микросборку LM317. Дешевый и доступный каждому прибор, который позволит за считаные минуты собрать качественный блок питания регулируемый своими руками. Но его применение требует одной важной детали — эффективного охлаждения. Причем не только пассивного в виде радиаторов. Дело в том, что регулировка и стабилизация напряжения происходят по весьма интересной схеме. Устройство оставляет ровно то напряжение, которое необходимо, а вот излишки, поступающие на его вход, преобразуются в тепло. Поэтому без охлаждения вряд ли микросборка долго проработает.
Взгляните на схему, в ней нет ничего сверхсложного. Всего три вывода у сборки, на третий подается напряжение, со второго снимается, а первый необходим для соединения с минусом блока питания. Но здесь возникает маленькая особенность — если включить между минусом и первым выводом сборки сопротивление, то появляется возможность проводить регулировку напряжения на выходе. Причем блок питания регулируемый своими руками может изменять выходное напряжение как плавно, так и ступенчато. Но первый тип регулировки наиболее удобный, поэтому его используют чаще. Для реализации необходимо включить сопротивление переменное 5 кОм. Кроме того, между первым и вторым выводом сборки требуется установить постоянный резистор сопротивлением около 500 Ом.
Блок контроля силы тока и напряжения
Конечно, чтобы эксплуатация устройства была максимально удобной, необходимо проводить контроль выходных характеристик — напряжения и силы тока. Строится схема регулируемого блока питания таким образом, что амперметр включается в разрыв плюсового провода, а вольтметр — между выходами устройства. Но вопрос в другом — какой тип измерительных приборов использовать? Самый простой вариант — это установить два LED-дисплея, к которым подключить схему вольт- и амперметра, собранную на одном микроконтроллере.
Но в блок питания регулируемый, своими руками изготавливаемый, можно смонтировать пару дешевых китайских мультиметров. Благо их питание можно произвести непосредственно от устройства. Можно, конечно, использовать и стрелочные индикаторы, только в этом случае нужно проводить градуировку шкалы для
Корпус устройства
Изготавливать корпус лучше всего из легкого, но прочного металла. Идеальным вариантом окажется алюминий. Как уже было упомянуто, схема регулируемого блока питания содержит элементы, которые сильно нагреваются. Следовательно, внутри корпуса нужно монтировать радиатор, который для большей эффективности соединить можно с одной из стенок. Желательно наличие принудительного обдува. Для этой цели можно использовать термовыключатель в паре с вентилятором. Устанавливать их необходимо непосредственно на радиаторе охлаждения.
Не только радиолюбителям, но и просто в быту, может понадобиться мощный блок питания. Чтоб было до 10А выходного тока при максимальном напряжении до 20 и более вольт. Конечно-же, мысль сразу направляется на ненужные компьютерные блоки питания ATX. Прежде чем приступать к переделке, найдите схему на именно ваш БП.
Последовательность действий по переделке БП ATX в регулируемый лабораторный.
1. Удаляем перемычку J13 (можно кусачками)
2. Удаляем диод D29 (можно просто одну ногу поднять)
3. Перемычка PS-ON на землю уже стоит.
4. Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши «вздутости», их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.
5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.
6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и «типа дроссель» L5.
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.
8. Меняем плохие: заменить С11, С12 (желательно на бОльшую ёмкость С11 — 1000uF, C12 — 470uF).
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 — у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:
10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (…2-ю ногу), С26, J11 (…3-ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем-то:) рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.
12. Отделяем 15-ю и 16-ю ноги микросхемы от «всех остальных», для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.
13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.
14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.
Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите
Когда собираю какую либо электронную самоделку, всегда появляется вопрос питания устройства. Сейчас многие применяю блок питания компьютера. У компьютерного блока питания есть ряд преимуществ: большие токи при фиксированных напряжениях, защита от короткого замыкания. Но так же есть и минусы, точней, неудобные моменты: напряжения имеют определенные значения, размер блока.
Решил я для себя сделать малогабаритный блок питания с регулировкой выходного напряжения. Габариты устройства выбрал минимально возможные.
Основные компоненты
Основой конструкции служит понижающий модуль из Китая. Цена у него довольно низкая и параметры неплохие. Имеется защита от короткого замыкания. Выдерживает ток около 2-х Ампер. Меня устраивает.
Для понижения сетевого напряжения применю трансформатор. Давно лежал без дела. У меня он на 17.9 Вольт и током около 1.7 Ампера.
Индикатором выходного напряжения служит вольтметр из Китая. Он маленький и довольно точный.
Клеммы применю от старого прибора. Они крепкие и мощные. Так же нашел провода с обжатыми наконечниками под отверстия 4 мм.
Выпрямлять переменное напряжение буду готовым диодным мостом. Сглаживать пульсации буду электролитическим конденсатором.
Для комфортной регулировки напряжения, резистор вынесу на корпус блока питания. Как же подобрал старенькую ручку для резистора.
Питать вольтметр буду от отдельного стабилизатора напряжения. Применил отечественный на 12 вольт. Если питать вольтметр от выходного напряжения, то индикация его загорается от 4 вольт. Блок же выдает напряжение ниже и отображение прибора будет отсутствовать.
Теперь о схеме. Схема простая и трудностей сборки возникнуть не должно.
Нарисовал максимально понятно.
Сборка блока питания
Для начала разбираем корпус трансформатора и вынимаем последний. К трансформатору припаиваем диодный мост и конденсатор.
Стабилизатор для питания вольтметра припаял и прикрутил к корпусу.
К понижающему модулю припаял провода с наконечниками, и выпаял резистор. Вместо резистора впаял провода.
На корпусе размечаем отверстия и вырезаем. Так же отверстия которые были ранее на блоке не дорабатываем практически.
Устанавливаем вольтметр и одну клемму.
Плату преобразователя устанавливаем в уголок около трансформатора. Регулировочный резистор припая и его буду ставить на шве корпуса. Вторую клемму тоже установлю на шов. При закрытии корпуса они зафиксируются надежно.
Выключатель питания установил на заднюю панель блока.
Плюсовую клемму подкрасил лаком для ногтей. Блок питания регулирует напряжение от 1.23 Вольта до 19 Вольт.
Такой вот компактный блок питания получился.
Сборку смотрим на видео.
Обычно это:
- напряжение необходимой величины и знака;
- коэффициент пульсации выходного напряжения, соответствующий определенным частотам;
- наличие или отсутствие стабилизации выходного напряжения;
- номинальный и максимальный ток нагрузки;
- защита от перегрузки и короткого замыкания.
Общее описание
Особенность блока питания (БП) в том, что он сделан как отдельный внешний узел. Лабораторный БП — это корпус с лицевой панелью, регуляторами-переключателями, вольтметром, амперметром, выходными клеммами и сетевым шнуром. Далее расскажем нашим читателям о том, что необходимо учесть при самостоятельном изготовлении регулируемого блока питания и как получить оптимальный результат при минимальных затратах.
Для начала остановимся на более широком толковании критериев, которые перечислены выше. Начинаем по списку и рассматриваем напряжение необходимой величины и знака. Это самый важный момент, который в целом определяет схему и конструкцию источника питания. Первое, что необходимо учитывать — это соответствие решаемым задачам. Их число всегда ограничено мощностью БП и, как следствие этого, качеством выходного напряжения.
Пульсации выходного напряжения — это нежелательный параметр, который состоит из низкочастотной составляющей, кратной частоте питающего напряжения и дополнительных более высоких частот. Чтобы влиять теми или иными способами на этот параметр в широком спектре частот, потребуется осциллограф. Иначе его сложно будет оценить.
Стабилизация выходного напряжения — важнейшая характеристика блока питания. Она уменьшает до минимальной величины низкочастотные пульсации и улучшает качество работы нагрузки. Поскольку стабилизатор содержит управляемый элемент, появляется возможность управления выходным напряжением.
Максимальные токи определяют потребительские свойства БП. Чем они больше, тем шире область применения БП. Дополнительно можно упомянуть и напряжения. Падение напряжения на управляемом элементе стабилизатора приводит к его нагреву и ограничивает область применения БП. Поэтому нужны поддиапазоны напряжения, которое подается на вход стабилизатора. Переключение между ними позволяет уменьшить нагрев управляемого элемента стабилизатора при необходимом выходном напряжении.
Защита от перегрузки и короткого замыкания предохраняет управляемый элемент от повреждения током недопустимо большой силы.
Две концепции
Для безопасной эксплуатации любого электрооборудования, с которым непосредственно контактирует человек, необходима надежная изоляция от питающей сети 220 В. Наилучшим решением этой задачи является применение трансформатора. Современный уровень развития техники дает варианты решений, из которых можно сделать выбор. Например, трансформатор может быть:
- либо в качестве самостоятельного узла и выполнен на стальном сердечнике как стандартный трансформатор (СТ) с первичной обмоткой, непосредственно присоединяемой к электросети;
- либо в составе инверторной схемы как импульсный трансформатор (ИТ).
Рассмотрим потребительские свойства обоих вариантов. Начнем с непреодолимых характеристик. Для СТ это габариты и вес. Их невозможно изменить, поскольку они связаны воедино с электрической мощностью, соответствующей частоте 50 Гц сети 220 В. Для ИТ это электромагнитные помехи. Если планируется электропитание чувствительных усилителей или радиосхем, ИП обязательно внесет помехи, которые что-то испортят, накладываясь на полезный сигнал. Но если перечисленных задач не планируется, можно взять за основу один из стандартных блоков питания для компьютера.
Компьютерный блок
В таком решении хорошей стороной является получение нескольких стабилизированных напряжений при мощности, которую можно выбрать. Ее величина стандартизована и лежит в пределах от 60 до 1700 Вт. Но можно найти и более мощный блок. Соответственно, и его цена будет порядка $500. Но в результате получаем несколько напряжений компьютерного стандарта: 3,3 В, 5 В и 12 В и токи большой силы — 20 А или больше. Все они привязаны к общему проводу. Поэтому их нельзя соединять последовательно с целью получения более высокого суммарного напряжения.
Другим неудобством компьютерного БП является его неспособность надежно работать с быстро меняющейся нагрузкой. Он спроектирован для электропитания в компьютере памяти, процессора и дисковых устройств. То есть при включении он сразу же загружается почти на полную мощность. Она изменяется только по мере загруженности процессора, но несущественно. Для того чтобы без хлопот работать с таким БП, его надо минимально нагрузить на резистор по выходу 5 В. Для этого можно использовать самодельные спирали из нихрома. Величина сопротивления определяется экспериментально подбором исходя из примерно 0,12 мощности БП и напряжения 5 В.
При слишком малом токе инвертор БП не будет работать, и на подбираемом резисторе не будет напряжения. Регулировать каждое из напряжений 3,3 В, 5 В и 12 В можно только дополнительным стабилизатором. Иначе надо вскрывать блок и вносить изменения в его схему. Наиболее экономичным решением управляемого элемента является проходной транзистор. А это значит, что на выходе каждого канала после стабилизатора плавно регулируемое напряжение будет соответствовать примерно 2,3 В, 4 В и 8 В или меньше. В зависимости от того, как настроен стабилизатор напряжения.
Выбираем схему
БП лучше всего сделать на основе специализированных микросхем 142ЕН3, 142ЕН4, 1145ЕН3, К142ЕН3А, К142ЕН3Б, К142ЕН4А, К142ЕН4Б, КР142ЕН3 или аналогичных им:
Для нашего БП применим микросхему 142ЕН3. У нее такие основные параметры:
- Напряжение на входе стабилизатора устанавливается переменным резистором R1.
Но для работы с большими величинами токов нагрузки в схему вводится один или больше силовых транзисторов. Это показано далее на изображениях:
Для правильной работы микросхему питаем от канала 12 В. Коллектор каждого транзистора соединяем с одним из выходных каналов компьютерного БП. Вариант с несколькими транзисторами обеспечивает номинальный ток нагрузки 20 А. Дополнительные транзисторы подбираются соответственно мощности компьютерного БП. В результате получаем общую схему регулируемого блока питания:
- Транзисторы и микросхему обязательно размещаем на общем радиаторе.
Транзисторы будут нагреваться тем больше, чем меньше напряжение на выходе. Поэтому надо расположить микросхему как можно ближе к транзистору. Срабатывание тепловой защиты в ней позволить избежать теплового повреждения транзисторов. Такой блок питания можно использовать для зарядки аккумулятора автомобиля и других целей, соответствующих диапазону напряжений от 0 до 12 вольт.
- Чтобы использовать каждый канал по максимуму напряжения, надо сделать специальный переключатель на два положения (на схемах не показан). Его задача состоит в том, чтобы соединять выходную клемму канала напрямую, минуя стабилизатор.
Если необходимо получить более высокое напряжение, проще всего продублировать упомянутое устройство. В результате можно получить несколько комбинаций выходных параметров:
- биполярный источник питания 12 В;
- однополярный источник питания 3,7 В, 8,7 В, 12 В, 15,3 В, 17 В и 24 В.
Все перечисленные режимы можно получить в одном БП соответствующим положением переключателей. Для регулировки напряжения в каждом плече биполярного источника питания 12 В потребуется сдвоенный стабилизатор. Схема его показана далее на изображении. Однополярный источник питания не нуждается во втором стабилизаторе. Микросхема стабилизатора напряжения позволяет применить еще один компьютерный БП и тем самым достичь напряжения 36 В.
- Однополярный источник питания, собранный на основе двух–трех компьютерных БП, использует один стабилизатор и дополнительный коммутатор. Он переключает каналы компьютерных БП и формирует на входе стабилизатора то или иное напряжение поддиапазона. Поскольку при этом схема усложняется, эта опция не показана.
Заключение
Следует заметить, что два компьютерных БП удвоят мощность, а три — утроят. При этом в сравнении с трансформаторным вариантом (на стальном сердечнике) полученная конструкция будет компактнее и легче. Это объясняется тем, что для получения эффективной фильтрации напряжения выпрямителя на низкой стороне при частоте 50 Гц потребуются электролитические конденсаторы в тысячи микрофарад. Если повторять все 6–9 каналов напряжений, которые получаются при использовании двух–трех компьютерных БП, габариты варианта СТ получатся заметно больше.
Важно учесть несколько видов защиты, уже встроенные в компьютерный БП. Иначе их придется либо дополнительно изготавливать, либо без них получится менее надежный блок.
Также не получится достичь силы тока, характерной для компьютерного БП. Поэтому рекомендуем остановить свой выбор на предложенном регулируемом блоке питания. Поскольку схема его проста, ее можно собрать навесным монтажом. Опорные монтажные колодки при этом размещаются на радиаторе транзистора. Корпус и дизайн БП может быть разнообразным. Он зависит от выбора радиаторов, коммутаторов, амперметра и вольтметра. Поскольку своими руками такое устройство может сделать только умелец с определенным опытом, не имеет смысла навязывать особое мнение.
Монтаж регулируемого пола — быстрый, экономичный и достаточно простой процесс создания чернового напольного покрытия с идеально ровной плоскостью. Эта статья познакомит вас с новой технологией, расскажет о разновидностях регулируемых полов, области применения и процессе монтажа.
Какие проблемы решает регулируемый пол
Регулируемые лаги — технология создания исключительно легкого пола по методологии сухого ремонта, поэтому основная сфера их применения — высотные здания и дома старой постройки, где увеличение нагрузки на перекрытия чревато неприятностями. Технология особенно актуальна при необходимости поднять уровень пола на 120 мм и более, с чем сухая стяжка уже не справится.
По экологичности и практичности правильно смонтированный пол отвечает характеристикам системы стационарных лаг. Звукоизоляция такого пола достаточно хорошая, отдача тепла на нижние этажи минимальна за счет сокращения мостиков холода. Пространство между лагами имеет сплошную вентиляцию, поэтому в наполнителе пола не заводятся плесень и грибок.
Другая особенность такого пола — возможность устройства идеально ровного покрытия под плитку или наливные полы в кратчайшие сроки — 7-8 м 2 за один час работы двух человек и до 3 м 2 при работе в одиночку.
Установка системы лаг на металлических кронштейнах
Если вам необходимо настелить пол в небольшом помещении, оригинальную технологию лучше не использовать. Во-первых, это неоправданно долгий поиск комплектующих, а во-вторых, пол на регулируемых лагах лучше укладывать на площади более 6 м 2 , на меньших пространствах экономия времени и средств не так ощутима. Вместо этого можно использовать установку лаг на металлических кронштейнах.
Для укладки необходим брус 60х60 мм влажностью не более 10% без следов пороков и коробления. Также необходимо приобрести или изготовить металлические П-образные кронштейны с толщиной стенки не менее 2,5 мм и расстоянием между полками, соответствующем толщине бруса. В каждой полке на расстоянии в 30 мм от торца должно быть отверстие диаметром 11 мм.
На полу нанесите разметку линиями, по которой планируется установка лаг. Первую лагу укладывайте вдоль длинной стены с отступом в 20 см, все последующие — с шагом в 40 см. Для сращивания лаг одного ряда используйте два кронштейна, установленных подряд. Установите все кронштейны по линиям разметки и закрепите каждый к бетону двумя дюбелями быстрого монтажа 6х60 с бортиком «грибок».
Когда все кронштейны установлены, выставьте по горизонтальному уровню крайний от стены ряд лаг, подкладывая под них обрезки брусьев и щепу. На самом высоком участке перекрытия брус должен выступать над кронштейном на 3-5 мм. Через перфорацию в полках кронштейна закрепите брус двумя саморезами с обеих сторон.
Используя шнуровку или лазерный нивелир , перенесите уровень первого ряда на последний, выровняйте брусья и временно закрепите их в кронштейнах саморезами. Натяните шнуровку или используйте регулировку по лазеру на мишени, чтобы выровнять все остальные лаги. После временного крепления лаг просверлите их сверлом на 12 мм сквозь отверстия в кронштейнах, вставьте болты и затяните их самоконтрящейся гайкой.
Монтаж регулируемого пола на болт-стойках
Для устройства пола по оригинальной технологии необходимо приобрести пластиковые болт-стойки длиной 100 или 150 мм и металлические дюбель-гвозди 6х40 мм в количестве около 5-6 шт. на один м 2 пола. Специальные лаги с отверстиями и резьбой можно заменить на обычный брус 50х50 мм влажностью до 10%, но потребуется бур по дереву и машинный метчик диаметром 24 мм с шагом 3 мм.
Разметка для установки лаг начинается с базовой линии, которая имеет отступ от стены, равный длине фанерного листа. В помещениях с нормальной проходимостью крайние лаги должны отстоять от стены на 15 см, шаг между остальными лагами составляет 40-45 см. Если нагрузка на пол выше обычной, дистанция от стен составит менее 10 см, а шаг установки — до 30 см.
Подготовьте брусья: просверлите в них отверстия строго перпендикулярно поверхности в 10 см от краев, затем равномерно распределите остальные отверстия по длине, чтобы расстояние между ними было не более 40-50 см. Метчиком нарежьте в отверстиях резьбу и закрутите в них болт-стойки. При вкручивании стоек предварительно регулируйте их длину в соответствии с высотой подъема. Для вкручивания болт-стоек используйте шестигранный ключ.
Установите брусья по линиям разметки, ориентируя стойки шестигранными отверстиями вверх. Торцы лаг должны отстоять от стены на 10 см. Произведите предварительную регулировку с допустимой погрешностью в 1 см, выводя лаги на проектную высоту. Сквозь отверстие внутри болт-стойки отметьте длинным буром места сверления, затем сдвиньте лаги и проделайте отверстия 6 мм в бетонном полу на глубину до 50 мм.
Сперва закрепите крайние стойки лаг: опустите в отверстие дюбель-гвоздь и расклиньте его, используя молоток и металлический прут или бур от перфоратора. Вращая закрепленные стойки, точно выставьте лаги по уровню, используя шнуровку или лазерную разметку. Закручивайте центральные стойки, пока они не упрутся в пол, и закрепите их дюбель-гвоздями. Произведите окончательную регулировку пола, используя строительный уровень, перекрывающий не менее трех лаг. Лаги допускается сращивать в торец с подрубкой в полдерева на длину до 5 см и с последующим скреплением стыка болтом М10.
Устройство чернового покрытия
Когда лаги установлены, а пространство между ними заполнено утеплителем, производится настил покрытия. Для создания прочной и ровной поверхности необходимо уложить на лаги два слоя влагостойкой фанеры толщиной от 12 мм и более.
Первый слой укладывается длинной стороной поперек лаг и крепится к брусьям саморезами 55 мм. Шаг крепления саморезов — 15-17 см по краям и 20-25 см в центре листа. Вкручивайте крепеж не ближе 15 мм от торца фанеры и утапливайте шляпки заподлицо.
Второй ряд первого слоя начинается с подрезки половины листа для обеспечения разбежки между стыками на половину длины. Толщина стыков не должна превышать 2-3 мм, а отступ от стен — не более 15 мм. Когда первый слой фанеры уложен, разметьте на поверхности места пролегания лаг.
Укладывайте листы второго слоя перпендикулярно листам первого. При необходимости подрезайте элементы пола, чтобы расстояние между стыками в первом и втором слое было не менее 20 см. Скрепляйте листы между собой саморезами 35 мм, не менее 30 штук на 1 м 2 с шагом установки по краю в 30 см. Крепите второй слой к лагам саморезами 65 мм не менее чем в 15 местах на 1 м 2 . Допустимый стыковой зазор во втором слое — 4 мм, расстояние от стен — не более 6 мм.
После монтажа второго слоя фанеры с поверхности листов нужно убрать пыль и опилки, затем нанести два слоя адгезивной грунтовки вне зависимости от того, каким будет напольное покрытие. Зазоры между плитами и от стен нужно заполнить полиуретановой пеной, а лучше — силиконовым герметиком. Поверх пола на регулируемых лагах можно настелить любой тип напольного покрытия и даже выполнить подготовительную стяжку.
Регулируемый блок питания своими руками
Регулируемый блок питания своими руками
Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.
Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ
Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.
Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.
А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.
Схема регулируемого блока питания с защитой от КЗ на LM317
Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.
Печатная плата регулируемого блока питания на регуляторе напряжения LM317
Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.
Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.
А теперь самое интересное… Испытания блока питания на прочность.
Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы h5 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.
Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.
Схема подключения вентилятора к блоку питания
Что будет с блоком питания при коротком замыкании?
При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.
Радиодетали для сборки регулируемого блока питания на LM317
- Стабилизатор напряжения LM317
- Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
- Конденсатор С1 4700mf 50V
- Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
- Переменный резистор Р1 5К
- Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками
Принципиальная схема
Схема источника питания приведена на рис. 1. Его выпрямитель собран по схеме с удвоением напряжения на диодах VD1 и VD2, которые для снижения уровня коммутационных помех зашун-тированы конденсаторами С1 и С2. Чтобы уменьшить мощность, рассеиваемую на транзисторах стабилизатора, при работе в интервале 5…55 В отключают часть вторичной обмотки трансформатора Т1 переключателем SA2.
Транзистор VT2 служит генератором тока. Напряжение на его базе стабилизировано светодиодом HL1, значение тока коллектора (8…9 мА) задает резистор R2. Через делитель из резисторов R4-R8 часть выходного напряжения стабилизатора поступает на управляющий вход микросхемы DA1.
Если напряжение здесь менее 2,5 В, анодный ток микросхемы и коллекторный ток транзистора VT1 не превышают 0,4 мА. Благодаря этому транзистору, включенному по схеме с общей базой, напряжение на аноде микросхемы DA1 не превышает 3,3 В, а рассеиваемая ею мощность не выходит за допустимое значение.
В этом режиме почти весь коллекторный ток транзистора VT2 поступает в базу транзистора VT4 открывая последний. Напряжение на выходе стабилизатора и на входе управления микросхемы DA1 растет.
Рис. 1. Принципиальная схема лабораторного блока питания.
Когда последнее достигнет 2,5 В, анодный ток DA1, а с ним и коллекторный ток транзистора VT1 резко возрастет, ток базы транзистора VT4 уменьшится и напряжение на выходе источника будет стабилизировано на уровне, определяемом соотношением сопротивлений резисторов R4-R8. Плавно регулируют выходное напряжение переменным резистором R5, интервал регулировки выбирают с помощью переключателя SA2.
Транзистор VT3 нормально закрыт. Но при увеличении тока нагрузки и коллекторного тока транзистора VT4 примерно до 250 мА падение напряжения на резисторе R10 достигает значения, при котором транзистор VT3 открывается, шунтируя светодиод HL1. Это приводит к уменьшению коллекторных токов транзисторов VT2 и VT4.
В результате выходной ток стабилизатора оказывается ограниченным указанным выше значением. О срабатывании ограничителя тока можно судить по уменьшению яркости свечения светодиода.
Когда в результате действия ограничителя напряжение на выходе стабилизатора снизится примерно до 2,7 В, текущий по цепи HL1R1 ток пойдет в нагрузку через открывшийся диод VD4, несколько увеличивая суммарный протекающий через нее ток. Если бы диода VD4 не было, в результате изменения полярности приложенного напряжения открылся бы коллекторный переход транзистора VT1 и ток, текущий через R1, направился бы в базу транзистора VT4. В результате усиления транзистором VT4 приращение тока нагрузки было бы гораздо большим.
Имеется возможность полностью устранить эффект увеличения тока с помощью диода, включенного в разрыв цепи, соединяющей коллектор транзистора VT1 с базой транзистора VT4 и коллектором транзистора VT2. Но в таком случае транзисторы VT1 и VT2 нельзя будет устанавливать на общий теплоотвод без изолирующих прокладок.
Следует рассказать о назначении диодов VD5 и VD6 Предположим, переключатель SA2 находится в положении “50…100 В”, а на выходе установлено минимальное напряжение (движок переменного резистора R5 — в верхнем по схеме положении). После перевода переключателя SA2 в положение “5…55 В» напряжение 50 В, до которого заряжен конденсатор С7, оказывается приложенным к резисторам R6-R9, причем более его половины (около 30 В) — к управляющему входу микросхемы DA1.
Последняя из строя не выйдет, но по внутренним цепям микросхемы это напряжение попадет на ее анод и на эмиттер транзистора VT1, закрывая последний. В результате весь коллекторный ток транзистора VT2 потечет в базу транзистора VT4 и на выходе стабилизатора появится максимально возможное напряжение. К сожалению, это состояние устойчиво и самостоятельно стабилизатор выйти из него не сможет
Диод VD5 служит для исключения подобной критической ситуации. Открываясь, он ограничивает напряжение на входе микросхемы DA1 допустимым значением. Правильный выбор напряжения стабилизации стабилитрона VD3 и номиналов резисторов R7 и R8 гарантирует, что в нормальном рабочем режиме диод VD5 остается закрытым и не влияет на работу стабилизатора.
При резком изменении положения органов управления в сторону уменьшения выходного напряжения возможна ситуация, когда за счет медленной разрядки конденсатора С7 напряжение на эмиттере транзистора VT4 “не поспевает” за напряжением на его базе.
Возникает опасность пробоя эмиттер-ного перехода транзистора напряжением, приложенным к нему в обратном направлении. Диод VD6 предотвращает этот обратимый, но нежелательный пробой. Конденсатор С7 разряжается по цепи VD6, VT1, R3, DA1 Благодаря резистору R3 ток разрядки не превышает 100 мА.
Простой мощный импульсный блок питания для питания радио электро-аппаратуры
Часто собирая какую нибудь электронную конструкцию,как то, усилитель звуковой частоты,средства автоматики,устройства на базе микроконтроллеров,и многое другое,мы задаемся вопросом а чем питать аппаратуру? Радиоэлектронные устройства в большинстве своем питаются постоянным напряжением отличным от напряжения сети. В последнее время все чаще импульсная техника вытесняет из повседневного обихода традиционные трансформаторные схемы блоков питания. Выигрыш тут очевиден, во первых это экономия намоточного материала, который стоит не дешево. Во вторых, это габариты и масса приборов,на сегодняшний день при современной миниатюризации аппаратуры различного назначения,этот вопрос очень актуален, большинство схем ИБП довольно сложны в сборке и настройке и не доступны для повторения начинающими радиолюбителями.
В данной статье приводится схема простого ИБП, при разработке которого ставилась задача простоты конструкции, хорошей повторяемости, использование подручного материала, несложности в сборке и настройке. Несмотря на простоту, ИБП имеет довольно неплохие характеристики.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА
Питающее напряжение сети: 220В/50Гц. Номинальная выходная мощность: 300Вт. Максимальная выходная мощность: до 500Вт. Частота преобразования напряжения: 30кГц. Вторичное выпрямленное напряжение варьируется по необходимости.
ПРИНЦИПИАЛЬНАЯ СХЕМА ИПБ
Принцип работы ИБП заключается в следующем: импульсы для управления ключами генерирует задающий генератор, построенный на специальном драйвере TL494, частота импульсов управления 30кГц. Импульсы управления с выходов микросхемы подаются поочередно на транзисторные ключи VT1,VT2 предварительного формирователя импульсов для выходных силовых ключей. Ключи VT1,VT2 нагружены трансформатором управления TR1, который и формирует импульсы управления мощными выходными ключами VT3,VT4 ,формирователь необходим для гальванической развязки затворных цепей выходного каскада. ИБП построен по полумостовой схеме, средняя точка для полумоста создается конденсаторами С3,С4, которые одновременно служат сглаживающим фильтром выпрямленного диодным мостом VDS1 питающего напряжения сети. Цепь R7,C8 обеспечивает кратковременно питание на задающий генератор и формирователь импульсов управления,для первичного запуска ИБП, после полного заряда конденсатора С8 питание формирователя осуществляется непосредственно обмоткой 3 трансформатора TR2 c которой снимается переменное напряжение 12В. Цепочка VD2 ,C6 служит для выпрямления и сглаживания питающего формирователь напряжения. Стабилитрон VD1 ограничивает напряжение первичного запуска до 12В.Вторичное напряжение питания для РЭА снимается с обмотки 3 трансформатора TR2, выпрямляется диодами шотки VD3,VD4 и подается на сглаживающий фильтр С9,С10. Если необходимое напряжение питания превышает 35В, включаются по два диода последовательно.
Несколько слов о конструкции ИБП: большинство компонентов взяты из неисправного компьютерного БП АТХ. А именно это микросхема TL494, конденсаторы С9,С10, диодный мост VDS1, конденсаторы С1,С2, С5,С6,С7, диод VD2, диоды Шоттки VD3,VD4, и ферритовые сердечники с каркасами TR1,TR2.
Сам ИБП конструктивно был собран в корпусе того же разобранного БП АТХ. Транзисторы VT3,VT4 установлены на радиаторы площадью 50 см2.
Данные перемотки трансформаторов TR1,TR2: TR1, все четыре обмотки содержат по 50 витков провода 0.5 мм TR2, Обмотка 1 наматывается проводом 0.8мм 110 витков. Обмотка 3 содержит 12 витков проводом 0.8мм. Обмотка 2 наматывается в зависимости от необходимого вторичного напряжения питания и рассчитывается из соотношения 1 виток на 2 вольта. Так как на выходе стоит удвоитель напряжения.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
ШИМ контроллер | TL494 | 1 | Поиск в магазине Отрон | В блокнот | ||
VT1, VT2 | MOSFET-транзистор | IRFZ34 | 2 | Поиск в магазине Отрон | В блокнот | |
VT3, VT4 | MOSFET-транзистор | IRFP460 | 2 | Поиск в магазине Отрон | В блокнот | |
VD1 | Стабилитрон | Д815Д | 1 | Поиск в магазине Отрон | В блокнот | |
VD2 | Диод | 1 | Поиск в магазине Отрон | В блокнот | ||
VD3, VD4 | Диод Шоттки | MBR4045PT | 2 | Поиск в магазине Отрон | В блокнот | |
VDS1 | Диодный мост | 1 | Поиск в магазине Отрон | В блокнот | ||
С1 | Конденсатор | 4.7 нФ | 1 | Поиск в магазине Отрон | В блокнот | |
С2 | Электролитический конденсатор | 100 мкФ 16 В | 1 | Поиск в магазине Отрон | В блокнот | |
С3, С4 | Электролитический конденсатор | 330 мкФ 200 В | 2 | Поиск в магазине Отрон | В блокнот | |
С5 | Конденсатор | 1 мкФ 250 В | 1 | Поиск в магазине Отрон | В блокнот | |
С6 | Электролитический конденсатор | 100 мкФ 25 В | 1 | Поиск в магазине Отрон | В блокнот | |
С7 | Конденсатор | 100 нФ | 1 | Поиск в магазине Отрон | В блокнот | |
С8 | Электролитический конденсатор | 100 мкФ 450 В | 1 | Поиск в магазине Отрон | В блокнот | |
С9, С10 | Электролитический конденсатор | 1000 мкФ 100 В | 2 | Поиск в магазине Отрон | В блокнот | |
R1, R2 | Резистор | 68 Ом | 2 | 0.5 Вт | Поиск в магазине Отрон | В блокнот |
R3 | Резистор | 10 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R4, R5 | Резистор | 36 Ом | 2 | 0.5 Вт | Поиск в магазине Отрон | В блокнот |
R6, R7 | Резистор | 1 Ом | 2 | 2 Вт | Поиск в магазине Отрон | В блокнот |
Предохранитель | 2 А | 1 | Поиск в магазине Отрон | В блокнот | ||
TR1 | Трансформатор | 1 | Поиск в магазине Отрон | В блокнот | ||
TR2 | Трансформатор | 1 | Поиск в магазине Отрон | В блокнот | ||
Добавить все |
Прикрепленные файлы:
- pitanie_5-165.lay (26 Кб)
Теги:
- Блок питания
- Sprint-Layout
Блок питания радиоламп.
Как говорилось выше, в корпусе так же смонтирован и блок питания радиоламп – простой источник накала и источник анодного напряжения +300 вольт для ламповых схем. Так вот, источник анодного напряжения очень остроумно устроен. Многие радиолюбители-ветераны ламповой техники привыкли знать, что блок питания для ламп имеет всегда массивный сетевой трансформатор для питания анодов и накала. Он так же служит развязкой от сетевого напряжения (нельзя просто выпрямлять сетевое напряжение и подавать его на аноды ламп – это опасно для жизни!!!). Все это верно. Но в нашем случае для питания пары – тройки маломощных ламп не обязательно иметь отдельный большой сетевой трансформатор. У нас уже есть один сетевой трансформатор источника 0-12 вольт. То есть развязка от сети уже как бы есть. Теперь последовательно с этим трансформатором можно применить еще один — малогабаритный повышающий (а по факту просто включенный в обратном направлении) простой маломощный китайский трансформатор от сетевого адаптера 200/12 вольт, на который мы собственно и подадим 12 вольт от предыдущего трансформатора. На выходе – на повышающей обмотке естественно получим около 250 вольт и в конечном итоге развязку от сетевого напряжения (смотрите схему). В результате получается, мы использовали два малогабаритных трансформатора вместо одного крупногабаритного. Сэкономили массу и габариты блока питания.
Далее выпрямленное напряжение повышается до 300 вольт на сглаживающих конденсаторах фильтра. Напряжение же 6 вольт для питания накалов ламп снимаем со среднего вывода 12 вольт первого трансформатора. То есть первый трансформатор должен иметь отвод от середины обмотки 12 вольт.
Как увеличить мощность импульсного блока питания. Как сделать регулируемый блок питания из компьютерного
Если у вас дома есть старый блок питания от компьютера (ATX), то не стоит его выбрасывать. Ведь из него можно сделать отличный блок питания для домашних или лабораторных целей. Доработка потребуется минимальная и в конце вы получите почти универсальный источник питания с рядом фиксированных напряжений.
Компьютерные блоки питания обладают большой нагрузочной способностью, высокой стабилизацией и защитой от короткого замыкания.
Я взял вот такой блок. У всех есть такая табличка с рядом выходных напряжений и максимальным током нагрузки. Основные напряжения для постоянной работы 3,3 В; 5 В; 12 В. Есть ещё выходы, которые могут быть использованы на небольшой ток, это минус 5 В и минус 12 В. Так же можно получить разность напряжений: к примеру, если подключится в к «+5» и «+12», то вы получите напряжение 7 В. Если подключиться к «+3,3» и «+5», то получите 1,7 В. И так далее… Так что линейка напряжений намного больше, чем может показаться с разу.
Распиновка выходов блока питания компьютера
Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.
Переделка началась
Что нам понадобиться?- — Клеммы винтовые.
- — Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
- — Трубка термоусадочная.
- — Пара светодиодов с гасящими резисторами на 330 Ом.
- — Переключатели. Один для сети, второй для управления
Схема доработки блока питания компьютера
Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.
Начнем
Снимаем верхнюю крышку кожуха.Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.
Вставляем клеммы и затягиваем.
Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.
Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.
Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.
Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.
Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.
Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.
Смотрите видео изготовления лабораторного блока своими руками
!
Наверное, проблема о которой поговорим сегодня, знакома многим. Думаю, у каждого возникала необходимость увеличения выходного тока блока питания. Давайте же рассмотрим конкретный пример, у вас имеется 19-ти вольтовый адаптер питания от ноутбука, который обеспечивает выходной ток, ну предположим, в районе 5А, а вам нужен 12-ти вольтовый блок питания с током 8-10А. Вот и автору (YouTube канал «AKA KASYAN») понадобился однажды блок питания с напряжением 5В и с током в 20А, а под рукой имелся 12-ти вольтовый блок питания для светодиодных лент с выходным током в 10А. И вот автор решил его переделать.
Да, собрать нужный источник питания с нуля или использовать 5-ти вольтовую шину любого дешевого компьютерного блока питания конечно можно, но многим самодельщикам-электронщикам будет полезно знать, как увеличить выходной ток (или в простонародье ампераж) почти любого импульсного блока питания.
Как правило, источники питания для ноутбуков, принтеров, всевозможные адаптеры питания мониторов и так далее, делают по однотактным схемам, чаще всего они обратноходовые и построению ничем не отличается друг от друга. Может быть иная комплектация, иной ШИМ-контроллер, но схематика одна и таже.
Однотактный ШИМ-контроллер чаще всего из семейства UC38, высоковольтный полевой транзистор, который качает трансформатор, а на выходе однополупериодный выпрямитель в виде одного или сдвоенного диода Шоттки.
После него дроссель, накопительные конденсаторы, ну и система обратной связи по напряжению.
Благодаря обратной связи выходное напряжение стабилизировано и строго держится в заданном пределе. Обратную связь обычно строят на базе оптрона и источника опорного напряжения tl431.
Изменение сопротивления резисторов делителя в его обвязки, приводит к изменению выходного напряжения.
Это было общим ознакомлением, а теперь о том, что нам предстоит сделать. Сразу необходимо отметить, что мощность мы не увеличиваем. Данный блок питания имеет выходную мощность около 120Вт.
Мы собираемся снизить выходное напряжение до 5В, но взамен увеличить выходной ток в 2 раза. Напряжение (5В) умножаем на силу тока (20А) и в итоге получим расчетную мощность около 100Вт. Входную (высоковольтную) часть блока питания мы трогать не будем. Все переделки коснутся только выходной части и самого трансформатора.
Но позже после проверки оказалось, что родные конденсаторы тоже неплохие и имеют довольно низкое внутреннее сопротивление. Поэтому в итоге автор впаял их обратно.
Далее выпаиваем дроссель, ну и импульсный трансформатор.
Диодный выпрямитель довольно неплохой — 20-ти амперный. Самое хорошая то, что на плате имеется посадочное место под второй такой же диод.
В итоге второго такого диода автор не нашел, но так как недавно из Китая ему пришли точно такие же диоды только слегка в другом корпусе, он воткнул пару штук в плату, добавил перемычку и усилил дорожки.
В итоге получаем выпрямитель на 40А, то есть с двукратным запасом по току. Автор поставил диоды на 200В, но в этом нет никакого смысла просто у него таких много.
Вы же можете поставить обычные диодные сборки Шоттки от компьютерного блока питания с обратным напряжением 30-45В и меньше.
С выпрямителем закончили, идем дальше. Дроссель намотан вот таким проводом.
Выкидываем его и берем вот такой провод.
Мотаем около 5-ти витков. Можно использовать родной ферритовый стержень, но у автора поблизости валялся более толстый, на котором и были намотаны витки. Правда стержень оказался слегка длинным, но позже все лишнее отломаем.
Трансформатор — самая важная и ответственная часть. Снимаем скотч, греем сердечник паяльником со всех сторон в течение 15-20 минут для ослабления клея и аккуратно вынимаем половинки сердечника.
Оставляем все это дело минут на десять для остывания. Далее убираем желтый скотч и разматываем первую обмотку, запоминая направление намотки (ну или просто сделайте пару фоток до разборки, в случае чего они вам помогут). Второй конец провода оставляем на штырьке. Далее разматываем вторую обмотку. Также второй конец не отпаиваем.
После этого перед нами вторичная (или силовая) обмотка собственной персоны, именно ее то мы и искали. Эту обмотку полностью удаляем.
Она состоит из 4-ех витков, намотана жгутом из 8-ми проводов, диаметр каждого 0,55мм.
Новая вторичная обмотка, которую мы намотаем, содержат всего полтора витка, так как нам нужно всего лишь 5В выходного напряжения. Мотать будем тем же способом, провод возьмем с диаметром 0,35мм, но вот количество жил аж 40 штук.
Это гораздо больше чем нужно, ну, впрочем, сами можете сравнить с заводской обмоткой. Теперь все обмотки мотаем в том же порядке. Обязательно соблюдайте направление намотки всех обмоток, иначе ничего работать не будет.
Жилы вторичной обмотки желательно залудить еще до начала намотки. Для удобства каждый конец обмотки разбиваем на 2 группы, чтобы на плате не сверлить гигантские отверстия для установки.
После того как трансформатор установлен, находим микросхему tl431. Как уже ранее было сказано, именно она задает выходное напряжение.
В ее обвязке находим делитель. В данном случае 1 из резисторов этого делителя, представляет из себя пару smd резисторов, включенных последовательно.
Второй резистор делителя выведен ближе к выходу. В данном случае его сопротивление 20 кОм.
Выпаиваем этот резистор и заменяем его подстроечным на 10 кОм.
Подключаем блок питания в сеть (обязательно через страховочную сетевую лампу накаливания с мощностью в 40-60Вт). К выходу блока питания подключаем мультиметр и желательно не большую нагрузку. В данном случае это маломощные лампы накаливания на 28В. Затем крайне аккуратно, не дотрагиваясь платы, вращаем подстроечный резистор до получения желаемого напряжения на выходе.
Далее все вырубаем, ждём минут 5, дабы высоковольтный конденсатор на блоке полностью разрядился. Затем выпаиваем подстроечный резистор и замеряем его сопротивление. После чего заменяем его на постоянной, либо оставляем его. В этом случае у нас еще и возможность регулировки выхода появится.
Блок питания компьютера — это очень важный элемент, представляющий собой источник электропитания. Без него невозможно обеспечение компьютера необходимой ему энергией. Его работа заключается в преобразовании напряжения сети до нужного уровня. Важнейшей составляющей блока питания является мощность, ведь именно от неё зависит, насколько стабильно будет работать ПК. Например, при недостаточном значении мощности, ПК просто выключится . Неисправности подобного рода случаются нечасто, но, если случаются, приносят массу неудобств пользователю. В этой статье подробно рассмотрим, как узнать и увеличить мощность блока питания компьютера. Давайте разбираться. Поехали!
Для начала необходимо узнать: сколько ватт в блоке питания. Как это сделать? Вы можете рассчитать этот показатель самостоятельно либо (что гораздо проще) воспользоваться специальным сервисом на сайте casemods.ru, который всё сделает за вас. Вам же останется только указать нужную для расчёта информацию, а именно:
- Тип ядра ЦП;
- Разгон ЦП;
- Сколько установлено процессоров;
- Количество ЖД и оптических приводов;
- Мощность материнской платы ПК;
- Сколько имеется слотов оперативной памяти ;
- Модель и разгон установленной видеокарты.
Как только все перечисленные параметры будут заданы, сервис автоматически посчитает и выведет на экран значения средней и пиковой мощностей. Помимо casemods.ru, вы можете воспользоваться другими сервисами, которых в интернете немало.
Если перед вами стоит выбор БП для компьютера, то обращайте особое внимание на компанию-производителя. Не стоит приобретать блоки питания малоизвестных марок, так как их продукция, как правило, не отличается высоким качеством, а характеристики могут быть завышены вполовину. Всё это может являться причиной поломок и неисправностей в процессе эксплуатации.
- Termaltake;
- Zalman;
- CoolerMaster;
- PowerMan;
- Hiper.
К сожалению, так же легко определить мощность уже установленного блока питания нельзя. Но существуют другие способы, позволяющие это сделать. Например, вы можете снять крышку с системного блока и поискать специальную наклейку, содержащую всю необходимую информацию.
Теперь перейдём к тому, как увеличить мощность блока питания. Эта операция поможет вам несколько улучшить работоспособность ПК. Чтобы повысить мощность БП, выполните следующие действия:
- Откройте БП.
- Измерьте трансформатор. Размеры должны быть не менее чем 3х3х3 см. В противном случае лучше ничего не делать.
- Заменить большие высоковольтные конденсаторы. Рекомендуется установить их номиналом не менее 470 микрофарад / 200 вольт. Также обратите внимание, что дроссели ставят исключительно в низковольтную область БП. Изготовить их можно по-разному.
- Вы можете сами намотать провод с лаковой изоляцией на ферритовое кольцо. Также можно снять дроссели со старых блоков питания.
- Распаять сглаживающие конденсаторы.
- Произвести замену диодной сборки.
- Снизьте напряжение канала +12, чтобы обезопасить ПК. Для этого нужно впаять диод большой мощности в разрывы жёлтых проводов.
Проводить подобные операции стоит только опытным пользователям, понимающим устройство компьютера. Придётся потратить и время, и силы, но, в итоге, вы получите более надёжный и мощный БП, который долго прослужит вам. Пишите в комментариях, была ли полезна для вас эта статья, и задавайте интересующие вопросы по рассмотренной теме.
Автор не несет ответственности за выход из строя каких-то компонент, произошедший в результате разгона. Используя данные материалы в любых целях, конечный пользователь принимает на себя всю ответственность. Материалы сайта представлены «as is».»
Вступление.
Этот эксперимент с частотой я затеял из-за не хватающей мощности БП.
Когда компьютер покупался его мощности вполне хватало для этой конфигурации:
AMD Duron 750Mhz / RAM DIMM 128 mb / PC Partner KT133 / HDD Samsung 20Gb / S3 Trio 3D/2X 8Mb AGP
Для примера две схемы:
Частота f для этой схемы получилась 57 кГц.
А для этой частота f равна 40 кГц.
Практика.
Частоту можно изменить заменив конденсатор C или(и) резистор R на другой номинал.
Было бы правильно поставить конденсатор с меньшей емкостью, а резистор заменить на последовательно соединенные постоянный резистор и переменный типа СП5 с гибкими выводами.
Затем, уменьшая его сопротивление, измерять напряжение, пока напряжение не достигнет 5.0 вольт. Затем впаять постоянный резистор на место переменного, округлив номинал в большую сторону.
Я пошел по более опасному пути — резко изменил частоту впаяв конденсатор меньшей ёмкости.
У меня было:
R 1 =12kOm
C 1 =1,5nF
По формуле получаем
f =61,1 кГц
После замены конденсатора
R 2 =12kOm
C 2 =1,0nF
f =91,6
кГц
Согласно формуле:
частота увеличилась на 50% соответственно и мощность возросла.
Если R не будем менять, то формула упрощается:
Или если С не будем менять, то формула:
Проследите конденсатор и резистор подключенные к 5 и 6 ножкам микросхемы.
и замените конденсатор на конденсатор с
меньшей ёмкостью.
Результат
После разгона блока питания напряжение стало ровно 5.00 (мультиметр может иногда показать 5.01, что скорее всего погрешность), почти не реагируя на выполняемые задачи — при сильной нагрузке на шине +12 вольт (одновременная работа двух CD и двух винтов) — напряжение на шине +5В может кратковременно снизиться 4.98.
Начали сильнее греться ключевые транзисторы. Т.е. если раньше радиатор был слегка теплый, то теперь он сильно теплый, но не горячий. Радиатор с выпрямительными полумостами сильнее греться не стал. Трансформатор также не греется. С 18.09.2004 г. и по сегодняшний день (15.01.05) к блоку питания нет никаких вопросов. На данный момент следующая конфигурация:
Ссылки
- ПАРАМЕТРЫ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ СИЛОВЫХ ТРАНЗИСТОРОВ, ПРИМЕНЯЕМЫХ В ДВУХТАКТНЫХ СХЕМАХ ИБП ЗАРУБЕЖНОГО ПРОИЗВОДСТВА.
- Конденсаторы. (Примечание: С = 0.77 ۰ Сном ۰SQRT(0,001۰f), где Сном — номинальная емкость конденсатора.)
Комментарии Renni: То что ты повысил частоту у тебя повысилось количество пилообразных импульсов за определенный промежуток времени, а как следствие повысилась частота с которой отслеживается нестабильности по питанию, так как нестабильности по питанию отслеживаются чаще то и импульсы на закрытие и открытие транзисторов в полумостовом ключе происходит с двойной частотой. Твои транзисторы обладают характеристиками, а конкретно своим быстродействием.: Увеличив частоту ты тем самым уменьшил размер мертвой зоны. Раз ты говоришь что транзисторы не греются значит они входят в той диапазон частот, значит тут казалось бы все хорошо. Но, есть и подводные камни. Перед тобой есть схема электрическая принципиальная? Я тебе сейчас по схеме объясню. Там в схеме посмотри где ключевые транзисторы, к коллектору и эмиттеру включены диоды. Они служат для рассасывания остаточного заряда в транзисторах и перегонке заряда в другое плечо(в конденсатор). Вот, если у этих товарищей скорость переключения низкая у тебя возможны сквозные токи — это прямой пробой твоих транзисторов. Возможно из за этого они будут греться. Теперь дальше, там дело не этом, там дело в том что после прямого тока, который прошел через диод. Он обладает инерционностью и когда появляется обратный ток,: у него какое то время еще не восстанавливается значение его сопротивления и по этому они характеризуются не частотой работы, а временем восстановления параметров. Если это время больше чем можно, то у тебя будут наблюдаться частичные сквозные токи из за этого возможны всплески как по напряжению так и по току. Во вторично это не так страшно, но в силовой части — это просто пи#дец,: мягко говоря. Так вот продолжим. Во вторичной цепи эти переключения следующим не желательны, а именно: Там для стабилизации используются диоды Шотки, так вот по 12 вольтам что бы их подпирают напряжением -5 вольт.(прим. у меня кремниевые на 12 вольтах), так вот по 12 вольтам что бы их (диоды Шотки) можно было использовать подпирают напряжением -5 вольт. (Из-за низкого обратного напряжения, невозможно просто поставить диодов Шотки на шине 12 вольт, поэтому так извращаются). Но у кремниевых потери больше чем у диодов Шотки и реакция поменьше, если только они не из числа быстро восстанавливающихся. Так вот, если высокая частота, то у диодов Шотки наблюдается практически тот же эффект что и в силовой части + инерционность обмотки по -5 вольтам по отношению к +12 вольтам, делает невозможным использование диодов ШОТКИ, по этому увеличение частоты может со временем привести к выходу из строя онных. Я рассматриваю общий случай. Так вот едем дальше. Дальше еще один прикол, связанный наконец непосредственно с цепью обратной связи. Когда ты образуешь отрицательную обратную связь, у тебя есть такое понятие как резонансная частота вот этой петли обратной связи. Если ты выйдешь на резонанс, то п#зда всей твоей схеме. Прости за грубое выражение. Потому что эта микросхема ШИМ всем управляет и требуется ее работа в режиме. И на конец «темная лошадка» 😉 Ты понял о чем я? Трансформатор он самый, так вот у этой сцуки ведь тоже есть резонансная частота. Так эта дрянь ведь не унифицированная деталь, трансформатор намоточное изделие в каждом случае изготовляется индивидуально — по этой просто причине ты не знаешь характеристик на него. A если ты введешь своей частотой в резонанс? Ты спалишь свой транс и БП можешь спокойно выкидывать. Внешне два абсолютно одинаковых трансформатора могут иметь абсолютно разные параметры. Ну факт тот что не правильной подборкой частоты ты мог спокойно спалить БП.При всех прочих условиях как все таки повысить мощность БП. Повышаем мощность блока питания. Первым делом нам надо разобраться что такое мощность. Формула предельно проста — ток на напряжение. Напряжение в силовой части у нас составляет 310 вольт постоянки. Так вот так как на напряжение мы никак не можем влиять. Транс то у нас один. Мы можем увеличить только ток. Величину тока нам диктует две вещи- это транзисторы в полумосте и буферные емкости. Кондеры по больше, транзисторы по мощнее, так вот надо увеличить номинал емкости и поменять транзисторы на такие у которых больше ток цепи коллектор-эмиттер или просто ток коллектора, если не жалко можешь втулть туда на 1000 мкФ и не напрягаться с расчетами. Так вот в этой цепи мы сделали все что могли, тут больше в принципе сделать ничего не возможно, разве что еще учесть напряжение и ток базы этих новых транзисторов. Если трансформатор маленький — это не поможет. Надо еще отрегулировать такую хрень как напряжение и ток при котором у тебя будет открываться и закрываться транзисторы. Теперь вроде как тут все. Поехали во вторичную цепь.Теперь у нас на выходе обмоток тока доху……. Надо немного подправить наши цепи фильтрации, стабилизации и выпрямления. Для этотго мы берем в зависимости от реализации нашего БП и меняем диодные сборки в первую очередь, что бы обеспечивали возможность протекания нашего тока. В принципе все остальное можно оставить так как есть. Вот и все, вроде бы, ну на данный момент Запас прочности должен быть. Тут дело в том что техника импульсная — вот это ее дурная сторона. Тут почти все построено на АЧХ и ФЧХ, на t реакции.: вот и все
Мощный блок питания путем модернизации блоков меньшей мощности:: Overclockers.ru Прогресс не стоит на месте. Производительность компьютеров стремительно растет. А с увеличением производительности растет и энергопотребление. Если раньше на блок питания почти не обращалось внимания, то теперь, после заявления nVidia о рекомендованной мощности питания для своих топовых решений в 480 Вт, все немного изменилось. Да и процессоры потребляют все больше и больше, а если еще все это как следует разогнать…
C ежегодным апгрейдом процессора, материнки, памяти, видео, я давно смирился, как с неизбежным. Но апгрейд блока питания меня почему-то здорово нервирует. Если железо прогрессирует кардинально, то в схемотехнике блока питания таких принципиальных изменений практически нет. Ну, транс побольше, провода на дросселях потолще, диодные сборки помощнее, конденсаторы… Неужели нельзя купить блок питания помощнее, так сказать на вырост, и жить хотя бы пару лет спокойно. Не задумываясь о такой относительно простой вещи, как качественное электропитание.
Казалось чего бы проще, купи блок питания самой большой мощности, какую найдешь, и наслаждайся спокойной жизнью. Но не тут то было. Почему-то все работники компьютерных фирм уверены, что 250-ти ваттного блока питания хватит вам с избытком. И, что бесит больше всего, начинают безапелляционно поучать и безосновательно доказывать свою правоту. Тогда на это резонно замечаешь, что знаешь, чего хочешь и готов за это платить и надо побыстрее достать то, чего спрашивают и заработать законную прибыль, а не злить незнакомого человека своими бессмысленными, ничем не подкрепленными уговорами. Но это только первое препятствие. Идем дальше.
Допустим, вы все же нашли мощный блок питания, и тут вы видите, например, такую запись в прайсе
- Power Man PRO HPC 420W – 59 уе
- Power Man PRO HPC 520W – 123 уе
При разнице в 100 ватт цена выросла вдвое. А уж если брать с запасом, то нужно 650 или больше. Сколько это будет стоить? И это еще не все!
В подавляющем большинстве современных блоков питания используется микросхема SG6105. А схема включения ее, имеет одну очень неприятную особенность – она не стабилизирует напряжения 5 и 12 вольт, а на ее вход подается среднее значение этих двух напряжений, полученное с резисторного делителя. И стабилизирует она это среднее значение. Из-за этой особенности часто происходит такое явление, как «перекос напряжений». Ранее использовали микросхемыTL494, MB3759, KA7500. Они имеют ту же особенность. Приведу цитату из статьи господина Коробейникова .
«…Перекос напряжений возникает из-за неравномерного распределения нагрузки по шинам +12 и +5 Вольт. Например, процессор запитан от шины +5В, а на шине +12 висит жёсткий диск и CD привод. Нагрузка на +5В во много раз превышает нагрузку на +12В. 5 вольт проваливается. Микросхема увеличивает duty cycle и +5В приподнимается, но ещё сильнее увеличивается +12 – там меньше нагрузка. Мы получаем типичный перекос напряжений…»
На многих современных материнских платах процессор питается от 12 вольт, тогда происходит перекос наоборот, 12 вольт понижается, а 5 повышается.
И если в номинальном режиме компьютер нормально работает, то при разгоне потребляемая процессором мощность увеличивается, перекос усиливается, напряжение уменьшается, срабатывает защита блока питания от понижения напряжения и компьютер отключается. Если не происходит отключения, то все равно пониженное напряжение не способствует хорошему разгону.
Так, например, было у меня. Даже написал на эту тему заметку – «Лампочка оверклокера» Тогда у меня в системнике работали два блока питания – Samsung 250 W, Power Master 350 W. И я наивно верил, то 600 ватт более чем достаточно. Достаточно может и достаточно, но из-за перекоса все эти ватты бесполезны. Этот эффект я по незнанию усилил тем, что от Power Master подключил материнку, а от Samsung винт, дисководы и т.д. То есть вышло – с одного блока питания берется, в основном 5 вольт, с другого 12. А другие линии «в воздухе», что и усилило эффект «перекоса».
После этого я приобрел 480 ваттный блок питания Euro case. Из-за своего пристрастия к тишине, переделал его в безвентиляторный, о чем тоже писал на страницах сайта. Но и в этом блоке стояла SG6105. При его тестировании я тоже столкнулся с явлением «перекоса напряжений». Только что приобретенный блок питания непригоден для разгона!
И это еще не все! Мне все хотелось приобрести второй компьютер, а старый оставить «для опытов», но элементарно «давила жаба». Недавно я эту зверюгу все же уговорил и приобрел железо для второго компа. Это конечно отдельная тема, но я для него купил блок питания – PowerMan Pro 420 W. Решил проверить его на предмет «перекоса». А так как новая мать питает процессор по шине 12 вольт, то по ней я и проверил. Как? Узнаете, если дочитаете статью до конца. А пока скажу, что при нагрузке 10 ампер, двенадцать вольт провалилось до 11.55. Стандарт допускает отклонение напряжений плюс-минус 5 процентов. Пять процентов от 12 это 0.6 вольта. Иными словами при токе 10 ампер напряжение упало почти до предельно допустимой отметки! А 10 ампер соответствует 120-ти ваттам потребления процессора, что при разгоне вполне реально. В паспорте к этому блоку по шине 12 вольт заявлен ток 18 ампер. Я думаю, не видать мне этих ампер, так как от «перекоса» блок питания выключится гораздо раньше.
Итого – четыре блока питания за два года. И надо брать пятый, шестой, седьмой? Нет, хватит. Надоело платить за то, что заранее не нравится. Что мне мешает самому сделать киловаттный блок питания и пожить спокойно пару лет, с уверенностью в качестве и количестве питания своего любимца. К тому же я затеял изготовление нового корпуса. Корпус я начал делать преогромный и блок питания, нестандартного размера, должен поместиться там без проблем. Но и обладателям стандартных корпусов может пригодиться такое решение. Всегда можно сделать внешний блок питания, тем более прецеденты уже есть. Кажется, Zalman выпустил внешний блок питания.
Конечно, делать блок питания такой мощности «с нуля» — сложно, долго, да и хлопотно. Поэтому и появилась идея собрать один блок из двух фабричных. Тем более они уже есть и, как выяснилось, в теперешнем виде непригодны для разгона. На эту мысль меня натолкнула все та же статья господина Коробейникова .
«…Для введения раздельной стабилизации нужен второй трансформатор и вторая микросхема ШИМ, так и делается в серьёзных и дорогих серверных блоках…»
В компьютерном блоке питания существует три сильноточные линии с напряжением 5, 12 и 3.3 вольта. У меня есть два стандартных блока питания, пусть один из них вырабатывает 5 вольт, а другой, помощнее, 12 и все остальные. Напряжение 3.3 вольта стабилизируется отдельно и явления перекоса не вызывает. Линии вырабатывающие -5, -12 и т.д. – маломощны и эти напряжения можно взять с любого блока. А для осуществления этого мероприятия, использовать принцип, изложенный в той же статье г. Коробейникова – отключать ненужное напряжение от микросхемы, а нужное подрегулировать. То есть, теперь SG6105 будет стабилизировать только одно напряжение и, следовательно, явление «перекоса напряжений» не будет.
Так же облегчается режим работы каждого блока питания. Если посмотреть силовую часть, типовой схемы блоков питания (Рис.2), то видно, что обмотки 12, 5 и 3.3 вольта представляют собой одну общую обмотку с отводами. И если с такого транса брать не сразу все три, а только одно напряжение, то мощность трансформатора останется прежней, но на одно напряжение, а не на три.
К примеру, блок по линиям 12, 5, 3.3 вольта выдавал 250 ватт, то теперь практически эти же 250 ватт мы получим по линии, например, 5 вольт. Если раньше общая мощность делилась между тремя линиями, то теперь всю мощность можно получить на одной линии. Но на практике для этого нужно заменить диодные сборки на используемой линии на более мощные. Или включить параллельно дополнительные сборки, взятые с другого блока, на котором эта линия использоваться не будет. Так же максимальный ток будет ограничивать сечение провода дросселя. Может сработать и защита блока питания от перегрузки по мощности (хотя этот параметр можно подрегулировать). Так что полностью утроенную мощность мы не получим, но прибавка будет, да и греться блоки будут гораздо меньше. Можно, конечно, перемотать дроссель проводом большего сечения. Но об этом позже.
Перед тем, как приступить к описанию модификации, нужно сказать несколько слов. Очень непросто писать о переделках электронного оборудования. Не все читатели разбираются в электронике, не каждый читает принципиальные схемы. Но в то же время есть читатели, занимающиеся электроникой профессионально. Как ни напишешь – окажется, что для кого-то непонятно, а для кого-то раздражающе примитивно. Я все же попытаюсь написать так, что бы было понятно подавляющему большинству. А специалисты, думаю, меня простят.
Так же необходимо сказать, что все переделки оборудования вы производите на свой страх и риск. Любые модификации лишают вас гарантии. И естественно, автор, за любые последствия ответственности не несет. Не лишним будет сказать, что человек, берущийся за такую модификацию, должен быть уверен в своих силах, и иметь соответствующий инструмент. Данная модификация выполнима на блоках питания собранных на основе микросхемы SG6105 и немного устаревших TL494, MB3759, KA7500.
Для начала пришлось поискать datasheet на микросхему SG6105 – это оказалось не так уж сложно. Привожу из datasheet нумерацию ног микросхемы и типовую схему включения.
Рис 1. SG6105
Рис. 2. Типовая схема включения.
Рис. 3. Схема включения SG6105
Опишу сначала общий принцип модернизации. Сначала модернизация блоков на SG6105. Нас интересуют выводы 17(IN) и 16(COMP). К этим выводам микросхемы и подключен резисторный делитель R91, R94, R97 и подстроечный резистор VR3. На одном блоке отключаем напряжение 5 вольт, для этого выпаиваем резистор R91. Теперь подстраиваем величину напряжения 12 вольт резистором R94 грубо, а переменным резистором VR3 точно. На другом блоке наоборот, отключаем 12 вольт, для этого выпаиваем резистор R94. И подстраиваем величину напряжения 5 вольт резистором R91 грубо, а переменным резистором VR3 точно.
Провода PC – ON всех блоков питания соединяются между собой и подпаиваются к 20-ти контактному разъему, который потом подключаем к материнке. С проводом PG сложнее. Я взял этот сигнал с более мощного блока питания. В дальнейшем можно реализовать несколько более сложных вариантов.
Рис. 4. Схема распайки разъема
Теперь об особенностях модернизации блоков на основе микросхемы TL494, MB3759, KA7500. В этом случае сигнал обратной связи с выходных выпрямителей напряжений 5 и 12 вольт подается на вывод 1 микросхемы. Поступаем немного по-другому – перерезаем дорожку печатной платы около вывода 1. Другими словами отключаем вывод 1 от остальной схемы. И на этот вывод подаем нужное нам напряжение через резисторный делитель.
Рис 5. Схема для микросхем TL494, MB3759, KA7500В этом случае номиналы резисторов одинаковы и для стабилизации 5 вольт и для 12. Если вы решили использовать блок питания для получения 5-ти вольт, то резисторный делитель подключаете к выходу 5В. Если для 12, то к 12.
Наверно хватит теории и пора приступать к делу. Сначала надо определиться с измерительными приборами. Для измерения напряжений я применю одни из самых дешевых мультиметров DT838. Точность измерения напряжения у них 0.5 процента, что вполне приемлемо. Для измерения тока использую стрелочный амперметр. Токи нужно мерить большие, поэтому придется самому изготовить амперметр из стрелочной измерительной головки и самодельного шунта. Готовый амперметр с фабричным шунтом приемлемого размера я найти не смог. Нашел амперметр на 3 ампера, разобрал его. Вытащил из него шунт. Получился микроамперметр. Дальше была небольшая сложность. Для изготовления шунта и калибровки амперметра, сделанного из микроамперметра, был нужен образцовый амперметр, способный мерить ток в пределах 15-20 ампер. Для этих целей можно было бы применить токовые клещи, но у меня таковых не оказалось. Пришлось искать выход. Выход я нашел самый простой, конечно, не очень точный, но вполне. Шунт я вырезал из стального листа толщиной 1мм, шириной 4мм и длиной 150 мм. К блоку питания через этот шунт подключил 6 лампочек 12V, 20W. По закону Ома через них потек ток равный 10 амперам.
Р(Wt)/U(V)=I(A), 120/12=10А
Один провод от микроамперметра соединил с концом шунта, а второй двигал по шунту, пока стрелка прибора не показала 7 делений. До 10 делений не хватило длины шунта. Можно было подрезать шунт потоньше, но из-за нехватки времени решил оставить, как есть. Теперь 7 делений этой шкалы соответствуют 10 амперам.
Фото 1 Бюджетный стенд для подбора шунта. Фото 2. Стенд с включенными 6-ю лампочками 12вольт 20 ватт.На последней фотографии видно, как просело напряжение 12 вольт при токе 10 ампер. Блок питания PowerMan Pro 420 W. Минус 11.55 показывает из-за того, что я перепутал полярность щупов. На самом деле конечно плюс 11.55. Этот же стенд я буду использовать как нагрузку для регулировки готового блока питания.
Новый блок питания я буду делать на основе PowerMaster 350 W, он будет вырабатывать 5 вольт. Согласно наклейке на нем, он по этой линии должен давать 35 ампер. И PowerMan Pro 420 W. С него я буду брать все остальные напряжения.
В этой статье я покажу общий принцип модернизации. В дальнейшем я планирую переделать полученный блок питания в пассивный. Возможно, перемотаю дроссели проводом большего сечения. Доработаю соединительные кабели на предмет уменьшения наводок и пульсаций. Сделаю мониторинг токов и напряжений. И возможно многое другое. Но это в будущем. Все это описывать в данной статье я не буду. Цель статьи – доказать возможность получения мощного блока питания, путем модернизации двух-трех блоков меньшей мощности.
Немного о технике безопасности. Все перепайки производятся, естественно, при выключенном блоке. После каждого выключения блока, перед дальнейшими работами, разряжайте большие конденсаторы. На них присутствует напряжение 220 вольт, и заряд они накапливают очень приличный. Не смертельный, но крайне неприятный. Электрический ожог заживает долго.
Начну с PowerMaster. Разбираю блок, вынимаю плату, отрезаю лишние провода…
Фото 3. Блок PowerMaster 350 WНахожу микросхему ШИМ, она оказалась TL494. Нахожу вывод 1, осторожно перерезаю печатный проводник и подпаиваю к выводу 1 новый резисторный делитель (см. Рис5). Подпаиваю вход резисторного делителя к пятивольтовому выходу блока питания (обычно это красные провода). Еще раз проверяю правильность монтажа, это никогда не бывает лишним. Подключаю модернизированный блок к своему бюджетному стенду. На всякий случай, спрятавшись за стул, включаю. Взрыва не произошло и это даже вызвало легкое разочарование. Для запуска блока соединяю провод PS ON с общим проводом. Блок включается, лампочки загораются. Первая победа.
Переменным резистором R1 на малой нагрузке блока питания (две лампочки по 12V, 20W и спот 35W) выставляю выходное напряжение 5 вольт. Напряжение замеряю непосредственно на выходном разъеме.
Фотоаппарат у меня не самый лучший, мелкие детали не видит, поэтому прошу прощения за качество снимков.
Блок питания на непродолжительное время можно включать без вентилятора. Но нужно следить за температурой радиаторов. Будьте осторожны, на радиаторах некоторых моделей блоков питания присутствует напряжение, иногда высокое.
Не выключая блок, начинаю подключать дополнительную нагрузку – лампочки. Напряжение не меняется. Блок стабилизирует хорошо.
На этой фотографии я подключил к блоку все лампочки, какие были в наличии – 6 ламп по 20w, две по 75 w, и спот 35w. Ток, текущий через них по показаниям амперметра в пределах 20 ампер. Никакого «проседания», никаких «перекосов»! Полдела сделано.
Теперь берусь за PowerMan Pro 420 W. Так же разбираю его.
Нахожу на плате микросхему SG6105. За тем отыскиваю нужные выводы.
Принципиальная схема, приведенная в статье г. Коробейникова, соответствует моему блоку, нумерация и номиналы резисторов те же. Для отключения 5-ти вольт выпаиваю резистор R40 и R41. Вместо R41 впаиваю два переменных резистора соединенных последовательно. Номинал 47 кОм. Это для грубой регулировки напряжения 12 вольт. Для точной регулировки используется резистор VR1 на плате блока питания
Рис 6. Фрагмент схемы блока питания PowerMan
Опять достаю свой примитивный стенд и подключаю к нему блок питания. Сначала подключаю минимальную нагрузку – спот 35W.
Включаю, подстраиваю напряжение. Затем, не выключая блок питания, подключаю дополнительные лампочки. Напряжение не меняется. Блок прекрасно работает. По показаниям амперметра ток достигает 18 ампер и никакого «проседания» напряжения.
Второй этап закончен. Теперь осталось проверить, как будут работать блоки в паре. Перекусываю провода красного цвета идущие от PowerMan к разъему и молексам, изолирую их. А к разъему и молексам подпаиваю пятивольтовый провод от PowerMaster 350 W, так же соединяю общие провода обоих блоков. Провода Power On блоков питания объединяю. PG беру с PowerMan. И подключаю этот гибрид к своему системному блоку. На вид он несколько странен и если кому-то захочется узнать о нем поподробнее, прошу на ПС.
Конфигурация такая:
- Мать Epox KDA-J
- Процессор Athlon 64 3000
- Память Digma DDR500, две планки по 512Mb
- Винт Samsung 160Gb
- Видео GeForce 5950
- DVD RW NEC 3500
Включаю, все прекрасно работает.
Опыт удался. Теперь можно приступать к дальнейшей модернизации «объединенного блока питания». Перевод его на пассивное охлаждение. На фотографии видна панель с приборами – это все будет подключено к данному блоку. Стрелочные приборы – мониторинг токов, цифровые приборы в круглых отверстиях под стрелочными – мониторинг напряжений. Ну и тахометр, и все такое, об этом я уже писал на своей персоналке. Но это в дальнейшем.
Влияние «объединенного блока питания» на дальнейший разгон я не проверял. Доделаю, тогда и проверю. Процессор уже разогнан до 2.6 гигагерц по шине, при напряжении на проце 1.7 вольта. Гнал я его на безвентиляторном блоке питания, но при таком разгоне 12 вольт на нем проседали до 11.6 вольта. А гибрид выдает ровно 12. Так что, возможно, еще немного мегагерц я из него выжму. Но это будет другая история.
Перечень используемой литературы:
Ждём Ваших комментариев в специально созданной ветке конференции.
Рекомендуем также
Как сделать лабораторный блок питания из ноутбучного зарядного устройства
Лабораторные блоки питания хороши тем, что позволяют регулировать выходное напряжение. Они могут использоваться в разных целях: для проверки лампочек, светодиодов, реанимации полностью истощённых аккумуляторов и для питания различных устройств. Такой блоки питания можно сделать из ненужного зарядного устройства от ноутбука, потребуется лишь несколько радиоэлементов, вольтметр а также провода и паяльник.
Обычно ноутбучные зарядные устройства могут выдавать до 20 вольт и 3 ампер, чего будет вполне достаточно для большинства задач, которые обычно возлагаются на лабораторные БП. Кроме того, в такой БП можно встроить USB-выход для зарядки смартфонов и других гаджетов.
Что нам потребуется:
— Зарядное устройство от ноутбука, которое будет взято за основу блока питания.
— Регулятор вольтажа (например, такой или такой).
— Корпус, который подойдёт для этой задачи.
— Выключатель, рассчитанный минимум на 3 ампера.
— Вольтметр с экраном (например, такой). Можно обойтись без него, но тогда напряжение каждый раз при перенастройке придётся замерять мультиметром, а это не очень удобно.
— Провода с крокодилами и переходники для разных разъёмов (опционально).
— Потенциометр для изменения вольтажа.
— Провода.
— Инструменты: паяльник, канифоль, припой, мультиметр, горячий клей с пистолетом.
— Пару часов свободного времени.
Разберите корпус зарядного устройства. Если он неразборный, воспользуйтесь бормашиной или нагретым над газом ножом.
Спаяйте компоненты по этой схеме:
Если всё сделано правильно, вольтметр должен показать выходное напряжение. Поместите все компоненты в корпус, предварительно сделав отверстия для проводов, выключателя, регулятора напряжения и вольтметра. При отключении блока питания выключателем на корпусе USB-зарядник всё равно продолжит работать, ведь он запитан напрямую от 220 вольт.
Как спроектировать регулируемый источник питания
Производительность каждой электронной системы или электронной схемы зависит от источника питания, который питает эту схему или систему. Он обеспечивает необходимый ток
Рис. 1: Принципиальная схема создания регулируемого источника питания
, подаваемого в цепь. Любой посторонний шум в этом источнике питания может вызвать проблемы в работе или работе схемы. Если есть какое-либо отклонение в этом уровне питания, цепь может работать неправильно.От этого зависит точность и точность работы схемы. В некоторых схемах все калибровки выполняются на этом уровне напряжения. Таким образом, все эти калибровки становятся ложными при колебаниях уровня подачи.
Есть два типа источников питания: нерегулируемый источник питания, регулируемый источник питания. Нерегулируемый источник питания используется в некоторых цепях, где требуется незначительное изменение требуемого тока нагрузки. Ток нагрузки остается фиксированным или отклонение очень мало. Узнайте больше об этом интересном проекте источника питания.
Производительность каждой электронной системы или электронной схемы зависит от источника питания, который питает схему или систему. Он обеспечивает необходимый ток в цепи. Любой посторонний шум в этом источнике питания может вызвать проблемы в работе или работе схемы. Если есть какое-либо отклонение в этом уровне питания, цепь может работать неправильно. От этого зависит точность и точность работы схемы. В некоторых схемах все калибровки выполняются на этом уровне напряжения.Таким образом, все эти калибровки становятся ложными при колебаниях уровня подачи.
Есть два типа блоков питания
1) Нерегулируемый источник питания
2) Регулируемый источник питания
Нерегулируемый источник питания используется в некоторых цепях, где требуется незначительное изменение требуемого тока нагрузки. Ток нагрузки остается фиксированным или отклонение очень мало. Потому что в таком предложении
1) Выходное напряжение уменьшается с увеличением тока нагрузки
2) Пульсации выходного напряжения увеличиваются с увеличением тока нагрузки
Таким образом, этот тип питания нельзя использовать там, где часто наблюдается заметное изменение тока нагрузки.Но хотя многие схемы работают с нерегулируемым питанием, потому что для этого требуется очень мало компонентов, конструкция также очень проста. Также допустимы некоторые колебания уровня питания из-за изменения тока нагрузки. Регулируемый источник питания требуется в цифровых схемах, в схемах, в которых компоненты не могут выдерживать даже 1% -ное изменение уровня питания, например, микроконтроллер, микропроцессор и т. Д.
Итак, здесь я даю процедуру проектирования регулируемого источника питания, которая означает, какие компоненты должны быть выбраны для получения требуемого регулируемого выходного напряжения с требуемым током.Процедура требует расчетов, основанных на некоторых уравнениях проектирования, некоторых допущениях и приближениях, которые мы должны принять во время проектирования.
Учитывать следующее уведомление
E rms : действующее значение переменного напряжения (вторичное напряжение трансформатора)
E м : максимальное значение переменного напряжения
В dcNL : напряжение постоянного тока без нагрузки
В dcFL : постоянное напряжение полной нагрузки
R o : внутреннее сопротивление
I L : выходной ток полной нагрузки
В Lmin : минимальное выходное напряжение от нерегулируемого источника питания
В rms : среднеквадратичное значение пульсаций
? В o : выбрать напряжение пульсации
Следующие уравнения — соотношения используются при проектировании источника питания
В dcNL = E м = E среднеквадратичное значение /1.41
В dcFL = В dcNL — R o I L
? V o = I L / (200 C)
? В o = 3,5 В действующее значение
В Lmin = В dcFL — ? В o /2
Итак, приступим к проектированию
AIM: Конструкция регулируемый источник питания на 5 В при 1 А
Порядок действий:
Нам нужно спроектировать 2 отдельные секции
1) Нормативный раздел
2) Нерегулируемый раздел
Конструкция регулируемого участка —
Шаг 1: выберите микросхему регулятора напряжения
Поскольку мы разрабатываем регулируемый источник питания, нам необходим чип регулятора напряжения.Доступно очень много микросхем регуляторов напряжения. Они широко классифицируются по различным категориям на основе
.1) Полярность: положительная, отрицательная или двойная
2) Фиксированный выход или переменный выход
3) Требуемый выходной ток от 0,1 A до 5 A
Здесь нам требуется фиксированный и положительный источник питания с допустимой нагрузкой по току 1 А. Поэтому мы должны выбрать микросхему регулятора напряжения LM7805.
Шаг 2: входной — выходной емкостный фильтр
Входной конденсатор необходим для подавления или минимизации пульсаций или колебаний входного сигнала, подаваемого на микросхему регулятора.Его типичное значение составляет 0,33 мкФ, как указано в таблице данных. Этим можно пренебречь, если микросхема регулятора подключена очень близко к фильтрующему конденсатору выпрямителя. Требуется только при расстоянии между выходом выпрямителя и входом регулятора.
Выходной конденсатор необходим для подавления любых всплесков или скачков фиксированного выходного напряжения, которые могут возникнуть из-за переходных изменений входного переменного тока. Его типичное значение составляет 0,1 мкФ, как указано в таблице данных.
На этом проектирование регулируемой секции завершено.
Конструкция нерегулируемого участка —
Питает регулируемый участок. Свой выпрямитель + фильтр. Самое необходимое, это то, что вход, подаваемый этой секцией в регулируемую секцию, должен быть как минимум на 3 В выше требуемого выходного напряжения. Это известно как «запас » для микросхемы регулятора. Это дает нам
V Lmin = V op + высота
= 5 + 3
= 8 В
Для этого раздела необходимо выбрать трансформатор, диод и конденсатор.
Шаг 3: выбор конденсатора
Предположим, что конденсатор представляет собой электролитный конденсатор емкостью 1000 мкФ. Нам нужно узнать его рабочее напряжение постоянного тока WLDC, но это зависит от V dcNL как
WLDC = V dcNL + 20% V dcNL
Итак, найдя V dcNL , мы можем его вычислить.
Из этого значения конденсатора мы можем найти? В o как
.? V o = I L / (200 C)
Так для I L = 1 A и C = 1000 мкФ
? В o = 1/200 × 1000 × 10 -6
= 5 В
От? V o и V Lmin , V dcFL можно рассчитать как
В dcFL = В Lmin + ? В o /2
= 8 + 5/2
= 10.5 В
V dcFL связан с V dcNL как
В dcNL = В dcFL + R o I L
R o значение между 6? до 10 ?. Предполагая, что R o равно 8?
В dcNL = 10,5 + 8 × 1
= 18,5 В
Теперь рассчитайте требуемый WLDC
WLDC = V dcNL + 20% V dcNL
= 18.5 + 3,7
= 22,2 В
Мы всегда должны стремиться к более высокой стоимости, чем эта. Итак, выберите конденсатор с WLDC на 25 В. Итак, в итоге наш конденсатор
.C = 1000 мкФ при 25 В
Шаг 4: выбор диода
Выбор диода означает определение текущей емкости и PIV диода.
1. Допустимый ток I C > I L , что означает, что Ic может быть 1 А или более
2.PIV = V dcNL + 20% V dcNL = 22,2. снова иду на более высокое значение, которое составляет 25 В
Наконец необходимые диоды с
D = 1A при 25 В
Этим критериям удовлетворяют все диоды серий 1N4004, 1N4007, 1N4009.
Шаг 5: выбор трансформатора
Действующее значение выходной мощности трансформатора равно
.E среднеквадратичное значение = E м /1.41
Но E m = V dcNL., So
E среднеквадратичное значение = V dcNL / 1.41
= 18,5 / 1,41
= 13,12 В переменного тока
Таким образом, мы можем выбрать либо
- 1) Трансформатор центрального ответвления 9 — 0 — 9 или 7, 5 — 0 — 7.5 вторичное напряжение
- 2) Трансформатор Без центрального отвода 0-15 или 0-18 вторичного напряжения
Номинальный ток вторичной обмотки трансформатора должен быть не менее 1,8 I L . Это означает, что номинальный ток может составлять 2 А.
Наконец, выберите трансформатор с
T = 230/15 В переменного тока при 2 А
Схема окончательного дизайна показана на вкладке принципиальной схемы.
]]> ]]> СхемыИз рубрики: Electronic Projects
С тегами: регулируемый источник питания
Что такое регулируемый источник питания?
Регулируемый источник питания — это электронное устройство, которое может обеспечивать стабильную подачу питания переменного или постоянного тока на нагрузку, включая источник питания переменного или постоянного тока.
Каталог
Ⅰ История развития
В 1955 году американский ученый Г. Ройер первым успешно разработал транзисторный преобразователь постоянного тока, который использует насыщение магнитного сердечника для автоколебаний. Различные формы преобразователей постоянного тока, использующие эту технологию, продолжают появляться, тем самым заменяя ранее принятое оборудование для коммутации вращающихся и механических вибраторов с коротким сроком службы, низкой надежностью и низкой эффективностью преобразования. Поскольку силовой транзистор в преобразователе транзистора в постоянный ток работает в состоянии включения-выключения, изготовленный из него регулируемый источник питания имеет большое количество выходных групп, переменную полярность, высокий КПД, малые размеры и легкий вес, поэтому он широко использовался. используется в аэрокосмическом и военном электронном оборудовании.Поскольку микроэлектронное оборудование и технологии в то время были очень отсталыми, было невозможно создавать транзисторы с высоким сопротивлением напряжению, высокой скоростью переключения и большой мощностью. Следовательно, преобразователь постоянного тока этого периода мог использовать только вход низкого напряжения, и скорость преобразования была не слишком высокой.
Начиная с 1960-х годов, в связи с быстрым развитием технологии микроэлектроники, появились транзисторы с высоким обратным напряжением. С этого момента преобразователь постоянного тока может напрямую подключаться к сети после выпрямления и фильтрации, и трансформатору промышленной частоты больше не требуется понижать, что значительно расширило сферу его применения.На этой основе родился импульсный источник питания без понижающего трансформатора промышленной частоты. Без трансформатора промышленной частоты объем и вес импульсного источника питания значительно уменьшаются, а импульсный источник питания действительно эффективен, компактен и легок.
После 1970-х годов постоянно разрабатывались и производились высокочастотные силовые транзисторы с высоким обратным напряжением, высокочастотные конденсаторы, переключающие диоды и железный сердечник переключающих трансформаторов, связанных с этой технологией.Таким образом, импульсный регулируемый источник питания широко используется в электронных компьютерах, средствах связи, авиакосмической промышленности, цветном телевидении и т. Д.
Ⅱ Необходимость использования регулируемого источника питания
С быстрым развитием общества количество электрического оборудования растет день ото дня. Днем. Однако старение и отставание в развитии объектов передачи и распределения электроэнергии, а также плохая конструкция и недостаточное энергоснабжение привели к слишком низким или высоким напряжениям. Для электрооборудования, особенно высокотехнологичного и прецизионного оборудования со строгими требованиями к напряжению, существует большая страховка от рисков.Нестабильное напряжение может привести к смертельному исходу или неисправности оборудования, повлиять на производство, вызвать задержки в доставке и нестабильное качество. При этом ускоряет старение оборудования, сказывается на сроке службы и даже обжигает детали.
Ⅲ Основная функция
Регулируемый источник питания
Стабильное напряжение: при кратковременных колебаниях напряжения сети или нагрузки регулируемый источник питания компенсирует амплитуду напряжения со скоростью отклика 10-30 мс, чтобы стабилизировать ее в пределах ± 2%.
Многофункциональная комплексная защита: помимо основной функции стабилизации напряжения, стабилизированный источник питания должен также иметь защиту от перенапряжения (более + 10% выходного напряжения), защиту от пониженного напряжения (ниже -10% от выходного напряжения). выходное напряжение), защита от потери фазы, защита от короткого замыкания и перегрузки.
Подавление всплесков: в электросети иногда бывает резкий импульс с высокой амплитудой и узкой шириной, что приведет к выходу из строя электронных компонентов с более низким выдерживаемым напряжением.Компоненты защиты от всплесков напряжения регулируемого источника питания могут эффективно подавлять такие всплески.
Молниезащита: регулируемые источники питания обладают молниезащитой.
Ⅳ Принцип работы
Мощность переменного тока промышленной частоты становится стабильной мощностью постоянного тока после того, как трансформатор понижен, выпрямлен и отфильтрован. Остальная часть рисунка — это управляющая часть для регулирования и стабилизации напряжения. После подключения источника питания к нагрузке через схему выборки получается выходное напряжение, а выходное напряжение сравнивается с опорным напряжением.Если выходное напряжение меньше опорного напряжения, значение ошибки усиливается схемой усиления и отправляется на вход регулятора. Выходное напряжение регулируется регулятором до тех пор, пока не станет равным эталонному значению; если выходное напряжение больше опорного напряжения, оно пропускается через регулятор. Уменьшите выход.
Принцип работы стабилизированного источника питания
Схема регулятора напряжения состоит из схемы источника питания, схемы управления обнаружением напряжения и схемы защиты от перенапряжения, как показано на рисунке.Силовая цепь состоит из обмоток W4 и W5 трансформатора регулирования напряжения T, выпрямительных диодов VDl-VD4 и фильтрующих конденсаторов Cl и C2. Схема управления определением напряжения состоит из резистора R-R7, потенциометра RP1, Rm, стабилитрона VS, конденсатора C3, C4 и интегральной схемы операционного усилителя IC (N1-N3). Схема защиты от перенапряжения состоит из N3, транзистора V3, резистора Rl2 и реле K внутри ИС. Схема автоматического регулирования напряжения состоит из резисторов R8-Rll, транзисторов Vl, V2, двигателя постоянного тока M, скользящих контактов и Т-обмоток Wl-W3.После подключения выходной клеммы стабилизатора переменного напряжения к сети индуцированные напряжения генерируются на обмотках W4 и W5 T.
После того, как это напряжение выпрямляется VDl-VD4 и фильтруется Cl и C2, оно обеспечивает нестабильное напряжение. рабочее напряжение & plusmn; 12В для IC и Vl, V2 и т. д. Напряжение +12V имеет другие эффекты. После деления напряжения R1-R3 и стабилизации напряжения VS они соответственно обеспечивают опорные напряжения для инвертирующих входных клемм N1-N3; обеспечить рабочее питание для K и V3 схемы защиты от перенапряжения; после того, как R4, RP2 и R6 разделены, подайте напряжение обнаружения для неинвертирующих входных клемм N1 и N2; после деления на R7, RP1 и R5 подайте напряжение обнаружения для неинвертирующей входной клеммы N3.
N1-N3 сравнивает напряжение обнаружения выходного большого конца положительной фазы с опорным напряжением выходного большого конца обратной фазы и использует сгенерированное напряжение ошибки для управления схемой автоматического регулятора напряжения.
При нормальном сетевом напряжении напряжения на выходных клеммах N1 и N2 равны OV, V1 и V2 находятся в отключенном состоянии, и двигатель M не работает.
Когда сетевое напряжение низкое, N1 и N2 выводят низкий уровень, включая V2, выключение Vl и вращение M против часовой стрелки, заставляя скользящий контакт через рычаг скользящей стенки перемещаться и контактируя с соответствующим отводом напряжения T. (W1 из T, обмотка W2 имеет в общей сложности 21 отвод напряжения, а диапазон регулировки напряжения каждой шестерни составляет 5 В), а выходное напряжение увеличивается через обмотку W2 T.Когда выходное напряжение переменного тока повышается до 220 В, V2 прекращается и M останавливается. Когда напряжение в сети высокое, оба N1 и N2 выводят высокие уровни, включая Vl, выключение V2 и поворот M по часовой стрелке. Скользящий рычаг приводит в движение скользящий контакт и контактирует с соответствующим отводом напряжения обмотки T. Wl для уменьшения выходного напряжения. Когда выходное переменное напряжение падает до 220 В, Vl заканчивается и M останавливается. Когда напряжение сети выше 260 В, N3 выводит низкий уровень, потому что напряжение на неинвертирующем входном терминале выше, чем напряжение на инвертирующем входном терминале, так что V3 отключается, K освобождается, и его нормально замкнутый контакт включает выходную цепь переменного напряжения.Когда напряжение сети составляет 160-260 В, N3 выводит высокий уровень, потому что напряжение положительной входной клеммы ниже, чем напряжение обратной входной клеммы, так что V3 включен, K замкнут, а его нормально замкнутый контакт отключен, чтобы гарантировать, что нагрузка (электрические приборы) не будет повреждена перенапряжением.
Ⅴ Характеристики
1. Преимущество1) Низкое энергопотребление и высокая эффективность. В схеме импульсного регулируемого источника питания при возбуждении сигнала возбуждения транзистор V работает попеременно в состояниях включения-выключения и выключения-включения, скорость преобразования очень высокая, а частота обычно составляет около 50 кГц.В некоторых технологически развитых странах оно может составлять несколько сотен или почти 1000 кГц. Это делает потребляемую мощность переключающего транзистора V очень малой, а эффективность источника питания может быть значительно улучшена, а его эффективность может достигать 80%.
2) Маленький размер и легкий вес. Нет громоздкого трансформатора промышленной частоты. После того, как рассеиваемая мощность на трубке регулятора V значительно уменьшится, более крупный радиатор не используется. По этим двум причинам импульсный источник питания имеет небольшие размеры и легкий вес.
3) Широкий диапазон регулирования напряжения. Выходное напряжение импульсного регулируемого источника питания регулируется рабочим циклом сигнала возбуждения, а изменение напряжения входного сигнала может быть компенсировано частотной модуляцией или широтной модуляцией. Таким образом, его можно использовать даже при значительных изменениях напряжения сети промышленной частоты. Таким образом, диапазон регулирования напряжения импульсного источника питания очень широк, а эффект регулирования напряжения очень хороший. Кроме того, есть два метода изменения рабочего цикла: широтно-импульсная модуляция и частотная модуляция.Таким образом, импульсный регулируемый источник питания не только имеет преимущество в широком диапазоне стабилизации напряжения, но также имеет множество способов достижения стабилизации напряжения. Разработчик может гибко выбирать различные типы импульсных стабилизированных источников питания в соответствии с требованиями реальных приложений.
4) Эффективность фильтрации значительно повышается, так что емкость и объем фильтрующего конденсатора значительно уменьшаются. Рабочая частота импульсного регулируемого источника питания составляет в основном 50 кГц, что в 1000 раз больше, чем у линейного регулируемого источника питания, что увеличивает эффективность фильтрации после выпрямления почти в 1000 раз.Эффективность увеличена в 500b раз за счет добавления конденсаторной фильтрации после полуволнового выпрямления. При таком же выходном напряжении пульсаций, когда используется импульсный регулируемый источник питания, емкость конденсатора фильтра составляет только 1 / 500–1 / 1000 конденсатора фильтра в линейном регулируемом источнике питания.
5) Гибкие формы схем. Например, существуют самовозбуждающиеся и отдельно возбуждаемые, широко-модулированные и частотно-модулированные, несимметричные и двусторонние типы и т. Д. Разработчики могут использовать преимущества различных типов схем для разработки переключателей, которые могут соответствовать различным применениям Источник питания.
2. НедостатокНедостаток импульсного регулируемого источника питания состоит в более серьезных коммутационных помехах. В импульсном регулируемом источнике питания переключающий транзистор V регулировки мощности работает в состоянии переключения, и генерируемые им переменное напряжение и ток проходят через другие компоненты в цепи, создавая пиковые помехи и резонансные помехи. Если эти помехи не будут приняты определенные меры по подавлению, устранению, они серьезно повлияют на нормальную работу всей машины.Кроме того, поскольку импульсный регулируемый генератор источника питания не изолирован от трансформатора промышленной частоты, эти помехи будут связаны с сетью промышленной частоты, вызывая серьезные помехи для других электронных приборов, оборудования и бытовой техники поблизости.
В чем разница между нерегулируемыми и регулируемыми источниками питания?
Одна из основных функций источника питания — преобразование входного напряжения в желаемое выходное напряжение. Насколько точно это напряжение и насколько оно изменяется в изменяющихся условиях, зависит от того, регулируется ли выход, и если да, то в какой степени.При выборе источника питания важно понимать, что такое регулирование и нужно ли оно для конкретного применения.
Фон
Регулирование — это акт контроля над чем-либо; в источниках питания это обычно означает контроль выходного напряжения. Чтобы понять его важность и принцип работы, сначала рассмотрим схему на рисунке 1.
Рисунок 1: Схема линейного нерегулируемого преобразователя постоянного токаСхема на рисунке 1 показывает базовый линейный нерегулируемый преобразователь постоянного тока в постоянный, который работает следующим образом:
- Входное переменное напряжение подается на первичную обмотку T1
- Трансформатор выдает вторичное напряжение, В сек , которое равно В переменного тока , умноженному на отношение витков n (Уравнение 1)
- Комбинация D1 и C out преобразует V с в напряжение постоянного тока, V dc , равное пику с V
- Выходное напряжение, В на выходе , тогда равно В постоянного тока за вычетом потерь в R на выходе из-за I на выходе (Уравнение 2)
В на выходе = √2 * В с — I на выходе * R на выходе Уравнение 2: Нерегулируемое выходное напряжение
Первое, что нужно сделать Обратите внимание, что в этих уравнениях любое изменение входного напряжения напрямую влияет на выходное напряжение.Если R out игнорируется, то V out равно пику V в кратном передаточном числе. В приложениях с изменяющимся входом это может привести к большим изменениям выходного напряжения. Например, если V на выходе было 12 В при входном переменном токе 120 В, и мы должны были удвоить вход до 240 В, V на выходе также удвоилось бы до 24 В.
Нагрузка влияет не только на входные изменения, но и на выходное напряжение. R из (что связано с такими элементами, как кабели, дорожки печатных плат, импеданс трансформатора и т. Д.) вызывает падение напряжения между В постоянного тока и В на выходе , которое пропорционально току нагрузки. При отсутствии нагрузки 0A, V dc равно V out , но по мере того, как I out увеличивается, напряжение на R на выходе увеличивается, в результате чего V out падает. Например, если V dc было 12 В, а R на выходе было 1 Ом, поскольку I out увеличился с 0 до 1A, напряжение на R на выходе увеличилось бы с 0 В до 1 В, а V на выходе упало бы с В результате от 12В до 11В.
Зависимости от входного напряжения и условий нагрузки, указанные в технических описаниях как регулировка линии и нагрузки соответственно, приводят к большим колебаниям выходного напряжения при изменении условий. Некоторые приложения могут справиться с этим, но многие требуют более жестких допусков в широком диапазоне условий. Для этих приложений требуется регулирование.
На рисунке 2 показан упрощенный линейный регулятор, который может быть добавлен между нагрузкой и R из на рисунке 1, используемый для регулирования выходного напряжения на рисунке 1.
Рисунок 2: Линейный регуляторЭтот регулятор, показанный на Рисунке 2, работает следующим образом. V out равно входному напряжению за вычетом падения напряжения на коллекторе и эмиттере Q1, V ce (уравнение 3). Операционный усилитель сравнивает V на выходе с опорным напряжением V ref , а затем усиливает разницу (уравнение 4).
V out = V in — V ce Уравнение 3: Выходное напряжение регулятораV base = усиление * (V ref — V out ) Уравнение 4: Выходное напряжение операционного усилителя
Это создает петля отрицательной обратной связи.Уравнение 4 показывает, что если V out больше, чем V ref , V base становится отрицательным, выключая Q1 и вызывая увеличение V ce . При увеличении V ce , V out понижается до опорного напряжения. Если тогда напряжение упадет ниже опорного напряжения, база V станет положительной и снова включит Q1, уменьшив V ce и вернув V на выходе обратно. Таким образом, регулятор может поддерживать постоянное значение V на выходе при изменении состояния линии и нагрузки.
Линейный источник питания и регулятор были выбраны для предыдущих примеров для простоты, однако из-за их неэффективности их часто заменяют более сложными импульсными источниками питания. Несмотря на дополнительную сложность импульсных источников питания, принцип их регулирования остается прежним. Основное различие в том, как они регулируются, — это управляющая переменная. И линейные, и импульсные регуляторы сравнивают выходной сигнал с опорным и используют эту информацию для управления некоторыми аспектами схемы.В случае линейного регулятора напряжение на транзисторе использовалось для регулирования V на выходе . Для многих импульсных регуляторов регулируется скважность (отношение времени включения к общему периоду переключения). В других топологиях, таких как резонансный LLC, регулируется частота переключения.
Поскольку компоненты, используемые для создания контура обратной связи и эталонов, несовершенны, нет и нормативных требований. Таблицы данных для источников питания, в том числе нерегулируемых, будут включать некоторую форму информации, информирующую пользователя о том, насколько может измениться выходное напряжение при различных условиях.Иногда один номер указывается либо как , так и как общее правило или просто правило , которое охватывает все условия. Также часто встречаются два перечисленных отдельно, что указывает на то, насколько выходной сигнал изменится по отношению к одному условию (например, входное напряжение или нагрузка).
Теперь, зная, какие правила действуют и как они работают, как узнать, какие из них нужны для вашего приложения?
Регулируемый
Как обсуждалось ранее, мощность нерегулируемых источников питания сильно зависит от условий эксплуатации.Единственный способ улучшить допуск на выходе — ограничить диапазон рабочих условий. Для приложений, которые должны принимать широкий диапазон условий, таких как источник питания с универсальным входом (90 ~ 265 В, переменного тока, ), и / или тех, которые требуют жестких допусков по выходному напряжению, требуется регулирование.
Даже в приложениях с узким диапазоном условий различия в допусках компонентов и температуре могут привести к различиям в выходном напряжении от преобразователя к преобразователю.Обычно это указывается в технических данных как точность уставки . Даже если условия постоянны и выходное напряжение не меняется, без регулирования выходное напряжение может выходить за пределы требуемого диапазона допуска.
нерегулируемый
Приложения с узким диапазоном рабочих условий и / или которые могут принимать широкий диапазон напряжений, могут получить некоторую выгоду от использования нерегулируемого преобразователя постоянного тока в постоянный. Двумя основными преимуществами нерегулируемого преобразователя постоянного тока по сравнению с регулируемым преобразователем являются размер и стоимость; нерегулируемые преобразователи часто меньше и дешевле, чем аналогичные регулируемые преобразователи.Это результат дополнительных компонентов, необходимых для создания петли обратной связи.
При выборе нерегулируемого преобразователя постоянного тока производитель часто предоставляет графики, чтобы показать взаимосвязь между выходом и состоянием линии и нагрузки. Пользователь должен проверить эти графики и убедиться, что напряжение находится в допустимых пределах для всех условий эксплуатации. График на Рисунке 3 является одним из таких графиков и показывает три кривые. Линии минимума и максимума указывают точность уставки .Отдельный преобразователь будет находиться между этими линиями с линией нагрузки, параллельной этим кривым. Линия нагрузки показывает, насколько можно ожидать изменения выходного напряжения при переходе нагрузки от минимального к максимальному.
Рисунок 3: Кривые нерегулируемой нагрузкиЗаключение
Строго контролируемое напряжение важно во многих приложениях. Регулируемые преобразователи постоянного тока в постоянный могут обеспечивать жесткие допуски по выходным напряжениям в широком диапазоне рабочих условий. Однако для тех приложений, где жестко регулируемое напряжение не требуется, может быть полезно использовать нерегулируемый преобразователь постоянного тока в постоянный.В этих случаях разработчик может уменьшить размер и стоимость, используя нерегулируемый преобразователь постоянного тока в постоянный.
Категории: Основы , Выбор продукта
Вам также может понравиться
У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?
Отправьте нам письмо по адресу powerblog @ cui.ком
9.2: Цепи источников питания — рабочая сила LibreTexts
Существует три основных типа источников питания: нерегулируемый (также называемый грубой силой ), линейный регулируемый и переключающий . Четвертый тип схемы источника питания, называемый с регулируемой пульсацией, представляет собой гибрид между схемами «грубой силы» и «переключением» и заслуживает отдельного раздела.
нерегулируемый
Нерегулируемый источник питания — самый примитивный тип, состоящий из трансформатора, выпрямителя и фильтра нижних частот. Эти источники питания обычно демонстрируют большое количество пульсаций напряжения (то есть быстро меняющуюся нестабильность) и другие «шумы» переменного тока, накладываемые на мощность постоянного тока. Если входное напряжение изменяется, выходное напряжение будет изменяться пропорционально. Преимущество нерегулируемых поставок в том, что они дешевы, просты и эффективны.
линейно регулируемый
Линейный регулируемый источник питания — это просто «грубый» (нерегулируемый) источник питания, за которым следует транзисторная схема, работающая в «активном» или «линейном» режиме, отсюда и название «линейный стабилизатор ».(В ретроспективе это очевидно, не так ли?) Типичный линейный регулятор предназначен для вывода фиксированного напряжения для широкого диапазона входных напряжений, и он просто сбрасывает любое избыточное входное напряжение, чтобы обеспечить максимальное выходное напряжение на нагрузку. Это чрезмерное падение напряжения приводит к значительному рассеиванию мощности в виде тепла. Если входное напряжение станет слишком низким, транзисторная схема потеряет стабилизацию, что означает, что она не сможет поддерживать постоянное напряжение. Он может только снизить избыточное напряжение, но не восполнить недостаток напряжения в цепи грубой силы.Следовательно, вы должны поддерживать входное напряжение как минимум на 1–3 вольт выше желаемого выходного напряжения, в зависимости от типа регулятора. Это означает, что эквивалент мощности не менее от 1 до 3 вольт, умноженный на ток полной нагрузки, будет рассеиваться схемой регулятора, генерируя много тепла. Это делает источники питания с линейной регулировкой неэффективными. Кроме того, чтобы избавиться от всего этого тепла, они должны использовать большие радиаторы, которые делают их большими, тяжелыми и дорогими.
Переключение
Импульсный регулируемый источник питания («переключатель») — это попытка реализовать преимущества схем с прямым и линейным регулированием (компактность, эффективность и дешевизна, но также «чистое» стабильное выходное напряжение).Импульсные источники питания работают по принципу выпрямления входящего напряжения сети переменного тока в постоянное, преобразования его в высокочастотный прямоугольный переменный ток через транзисторы, работающие как переключатели включения / выключения, повышая или понижая это напряжение переменного тока с помощью легкого веса. трансформатор, затем выпрямляет выход переменного тока трансформатора в постоянный ток и фильтрует его для конечного выхода. Регулировка напряжения достигается изменением «рабочего цикла» инверсии постоянного тока в переменный на первичной стороне трансформатора. Помимо меньшего веса из-за меньшего размера сердечника трансформатора, коммутаторы имеют еще одно огромное преимущество перед двумя предыдущими конструкциями: этот тип источника питания может быть сделан настолько независимым от входного напряжения, что он может работать в любой системе электроснабжения в мире. ; они называются «универсальными» источниками питания.
Обратной стороной коммутаторов является то, что они более сложны и из-за своей работы имеют тенденцию генерировать много высокочастотных «шумов» переменного тока в линии электропередачи. Большинство коммутаторов также имеют на своих выходах значительные пульсации напряжения. У более дешевых типов этот шум и пульсации могут быть такими же сильными, как и для нерегулируемого источника питания; такие коммутаторы начального уровня не бесполезны, потому что они по-прежнему обеспечивают стабильное среднее выходное напряжение, и есть «универсальные» входные возможности.
Дорогие коммутаторы не имеют пульсаций и имеют почти такой же низкий уровень шума, как у некоторых линейных типов; эти переключатели обычно столь же дороги, как и линейные источники питания.Причина использования дорогого коммутатора вместо хорошего линейного в том, что вам нужна универсальная совместимость с энергосистемой или высокая эффективность. Высокая эффективность, легкий вес и небольшие размеры — вот причины, по которым импульсные источники питания почти повсеместно используются для питания цифровых компьютерных схем.
Регулируемая пульсация
Источник питания с пульсирующим регулированием является альтернативой линейно регулируемой проектной схеме: источник питания «грубой силы» (трансформатор, выпрямитель, фильтр) составляет «входной конец» схемы, но транзистор работает строго в его включенном состоянии. В режиме выключения (насыщение / отсечка) мощность постоянного тока передается на большой конденсатор по мере необходимости для поддержания выходного напряжения между высоким и низким заданным значением.Как и в переключателях, транзистор в стабилизаторе пульсаций никогда не пропускает ток, находясь в «активном» или «линейном» режиме в течение значительного промежутка времени, что означает, что очень мало энергии будет потрачено впустую в виде тепла. Однако самым большим недостатком этой схемы регулирования является необходимое присутствие некоторой пульсации напряжения на выходе, поскольку напряжение постоянного тока изменяется между двумя уставками управления напряжением. Кроме того, эта пульсация напряжения изменяется по частоте в зависимости от тока нагрузки, что затрудняет окончательную фильтрацию постоянного тока.
Цепи регулятора пульсаций, как правило, немного проще схемы переключателя, и им не нужно обрабатывать высокие напряжения в линии питания, с которыми должны работать переключающие транзисторы, что делает их более безопасными в эксплуатации.
Блок-схема, характеристики и приложения
Мы знаем, что существуют различные типы электрических и электронных схем, в которых используется источник постоянного тока. Обычно мы не можем использовать батареи постоянного тока из-за их дороговизны и необходимости замены в разряженном состоянии.В этой ситуации нам нужна схема, которая может переключать подачу переменного тока на подачу постоянного тока. Схема фильтра выпрямителя включает в себя обычный источник питания постоянного тока. Нормальный источник питания постоянного тока o / p остается стабильным, если нагрузка контрастная. Хотя в некоторых электронных схемах чрезвычайно важно поддерживать постоянный источник питания постоянным независимо от альтернативного источника переменного тока. В противном случае схема будет повреждена. Чтобы преодолеть эту проблему, можно использовать устройства регулирования напряжения. Таким образом, сочетание устройств регулирования напряжения с обычным источником питания постоянного тока называется Источник питания постоянного тока .Это электрическое устройство, используемое для создания постоянного источника постоянного тока независимо от альтернативного источника переменного тока.
Что такое регулируемый источник питания?
IC Регулируемый источник питания (RPS) — это один из видов электронных схем, предназначенный для обеспечения стабильного постоянного напряжения фиксированного значения на клеммах нагрузки независимо от колебаний нагрузки. Основная функция регулируемого источника питания — преобразование нерегулируемого переменного тока (AC) в устойчивый постоянный ток (DC).RPS используется для подтверждения того, что при изменении входа выход будет стабильным. Этот источник питания также называется линейным источником питания, и он позволяет вводить переменный ток, а также обеспечивает стабильный выход постоянного тока. Пожалуйста, перейдите по ссылке, чтобы узнать больше о — Классификация источников питания и ее различные типы
Схема регулируемого источника питанияБлок-схема регулируемого источника питания
Блок-схема стабилизированного источника питания в основном включает в себя понижающий трансформатор , выпрямитель, фильтр постоянного тока и регулятор. Устройство и работа регулируемого источника питания обсуждается ниже.
Блок-схема регулируемого источника питанияТрансформатор и источник переменного тока
Источник питания может использоваться для обеспечения необходимого количества энергии при точном напряжении от основного источника, такого как батарея. Трансформатор изменяет напряжение сети переменного тока до необходимого значения, и его основная функция заключается в повышении и понижении напряжения. Например, понижающий трансформатор используется в транзисторном радиоприемнике, а повышающий трансформатор используется в CRT .Трансформатор обеспечивает отделение от линии питания, и его следует использовать, даже если не требуется никаких изменений в напряжении.
Выпрямитель
Выпрямитель — это электрическое устройство, используемое для преобразования переменного тока в постоянный. Это может быть двухполупериодный выпрямитель, а также однополупериодный выпрямитель с помощью трансформатора или мостового выпрямителя, в противном случае вторичная обмотка с отводом по центру. Однако выходное напряжение выпрямителя может быть переменным.
Фильтр
Фильтр в регулируемом источнике питания в основном используется для выравнивания отклонений переменного тока от скорректированного напряжения.Выпрямители подразделяются на четыре типа, а именно: конденсаторный фильтр, индуктивный фильтр, LC-фильтр и RC-фильтр.
Регулятор напряжения
Регулятор напряжения в регулируемом источнике питания необходим для поддержания постоянного выходного напряжения постоянного тока путем регулирования нагрузки, а также регулирования линии. По этой причине мы можем использовать стабилизаторы, такие как стабилитроны, транзисторные или трехконтактные встроенные стабилизаторы. Импульсный источник питания с импульсным переключением может использоваться для подачи большого тока нагрузки за счет небольшого рассеивания мощности в последовательном транзисторе.
Характеристики регулируемого источника питания
Качество источника питания может определяться несколькими факторами, а именно током нагрузки, напряжением, источником и регулировкой напряжения, подавлением пульсаций, импедансом o / p и т. Д. Некоторые из факторов объясняются ниже.
Нормы нагрузки
Регулировка нагрузки также известна как эффект нагрузки. Это можно определить так: всякий раз, когда ток нагрузки изменяется от наименьшего к наибольшему значению, выход регулируемого напряжения будет изменяться.Это можно рассчитать с помощью следующего уравнения.
Регулировка нагрузки = V без нагрузки — V полная нагрузка
Из приведенного выше уравнения регулирования нагрузки можно сделать вывод, что всякий раз, когда возникает напряжение холостого хода, сопротивление нагрузки будет неограниченным. Точно так же всякий раз, когда возникает напряжение полной нагрузки, сопротивление нагрузки будет наименьшим значением. Таким образом, регулирование напряжения будет потеряно.
% регулирования нагрузки = (V без нагрузки — V полная нагрузка) / (V полная нагрузка) X 100
Наименьшее сопротивление нагрузке
Сопротивление нагрузки, на которое источник тока подает свой заряженный ток полной нагрузки номинальным напряжением, можно назвать наименьшим сопротивлением нагрузки.
Наименьшее сопротивление нагрузки = Напряжение при полной нагрузке / Ток при полной нагрузке
Постановление о линии или источнике
На блок-схеме источника питания входное напряжение составляет 230 В, однако на практике; есть существенные различия в напряжении питающей сети переменного тока. Поскольку это сетевое напряжение питания равно I / P по сравнению с нормальным питанием, отфильтрованное o / p мостового выпрямителя приблизительно прямо пропорционально напряжению сети переменного тока. Регулировку источника можно определить как изменение регулируемого опорного напряжения для определенного диапазона низкого напряжения.
Выходное сопротивление
Выходное сопротивление регулируемого источника питания очень мало. Несмотря на то, что внешнее сопротивление нагрузки может быть изменено, в пределах напряжения нагрузки изменений не наблюдается. Импеданс идеального источника напряжения равен нулю.
Подавление пульсации
Стабилизаторы напряжения фиксируют напряжение включения / выключения в зависимости от колебаний входного напряжения. Пульсация равна периодической разнице между напряжением i / p.Таким образом, регулятор напряжения удовлетворяет пульсации, приближающиеся к нерегулируемому напряжению i / p. Поскольку в регуляторе напряжения используется отрицательная обратная связь, искажение можно уменьшить с коэффициентом, аналогичным коэффициенту усиления.
Применение регулируемого источника питания
Применения регулируемого источника питания включают следующее.
Стабилизированный источник питания (RPS) — это встроенная схема, используемая для преобразования нерегулируемого переменного тока в стабильный постоянный ток с помощью выпрямителя.Основная функция этого состоит в том, чтобы подавать постоянное напряжение в цепь, которая должна работать с определенным пределом источника питания.
- Зарядные устройства для мобильных телефонов
- Регулируемые блоки питания в различных приборах
- Генераторы и усилители разные
Таким образом, это все про регулируемый источник питания (RPS) . Из приведенной выше информации, наконец, мы можем сделать вывод, что RPS изменяет нерегулируемый переменный ток на стабильный постоянный ток.Стабилизированный источник питания постоянного тока также называется линейным источником питания. Этот источник питания допускает ввод переменного тока, а также обеспечивает стабильное отключение постоянного тока. Вот вам вопрос, что такое двойной источник питания постоянного тока?
стабилизированный источник питания — сильноточный
НОВИНКА! ‣ — Пакеты электронных компонентов Amazon. Посетите страницу Amazon Electronic Component Packs.
ВЫ ЗДЕСЬ: ГЛАВНАЯ> ОСНОВНАЯ ИНФОРМАЦИЯ> ИСТОЧНИК ПИТАНИЯ С ВЫСОКОЙ МОЩНОСТЬЮ
Что такое регулируемый источник питания?
Сегодня существуют буквально тысячи специализированных стабилизаторов напряжения IC.Практически каждый производитель имеет ряд регуляторов, удовлетворяющих практически любым требованиям.
Давайте посмотрим на очень распространенную серию LM340-X или эквивалентную серию 78XX. Во-первых, они бывают с различными диапазонами напряжения от 5, 12 и 15 В для LM340-XX и 78XX. С помощью этих устройств мы можем создать сильноточный источник питания.
Они также бывают разных номиналов тока и размеров упаковки. Распространенными пакетами являются ТО-92, ТО-5, ТО-220 и ТО-3. Первые два, TO-92 и TO-5, как правило, недоступны для любителей, потому что поставщики предпочитают хранить сокращенные товарные запасы и поэтому обычно имеют в наличии только типы TO-220 и TO-3.Фактически, вы можете заплатить больше за тип TO-92 (номинальный ток 100 мА), чем за тип TO-220 (номинальный ток 1,5 А).
Если у вас есть требования к проекту, скажем, на 12 В или даже 5 В, если это цифровой проект, то вы используете именно эти типы. Типы LM340-5, LM340-12 или 7805 или 7812.
Разумеется, существуют регуляторы отрицательного напряжения с номерами LM320-XX или 79XX, которые практически идентичны упомянутым здесь, за исключением того, что они отрицательные. Мы не будем их рассматривать дальше.
Предположим, что ваш проект требует для работы фиксированного постоянного напряжения 12 В постоянного тока. Возвращаясь к нашему предыдущему руководству, мы применяем все те же принципы. Посмотрите на исходную схему.
Рисунок 1 — принципиальная схема блока питания
Теперь первое, что я собираюсь порекомендовать для небольших проектов, это отказаться от всего, что находится слева от четырех диодов D1 — D4, и использовать комплект вилок (настенная бородавка в США). Амперметр и вольтметр я оставил исключительно для иллюстрации. В обычном небольшом проекте они вам не нужны.
Все, что нам нужно, это 12 В постоянного тока при 1 А. Те же принципы применимы к 5В. Этот текущий лимит, хотите верьте, хотите нет, охватывает 90% проектов, в которых я когда-либо участвовал. О более высоких токах мы поговорим позже.
Тип регулятора, обсуждаемый здесь (типы LM340-12 или 7812), ТРЕБУЕТ минимального входного напряжения для работы, и есть максимум, который они могут принять. Это дает вам немного гибкости.
В случае регулятора 12 В минимум составляет 14,8 В постоянного тока.и максимум составляет 27 В постоянного тока. В то время как для регулятора 5 В минимальное значение составляет 7,5 В постоянного тока, а максимальное — 20 В постоянного тока. Обратите внимание, что это напряжения постоянного тока.
Также обратите внимание, что если вы используете комплекты разъемов, вы можете купить типы постоянного тока и отказаться от диодов. Если переменный ток — это все, что доступно, то диоды ДОЛЖНЫ подключиться. Как и в случае со многими другими вещами, все зависит от того, что вы можете купить в вашем районе.
Просто не забудьте купить комплект вилок, который обеспечит по крайней мере минимально требуемым входным напряжением в соответствии с вашими текущими требованиями (не покупайте, не посмотрев сначала у своих родственников, друзей и соседей — последние статистические данные обязательно должны указывать на то, что есть еще вилки стаей вокруг, чем людей на этой земле).
Hokay !, я только что нашел штекер на 15 В постоянного тока, рассчитанный на ток 1 А. Идеально подходит для моего проекта. Еще у меня под рукой электролитический конденсатор 4700uF / 25V, это тоже нормально, и еще у меня есть стабилизатор LM340-12 типа TO-220. Вот как я это подключаю:
Рисунок 2 — Схема источника питания фиксированного регулятора
Здесь C1 — наш электролитический конденсатор, а C2 и C3 — дешевая керамика на 0,22 мкФ и 0,1 мкФ соответственно. Просто а! К ИС необходимо подключить приличный радиатор, потому что если вы потребляете значительный ток и ваше входное напряжение становится выше, то ИС начинает рассеивать изрядное количество энергии.
[при обработке этой директивы произошла ошибка]
Примечание: штырьковые соединения для LM340T12, когда он помещен лицевой стороной вверх на скамью штырями к вам, являются левым контактом = входом, средним контактом = заземлением и правым контактом = выходом. Всегда проверяйте распиновку всех устройств, которые вы покупаете. В этом случае вкладка (верхняя часть ИС с отверстием) находится под потенциалом земли. К сожалению, многие другие микросхемы регуляторов — нет.
F1 — это предохранитель, который должен примерно вдвое превышать ожидаемый ток, потребляемый при 12 В.Переключатель может быть дополнительным в зависимости от того, собираетесь ли вы включать / выключать розетку. Изображенная розетка представляет собой тип для монтажа на панели, подходящий для вилки блока вилок, вы можете обойтись без этого, подведя провода непосредственно в коробку проекта, но тогда ваш блок вилок не сможет использоваться для чего-то другого! ТАКЖЕ ОБРАТИТЕ ВНИМАНИЕ НА ПОЛЯРНОСТЬ.
Источники питания с регулируемым током
Ну как высоко высоко? Если вы верите в мою электронную почту, некоторые люди хотят 13,8 В постоянного тока при 50 А !!!!
Я НЕ буду вдаваться в подробности, потому что здесь больше проблем, чем в банке красных спинок (черных вдов).Создавать экзотический дизайн, фактически не создавая и не тестируя его, несколько глупо, мягко говоря; поскольку у меня нет такого требования, я не собираюсь тратить на это деньги (мегабакты, мягко говоря — и в значительной степени забываю излишки компьютерных блоков питания, потому что они создают другие проблемы).
Если вы хотите, скажем, 3 ампера, посмотрите на регулятор типа LM350 (обратитесь к соответствующему листу данных), который тоже радует; регулируемый (как у LM317 в следующей части 4). Конечно, диоды должны иметь подходящий номинал, и вы не получите комплект вилок на 3 А, так что вернемся к трансформаторам , которые:
ПО МЕРЫ БЕЗОПАСНОСТИ ДЛЯ НЕОПЫТНЫХ СЧИТЫВАТЕЛЕЙ Я НЕ РЕКОМЕНДУЮ
У меня нет контроля над своими считывателями, поэтому я вообще не буду обсуждать входную половину трансформатора.Вам нужно будет сделать свои собственные приготовления. Если у вас нет проблем, то найдите кого-нибудь, кто сможет вам помочь.
Стабилизированные блоки питания с еще большим током
Это прямо из технического паспорта National Semiconductor, будет обеспечивать переменное напряжение (от 1,2 В до 25 В и до 10 А). Я предполагаю, что у вас, очевидно, есть доступный источник постоянного напряжения (с фильтром) @ 10 А.
Вот общая схема, НО вам нужно будет свериться со спецификациями LM350K И примечания по применению.
Рисунок 3 — Схема источника питания фиксированного регулятора
Загрузите технический паспорт:
http://www.national.com/pf/LM/LM350.html#Datasheet
Теперь, если вы способны создать источник переменного тока от 4,5 В до 25 В, способный обеспечивать ток 10 А, то приведенная выше информация — это все, что вам нужно. С другой стороны, если вышеперечисленное оставляет больше вопросов, чем было дано ответов, очевидно, что вам нужно больше опыта. Небольшая схема, приведенная выше, как проект, обойдется в сотни долларов на создание.Для опыта, попробуйте проект меньшего по размеру источника переменного тока. Это очень полезный инструмент.
ЗАБРОНИРОВАТЬ — Блоки питания Дэвида Лайнса
Ссылка на эту страницу
НОВИНКА! — Как перейти по прямой ссылке на эту страницу
Хотите создать ссылку на мою страницу со своего сайта? Нет ничего проще. Знания HTML не требуются; даже технофобы могут это сделать. Все, что вам нужно сделать, это скопировать и вставить следующий код. Все ссылки приветствуются; Искренне благодарю вас за вашу поддержку.
Скопируйте и вставьте следующий код для текстовой ссылки :
<а
href = "https://www.electronics-tutorials.com/basics/power-supp-hi-regulated.htm" target = "_ top"> посетите страницу Регулируемый источник питания VK2TIP - страница с высоким током
, и он должен выглядеть так:
посетите Регулируемый источник питания VK2TIP — Сильноточный Стр.
Система пользовательского поиска Google
Есть вопросы по этой теме?
Если вы занимаетесь электроникой, подумайте о том, чтобы присоединиться к нашей группе новостей «Электроника Вопросы и ответы», чтобы задать там свой вопрос, а также поделиться своими тернистыми вопросами и ответами.Помогите своим коллегам !.
Абсолютно самый быстрый способ получить ответ на свой вопрос, и да, я DO прочитал большинство сообщений.
Это группа взаимопомощи с очень профессиональной атмосферой. Я ничего не узнал. Это отличный обучающий ресурс как для скрытых, так и для активных участников.
ТЕМЫ ПО ТЕМЕ ПО ПИТАНИЮ
базовый нерегулируемый источник питанияслаботочный регулируемый источник питания
регулируемый источник питания
ВЫ ЗДЕСЬ: ГЛАВНАЯ> ОСНОВНАЯ ИНФОРМАЦИЯ> ИСТОЧНИК ПИТАНИЯ С ВЫСОКОЙ МОЩНОСТЬЮ
автор Ян К.Purdie, VK2TIP сайта www.electronics-tutorials.com заявляет о моральном праве на быть идентифицированным как автор этого веб-сайта и всего его содержания. Copyright © 2000, все права защищены. См. Копирование и ссылки. Эти электронные учебные пособия предназначены для индивидуального частного использования, и автор не несет никакой ответственности за применение, использование, неправильное использование любого из этих проектов или учебных пособий по электронике, которое может привести к прямому или косвенному ущербу или убыткам, связанным с этими проектами или учебными пособиями. .Все материалы предоставляются для бесплатного частного и общественного использования.
Коммерческое использование запрещено без предварительного письменного разрешения www.electronics-tutorials.com.Copyright © 2000, все права защищены. URL — https://www.electronics-tutorials.com/basics/power-supp-hi-regulated.htm
Обновлено 30 декабря 2000 г.
Связаться с ВК2ТИП
Основные принципы проектирования источников питания для печатных плат
Одним из самых фундаментальных законов физики является Закон сохранения энергии, который можно резюмировать следующим образом:
«В замкнутой системе энергия не может быть создана или уничтожена, она только меняет форму.”
В принципе, это можно интерпретировать как изолированную систему, которая не взаимодействует с какой-либо внешней силой, сохраняет постоянный уровень внутренней энергии. Эта предпосылка стала катализатором многих схем построения самоподдерживающихся энергетических систем, которые могли бы работать вечно. Пока что полностью изолировать систему так, чтобы не было накопления или потери энергии, было сложно. Это означает, что системы, требующие энергии, необходимо периодически подзаряжать, как и мы.
Цепи питания являются источником подзарядки электронных систем и печатных плат.Некоторые платы содержат подсхемы питания; однако печатные платы также часто используются в качестве источников питания. Эти платы на самом деле являются преобразователями, поскольку они преобразуют входной источник энергии в выход, который соответствует требованиям нагрузки, системы или схемы. Независимо от требований к источнику и нагрузке, всегда важно сделать сборку вашей платы неотъемлемой частью макета печатной платы для вашего дизайна. Сначала давайте обсудим различные типы цепей питания, а затем определим основные принципы проектирования источников питания, которые следует применять при их разработке.
Типы плат питания
Являясь преобразователями или мостами между входным электрическим источником и электронной нагрузкой, цепи питания можно классифицировать в одну из групп в таблице ниже.
Типы цепей питания | |||
Выходы | Выход переменного тока | Выход постоянного тока | |
Вход переменного тока | Изоляция, преобразователь частоты | Выпрямитель | |
Вход постоянного тока | Инвертор | Преобразователь постоянного тока в постоянный |
Как показано выше, схемы источника питания в основном используются для изменения энергии из одного состояния в другое, переменного в постоянный или наоборот, для изменения уровней, повышения или понижения напряжения или частоты.Источники питания AC-AC также могут использоваться для изоляции входных цепей от выходов. В дополнение к перечисленным выше типам цепи питания можно разделить на регулируемые и нерегулируемые. К регулируемым источникам питания относятся устройства для поддержания уровня выходного напряжения. Эти регуляторы напряжения отсутствуют в нерегулируемых источниках питания, а выходная мощность зависит от входа и изменения тока нагрузки.
Цепи питания также классифицируются по принципу действия. Двумя основными рабочими типами являются линейный и переключаемый или переключаемый.
Линейный источник питания
Пример схемы линейного источника питания
Линейный источник питания, указанный выше, используется для преобразования сетевого входа переменного тока, первичной стороны трансформатора TR1, в постоянный ток для распределения. Эта схема включает в себя регулятор напряжения IC1, который будет обеспечивать постоянное напряжение независимо от нагрузки R1. Этот линейный источник питания демонстрирует базовую работу этих схем, которые могут иметь множество различных конфигураций. Линейные источники питания обычно используются в системах с низким энергопотреблением.Преимуществами являются простота, невысокая стоимость, надежность и низкий уровень шума; однако они неэффективны, что вызывает большую озабоченность в приложениях с более высокой мощностью.
DFM для высокоскоростных цифровых плат
Загрузить сейчас
Импульсный источник питания
Альтернативой использованию линейного источника питания является импульсный источник питания или SMPS, показанный на рисунке ниже.
Пример схемы блока питания SMPS
Источник питания SMPS содержит коммутационную схему; например, транзистор T1 выше, который преобразует выпрямленный постоянный ток из мостовой схемы B1 в высокочастотный переменный ток.Уровень частоты определяется или устанавливается управляющим сигналом, который включает и выключает транзистор. В приведенной выше схеме выходной сигнал сглаживается или регулируется LC-фильтром перед подачей на нагрузку R1. Как правило, схемы SMPS более сложны, чем линейные источники питания, и переключение вызывает шум, который может создавать электромагнитные помехи, которые могут повлиять на маршрутизацию трассировки во время разводки печатной платы. Однако эти источники питания более эффективны и могут использовать меньшие компоненты, чем линейные источники питания.SMPS чаще всего используются в цифровых системах.
Основы проектирования источников питания
При разработке SMPS или платы линейного источника питания есть общие проблемы. К ним относятся тепловые характеристики, электромагнитные помехи или шум, а также в зависимости от веса меди на уровне мощности. Еще одно важное соображение — это конструкция фильтра блока питания. Хотя ваши конкретные требования к конструкции будут диктовать конкретный выбор конструкции, существуют общие основы проектирования источников питания для печатных плат, которым следует всегда следовать, как указано ниже.
- Оптимизируйте свой дизайн фильтрации
Производительность вашей схемы фильтрации зависит от выбора соответствующих значений компонентов фильтра, индуктивности, емкости и сопротивления. Поскольку фактические доступные значения компонентов могут не совпадать с расчетными значениями, вам следует использовать комбинацию значений компонентов, которая обеспечивает наилучший отклик, определенный с помощью моделирования.
- Выберите соответствующую массу меди
Токи блока питания могут быть довольно высокими; Следовательно, необходимо убедиться, что ширина дорожек и толщина или вес меди могут выдерживать необходимые токи.Также важно убедиться, что ваша компоновка соответствует допускам зазоров, установленным правилами DFM вашего контрактного производителя (CM).
- Подберите подходящий материал к типу плиты
Для цепей большой мощности убедитесь, что ваша плата может выдерживать уровни температуры, которые будут генерироваться путем выбора материалов с подходящим коэффициентом теплового расширения (CTE). Для ИИП, если это высокоскоростная конструкция, такие свойства, как диэлектрическая постоянная, dk, коэффициент рассеяния, df, диэлектрические потери, потери в проводнике, Ploss, становятся важными и должны определять ваш выбор материала.
- Убедитесь, что ваша плата имеет достаточное рассеивание тепла
Одна, если не самая большая проблема для плат блока питания — это отвод избыточного тепла.