Site Loader

Как проверить емкость пускового конденсатора мультиметром?

09.03.2023

Пусковой конденсатор — это элемент электрической цепи, который задействуется на короткий промежуток времени во время запуска системы, чтобы разгрузить ее в момент наивысшей нагрузки. Это позволяет защитить компоненты сети от перегорания. Важно уметь отличать пусковые конденсаторы от обычных, так как у них совершенно разные функции и принципы работы. Для этого нужно знать, как проверить емкость пускового конденсатора мультиметром.

 

Как работает пусковой конденсатор

 

Пусковой конденсатор состоит из двух разнозаряжающихся пластин, изолированных слоем диэлектрического материала. За счет этого конденсатор может накапливать и моментально отдавать электрический заряд.

Пусковой конденсатор отличается от обычного своей способностью выдерживать большие нагрузки в течение короткого периода времени. Обычный — напротив, рассчитан на более длительную работу при умеренном напряжении. Емкость пускового конденсатора должна быть больше, чем у рабочего. Чтобы их не перепутать, необходимо знать, как проверить пусковой конденсатор мультиметром. Это позволит правильно подобрать тип конденсатора, чтобы сохранить исправность оборудования, подключенного к электроцепи. Измерение емкости конденсатора также позволит соотнести электрические параметры сети и подключаемых к ней компонентов, чтобы не превысить максимально допустимые показатели работы конденсатора.

 

Как узнать емкость конденсатора

 

Некоторые модели конденсаторов предназначены для компактных устройств, и их размеры очень малы. Это является большим преимуществом при обустройстве небольших электросистем, так как даже при минимальных размерах конденсаторы отлично справляются со своими функциями. Но малые габариты не позволяют разместить на корпусе маркировку, и для определения емкости понадобится мультиметр.

  • Наиболее простым способом измерения являются мультиметры с функцией «Cx». Такой прибор достаточно подключить к измеряемой цепи с учетом полярности контактов в режиме «Cx», и на шкале или экране высветится значение емкости конденсатора.
  • Если режим «Cx» отсутствует, потребуется еще и резистор. Тогда емкость можно будет вычислить по формуле 3*t = 3*RC. Значение 3*RC в формуле можно узнать следующим образом: измерить напряжение цепи, замкнув конденсатор, а затем измерить при разомкнутом конденсаторе время, за которое напряжение достигнет показателя, измеренного в первый раз. 95 % от этого промежутка будет являться переменной 3*RC, и далее мы можем вычислить емкость, разделив число на значение сопротивления и на три.

В нашем каталоге конденсаторов номинальную емкость пусковых конденсаторов можно найти в товарных карточках наряду с остальными техническими характеристиками элемента. Для приобретения оборудования и консультаций по выбору свяжитесь с нами по телефону или закажите обратный звонок.

правила и особенности выполнения измерений

Конденсаторы присутствуют в различной технике. Они же часто являются и причиной неисправностей. Чтобы оперативно выявить неисправный элемент и заменить его, нужно знать, как проверить конденсатор мультиметром, поскольку это самый простой способ.

Мы расскажем как использовать недорогой, но функциональный прибор в выявлении неисправных элементов. В представленной нами статье разобраны разновидности конденсаторов и порядок их проверки. С учетом наших советов вы без затруднений найдете «слабое звено» в электрической схеме.

Что такое конденсатор и зачем нужен?

Промышленность производит конденсаторы самых разных типов, применяемых во многих отраслях. Они необходимы в автомобиле- и машиностроении, радиотехнике и электронике, в приборостроении и производстве бытовой техники.

Конденсаторы — своего рода «хранилища» энергии, которую они отдают при возникновении кратковременных сбоев в питании. Кроме того, определенный вид этих элементов отфильтровывает полезные сигналы, назначает частоту устройств, генерирующих сигналы. Цикл разрядки-зарядки у конденсатора очень быстрый.

Такой электрический компонент, как конденсатор, состоит из пары проводников (токопроводящих обкладок). Между собой они разделены диэлектриком. В цепь, которая пропускает ток постоянного характера, включать его нельзя, поскольку это равнозначно разрыву

В цепи с переменным током обкладки конденсатора поочередно перезаряжаются с частотой протекающего тока. Объясняется это тем, что на зажимах источника такого тока периодически происходит смена напряжения. Результатом таких преобразований является переменный ток в цепи.

Так же как резистор и катушка, конденсатор проявляет сопротивление току переменного характера, но для токов разных частот оно разное. К примеру, хорошо пропуская высокочастотные токи, он одновременно может являться чуть ли не изолятором для низкочастотных токов.

Сопротивление конденсатора связано с его емкостью и частотой тока. Чем больше два последних параметра, тем его емкостное сопротивление ниже.

Полярные и неполярные разновидности

Среди огромного количества конденсаторов, выделяют два основных типа: полярные (электролитические), неполярные. Как диэлектрик в этих устройствах применяют бумагу, стекло, воздух.

Особенности полярных конденсаторов

Название «полярные» говорит само за себя — они обладают полярностью и являются электролитическими. При включении их в схему, необходимо точное ее соблюдение — строго «+» к «+», а «-» к «-». Если проигнорировать это правило, работать элемент не только не будет, но может и взорваться. Электролит бывает жидким или твердым.

Диэлектриком здесь служит пропитанная электролитом бумага. Емкость элементов колеблется в пределах от 0,1 до 100 тысяч мкФ.

Предназначение полярных конденсаторов — фильтрация и выравнивание сигналов. Вывод «плюс» имеет несколько большую длину. Метка «минус» нанесена на корпус

Когда происходит замыкание пластин, выходит тепло. Под его воздействием электролит испаряется, происходит взрыв.

Современные конденсаторы сверху имеют небольшое вдавливание и крестик. Толщина вдавленного участка меньше, чем остальной поверхности крышки. При взрыве его верхняя часть раскрывается наподобие розочки. По этой причине можно наблюдать на торцах корпуса неисправного элемента вспучивание.

Отличия неполярных конденсаторов

Неполярные пленочные элементы имеют диэлектрик в виде стекла, керамики. По сравнению с конденсаторами электролитическими, у них меньший самозаряд (ток утечки). Объясняется это тем, что у керамики сопротивление выше, чем у бумаги.

Соблюдение полярности при включении неполярного конденсатора в схему необязательно. Часто они бывают просто микроскопическими, и в некоторых проектах применяются в больших количествах

Все конденсаторы делят на детали общего назначения и специального, которые бывают:

  1. Высоковольтными. Используют в высоковольтных приборах. Их выпускают в различных исполнениях. Существуют керамические, пленочные, масляные, вакуумные ВВ конденсаторы.
    От обычных деталей они значительно отличаются и доступ к ним ограничен.
  2. Пусковыми. Применяют в электродвигателях для обеспечения их надежной работы. Они повышают стартовый момент двигателя, например, насосной станции или компрессора при запуске.
  3. Импульсными. Предназначены для создания сильного скачка напряжения и его транзакции на принимающую панель прибора.
  4. Дозиметрическими. Созданы для функционирования в цепях, где уровень токовых нагрузок небольшой. У них очень малый саморазряд, высокое сопротивление изоляции. Чаще всего это элементы фторопластовые.
  5. Помехоподавляющими. Они смягчают электромагнитный фон в большой частотной вилке. Характеризуются незначительной собственной индуктивностью, что позволяет поднять резонансную частоту и расширить полосу сдерживаемых частот.

В процентном соотношении самое большое число выходов деталей из рабочего строя приходится на случаи, когда подают напряжение, превышающее нормативное. Ошибки в проектировании также могут стать причиной неисправности.

Если диэлектрик меняет свои свойства, при этом тоже возникает сбой в работе конденсатора. Это происходит, когда он вытекает, высыхает, растрескивается. Емкость при этом сразу меняется. Измерить ее можно только посредством измерительных приборов.

Порядок проверки мультиметром

Проверку конденсаторов мультиметром лучше выполнять с изъятием их из электрической схемы. Так можно обеспечить более точные показатели.

Простые детали, обладающие переменной или постоянной емкостью очень редко выходят со строя. Здесь можно только механически повредить токопроводящие пластины. Чаще всего поломке подвержены электролитические диэлектрические элементы

Основным свойством всех конденсаторов является пропуск тока исключительно переменного характера. Постоянный ток конденсатор пропускает только в самом начале в течение очень короткого времени. Сопротивление его зависит от емкости.

Как проверить полярный конденсатор?

При проверке элемента мультиметром, нужно соблюсти условие: емкость должна быть больше 0,25 мкФ.

Технология измерения конденсатора для выявления неисправностей мультиметром следующая:

  1. Берут конденсатор за ножки и закорачивают каким-нибудь металлическим предметом, пинцетом, например, или отверткой. Это действие необходимо для того, чтобы разрядить элемент. О том, что это произошло, засвидетельствует появление искры.
  2. Устанавливают переключатель мультиметра на прозвонку или замер показателей сопротивления.
  3. Касаются щупами до выводов конденсатора с учетом полярности — к плюсовой ножке подводят щуп красного цвета, к минусовой — черного. При этом вырабатывается постоянный ток, следовательно, через какой-то временной промежуток сопротивление конденсатора станет минимальным.

Пока щупы находятся на вводах конденсатора, он заряжается, а его сопротивление продолжает расти до достижения максимума.

Проверку лучше делать аналоговым мультиметром. В этом случае можно наблюдать за поведением стрелки, а не за мельканием цифр на цифровом приборе.

Это намного удобней

Если при контакте со щупами мультиметр начнет пищать, а стрелка остановится на нулевой отметке, это указывает на короткое замыкание. Оно и стало причиной неисправности конденсатора. Если сразу же стрелка на циферблате показывает 1, значит, в конденсаторе случился внутренний обрыв.

Такие конденсаторы считаются неисправными и подлежат замене. Если «1» высветится лишь через некоторое время — деталь исправна.

Важно выполнять измерения так, чтобы неправильное поведение не отразилось на качестве измерений. Нельзя в процессе к щупам прикасаться руками. Тело человека обладает очень малым сопротивлением, а соответствующий показатель утечки превышает его во много раз.

Ток пойдет по пути меньшего сопротивления в обход конденсатора. Следовательно, мультиметр покажет результат, к конденсатору не имеющий никакого отношения. Разрядить конденсатор можно и при помощи лампы накаливания. В этом случае процесс будет происходить более плавно.

Такой момент, как разрядка конденсатора, является обязательным, особенно, если элемент высоковольтный. Делают это из соображений безопасности и для того, чтобы не вывести со строя мультиметр. Повредить его может остаточное напряжение на конденсаторе.

Обследование неполярного конденсатора

Конденсаторы неполярные проверить мультиметром еще проще. Сначала на приборе выставляют предел измерения на мегаомы. Далее прикасаются щупами. Если сопротивление будет меньше 2 Мом, то конденсатор, скорей всего, неисправен.

При проверке неполярных конденсаторов полярность не соблюдают. Для наглядности лучше взять два конденсатора, один из которых исправный, а другой неисправный. Сравнив результаты, можно более точно сделать вывод о работоспособности детали

Во время зарядки элемента от мультиметра возможно проверить его исправность, если  емкость начинается от 0,5 мкФ. Если этот параметр меньше, изменения на приборе незаметны. Если все же необходимо проверить элемент меньше 0,5 мкФ, то при помощи мультиметра это возможно сделать, но только на короткое замыкание между обкладками.

Если необходимо обследовать неполярный конденсатор с напряжением свыше 400 В, это можно сделать при условии его зарядки от источника, защищенного от к.з. автоматического выключателя. Последовательно с конденсатором подсоединяют резистор, рассчитанный на сопротивление более 100 Ом. Такое решение ограничит первичный токовый бросок.

Существует и такой метод определения работоспособности конденсатора, как проверка на искру. При этом его заряжают до рабочей величины емкости, затем закорачивают вывода металлической отверткой, имеющей изолированную ручку. О работоспособности судят по силе разряда.

Проверяя элемент, предназначенный для функционирования в сети от 220 В, нельзя забывать о мерах безопасности. Емкость нужно разряжать посредством резистора 10 Ком

Сразу после зарядки и через некоторое время замеряют напряжение на ножках детали. Важно, чтобы заряд сохранялся долго. После нужна разрядка конденсатора посредством резистора, через который он заряжался.

Измерение емкости конденсатора

Емкость — одна из ключевых характеристик конденсатора. Ее необходимо измерять для уверенности, что элемент накапливает, и хорошо удерживает заряд.

Чтобы убедиться в работоспособности элемента, необходимо измерить этот параметр и сопоставить его с тем, который обозначен на корпусе. Перед тем как проверить любой конденсатор на работоспособность, нужно учесть некоторую специфику этой процедуры.

Пытаясь выполнить измерение посредством щупов, можно не получить желаемых результатов. Единственное, что удастся сделать — определить, рабочий этот конденсатор или нет. Для этого выбирают режим прозвона и касаются щупами ножек.

Услышав писк, меняют местами щупы, звук должен повториться. Слышно его при емкости 0,1 мкФ. Чем больше это значение, тем звук дольше.

Если нужны точные результаты, лучший выход в этой ситуации — использование модели, имеющей специальные контактные площадки и возможность регулировки вилки для определения емкости элемента.

Контактные площадки — это специальные разъемы, обозначенные буквосочетанием «-СХ+». Минус и плюс перед буквенными символами — это полярность подключения

Прибор переключают на номинальное значение, указанное на корпусе конденсатора. Вставляют последний в посадочные «гнезда», предварительно разрядив его при помощи металлического предмета.

На экране должна высветиться величина емкости, равная примерно номинальной. Когда этого не происходит, делают вывод о том, что элемент поврежден. Нужно проследить за тем, чтобы в приборе находилась новая батарейка. Это обеспечит более точные показания.

Измерение напряжения мультиметром

Узнать о работоспособности конденсатора можно и путем замера напряжения и сравнения полученного результата с номиналом. Чтобы выполнить проверку, потребуется источник питания. Напряжение у него должно быть несколько меньшим, чем у проверяемого элемента.

Так, если у конденсатора 25 В, то достаточно 9-вольтового источника. Щупы подключают к ножкам, учитывая полярность, и выжидают некоторое время — буквально несколько секунд.

Если на конденсатор имеется гарантия, она обозначает, что за какое-то время его параметры не выйдут за пределы, превышающие 20% от номинальных значений

Бывает, время истекло, а просроченный элемент все еще работоспособный, хотя характеристики у него другие. В этом случае его необходимо постоянно контролировать.

Мультиметр настраивают на режим измерения напряжения и выполняют проверку. Если почти сразу же на дисплее появится значение идентичное номиналу, элемент пригоден к дальнейшему использованию. В противном случае конденсатор придется заменить.

Проверка конденсаторов без выпаивания

Конденсаторы можно и не выпаивать из платы для проверки. Единственное условие — плата должна быть обесточена. После обесточивания необходимо немного подождать, пока конденсаторы разрядятся.

Следует понимать, что получить 100% результат без выпаивания элемента из платы не получится. Детали, находящиеся рядом, мешают полноценной проверке. Можно удостовериться только в отсутствии пробоя.

С целью проверить на исправность конденсатор, не выпаивая его, к выводам конденсатора просто прикасаются щупами, чтобы измерить сопротивление. Исходя из вида конденсатора, будет отличаться и измерение этого параметра.

Рекомендации по проверке конденсаторов

Есть у конденсаторных деталей одно неприятное свойство — при пайке после воздействия тепла они восстанавливаются очень редко. В то же время качественно проверить элемент можно только выпаяв его со схемы. Иначе его будут шунтировать элементы, находящиеся рядом. По этой причине следует учитывать некоторые нюансы.

После того как проверенный конденсатор будет впаян в схему, нужно ввести в работу ремонтируемое устройство. Это даст возможность проследить за его работой. Если его работоспособность восстановилась или оно стало функционировать лучше, проверенный элемент меняют на новый.

Комбинированный прибор мультиметр, особенно оснащенный режимом проверки емкости, дает возможность точно, быстро, а главное достоверно проверить конденсаторные детали

Чтобы сократить проверку, выпаивают не два, а только один из выводов конденсатора. Необходимо знать, что для большинства электролитических элементов этот вариант не подходит, что связано с конструктивными особенностями корпуса.

Если схема отличается сложностью и включает большое число конденсаторов, неисправность определяют посредством измерения напряжения на них. Если параметр не соответствует требованиям, элемент, вызывающий подозрения, необходимо изъять и выполнить проверку.

При обнаружении сбоев в схеме нужно проверить дату выпуска конденсатора. Усыхание элемента в течение 5 лет работы в среднем составляет около 65%. Такую деталь, даже если она в рабочем состоянии, лучше заменить. В противном случае она будет искажать работу схемы.

Для мультиметров нового поколения максимумом для измерения является емкость до 200 мкФ. При превышении этого значения контрольный прибор может выйти со строя, хотя он и оснащен предохранителем. В аппаратуре последнего поколения присутствуют smd электроконденсаторы. Они отличаются очень маленькими размерами.

Среди конденсаторов в корпусах smd самой популярной является серия FK. Они обладают емкостью 1500 мФ максимум, предельным рабочим напряжением 100 В. Имеют автомобильный сертификат AEC-Q200

Отпаять один из выводов такого элемента очень сложно. Здесь лучше приподнять один вывод после отпаивания, изолировав его от остальной схемы, или отсоединить оба вывода.

О том, как мультиметром проверять напряжение в розетке, узнаете из следующей статьи, прочитать которую мы очень советуем.

Выводы и полезное видео по теме

Видео #1. Подробно о проверке конденсатора посредством мультиметра:

Видео #2. Ревизия конденсатора на плате:

Хотя это и не узкоспециализированный прибор и пределы его ограничены, для обследования и ремонта большого числа популярных радиоэлектронных устройств, этого достаточно.

Пишите, пожалуйста, комментарии в расположенном ниже блоке, публикуйте фото и задавайте вопросы по теме статьи. Расскажите о том, как проверяли конденсаторы на работоспособность. Делитесь полезными сведениями, которые пригодятся посетителям сайта.

Werri

Как измерить емкость и целостность цепи с помощью Fluke 179

от Ajay Kumar

Fluke 179 True RMS Цифровой мультиметр — это один из трех мультиметров серии 17x от Fluke.

Калибровка мультиметра Fluke

Пожалуйста, включите JavaScript

Калибровка мультиметра Fluke

Другими мультиметрами с истинным среднеквадратичным значением в этой серии являются Fluke 175 и Fluke 177. Но чаще всего среди них используется Fluke 179.

Fluke 179 считается цифровым мультиметром с истинно среднеквадратичным значением, поскольку он отображает точные показания по ряду сложных математических алгоритмов. Это наиболее востребованный продукт профессиональных техников.

Этот мультиметр может измерять как активные, так и пассивные электрические свойства в цепи. В этой статье мы измерим емкость конденсатора, температуру и прозвонку мультиметром Fluke 179.

Вы можете ознакомиться с нашим пошаговым руководством по измерению тока, напряжения и сопротивления с помощью Fluke 179.

Как измерить емкость с помощью Fluke 179?

Процесс измерения емкости конденсатора в цепи с флюсом 179Мультиметр истинного среднеквадратичного значения аналогичен измерению емкости с помощью цифрового мультиметра

Хотя есть вероятность, что есть некоторые дополнительные шаги из-за разницы в компании и функции мультиметра.

Шаги для измерения емкости с помощью Fluke 179 :

Шаги для измерения емкости следующие:

  • В гнездо VΩ вставить красный провод.
  • Сначала подключите черный провод к цепи, а затем красный провод.
  • Установите базовую точность до 0,9% + 1 цифра.
  • Нажмите эту кнопку для измерения емкости.
  • Обратите внимание на отображение измерений на экране. При записи показаний сначала удаляется из цепи красный провод, а затем черный провод.
  • Как измерять температуру с помощью Fluke 179?

    Шаги для измерения температуры :

    Шаги для измерения температуры следующие:

    1. Наведите циферблат на
    2. Вставьте черный провод внутрь ком-разъема.
    3. В гнездо VΩ вставьте красный провод.
    4. Сначала подключите черный провод к цепи, а затем красный провод.
    5. Используйте этот режим для увеличения разрешения при малых напряжениях.
    6. Установите максимальное разрешение 0,1 мВ.
    7. Нажмите эту кнопку для измерения температуры по Фаренгейту и Цельсию.
    8. Обратите внимание на отображение измерений на экране. При записи показаний сначала удаляется из цепи красный провод, а затем черный провод.

    Как проверить непрерывность с помощью Fluke 179?

    Шаги для проверки непрерывности :

    Шаги для проверки целостности следующие:

    1. Наведите циферблат на
    2. Вставьте черный провод внутрь разъема com.
    3. В гнездо VΩ вставьте красный провод.
    4. Сначала подключите черный провод к цепи, а затем красный провод.
    5. Когда измеритель измеряет сопротивление менее 25 Ом, прибор издает звуковой сигнал.
    6. Использует звуковой сигнал для индикации коротких замыканий.
    7. Счетчик обнаруживает прерывистое и короткое замыкание длительностью всего 250 мкс.
    8. Нажмите эту кнопку для проверки диодов.

    Вы можете получить дополнительную помощь по ссылке ниже:

    Чтобы узнать о функциях в демоверсии, нажмите на кнопки изображения. Для каждой кнопки, нажатой на изображении, вы получите контент в правой части изображения.

    Демонстрация цифрового мультиметра Fluke 179

    Надеюсь, это руководство поможет вам. Если у вас есть какие-либо сомнения или вопросы, не стесняйтесь спрашивать.

    Категории Fluke

    Почему на мультиметре есть показания емкости конденсатора, но цепь разомкнута?

    \$\начало группы\$

    У меня есть конденсатор CBB61 от вентилятора, который, как мне кажется, может быть неисправен (двигатель вентилятора не вращается), но мой мультиметр показывает 0,966 мкФ. (Конденсатор рассчитан на 1 мкФ ±5.)

    Это говорит мне о том, что конденсатор в порядке, но я также получаю показания сопротивления разомкнутой цепи на нем. Могут ли оба чтения быть верными одновременно?

    • конденсатор
    • мультиметр

    \$\конечная группа\$

    2

    \$\начало группы\$

    Схематические символы дают хорошую подсказку.

    имитация этой цепи – Схема создана с помощью CircuitLab

    • Символ резистора обозначает длину провода сопротивления. Ток будет течь по проводу, когда на него подается напряжение.
    • Символ катушки индуктивности представляет собой катушку с проводом. Когда на его клеммы подается напряжение, ток возрастает от нуля до максимального значения, определяемого сопротивлением катушки.
    • Символ конденсатора представляет собой две металлические пластины, разделенные изолятором (воздухом или чем-то другим).
      Если к его клеммам приложено напряжение, ток будет течь до тех пор, пока устройство не зарядится до приложенного напряжения. Тогда ток не пойдет.

    Если вы используете омметр мультиметра на конденсаторе, вы можете увидеть мерцание во время его зарядки, а затем получить индикацию обрыва цепи. Если вы теперь переключитесь на напряжение постоянного тока, вы сможете измерить напряжение конденсатора, и это покажет вам испытательное напряжение, приложенное к тесту сопротивления.

    \$\конечная группа\$

    \$\начало группы\$

    Конденсатор разомкнут на постоянном токе.

    Если вы посмотрите на формулу для импеданса конденсатора, и если вы подставите нулевую частоту, потому что это означает постоянный ток, вы получите нулевой знаменатель, что означает, что конденсатор имеет бесконечное полное сопротивление, поэтому у него нет полного сопротивления на постоянном токе.

    При заряде до определенного напряжения мультиметр проверяет сопротивление, тока нет, мультиметр показывает обрыв цепи.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *