Проверка варистора: нахождение неисправности мультиметром
Ремонт и диагностика неисправностей радиоэлектронных устройств происходит путём нахождения вышедших из строя элементов с последующей их заменой. Визуально определить, какая радиодеталь неисправна, часто не представляется возможным, поэтому для выявления поломок используют измерительные приборы — тестеры. С их помощью проверить варистор обычно не составляет труда.
Назначение и характеристики
Варистор — это электронный прибор, имеющий два контакта и обладающий нелинейно-симметричной вольт-амперной характеристикой. Термин «варистор» произошёл от латинских слов variable — «изменяемый» и resisto — «резистор». По своей сути он является полупроводниковым резистором, способным изменять своё сопротивление в зависимости от приложенного к его выводам напряжения.
Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала. В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола. Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.
Обладая свойством резко уменьшать своё сопротивление при возникновении на его выводах определённого напряжения, варистор применяется в электронных схемах в качестве защитного элемента. При возникновении броска напряжения определённой величины полупроводниковый прибор мгновенно снижает своё внутреннее сопротивление до десятков Ом, тем самым практически закорачивая цепь, не давая импульсу повредить остальные элементы схемы. Поэтому важным параметром варистора является значение напряжения, при котором наступает пробой устройства.
Принцип работы элемента подразумевает его включение параллельно цепи питания. После его срабатывания и уменьшения напряжения на входе он самовосстанавливается до первоначального значения. Из-за малой инерционности это происходит мгновенно.
Основные параметры
Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах. Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения. Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.
Кроме ВАХ, при исследовании варистора отмечаются следующие характеристики:
- Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
- P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
- W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
- Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
- Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.
Но на практике особое внимание уделяется в основном параметру Um. Эта характеристика показывает уровень напряжения, при котором происходит пробой элемента и начинает течь ток.
Виды устройств
Разнообразие встречаемых видов варисторов обусловлено тем, что производители стремятся в первую очередь повысить их быстродействие. Поэтому и используются SMD технологии безвыводного монтажа, что позволяет добиваться малого времени срабатывания при скачке входного напряжения. Типовое время срабатывания элементов с выводами находится в пределе 15−25 наносекунд, а SMD — 0,5 наносекунд.
Существует класс низковольтных варисторов и высоковольтных. Первые выпускаются с рабочим напряжением до двухсот вольт и силой тока до одного ампера. Вторые же имеют рабочее напряжение до двадцати киловольт. Маломощные элементы используются в качестве защиты от скачка напряжения, возникающего в бытовой сети, а мощные применяются на трансформаторных подстанциях и в системах защиты от грозы.
Маркировка элементов
Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры.
- S — материал, из которого изготовлен варистор;
- 6 — диаметр корпуса элемента, указывается в миллиметрах;
- K — величина допуска отклонения;
- 210 — значение рабочего напряжения, выраженное в вольтах.
Для планарного типа используется такая же маркировка, только первыми буквами ставится CN, обозначающая тип изделия.
На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.
Методы проверки мультиметром
Для проверки варистора, впрочем, как и любого другого радиоэлемента, проще всего использовать специально разработанные для этого приборы. В качестве таких устройств используются мультиметры. Основной параметр, который можно им померить — это внутреннее сопротивление элемента. Но перед тем как непосредственно приступить к проверке варистора, следует подготовиться.
Кроме мультиметра, понадобится:
- паяльник;
- припой;
- флюс;
- даташит.
Измерение сопротивления элемента можно проводить и без его выпаивания из схемы, но для получения достоверных данных следует отсоединить от платы хотя бы один его вывод. Вся подготовка сводится к тому, что полупроводниковый элемент сначала визуально осматривается на отсутствие: расколов, почернений, трещин. Если сразу видно лопнувший корпус, то проверку можно дальше не проводить. Такой варистор явно неисправен.
Паяльник, флюс и припой понадобится для того, чтобы отпаять один из выводов элемента или даже снять его целиком, а после проверки при необходимости запаять обратно. Даташит на элемент представляет собой официальный документ, выпускаемый производителем. В нём указываются все основные данные и характеристики.
Даташит используется для того, чтобы точно знать, какое рабочее сопротивление в состоянии покоя у радиодетали. Если при замере мультиметром сопротивление варистора не отличается более чем на 10%, то он считается исправным. Если сопротивление значительно меньше указанного в даташите, то его понадобится заменить. Важно отметить, что в обычном состоянии сопротивление варистора достигает нескольких сотен мегаом, поэтому и тестер должен иметь возможность измерять в этом пределе.
Измерения стрелочным прибором
Такое устройство считается аналоговым. В его конструкции используется электромеханическая головка. Она представляет собой рамку, помещаемую в магнитное поле. В зависимости от силы тока стрелка в рамке отклоняется, останавливаясь в определённом положении. Диапазон отклонения стрелки проградуирован числами, согласно которым и вычисляется сопротивление.
Перед тем как приступить к проверке варистора, стрелочный мультиметр понадобится настроить. Для этого выполняется его калибровка. Её суть сводится к выставлению нулевого положения стрелки путём вращения специальной ручки при замыкании щупов друг с другом.
Для этого кнопкой переключения выбирается режим работы, соответствующий значку «Ω», а галетный переключатель устанавливается на самый большой предел измерения сопротивления тестером. Чаще всего он обозначается как «х100», что соответствует мегаомам. Измерение сопротивления происходит от установленного в устройстве источника питания (батарейки). Поэтому, если выставить стрелку в ноль не получается, то батарейку понадобится заменить.
Проводя непосредственно измерения, одним щупом тестера дотрагиваются до одного вывода варистора, а другим — до другого. В итоге возможно три исхода:
- Стрелка отклонится до нуля или покажет сопротивление в районе килоомов. Делается вывод о неисправности элемента (пробой).
- Результат измерений лежит в пределах сотни мегаом. Такое показание указывает на исправность варистора.
- При прикасании к выводам радиоэлемента стрелка никак на это не реагирует. Возможные причины в следующем: диапазона работы прибора не хватает для измерения величины сопротивления варистора, неисправен прибор, неисправен радиоэлемент (обрыв).
Цифровой тестер
Используя цифровой мультиметр, проверить варистор на работоспособность будет немного проще, чем аналоговым. Это связано с тем, что цифровой тестер в своей конструкции имеет жк-дисплей, на котором наглядно отображается измеренное сопротивление.
В основе работы тестера такого тип лежит аналого-цифровой преобразователь, принцип работы которого построен на сравнение измеряемого сигнала с опорным. Следует отметить, что, если при включении тестера на экране высвечивается значок мигающей батарейки, то элемент питания понадобится заменить. Порядок измерения сопротивления варистора можно представить в виде следующих действий:
- Переключателем устанавливается максимальный предел измерения сопротивления. Обычно этот предел указывается числом и буквой. Если написаны просто числа, то единица измерения — Ом, буква K после числа обозначает килоом, буква M — мегаом.
- Щупы фиксируются на двух выводах варистора, а обратные концы проводов со штекерами вставляются в гнёзда тестера, обозначенные Ω и СОМ. Так как полярность приложенного сигнала к варистору значения не имеет, то и неважно, какой провод подключается к тому или иному выводу элемента. Хотя принято, что в разъём СОМ вставляется шнур чёрного цвета.
- Устройство включается путём нажатия на тестере кнопки ON/OFF.
- Если на индикаторе высвечивается единица, то это обозначает, что выбран малый предел измерений.
- Если на экране отображаются цифры отличные от единицы, то это и есть величина измеряемого сопротивления.
При трактовке результата измерений следует учитывать ещё и допуск. Каждый радиоэлемент имеет свой показатель допуска. Например, если допуск составляет 10 процентов, а внутреннее сопротивление варистора указано как 100 МОм, то полученные результаты должны находиться в пределах от 90 до 110 МОм. Если выявляется, что измеренное сопротивление элемента находится ниже или выше этого диапазона, то его можно считать неисправным.
Применение реостата
Проверить варистор возможно не только путем измерения его внутреннего импеданса. Внутреннее значение сопротивления может соответствовать заявленной величине, но при этом пороговое напряжение варистора будет неверным. Для проверки значения пробоя используется мультиметр с лабораторным автотрансформатором или реостатом.
В тестовой схеме к одному из выводов варистора подключается подвижный контакт реостата, а к другому — плавкий предохранитель. Щупы мультиметра фиксируются параллельно выводам полупроводникового элемента, а он сам переключается в режим измерения напряжений. На свободную пару контактов подаётся разность потенциалов, величина которой превышает значение пробоя компонента.
С помощью движимого контакта реостата плавно изменяется напряжение до момента срабатывания варистора. Этот момент определяется по вольтметру. Первоначально показания мультиметра будут расти, а после резко сбросятся до нуля. При этом предохранитель перегорит. Максимальное зафиксированное ненулевое значение и будет являться пороговым напряжением.
Важно отметить, что при измерении, особенно с помощью реостата, возможно поражение организма электрическим током. Поэтому нельзя забывать о технике безопасности, следует неуклонно её соблюдать.
Варистор что это такое и как проверить
Причины неисправности
Варисторы устанавливают параллельно защищаемой цепи, а последовательно с ним ставят предохранитель. Это нужно для того, чтобы, когда варистор сгорит, при слишком сильном импульсе перенапряжения сгорел предохранитель, а не дорожки печатной платы.
Единственной причиной выхода из строя варистора является резкий и сильный скачок напряжения в сети. Если энергия этого скачка большая, чем может рассеять варистор — он выйдет из строя. Максимальная рассеиваемая энергия зависит от габаритов компонента. Они отличаются диаметром и толщиной, то есть, чем они больше — тем больше энергии способен рассеять варистор.
Скачки напряжения могут возникать при авариях на ЛЭП, во время грозы, при коммутации мощных приборов, особенно индуктивной нагрузки.
Способы проверки
Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже — так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.
Если элемент сгорел и маркировку прочесть невозможно — посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.
Есть три способа проверить варистор быстро и просто:
- Визуальный осмотр.
- Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
- Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.
Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией — элемент сгорает. Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.
Можно визуально проверить варистор на работоспособность — на нем не должно быть трещин, как на фото:
Следующий способ — проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.
Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов.
Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.
На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации — в нем наверняка есть и прозвонка.
Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.
Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.
На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.
Как правильно установить варистор, как проверить мультиметром этот прибор и грамотно определить, а затем устранить неполадки в таком элементе – вопросы, наиболее часто встречающиеся при эксплуатации устройства защиты или шунта.
Принцип измерения
- Un, или классификационным напряжением, как правило, измеряемым при токовых показателях на уровне 1 мA. Данный параметр принято считать условным и определять согласно маркировке, нанесенной на корпус элемента.
- Um, или предельно допустимыми показателями среднеквадратичного, так называемого действующего напряжения переменного типа.
- Um=, или предельно допустимыми показателями уровня задействованного постоянного напряжения.
- Р, или номинальными показателями среднестатистической рассеиваемой мощности. Именно такой уровень мощности способен рассеиваться при помощи варистора в процессе эксплуатации. Правило действует при условии сохранения выставленных предварительно параметров и основных пределов.
- W, или максимально допустимыми показателями поглощаемой энергии, измеряемой джоулями (Дж), под воздействием единичных импульсов.
- Iрр, или максимальными показателями токовых импульсов при наличии времени нарастания или длительности импульса в пределах 8/20 мкc.
- Со, или емкостью, измеряемой в закрытом положении. Данное значение в процессе эксплуатации напрямую будет зависеть от прилагаемого напряжения. Однако при прохождении высокой токовой нагрузки показатель падает до отметки «ноль».
- W, или периодом воздействия перегрузки при максимальных показателях мощности, обозначаемой Pт в условиях низкого риска повреждения варистора.
Уровень рабочего напряжения варистора подбирается в соответствии с предельно допустимыми показателями рассеивающей энергии и максимальным параметром амплитуды напряжения. Ориентировочные расчеты в этом случае выполняются при уровне переменного напряжения не более Uвх
Для правильного выбора защитного элемента и с целью предотвращения перегрузки в цепях эксплуатируемого электронного прибора очень важно учитывать показатели входного сопротивления источника и уровень мощности импульсов, которые возникают на стадии переходных процессов.
Измерение сопротивления
Варистор относится к категории важных электронных компонентов, предназначенных для защиты дорогостоящих современных устройств от поломки в результате скачков напряжения.
Варисторы, получившие слишком сильный электрический толчок, могут оставаться на низких показателях сопротивления и потребуют проведения проверки.
Процесс измерения уровня сопротивления не отличается особой сложностью. С этой целью необходимо подготовить паяльник с мощностью в пределах 15-35 Вт, канифоль и припой, набор стандартных и крестовых отвёрток, а также плоскогубцы с длинным носиком и мультиметр.
Работы по измерению показателей сопротивления и тестирования варистора могут выполняться двумя основными способами.
Хотите узнать, как проверить диод мультиметром? Читайте подробную инструкцию на нашем сайте.
Схемы последовательного и параллельного подключения ламп представлены тут.
Замена патрона в люстре – достаточно простое мероприятие, которое под силу любому непрофессионалу. Подробно о том, как это сделать, вы узнаете из этой статьи.
Проверка при отсутствии спецификации
Если отсутствует спецификация производителя, то первый вариант проверки является более предпочтительным. При таком способе проверки прибор отключается от электрической сети питания, после чего при помощи отвертки вскрывается его корпус и определяется место расположения предохранителя.
После визуального осмотра предохранитель извлекается и тестируется. Перегоревший или пришедший в негодность предохранитель подлежит замене.
Только после проверки предохранителя определяется расположение и работоспособность варистора, который чаще всего является ярко окрашенным в красный, синий или жёлтый цвет диском небольших размеров.
Как правило, варистор бывает зафиксирован на предохранительном держателе. Сначала необходимо произвести визуальный осмотр устройства и исключить наличие поверхностных оплавлений, деформаций или подпалин.
Варистор в блоке питания АТХ
После осмотра выполняется отсоединение одного из проводов, который нагревается при помощи паяльника до расплавления припоя. Затем удаляется припой, а варистор извлекается из схемы посредством плоскогубцев. Проверка элемента осуществляется посредством измерения уровня его сопротивления:
- включенный мультиметр переводится в положение регулятора, позволяющего определить показатели сопротивления;
- щупы мультиметра фиксируются на концах варистора;
- производится измерение уровня сопротивления элемента.
Отсутствие тестирования варистора после замены пришедшего в негодность предохранителя в условиях перепада напряжения вполне может спровоцировать разрушение основных элементов электронного устройства.
Проверка при наличии спецификации
Другим распространённым способом проверки варистора является тестирование элемента согласно спецификации производителя, которая представлена испытательной инструкцией и стандартной схемой устройства.
При маркировке варистора после литеры «СН», обозначающей сопротивление нелинейного типа, указывается цифровое обозначение, которым определяются конструктивные особенности и вид материала тестируемого элемента.
Числовым обозначением, дополненным символом «В±…%», определяется уровень предельного напряжения и допуск.
Расшифровка результата
Показатели замеряемого сопротивления перегоревшего варистора всегда превышают 100 Ом.
В этом случае удаляются свинцовые остатки, после чего от схемы аккуратно отсоединяется сам варистор.
Извлеченный элемент заменяется новым, с аналогичными параметрами. Тестируемые мультиметром элементы, обладающие сопротивлением более 1 млн Ом, замене не подлежат.
Процесс монтажа люстры зависит от типа прибора. Прежде чем выяснить, как собрать люстру, нужно разобраться с конструкцией прибора.
Схема энергосберегающей лампы и типы ламп вы найдете в этом материале.
Видео на тему
Дата: 21.11.2015 // 0 Комментариев
Любой ремонт техники связан с проверкой различных радиодеталей. Сегодня в статье мы расскажем о том, как проверить варистор, а также о его назначении в схеме.
Назначение варистора
Варистор представляет собой резистор, который способен резко изменить свое сопротивление в зависимости от напряжения. Имея нелинейную характеристику, варистор очень быстро изменяет свое сопротивление от сотен МОм до десятков Ом. Такое свойство применяется для поглощения коротких всплесков напряжения, а при более длительных всплесках варистор уже взрывается с громким хлопком и кучей дыма. Включение варистора производиться после предохранителя параллельно напряжению сети. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель.
Как проверить варистор?
Первым делом производится осмотр варистора на плате, ищем наличие на нем сколов и трещин, почернения, следов нагара. При выявлении внешних дефектов варистор необходимо заменить, можно на некоторое время его выпаять из основной платы, схема будет работать и без него. Но в таком случае необходимо помнить, что при всплеске напряжения будут выходить из строя уже другие компоненты схемы и это повлечет за собой более дорогой ремонт.
Если внешний осмотр дефектов не выявил, в таком случае необходима проверка варистора мультиметром.
Наглядно покажем, как проверить варистор k275 мультиметром.
Тестер переключаем в режим измерения максимального сопротивления. В нашем случае сопротивление варистора значительно больше, чем диапазон измерения мультиметра. На этом проверка варистора тестером окончена.
S10 k275 как проверить
Причины неисправности
Варисторы устанавливают параллельно защищаемой цепи, а последовательно с ним ставят предохранитель. Это нужно для того, чтобы, когда варистор сгорит, при слишком сильном импульсе перенапряжения сгорел предохранитель, а не дорожки печатной платы.
Единственной причиной выхода из строя варистора является резкий и сильный скачок напряжения в сети. Если энергия этого скачка большая, чем может рассеять варистор — он выйдет из строя. Максимальная рассеиваемая энергия зависит от габаритов компонента. Они отличаются диаметром и толщиной, то есть, чем они больше — тем больше энергии способен рассеять варистор.
Скачки напряжения могут возникать при авариях на ЛЭП, во время грозы, при коммутации мощных приборов, особенно индуктивной нагрузки.
Способы проверки
Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже — так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.
Если элемент сгорел и маркировку прочесть невозможно — посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.
Есть три способа проверить варистор быстро и просто:
- Визуальный осмотр.
- Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
- Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.
Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией — элемент сгорает. Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.
Можно визуально проверить варистор на работоспособность — на нем не должно быть трещин, как на фото:
Следующий способ — проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.
Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов.
Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.
На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации — в нем наверняка есть и прозвонка.
Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.
Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.
На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.
Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.
Скорее всего это произошло из-за скачков напряжения в сети.
При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.
Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт. Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. д.), а также из-за атмосферного электричества.
Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.
Стандартная схема подключения варистора
параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:
Принцип действия варистора
По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения. При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток. Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.
Маркировка варисторов
Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке. Например маркировка варисторов CNR:
CNR-07D390K , где:
- CNR- серия, полное название CeNtRa металлоксидные варисторы
- 07- диаметр 7мм
- D – дисковый
- 390 – напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
- K – допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.
Как же найти на плате варистор?
По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.
На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.
VA1- это варистор, а синяя деталь рядом это конденсатор-С70.
Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.
После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание – на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.
Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF – плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.
Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.
Ещё обратите внимание, что большинство плат – двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.
После замены варистора остаётся только поставить новый предохранитель и установить плату на место.
Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.
Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:
Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.
Дата: 21.11.2015 // 0 Комментариев
Любой ремонт техники связан с проверкой различных радиодеталей. Сегодня в статье мы расскажем о том, как проверить варистор, а также о его назначении в схеме.
Назначение варистора
Варистор представляет собой резистор, который способен резко изменить свое сопротивление в зависимости от напряжения. Имея нелинейную характеристику, варистор очень быстро изменяет свое сопротивление от сотен МОм до десятков Ом. Такое свойство применяется для поглощения коротких всплесков напряжения, а при более длительных всплесках варистор уже взрывается с громким хлопком и кучей дыма. Включение варистора производиться после предохранителя параллельно напряжению сети. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель.
Как проверить варистор?
Первым делом производится осмотр варистора на плате, ищем наличие на нем сколов и трещин, почернения, следов нагара. При выявлении внешних дефектов варистор необходимо заменить, можно на некоторое время его выпаять из основной платы, схема будет работать и без него. Но в таком случае необходимо помнить, что при всплеске напряжения будут выходить из строя уже другие компоненты схемы и это повлечет за собой более дорогой ремонт.
Если внешний осмотр дефектов не выявил, в таком случае необходима проверка варистора мультиметром.
Наглядно покажем, как проверить варистор k275 мультиметром.
Тестер переключаем в режим измерения максимального сопротивления. В нашем случае сопротивление варистора значительно больше, чем диапазон измерения мультиметра. На этом проверка варистора тестером окончена.
Как проверить варистор мультиметром?
Проверка варистора с помощью тестера или мультиметра – это полезный навык для радиолюбителей и людей, которые сами с руками и любят заняться ремонтом сломанной техники самостоятельно. Речь об этом пойдет в данной статье. Для чего предназначен варистор и что он делает, достаточно подробно расписано в данной статье – статья о варисторе.
Но немного вспомним: варистор предназначен для защиты переменных либо постоянных цепей от перенапряжения. Он стоит параллельно защищаемой цепи и в обычном состоянии имеет высокое сопротивление. При достижении порогового напряжения, которое зависит от марки варистора, у него понижается сопротивление с очень большого, до очень маленького. Варистор поглощает это перенапряжение и рассеивает его в атмосфере в виде тепла. Тем самым он удаляет из схемы излишек энергии, тем самым защищает цепь от выхода из строя.
Теперь приступим к проверке. Перед тем как использовать тестер осмотрите внимательно радиоэлемент. Возможно на нем будут следы подгорания, сколы или он вовсе разломался. Внимательный осмотр избавит вас от лишнего труда, хоть проверка с помощью прибора не занимает много усилий, но все же. Так же варистор может терять свои свойства в течении времени, от внешних условий и в процессе старения – на это тоже стоит обратить внимание.
Проверка по сопротивлению
Перед проверкой нам нужно выпаять один из выводов варистора, делает это для того, чтобы предотвратить утечку тока по другим элементам цепи, что сделает наши измерения не верными, а результат будет ложным.
Теперь переключим наш мультиметр в режим измерения сопротивления на максимальное значение и измерим сопротивление варистора. Если тестер показывает единицу, либо очень высокое сопротивление(МоМы) – то варистор исправен. Но если там низкое сопротивление, то такой радиоэлемент использовать не стоит, иначе в аварийном режиме может сгореть вся схема.
Проверка по ёмкости
Если ваш прибор обладает такой функций как проверка емкости, то вы можете попробовать второй метод проверки исправности варистора, но для этого нужно иметь справочник. У каждого варистора есть своя емкость. Смотрим указанную для вашей модели и сравниваем справочное значение в реальным. Если емкость примерно такая (не стоит забывать о отклонениях), как указана в описании, то варистор тоже исправен.
Заключение
Мы разобрали два варианта как прозвонить варистор с помощью тестера. Кроме мультиметра можно использовать приборы для измерения сопротивления или емкости. Как видно, ничего сложного в этом нет.
СледующаяПрактикаКак проверить диодный мост мультиметром?
B72650M0271K072 — Epcos — TVS-варистор, 275 В, 350 В
TVS-варистор, 275 В, 350 В, Серия B726, 710 В, 3225 [8063 Metric], Металлооксидный Варистор (MOV)
Информация об изделиях
Техническая документация (2)
Обзор продукта
B72650M0271K072 от компании Epcos является стандартным SMD дисковым варистором. Это устройство используется для защиты от перенапряжения и подавления переходных процессов в управляющей электронике, детекторах, датчиках, сенсорных экранах, вставных картах и пультах дистанционного управления.
- Электрические эквиваленты выводным SIOV-S05
- S07
- Максимальное рабочее напряжения 275В СКЗ и DC рабочее напряжение 250В
- Скачок тока 400А (8
- 20мкс)
- Максимальное потребление энергии 8.6Дж
- Максимальное рассеивание мощности 1000Вт
- Одобрено UL и CSA
- Инкапсулированный цилиндрический варистор
- Огнеупорный термопласт UL 94 V-0
- Выводы из луженой меди
- Диапазон рабочей температуры от -40°C до 85°C
Области применения
Промышленное, Потребительская Электроника, Связь и Сеть, Безопасность
Предупреждения
Температура поверхности рабочего варистора может быть выше. Чтобы обеспечить надлежащее охлаждение, убедитесь, что соседние компоненты расположены на достаточном расстоянии от этого устройства.
???PF_PDP_COMPARE_MAX_ITEMS_MESG???
Варисторы — огромный выбор по лучшим ценам
Varistors
Electronics require the use of a variety of components, including varistors. These devices help to control surges in voltage in electronics and balance the power in these items. Understanding the protection offered by a varistor and its ability to control voltage is essential when deciding to buy one to use with your electronic machines.
Why are these components necessary?A varistor is a series of components that resist electrical voltages and help prevent dangerous surges. They are similar to a diode but allow transverse currents to travel both ways along its body. They are used in most types of electronic items, including computers and other forms of control modules.
In some instances, they can be used as protection against excessive voltage. Varistors can also steer excessive voltage away from sensitive areas of a machine.
How do varistor devices vary between models?Varistors vary quite heavily between different models. For example, a metal oxide varistor has a different build than a series built out of crystals. The series of a varistor varies depending on the voltage it can hold, the devices it is used to control, and the type of power used in its build.
For example, a potentiometer is a metal oxide varistor that provides protection against potential power surges and excessive voltage. Metal oxide varistor devices are typically utilized because they are easier to build and control a majority of extreme power and voltage surges. However, PCB mount thermistors differ from metal oxide varistors because they work from the outside of a computer to provide protection.
What varistors specifications are necessary to consider?When buying varistors for your devices, it is crucial to consider several specifications. The most obvious is the voltage rating. They are designed to tolerate a specific voltage level without suffering from any damage. This rating is typically defined in how many microseconds of time that they can resist excessive energy, such as 8/20 microseconds.
Another important consideration when choosing a series of these products is their response time. It indicates how quickly the varistor device responds to excessive voltages. Most series types will range between 40-60 nanoseconds. Finding a quicker varistor ensures your computer is protected. That said, there are no standardized ratings available for this specification.
The other important consideration when buying a series of these devices is their capacitance. This indicates the exact power they hold when they are in use. This range is typically between 100-2,500 pF. Smaller models with lower capacitance are available for products such as cell phones or tablets.
Как проверить варистор мультиметром — [ Статья ]
Содержание статьи
Варистор является разновидностью полупроводникового резистора с функцией предохранителя защищаемой цепи. Принцип работы варистора основан на резком и быстром уменьшении его электрического сопротивления при повышении напряжения на контактах. Отсюда следует параллельный способ подключения прибора к тому участку схемы, который необходимо шунтировать.
В штатном режиме варистор бездействует – он необходим при пиковых всплесках напряжения, которое может вывести из строя защищаемую схему. Рост разницы потенциалов приводит к протеканию тока через варистор, избыточная энергия выделяется прибором в тепловом виде. Внешне типичный варистор выглядит как таблетка с двумя усиками-выводами и похож на конденсатор, отличаясь от него по нанесенной маркировке.
Основные параметры и маркировка варисторов
Данный тип полупроводниковых приборов выпускается в двух разновидностях. Низковольтные варисторы срабатывают на напряжение в диапазоне от 3 до 200 Вольт, они применяются в бытовой аппаратуре. Высоковольтные способны реагировать на напряжение до 20 000 Вольт и используются в промышленности.
По маркировке прибора можно понять не только его назначение (и отличить от конденсатора), но и получить представление об основных характеристиках.
Например, варистор с надписью 20d421k имеет диаметр 20 миллиметров, пороговое напряжение открытия в 420 Вольт, а буква k обозначает допустимое отклонение данного напряжения, равное 10 %. То есть этот прибор может сработать уже при подаче 378 Вольт на его контакты (420 – 42).
На электрических схемах варистор обозначается аббревиатурой znrX, где X – количество приборов на данном участке схемы.
Проверка варистора – осмотр, омметр и мультиметр
При срабатывании данного полупроводникового прибора происходит значительное выделение тепла и варистор может сгореть. Это происходит при большом значении пикового напряжения, при его длительной подаче либо при сочетании обоих факторов.
Способов проверки варистора на дальнейшую работоспособность существует несколько:
- Внешний осмотр. Его не стоит отвергать, так как многие современные схемы плотно упакованы, и нарушение целостности внешней оболочки прибора легко не заметить. Любые трещины, вспучивания или потемнения на корпусе варистора сигнализируют о его выходе из строя.
- Прозвон с помощью мультиметра. Достоверно проверить варистор на исправность мультиметром прямо на плате невозможно — придется выпаивать как минимум один контакт. Важно провести измерение в обоих направлениях, поменяв щупы местами друг с другом. Селектор режимов мультиметра необходимо установить на ячейку «проверка диодов», обычно рядом с ней нарисован символ диода и значок акустической индикации. Целый варистор не прозванивается ввиду своего значительного сопротивления.
- Измерение омметром либо мегаомметром. Следует установить омметр на максимальное значение, в большинстве бытовых приборов таковым является 2 МегаОма. На шкале они могут быт обозначены как 2000К или 2M. В теории измеренное сопротивление должно быть бесконечным, на практике омметр может показать значение сопротивления исправного варистора в 1,5…2 МегаОма. Если прозванивать варистор мегаомметром, важно установить правильное значение напряжения на его выводах. В мощных измерительных приборах оно может быть выше, чем пороговое напряжение открытия варистора. Проще говоря, полупроводниковый предохранитель можно сжечь в процессе проверки.
На практике использование мультиметра для диагностики исправности варисторов встречается не столь часто, так как в большинстве случаев достаточно внешнего осмотра. При замене сгоревшего предохранителя следует обратить внимание на технические характеристики его предшественника, иначе новый варистор выйдет из строя значительно быстрее либо не выполнит свою шунтирующую функцию и допустит повреждение целого электронного блока.
Была ли статья полезна?
Да
Нет
Оцените статью
Что вам не понравилось?
Другие материалы по теме
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
Как проверить варистор
Варистор — это электронный компонент, который защищает дорогие устройства от вредных скачков напряжения, подобно амортизатору. Например, при скачке напряжения варистор, обычно имеющий очень высокое сопротивление, реагирует на скачок напряжения, поглощая свою энергию с очень низким сопротивлением. Это может привести к перегоранию предохранителя оборудования, но защитит дорогую электронику. Варистор, подвергшийся сильному электрическому удару, может оставаться с низким сопротивлением и должен быть проверен.
Отключите электронное оборудование от розетки.
Откройте корпус отвертками и найдите варистор. Обычно это ярко окрашенный диск размером с монету. Варистор, скорее всего, будет подключен к держателю предохранителя. Если варистор заметно прожог или сломан, немедленно замените его.
Отпаяйте и отсоедините один из выводов варистора. Нагрейте вывод паяльником, пока припой не расплавится, и удалите припой с помощью приспособления для удаления припоя.Осторожно отсоедините провод от соединения плоскогубцами. Теперь, когда варистор удален из схемы, вы можете измерить его сопротивление.
Включите мультиметр и установите показания сопротивления, умноженного на 1000 Ом. Коснитесь одним щупом измерительного прибора свободным проводом варистора, а другим щупом — подсоединенным проводом. Считайте сопротивление на измерителе. Если он показывает почти бесконечное сопротивление, варистор все еще в порядке. Если он показывает очень низкое сопротивление, варистор перегорел.
Перепаяйте отсоединенный провод, если сопротивление варистора хорошее.Если варистор перегорел, отсоедините оставшийся провод и припаяйте на его место новый варистор того же номинала.
Вещи, которые вам понадобятся:
- Паяльник мощностью от 15 до 35 Вт
- Отвертки
- Припой для электроники
- Насос для распайки
- Плоскогубцы
- Мультиметр
Предупреждения:
- Прочтите руководство поставляемого с вашим электронным устройством, для соблюдения надлежащих мер безопасности. При работе с электрическими компонентами существует риск поражения электрическим током или возгорания, даже если электроника отключена.Если у вас нет опыта работы с электричеством или электроникой, проконсультируйтесь со специалистом, прежде чем открывать какое-либо электронное устройство.
Как проверить варистор
Варистор — это электронный компонент, который действует как амортизатор, защищая дорогие устройства от вредных скачков напряжения. Например, расположенный поблизости промышленный электродвигатель может подавать высокое напряжение в энергосистему. Варистор, обычно имеющий очень высокое сопротивление, реагирует на скачок напряжения, поглощая свою энергию с очень низким сопротивлением.Это также приведет к перегоранию предохранителя оборудования, но защитит дорогую электронику. Варистор, подвергшийся сильному электрическому удару, останется с низким сопротивлением.
Отключите электронное оборудование от розетки.
Откройте корпус отвертками и найдите варистор. Обычно это ярко окрашенный диск размером с монету. Варистор, скорее всего, будет подключен к держателю предохранителя. Если варистор явно прожог или сломан, это плохо; замени это. Если он выглядит целым, переходите к шагу 3.
- Варистор — это электронный компонент, который действует как амортизатор, защищая дорогие устройства от вредных скачков напряжения.
- Варистор, скорее всего, будет подключен к держателю предохранителя.
Отпаяйте и отсоедините один из выводов варистора. Нагрейте вывод паяльником, пока припой не расплавится, и удалите припой с помощью приспособления для удаления припоя. Осторожно отсоедините провод от соединения плоскогубцами. Теперь, когда варистор удален из схемы, вы можете измерить его сопротивление.
- Отпаяйте и отсоедините один из выводов варистора.
- Теперь, когда варистор удален из цепи, вы можете измерить его сопротивление.
Включите мультиметр и установите его на измерение сопротивления, умноженного на 1000 Ом. Коснитесь одним щупом измерительного прибора свободным проводом варистора, а другим щупом — подсоединенным проводом. Считайте сопротивление на измерителе. Если он показывает почти бесконечное сопротивление, варистор все еще в порядке. Если он показывает очень низкое сопротивление, варистор перегорел.
Перепаяйте отсоединенный провод, если сопротивление варистора хорошее. Если он перегорел, отключите оставшийся провод и припаяйте на его место новый варистор того же номинала.
Варистор: определение, работа, работа и тестирование
Варистор — это устройство с нелинейной вольт-амперной характеристикой. Когда напряжение, приложенное к варистору, ниже его порогового значения, ток, протекающий через него, чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением, наоборот.Самый распространенный варистор — это металлооксидный варистор (MOV).
Каталог
Ⅰ Что такое варистор?
Варистор — это устройство с нелинейной вольт-амперной характеристикой. Он в основном используется для ограничения напряжения, когда цепь подвергается перенапряжению, и поглощения избыточного тока для защиты чувствительных устройств. Его также называют «резистор, зависимый от напряжения , », сокращенно « VDR ». Материал корпуса резистора варистора — полупроводник, поэтому это разновидность полупроводниковых резисторов.Варистор «оксид цинка» (ZnO), который сейчас широко используется, имеет основной материал, состоящий из двухвалентного элемента цинка (Zn) и шестивалентного элемента кислорода (O). Таким образом, с точки зрения материалов, варистор из оксида цинка — это своего рода «оксидный полупроводник II-VI».
Варистор
Варистор — это устройство защиты с ограничением напряжения. Используя нелинейные характеристики варистора, когда между двумя полюсами варистора возникает перенапряжение, варистор может ограничивать напряжение до относительно фиксированного значения напряжения, тем самым обеспечивая защиту последующей цепи.Основными параметрами варистора являются напряжение варистора, токовая нагрузка, емкость перехода, время отклика и т. Д.
Ⅱ Как работают варисторы?
Время отклика варистора составляет нс, что быстрее, чем у газоразрядной трубки, и немного медленнее, чем у трубки TVS. Как правило, скорость срабатывания защиты от перенапряжения для электронных схем может соответствовать требованиям. Емкость перехода варистора обычно составляет от сотен до тысяч ПФ.Во многих случаях его не следует напрямую применять для защиты высокочастотных сигнальных линий. При применении для защиты цепей переменного тока большая емкость перехода увеличивает утечку. При проектировании схемы защиты необходимо полностью учитывать ток. Варистор имеет большую пропускную способность, но меньше газоразрядной трубки.
Когда напряжение, подаваемое на варистор ниже его порогового значения, ток, протекающий через него, чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением.То есть, когда приложенное к нему напряжение ниже его порогового значения, это эквивалентно переключателю в выключенном состоянии.
Когда напряжение, приложенное к варистору, превышает его пороговое значение, ток, протекающий через него, резко увеличивается, что эквивалентно бесконечно малому сопротивлению. Другими словами, когда приложенное к нему напряжение превышает его пороговое значение, это эквивалентно переключателю в замкнутом состоянии.
Ⅲ Основные параметры варистора
Основными параметрами варистора являются номинальное напряжение, коэффициент напряжения, максимальное управляющее напряжение, коэффициент остаточного напряжения, ток утечки, ток утечки, температурный коэффициент напряжения, текущий температурный коэффициент, коэффициент нелинейности напряжения, изоляция. сопротивление, статическая емкость и т. д..
1. Номинальное напряжение относится к значению напряжения на варисторе при прохождении постоянного тока 1 мА.
2. Отношение напряжений относится к соотношению значения напряжения, генерируемого, когда ток варистора составляет 1 мА, и значения напряжения, генерируемого, когда ток варистора составляет 0,1 мА.
3. Максимальное ограничивающее напряжение относится к максимальному значению напряжения, которое могут выдержать два конца варистора.
4. Коэффициент остаточного напряжения : Когда ток, протекающий через варистор, имеет определенное значение, генерируемое на нем напряжение называется этим значением тока как остаточным напряжением.Коэффициент остаточного напряжения — это отношение остаточного напряжения к номинальному напряжению.
5. Пропускная способность также называется пропускной способностью, которая относится к максимальному импульсному (пиковому) току, разрешенному для прохождения через варистор при определенных условиях (с указанным интервалом времени и количеством раз, применяется стандартный пусковой ток).
6. Thw ток утечки и ток ожидания относятся к току, протекающему через варистор при указанной температуре и максимальном постоянном напряжении.
7. Температурный коэффициент напряжения относится к скорости изменения номинального напряжения варистора в заданном диапазоне температур (температура 20 ~ 70 ° C), то есть, когда ток через варистор остается постоянным, относительное изменение обоих концов варистора при изменении температуры на 1 ℃.
8. Температурный коэффициент тока относится к относительному изменению тока, протекающего через варистор, когда температура на варисторе остается постоянной, а температура изменяется на 1 ° C.
9. Коэффициент нелинейности напряжения относится к отношению значения статического сопротивления к значению динамического сопротивления варистора при заданном приложенном напряжении.
10. Сопротивление изоляции относится к значению сопротивления между выводом (выводом) варистора и изолирующей поверхностью корпуса резистора.
11. Статическая емкость относится к внутренней емкости самого варистора.
Ⅳ Функция варистора
Основная функция варистора — защита переходного напряжения в цепи.По принципу работы, описанному выше, варистор эквивалентен переключателю. Только когда напряжение выше порогового значения, а переключатель замкнут, ток, протекающий через него, резко возрастает, и влияние на другие цепи не сильно меняется, тем самым уменьшая влияние перенапряжения на последующие чувствительные цепи. Эта функция защиты варистора может использоваться многократно, а также может быть преобразована в одноразовое защитное устройство, подобное токовому предохранителю.
Функция защиты варистора получила широкое распространение.Например, в цепи питания домашнего цветного телевизора используется варистор для выполнения функции защиты от перенапряжения. Когда напряжение превышает пороговое значение, варистор отражает его характеристики фиксации. Чрезмерное напряжение понижается, так что последующая цепь работает в безопасном диапазоне напряжений.
Варистор в основном используется для защиты от переходных перенапряжений в цепи, но из-за его вольт-амперных характеристик, аналогичных полупроводниковому стабилитрону, он также имеет множество функций элементов схемы.Например, варистор представляет собой своего рода высоковольтный стабилизирующий элемент постоянного тока с малым током-напряжением со стабильным напряжением в тысячи вольт или более, чего нельзя достичь с помощью кремниевого стабилитрона. Варистор можно использовать в качестве элемента обнаружения флуктуации напряжения, битового элемента сдвига уровня постоянного тока, флуоресцентного пускового элемента, элемента выравнивания напряжения и так далее.
Ⅴ Варистор из оксида металла
Наиболее распространенным варистором является варистор из оксида металла (MOV), который содержит керамический блок, состоящий из частиц оксида цинка и небольшого количества других оксидов металлов или полимеров, зажатый между двумя металлическими листами.На стыке частиц и соседних оксидов образуется диодный эффект. Из-за большого количества грязных частиц это эквивалентно большому количеству диодов с обратным подключением. При низком напряжении наблюдается лишь небольшая обратная утечка тока. Когда встречается высокое напряжение, происходит обратный коллапс диода из-за горячих электронов и туннельного эффекта, и течет большой ток. Следовательно, кривая вольт-амперной характеристики варистора очень нелинейна: высокое сопротивление при низком напряжении и низкое сопротивление при высоком напряжении.
Металлооксидные варисторы в настоящее время являются наиболее распространенными устройствами ограничения напряжения и могут использоваться для различных напряжений и токов. Использование оксидов металлов в его структуре означает, что MOV очень эффективны в поглощении кратковременных скачков напряжения и имеют более высокие возможности управления энергией.
Как и обычные варисторы, металлооксидные варисторы начинают проводить при определенном напряжении и перестают проводить, когда напряжение ниже порогового. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV заключается в том, что ток утечки материала из оксида цинка через MOV очень мал при нормальных рабочих условиях, а его рабочая скорость намного выше в переходном режиме зажима.
MOV обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах и печатных платах аналогичным образом. Типичный металлооксидный варистор имеет следующую структуру:
Металлооксидный варистор
Чтобы выбрать правильный MOV для конкретного применения, необходимо понимать полное сопротивление источника и возможную импульсную мощность переходного процесса. .Для входных линейных или фазовых переходных процессов выбор правильного MOV немного сложнее, потому что характеристики источника питания, как правило, неизвестны. Вообще говоря, электрическая защита от переходных процессов и всплесков мощности схемы выбора MOV обычно является просто обоснованным предположением.
Однако металлооксидные варисторы можно использовать для различных напряжений варисторов, от примерно 10 до более 1000 вольт переменного или постоянного тока, поэтому он может помочь вам сделать выбор, зная напряжение питания.Например, выберите MOV или кремниевый варистор. Для напряжения его максимальный непрерывный корень означает квадратное номинальное напряжение, которое должно быть немного выше, чем максимальное ожидаемое напряжение источника питания. Например, источник питания на 120 вольт составляет 130 вольт среднеквадратического значения, а 230 вольт — это источник питания на 260 вольт.
Максимальное значение импульсного тока, которое будет использовать варистор, зависит от ширины переходного импульса и количества повторений импульсов. Можно сделать предположение о ширине переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс).Если пикового значения импульсного тока недостаточно, варистор может перегреться и выйти из строя. Следовательно, если варистор работает без сбоев или деградации, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно возвращаться в свое предимпульсное состояние.
Ⅵ Характеристики поврежденного варистора
Резистор — это самый многочисленный компонент в электрооборудовании, но он не является компонентом с самой высокой степенью повреждения. Обрыв цепи — наиболее распространенный тип повреждения сопротивления.Редко сопротивление становится большим, и очень редко сопротивление становится маленьким. Распространенными типами являются резисторы с углеродной пленкой, резисторы с металлической пленкой, резисторы с проволочной обмоткой и резисторы с плавкими предохранителями. Наиболее широко используются первые два типа резисторов. Их характеристики повреждения — низкое сопротивление (ниже 100 Ом;) и высокое сопротивление (выше 100 Ом;). Во-вторых, при повреждении резистора с низким сопротивлением он часто сгорает и почернеет, что легко найти, а при повреждении резистора с высоким сопротивлением остается мало следов.Резисторы с проволочной обмоткой обычно используются для ограничения высокого тока, а сопротивление невелико. Когда цилиндрический резистор с проволочной обмоткой сгорит, часть его станет черным или поверхность взорвется, треснет. Цементное сопротивление — это разновидность проволочного сопротивления намотки, которое может сломаться при выгорании, иначе не останется видимых следов. Когда предохранитель перегорит, некоторые поверхности оторвутся, а на некоторых не останется следов, но они никогда не сгорят и не станут черными.
Ⅶ Как проверить варисторы?
1.Подготовка перед измерением варистораПодключите два измерительных провода (независимо от положительного и отрицательного) к двум концам резистора, чтобы измерить фактическое значение сопротивления. Для повышения точности измерения диапазон выбран в соответствии с номиналом измеряемого сопротивления. Из-за нелинейной зависимости шкалы Ом средняя часть шкалы в порядке. Следовательно, значение указателя должно упасть, насколько это возможно, до середины шкалы, то есть в пределах от 20% до 80% радиана полной шкалы.В зависимости от уровня погрешности сопротивления допускается погрешность ± 5%, ± 10% или ± 20% между показанием и номинальным сопротивлением, соответственно. Если диапазон ошибок превышен, резистор изменил стандартное значение.
2. Как измерить качество варистора?Для оценки варистора обычно требуется источник питания с широким диапазоном регулируемого напряжения, и он имеет хороший эффект ограничения тока. При измерении параллельно варистору подключают вольтметр с хорошей точностью.Подключите регулируемый провод питания к обоим концам варистора.
Вольтметр показывает напряжение питания. Вам следует медленно регулировать напряжение и вы увидите, что напряжение внезапно падает после достижения определенного напряжения. Напряжение в последний момент перед понижением является значением защиты варистора.
При постоянном напряжении, подаваемом на варистор, значение его сопротивления может изменяться от МОм (МОм) до МОм (Миллиом). Когда напряжение низкое, варистор работает в области тока утечки, показывая большое сопротивление, а ток утечки невелик; когда напряжение возрастает до нелинейной области, ток изменяется в относительно большом диапазоне, и напряжение не изменяется сильно, показывая хорошую характеристику ограничения напряжения; когда напряжение снова повышается, варистор входит в область насыщения и имеет очень маленькое линейное сопротивление.Из-за большого тока варистор со временем перегреется и сгорит или даже лопнет.
A Мультиметр
3. Выбор варистораПри выборе варистора необходимо учитывать особые условия схемы и, как правило, соблюдать следующие принципы:
(1) Выбор напряжения варистора V1mA
В соответствии с выбором напряжения источника питания, напряжение источника питания, непрерывно подаваемое на варистор, не должно превышать значение «максимального продолжительного рабочего напряжения», указанное в спецификации.То есть максимальное рабочее напряжение постоянного тока варистора должно быть больше, чем рабочее напряжение постоянного тока VIN линии питания (сигнальной линии), то есть VDC ≥ VIN; При выборе источника питания 220 В переменного тока необходимо полностью учитывать диапазон колебаний рабочего напряжения электросети. Общий диапазон колебаний внутренней электросети составляет 25%. Следует выбрать варистор с напряжением варистора от 470 В до 620 В. Выбор варистора с более высоким напряжением варистора может снизить частоту отказов и продлить срок службы, но остаточное напряжение немного увеличивается.
(2) Выбор трафика
Номинальный ток разряда варистора должен быть больше, чем импульсный ток, необходимый для выдерживания, или максимальный импульсный ток, который может возникнуть во время работы оборудования. Номинальный ток разряда должен быть рассчитан путем нажатия значения более 10 ударов на кривой номинальных значений времени работы от перенапряжения, что составляет около 30% от максимального потока удара (т. Е. 0,3IP).
(3) Выбор напряжения фиксации
Напряжение фиксации варистора должно быть меньше максимального напряжения (т. Е. Безопасного напряжения), которое может выдержать защищаемый компонент или оборудование.
(4) Выбор конденсатора Cp
Для сигналов высокочастотной передачи емкость Cp должна быть меньше, и наоборот
(5) Согласование внутреннего сопротивления (согласование сопротивления)
Взаимосвязь между внутреннее сопротивление R (R≥2Ω) защищаемого компонента (линии) и переходное внутреннее сопротивление Rv варистора: R≥5Rv; для защищаемого компонента с малым внутренним сопротивлением, не влияющим на скорость передачи сигнала, следует попробовать использовать большой варистор конденсатора.
Статьи по теме:
SMD-резисторы: коды, размер, испытания, допуски и выбор
В чем разница между подтягивающими и понижающими резисторами?
TCSD-20-S-20.00-01-F-N-SR | Samtec Inc | Разъем для платы, | Бесплатный образец | ||
ММСДТ-02-20-С-20.00-С-К-М | Samtec Inc | Разъем для платы, | Бесплатный образец | ||
ММСД-15-20-С-20.00-С-К | Samtec Inc | Разъем для платы, 30 контактов, 2 ряда, гнездовой, обжимной терминал, гнездо, СООТВЕТСТВУЕТ ROHS | Бесплатный образец | ||
ИДСД-20-С-20.00-Т | Samtec Inc | Разъем для платы, 40 контактов, 2 ряда, гнездовой, клемма IDC, гнездо, СООТВЕТСТВИЕ ROHS | Бесплатный образец | ||
ТКМД-20-С-20.00-01 | Samtec Inc | Разъем для платы, 40 контактов, 2 ряда, папа, клемма IDC, БЕСПЛАТНЫЙ вывод | Бесплатный образец | ||
ММСС-02-20-С-20.00-С-К | Samtec Inc | Разъем для платы, 2 контакта, 1 ряд, гнездовой, обжимной терминал, гнездо | Бесплатный образец |
Amazon.com: (F # 26) 10шт Epcos S20K275 MOV 275Vac 350Vdc 630pF Металлооксидный варистор: Industrial & Scientific
В настоящее время недоступен.
Мы не знаем, когда и появится ли этот товар в наличии.
- Убедитесь, что это подходит введя номер вашей модели.
- Epcos S20K275
- 275Vac 350Vdc 630pF
- Диск 20 мм, расстояние между выводами: 10 мм
- 215J 710V Зажим
- В упаковке 10 шт.
Характеристики этого продукта
Фирменное наименование | Epcos |
---|---|
Материал | Металл |
Номер модели | S20K275 |
Количество позиций | 10 |
Номер детали | B72220S271K106 |
Размер | 10 шт. |
Код UNSPSC | 32121603 |
, वेरिस्टर в Хайдарабаде, MRTG Power Diagnostic Tests Private Limited
О компании
Год основания 1996
Юридический статус компании с ограниченной ответственностью (Ltd./Pvt.Ltd.)
Характер бизнеса Производитель
Количество сотрудников от 11 до 25 человек
Годовой оборот 2–5 крор
IndiaMART Участник с мая 2013 г.
GST36AAFCM5830Q1ZX
MRTG Power Diagnostic Tests Pvt. Ltd. была основана в 1996 году и имеет сертификат ISO 9001: 2008. Мы являемся поставщиком и производителем радиаторов, угольных щеток, многоконтактных втулок, держателей щеток и силовых диодов.Мы также предоставляем услуги по тестированию коммутаторов, тестированию гидрогенераторов, тестированию турбогенераторов, тестированию двигателей HT и тестированию реле. Мы — независимая испытательная организация, чтобы предоставлять клиентам только правду. Мы основаны г-ном К. Малла Редди в качестве управляющего директора. Кроме того, мы верим в развитие и укрепление доверительных отношений с нашими клиентами. Таким образом, мы всегда поддерживаем полную прозрачность во всех наших деловых операциях и предлагаем нашим клиентам наиболее рентабельные услуги.Благодаря нашему опыту и инженерным знаниям, мы — гораздо больше, чем просто поставщик оборудования. Чтобы предлагать лучшие услуги, мы использовали самые высокотехнологичные объекты и механизмы. Используя эти возможности и наш опыт, мы стремимся стать технически и технологически одной из наиболее оснащенных компаний в Индии. Мы удовлетворили огромную базу клиентов, в которую входят многие имена, которые считаются гигантами в своей сфере деятельности. Мы воспитываем компетентную команду профессионалов, в которую входят сервисные инженеры, которые помогают нам предлагать услуги мирового класса нашим уважаемым клиентам по всей стране.
4 шт. 2 мм позолоченный стекируемый штекер типа «банан» к зажиму «крокодил» Тестовый кабель 50 см Оборудование для испытаний, измерений и инспекций fericy Business & Industrial
4 шт. 2 мм позолоченный штекер «банан» с покрытием 2 мм для испытания кабеля зажима «крокодил» 50 см
Круглая рамка Playboy Bunny с кольцом на пупок с подвесками из драгоценных камней, длина 84 дюйма 5 дюймов и 108 дюймов, которые помогут вам найти идеальное место для вашего пространства. Универсальный дизайн этого нового предмета подарка понравится гостям, желающим большего. Босоножки на плоской подошве с драгоценными камнями и перьями на ремешке на щиколотке.повседневная одежда или куда угодно, куда вас могут привести ваши приключения. 4 шт. 2мм позолоченный штабелируемый штекер типа «банан» для тестового кабеля с зажимом «крокодил» 50 см , «Знай, кто любит» Stick Shift. Этот клиновой ремень подходит для использования во всех отраслях промышленности, где требуются шкивы небольшого диаметра. 【ВЫСОКОЕ КАЧЕСТВО】 Превосходные мягкие материалы ручной работы и изысканное мастерство. Этот комплект для проводки имеет толстое покрытие поверх медного провода. 4 шт. 2 мм позолоченный штабелируемый штекер типа «банан» для тестового кабеля с зажимом «крокодил» 50 см .Идеально подходит для тренировок и тренировок, на коже могут быть какие-то линии или отметки, отпечатанный в Италии и пронумерованный на спине, эта долговечная форма проста в использовании и чистке, 4 шт. 2 мм позолоченные штабелируемые банановые штекеры для тестового кабеля зажима типа «крокодил» 50 см , Что говорит о стильном лучше, чем смокинг, Требуется 10 пластиковых бутылок объемом 2 литра, чтобы сделать ткань для одного из наших продуктовых пакетов, примечание IMP — Приятно для кожи — не содержит никель и свинец и является антиаллергическим и безопасным для кожи, может Также можно положить на стол в качестве держателя места или добавить в упаковку для улучшения подарка, 4 шт.