Site Loader

ПРОБНИК ДЛЯ ПРОВЕРКИ ОПТОПАР

В последнее время мне приходится по работе, почти каждый день заниматься ремонтами ЖК телевизоров, в маленькой частной мастерской.  Тема эта достаточно рентабельная, и если заниматься преимущественно блоками питания и инверторами, не слишком сложная. Как известно, питается ЖК телевизор, как практически и вся современная электронная техника, от импульсного блока питания. Последний же, содержит в своем составе деталь, под названием оптрон или оптопара. Деталь эта предназначена для гальванической развязки цепей, что часто бывает необходимо в целях безопасности для работы схемы устройства. В составе этой детали находятся, обычные светодиод и фототранзистор. Как же оптрон работает? Упрощенно говоря, это можно описать, как что-то типа своего рода маломощного электронного реле, с контактами на замыкание. Далее приведена схема оптопары:

схема оптопары

Схема оптопары

А вот тоже самое, но уже со странички официального даташита:

схема оптопары

Распиновка оптопары

Ниже приведена информация из даташита, в более полном варианте:

схема оптопары

Корпус оптопары

Оптроны часто выпускается в корпусе Dip, по крайней мере те, которые используются в импульсных блоках питания, и имеют 4 ножки.

Оптопара фото

Оптопара на фото

Первая ножка микросхемы, по стандарту обозначается ключом, точкой на корпусе микросхемы, она же анод светодиода, далее номера ножек идут по окружности, против часовой стрелки.

Проверка оптрона

Как можно проверить оптрон? Например так, как на следующей схеме:

Оптопара фото

Схема проверки оптрона

В чем суть такой проверки? Наш фототранзистор, когда на него попадет свет от внутреннего светодиода, сразу перейдет в открытое состояние, и его сопротивление резко уменьшится, с очень большого сопротивления, до 40-60 Ом. Так как мне эти микросхемы, оптроны требуется тестировать регулярно, решил вспомнить о том, что я ведь не только электронщик, но еще и радиолюбитель), и собрать какой нибудь пробничек, для быстрой проверки оптопары. Пробежался по схемам в инете, и нашел следующее:

Оптопара фото

Схема конечно очень простая, красный светодиод сигнализирует о работоспособности внутреннего светодиода, а зеленый, о целости фототранзистора. Поиск готовых устройств собираемых радиолюбителями, выдал фото простых пробничков, подобных этому:

Оптопара фото

Устройство для проверки оптопары с интернета

Это все конечно очень хорошо, но демонтировать каждый раз оптопару а после запаивать ее обратно — это же не наш метод :-). Требовалось устройство для удобной и быстрой проверки работоспособности оптопары, обязательно без выпаивания, плюс замахнулся при этом еще и на звуковую, и визуальную индикацию :-).

Звуковой пробник схема

Звуковой пробник — схема

У меня был собран ранее простой звуковой пробничек по этой схеме, со звуковой и визуальной индикацией, с питанием от полутора вольт, батарейки АА.

Звуковой пробник схема

Простой звуковой пробник

Решил, что это то что нужно, сразу готовый полуфабрикат), вскрыл корпус, ужаснулся своему полунавесному монтажу), времен первых лет, изучения мною радиодела. Тогда изготавливал плату, путем прорезания канавок в фольгированном текстолите, резаком. Просьба не пугаться), глядя на этот колхоз.

Звуковой пробник схема

Внутренности и детали

Решено было пойти, путем изготовления аналога, своего рода пинцета, для быстрой проверки оптрона, в одно касание. Были выпилены из текстолита две маленьких полоски, и посередине их, была проведа бороздка резаком.

Контактные пластины

Контактные пластины из текстолита

Затем был нужен сжимающий механизм, с пружинкой. В ход пошла старая гарнитура от телефона, вернее клипса, для крепления на одежду, от нее.

Контактные пластины

Прищепка от гарнитуры

Дело было за малым, подпаять провода. и закрепить пластинки на клипсе с помощью термоклея. Получилось снова колхозно, как без этого), но на удивление крепко.

Контактные пластины

Пинцет для измерения самодельный

Провода были взяты, от разъемов подключения к материнской плате, корпусных кнопок системного блока, и светодиодов индикации. Единственный нюанс, на схеме у меня на один из щупов от мультиметра, подключаемых к пробнику посажена земля, сделайте ее контакт, если будете повторять, обязательно напротив земли питания светодиода оптрона, во избежания очень быстрого разряда батареи, при замыкании плюса питания, на минус батареи. Схемку распиновки пинцета, рисовать думаю будет лишнее, все понятно и так без труда.

Контактные пластины

Окончательный вид пробника оптронов

Так выглядит готовое устройство, причем сохранившее свой функционал звукового пробника, путем подключения через стандартные гнезда, щупов от мультиметра. Первые испытания показали, что 40 ом в открытом состоянии фототранзистора между выводами эмиттер – коллектор, для такого пробника, несколько многовато. Звук пробника был приглушен, и светодиод светил не очень ярко. Хотя для индикации работоспособности оптрона, этого было уже достаточно. Но ведь мы к полумерам не привыкли). В свое время собирал расширенный вариант, схемы этого звукового пробника, где обеспечено измерение при сопротивлении между щупами, до 650 Ом. Схему расширенного варианта привожу ниже:

Контактные пластины

Схема 2 — звуковой пробник

Данная схема отличается от оригинала, только наличием еще одного транзистора, и резистора в его базовой цепи. Печатную плату расширенной версии пробника, привел на рисунке ниже, она будут прикреплена в архиве.

Контактные пластины

Печатная плата на звуковой пробник

Данный пробник показал себя при проверке, достаточно удобным в работе, даже в таком, как есть варианте, после проведения на днях апгрейда, недостаток с тихим звучанием, и тусклым свечением светодиода, наверняка будет устранен. Всем удачных ремонтов!

AKV.

   Форум

   Обсудить статью ПРОБНИК ДЛЯ ПРОВЕРКИ ОПТОПАР


Как проверить оптрон мультиметром не выпаивая

Рассуждения весьма общие, но вопросы появляются достаточно часто, поэтому – почему бы и нет, почему бы не затронуть самые вершки?

Берем очень условный кусочек схемы с очень условной оптопарой, но, тем не менее, в большинстве случаев эта схема или соответствует действительности, или близка к ней:
Как проверить оптрон мультиметром не выпаивая

Может быть питание не 5 вольт, а 3,3 (что последнее время чаще), может быть другого типа оптопара – что уже реже.

Тем не менее, рассмотрим то, что есть.

Имеем: оптопара DA, разъем, через который она соединена со схемой XT, балластное сопротивление светодиода R1 и резистор оттяжки сигнала на питание R2. Ну, и некуда деваться – землю и питание.

Питание в большинстве случаев сейчас 3,3 В, но особой роли в данном случае это не играет.

В этом случае мы имеем на светодиоде –напряжение порядка 1,2-2 В, остальное упадет на балластном резисторе R1.

На коллекторе фототранзистора — в зависимости от того, освещен его переход или нет, то бишь – открыта шторка или закрыта:

    Шторка открыта – имеем напряжение, близкое к 0, на практике – не больше 0,2-0,5 В.

Шторка закрыта – имеем 5 В через сопротивление оттяжки R2.

Почему может не работать? А почему угодно. Наиболее слабое место – разъем.

Допустим, обрыв верхнего по рисунку контакта – не будет тока через светодиод (и падения напряжения на нем – тоже, что сразу будет видно любым, даже самым дешевым тестером), фототранзистор будет всегда закрыт, на его коллекторе будет всегда напряжение +5 (+3,3) В, как ни дергай флажком.

То же самое – при обрыве в схеме R1, но редко…

Обрыв среднего по рисунку контакта – на коллекторе фототранзистора ничего не будет. Хоть он закрыт – тогда вообще контакт в воздухе, хоть открыт – тока через него все равно нет, поэтому он тоже висит в воздухе, да даже если и будет что то чеорз какие то утечки – грязи в принтерах и копирах обычно хватает – все равно на коллекторе фототранзистора будет ноль.

Вне зависимости от положения шторки.

Обрыв нижнего по схеме контакта – нет земли на оптроне.

На двух остальных контактах оптрона будет +5 (+3,3) В – на светодиоде мы просто будем измерять напряжение питания через резистор, номинал у него небольшой, поэтому питание и увидим, на коллекторе фототрнзистора – то же самое: даже если он открыт, цепи нет – провод оборван.

Более редкая штука, но все таки иногда случающаяся – неисправность оптопары.

Если напряжение на светодиоде в норме – то есть в пределах 1,2-2 В, то он, скорее всего, исправен.

При нулевом напряжении – пробит (не встречал), при напряжении питания – в обрыве.

Неисправен фототранзистор – или пробит (напряжение на коллекторе – 0), или в обрыве – напряжение равно питанию.

При грязном зазоре оптопары – там есть щель как у светодиода, так и фототранзистора – напряжение будет всегда, как при закрытом зазоре то есть равно (или близко) напряжению питания.

В принципе, если что не ясно или хочется дополнить и/или исправить – милости просим, написано все быстро, шустро, и не очень внимательно…

Как проверить оптрон мультиметром не выпаивая

Как проверить оптрон мультиметром не выпаивая

Как проверить оптрон мультиметром не выпаивая

Этот пробник, предназначен для проверки большого количества видов оптопар: оптотранзисторов, оптотиристоров, оптосимисторов, опторезисторов, а также микросхемы таймера NE555, отечественным аналогом которой является микросхема 1006ВИ1

Как проверить оптрон мультиметром не выпаивая
Модифицированный вариант пробника для проверки оптронов

Как проверить оптрон мультиметром не выпаивая

Сигнал с третьего вывода микросхемы 555 через резистор R9 поступает на один вход диодного моста VDS1, при условии, что к контактам Анод и Катод подсоединен рабочий излучающий элемент оптопары, в таком случае через диодный мост потечет ток, и будет мигать светодиод HL3, при условии что фотоприемник исправен, будет открываться VT1 и загораться HL3, который будет проводить ток, HL4 при этом будет моргать

Как проверить оптрон мультиметром не выпаивая

Данный принцип можно использовать для проверки практически любого оптрона:

Как проверить оптрон мультиметром не выпаивая

Около 570 мили вольт должен показать мультиметр, если оптрон исправен в режиме прозвонки диода, т.к в этом режиме с щупов тестера поступает около 2 вольт, но этого напряжения не достаточно для открытия транзистора, но как только мы подадим питание на светодиод, он откроется и мы увидим на дисплее напряжение которое падает на открытом транзисторе.

Как проверить оптрон мультиметром не выпаивая

Описываемое ниже устройство покажет не только исправность таких популярных оптронов как PC817, 4N3x, 6N135, 6N136 и 6N137, но и их скорость срабатывания. Основа схемы микроконтроллер серии ATMEGA48 или ATMEGA88. Проверяемые компоненты можно подключать и отключать прямо во включенный прибор. Результат проверки покажут светодиоды. Так элемент ERROR светится при отсутствии подключенных оптопар или их неработоспособности. Если элемент исправен, то загорится светодиод OK. Одновременно с ним загорится один или несколько светодиодов TIME, соответствующих скорости срабатывания. Так, для самой медленной оптопары, PC817, будет светится только один светодиод — TIME PC817, соответствующий ее скорости. Для быстрых 6N137 будут гореть все четыре светодиода. Если это не так, то оптопара не соответствует данному параметру. Значения шкалы скорости PC817 — 4N3x — 6N135 — 6N137 соотносятся как 1:10:100:900.

Как проверить оптрон мультиметром не выпаивая

Фьюзы микроконтроллера для прошивки: EXT =$FF, HIGH=$CD, LOW =$E2.

Печатную плату и прошивку можно скачать по ссылке выше.

Основной составляющей частью современной радиоэлектронной аппаратуры являются импульсные источники питания. Стабилизированное напряжение вторичной цепи источника питания зависит в целом от эффективности схематического решения первичной цепи, работы задающего генератора, как правило, выполненного на микросхеме. Не маловажную роль в работе источника питания выполняет оптопара, т.е .

Как проверить оптрон? — Diodnik

Состоит оптрон из двух основных частей (фотоизлучателя и фотоприемника) заключенных в общий корпус. Это устройство применяется для гальванической развязки блоков, между которыми существует большая разница потенциалов и т.п.

Как проверить оптрон мультиметром?

Взять и просто проверить оптрон мультиметром не получиться. Для самой простой проверки оптрона необходимо подать напряжение на его вход (согласно схеме), а выход уже проверять мультиметром в режиме проверки диода.

Как проверить оптрон — устройство для проверки оптрона

Для более удобной проверки оптрона можно использовать более интересную схему. Включает она в себя с минимум компонентов, а сборка ее занимает не более получаса.

Питание оптрона производиться через светодиод, который загорится, если исправный фотоизлучатель. Второй светодиод загорится, если исправный фотоприемник, через который течет ток к светодиоду.




Для наглядности второй вариант схемы был собран из элементов, которые были под руками. Роль подопытного играет оптопара PC817.

Роль гнезда для подключения оптрона выполняют остатки COM кабеля. Но лучше для таких целей использовать гнезда под микросхемы, тогда подключения оптрона станет более удобным.

Питание схемы осуществляется с помощью старого USB шнура. В общем, схема работает исправно сразу, и не требует дополнительной наладки. Если горят оба светодиода, тогда оптрон можно считать рабочим.

У многих возникнет вопрос, а если пробит выход оптрона, тогда же тоже будут светиться оба светодиода! В таком случае яркость второго светодиода будет значительно выше, это визуально очень хорошо будет видно.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Как проверить оптопару (оптрон) — схема и принцип работы самодельного тестера

Потребовался простой способ проверки оптронов. Не часто я с ними «общаюсь», но бывают моменты, когда надо определить — виноват ли оптрон?.. Для этих целей сделал очень простой пробник. «Конструкция выходного часа».

Внешний вид пробника:

Схема данного пробника очень проста:

Теория:
Оптроны(оптопары) стоят практически в каждом импульсном блоке питания для гальванической развязки цепи обратной связи. В составе оптрона находятся обычный светодиод и фототранзистор. Упрощенно говоря, это, своего рода, маломощное электронное реле, с контактами на замыкание.

Принцип работы оптрона: Когда через встроенный светодиод проходит электрический ток, светодиод (в оптроне) начинает светиться, свет попадает на встроенный фототранзистор и открывает его.

Оптроны часто выпускается в корпусе Dip
Первая ножка микросхемы, по стандарту обозначается ключом, точкой на корпусе микросхемы, она же анод светодиода, далее номера ножек идут по окружности, против часовой стрелки.

Суть проверки: Фототранзистор, при попадании на него света от внутреннего светодиода,
переходит в открытое состояние, а сопротивление его — резко уменьшится (с очень большого сопротивления, до примерно 30-50 Ом.).

Практика:
Единственным минусом данного пробника является то, что для проверки необходимо выпаять оптрон и установить в держатель согласно ключу(у меня роль напоминалки является кнопка тестирования — она смещена в сторону, и ключ оптрона должен смотреть на кнопку).
Далее, при нажатии кнопки, (если оптрон цел), оба светодиода загорятся: Правый будет сигнализировать о том, что светодиод оптрона рабочий(цепь не разорвана), а левый сигнализировать о работоспособности фототранзистора(цепь не разорвана).

(Держатель у меня был только DIP-6 и пришлось залить неиспользуемые контакты термоклеем.)

Для окончательного тестирования, необходимо перевернуть оптрон «не по ключу» и проверить уже в таком виде — оба светодиода не должны гореть. Если же горят оба или один из них, то это говорит нам о коротком замыкании в оптроне.

Рекомендую такой пробник в качестве первого, для начинающих радиолюбителей, которым необходимо проверять оптроны раз в полгода, год)
Существуют и более современные схемы с логикой и сигнализацией о «выходе из параметров», но такие нужны для очень узкого круга людей.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *