Site Loader

Содержание

Как проверить конденсатор на работоспособность мультиметром

Не знаете, как проверить конденсатор на работоспособность мультиметром? Технология проверки этого элемента схемы довольно простая, главное – уметь пользоваться тестером и соблюдать несколько простых рекомендаций. Итак, далее мы расскажем с помощью каких приборов легче всего определить исправность конденсатора и как это правильно сделать.

Подготовительные работы

Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.

Способ №1 – Мультиметр в помощь

Если конденсатор не работает, то лучше всего проверить его работоспособность мультиметром либо цешкой. Этот прибор позволяет определить емкость «кондера», наличие обрыва внутри бочонка либо возникновение короткого замыкания в цепи. О том, как пользоваться мультиметром мы уже Вам рассказывали, поэтому изначально рекомендуем ознакомиться с этой статьей. Если Вы умеете работать тестером, то дела обстоят гораздо проще.

Первым делом Вы должны определить, какой конденсатор находится в схеме: полярный (электролитический) или неполярный. Дело в том, что при проверке полярного изделия нужно соблюдать полярность: плюсовой щуп должен быть прижат к плюсовой ножке, а минусовой, соответственно, к минусу. В случае с неполярным вариантом детали соблюдать полярность не нужно, но и проверять его придется по другой технологии (об этом мы расскажем ниже). После того, как Вы определитесь с типом элемента, можно переходить к проверочным работам, которые мы сейчас рассмотрим по очереди.

Измеряем сопротивление

Итак, сначала нужно проверить сопротивление конденсатора мультиметром. Для этого отпаиваем бочонок со схемы и с помощью пинцета аккуратно перемещаем его на рабочую поверхность, к примеру, свободный стол.

После этого переключаем тестер в режим прозвонки (измерение сопротивления) и дотрагиваемся щупами до выводов, соблюдая полярность.

Обращаем Ваше внимание на то, что если Вы перепутаете минус с плюсом, проверка работоспособности может закончиться неудачно, т.к. конденсатор сразу же выйдет из строя. Чтобы такого не произошло, запомните следующий момент – производители всегда отмечают минусовой контакт галочкой!

После того, как Вы дотронетесь щупами до ножек, на дисплее цифрового мультиметра должно появиться первое значение, которое моментально начнет расти. Это связано с тем, что тестер при контакте начнет заряжать конденсатор.

Через некоторое время на дисплее появиться максимальное значение – «1», что говорит об исправности детали.

Если же Вы только начали проверять конденсатор мультиметром, и у Вас появилась «1», значит внутри бочонка произошел обрыв и он неисправен. В то же время появление нуля на табло свидетельствует о том, что внутри кондера произошло короткое замыкание.

Если для проверки сопротивления Вы решите использовать аналоговый мультиметр (стрелочный), то определить работоспособность элемента будет еще проще, наблюдая за ходом стрелки. Как и в предыдущем случае, минимальное и максимальное значение будет говорить о поломке детали, а плавное повышение сопротивления будет означать пригодность полярного конденсатора.

Чтобы самостоятельно проверить целостность неполярного кондера в домашних условиях, достаточно без соблюдения полярности прикоснуться щупами тестера к ножкам, выставив диапазон измерений на отметку 2 МОм. На дисплее должно появиться значение больше двойки. Если это не так, конденсатор не рабочий и его нужно заменить.

Следует также отметить, что предоставленный выше способ проверки подойдет только для изделий, емкостью более 0,25 мкФ. Если же номинал элемента схемы меньше, нужно сначала убедиться, что мультиметр способен работать в таком режиме, ну или купить специальный тестер – LC-метр.

Измеряем емкость

Следующий способ проверки работоспособности изделия – на пробой, измерив емкостные характеристики кондера и сравнив их с номинальным значением (указано производителем на внешней оболочке, что наглядно видно на фото).

Самостоятельно измерить емкость конденсатора мультиметром совсем не сложно. Необходимо всего лишь перевести переключатель в диапазон измерений, опираясь на номинал и, если в тестере есть специальные посадочные гнезда, вставить в них деталь, как показано на фото ниже.

Если же такой функции в тестере нет, можно проверить емкость с помощью щупов, аналогично предыдущему методу. При подключении щупов на дисплее должна высветиться емкость, близка по значению к номинальным характеристикам. Если это не так, значит, конденсатор пробит и нужно заменить деталь.

Измеряем напряжение

Еще один способ, позволяющий узнать, рабочий конденсатор или нет – проверить его напряжение вольтметром (ну или «мультиком») и сравнить результат с номиналом. Для проверки Вам понадобится источник питания с немного меньшим напряжением, к примеру, для 25-вольтного кондера достаточно источника напряжения в 9 Вольт. Соблюдая полярность, подключите щупы к ножкам и подождите несколько секунд, чего вполне хватит для зарядки.

После этого переведите тестер в режим измерения напряжения и выполните проверку работоспособности. В самом начале замера на дисплее должно появиться значение, примерно равное номиналу. Если это не так, конденсатор неисправен.

Обращаем Ваше внимание на то, что при подключении вольтметра бочонок будет постепенно терять заряд, поэтому достоверное напряжением можно увидеть только в самом начале замеров!

Тут же хотелось бы сказать пару слов о том, как проверить конденсатор большой емкости простым способом. Сначала Вы должны полностью зарядить элемент в течение нескольких секунд, после чего замкнуть контакты обычной отверткой с изолированной ручкой. Если бочонок рабочий, должна возникнуть яркая искра. Если искры нет либо она очень тусклая, скорее всего, конденсатор не работает, а точнее – не держит заряд.

Какой-либо этап проверки был Вам непонятен? Тогда просмотрите технологию проверки работоспособности конденсатора мультиметром на данном видео уроке:

Как проверить целостность “кондера”

Способ № 2 – Обойдемся без приборов

Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, как сделать контрольную лампу электрика, мы также рассказывали.

Что еще важно знать?

Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).

Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто. Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора. Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.

Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.

Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при ремонте микроволоновки либо стиральной машины своими руками, т.к. у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах. Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!

Также читают:

Как проверить исправность конденсатора, его емкость и сопротивление



Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.
По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости — причина которая со временем постигает почти все электролитические конденсаторы.

Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию.

Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.

Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.

Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.

Проверка конденсаторов

Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.
Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку — лучше конденсатор выпаять полностью.


Проверка конденсатора мультиметром

С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0.25 микрофарад.

Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус — это минусовой вывод конденсатора.

И так выставляем тестер в режим или прозвонки или сопротивления. Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение.
Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет — конденсатор заряжается.
Скорость заряда будет напрямую зависеть от емкости конденсатора. Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение «1» или по другому говоря «бесконечность» это уже говорит о том что конденсатор не пробит и не замкнут.

Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение «1» то это говорит об внутреннем обрыве — конденсатор не исправен.
Бывает и другое, значение «000» или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.

Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора  — сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.


Проверка конденсаторов стрелочным тестером
Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.

Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора.
Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.

Но если емкость конденсатора очень мала, «зарядки» можно и не заметить — практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места. Для конденсатора же более 500 микрофарад — такая картина практически сразу же будет говорить о внутреннем обрыве.
Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым. Такой способ даст возможность более уверено ответить на вопрос — рабочий ли конденсатор?

Проверка переменным напряжением

Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.
Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора.
Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.
Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора

Проверяем емкость конденсатора


Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.
Все электролитические конденсаторы со временем (в процессе работы) «подсыхают» и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения.

Проверяют емкость мультиметром в режиме «Cx» выбирают примерную емкость с максимальным пределом.
Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов.
Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая «крона».

Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.

Но если у вас под рукой нет ни мультиметра ни «микрофарадметра» можно достаточно приблизительно замерить емкость стрелочным омметром.
Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам — «засекаем» время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.

Таким же способом можно определить ток утечки конденсатора. Для этого конденсатор щупами заряжают до отклонения стрелки назад.
С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора. В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся «заряд» и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.

«Зарядка напряжением».
Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.
И так суть способа заключается в том что конденсатор заряжают  от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды. После чего «зарядку» отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.

Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).

Как проверить конденсатор без приборов?
В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой.
У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.

Как проверить конденсатор мультиметром. Проверка конденсатора мультиметром

Приветствую всех друзья и читатели сайта «Электрик в доме». Думаю всем известно, что такое конденсатор. Если кто не видел данный элемент микросхем, то точно слушал о нем. Самой распространенной причиной неисправности в радиоэлектронике является повреждение именно этого элемента. Современная бытовая техника «начинена» электроникой и поломка такой крохотной детали приводит к потере функциональности всего механизма в целом.

Чтобы определить какой именно конденсатор в схеме вышел из строя их необходимо проверить на работоспособность. И желательно это делать с помощью электронный приборов, та как визуальный осмотр не дает заключения о неисправности.

Делать мы это будем с помощью недорогого и функционального прибора — мультиметра. В прошлой статье я писал о том, как с его помощью можно выполнить проверку сопротивления, а сегодня рассмотрим методику, как проверить конденсатор мультиметром.

Написать данную статью меня попросил один из подписчиков. Я как всегда постараюсь изложить материал доступным языком, но если останутся вопросы, не стесняйтесь задавать их в комментариях.

Проверка конденсатора мультиметром

Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.

Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

  1. 1) полярные;
  2. 2) неполярные.

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.

Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.

Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).

Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

Как проверить конденсатор с помощью приборов

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.

Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.

Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».

При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.

Проверяем конденсатор мультиметром в режиме омметра

В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.

Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.

Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.

Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).

Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

На дисплее прибора наблюдаем как начинает изменятся сопротивление: 

По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.

Как проверить емкость конденсатора мультиметром

Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.

Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?

Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).

Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».

Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.

Как проверить конденсатор тестером (стрелочным прибором)

Друзья завалялся у меня в гараже измерительный прибор времен СССР — Ц4313. Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.

Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.

Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера. Если конденсатор исправный стрелка сначала отклонится, а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.

Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.

На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать комментарии. Также особая благодарность за РЕПОСТ в соц.сетях.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Как проверить конденсатор мультиметром на работоспособность

По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы. В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми.

Типичные неисправности конденсаторов:

  • КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
  • внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
  • частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
  • слишком низкое сопротивление утечки (конденсатор «не держит» заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
  • слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается «электролитов» и проявляется только при работе с высокочастотными или импульсными токами.

Существует масса способов как проверить конденсатор мультиметром на работоспособность. Пойдем по-порядку.

Содержание статьи:

Внешний осмотр

Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Конденсатор подлежит замене, если визуальный осмотр показал наличие:

  • даже незначительного вздутия, следов подтеков;
  • механических повреждений, вмятин;
  • трещин, сколов (актуально для керамики).

Конденсаторы, имеющие любой из указанных признаков, эксплуатировать НЕЛЬЗЯ.

Измерение емкости конденсатора мультиметром и специальными приборами

Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L.

С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.

Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.

К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.

Проверка на короткое замыкание

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.

В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).

Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Если нет мультиметра (и даже старой советской «цешки» нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.

Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).

Если же светодиод горит постоянно, конденсатор 100% неисправен.

Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость. Следовательно, проверку на обрыв можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.).

Все что нужно сделать — просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор. Полярность конденсатора не имеет значения:

Способ позволяет одним выстрелом убить двух зайцев: обнаружить КЗ, если оно есть, и убедиться в том, что конденсатор имеет ненулевую емкость (не находится в обрыве).

При исправном конденсаторе лампочка будет гореть в полнакала. Чем меньше емкость — тем тусклее будет гореть лампочка.

Если лампа горит в полную мощность (точно также как и без конденсатора), значит конденсатор «пробит» и подлежит замене. Если лампочка совсем не светится — внутри конденсатора обрыв.

Способ №3 очень наглядно продемонстрирован в этом видео:

Проверка на отсутствие внутреннего обрыва

Обрыв — распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник.

Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса 🙂

Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.

Как это сделать? Есть три способа.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.

Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке. Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом — от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать.

Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:

Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.

Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.

Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм — для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты.

С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).

Вот видео для наглядности:

Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.

Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.

Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.

Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости — от малюсеньких до самых больших, а также любого типа — полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д.

Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

Определение рабочего напряжения конденсатора

Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.

Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть «на глазок» рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.

Способ №1: определение рабочего напряжения через напряжения пробоя

Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.

Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.

Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).

За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое… Вы можете иметь свое мнение на этот счет.

Внимание! Обязательно соблюдайте все меры предосторожности! При проверке конденсатора на пробой необходимо использовать защищенный стенд, а также индивидуальные средства защиты зрения.

Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:

А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).

Способ №2: нахождение рабочего напряжения конденсатора через ток утечки

Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.

Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:

и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.

У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):

Напряжение на
конденсаторе, В
Ток утечки,
мкА
Прирост тока,
мкА
101.11.1
202.21.1
303.31.1
404.51.2
505.81.3
607.21.4
708.91.7
8011.02.1
9013.42.4
10016.02.6

Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.

Если из полученных значений построить график, то он будет иметь следующий вид:

Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:

Стандартный ряд номинальных рабочих напряжений конденсаторов, В
6.3101620253240506380100125160200250315350400450500

то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.

Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.

Как измерить ток утечки конденсатора?

Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.

Также можно вычислить ток утечки конденсатора косвенным методом — через падение напряжения на заранее известном сопротивлении:

При проверке полярных конденсаторов на утечку необходимо соблюдать полярность их подключения. В противном случае будут получены некорректные результаты.

При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.

Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:

Определение емкости неизвестного конденсатора

Способ №1: измерение емкости специальными приборами

Самый просто способ — измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).

Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!

Способ №2: измерение емкости двух последовательно включенных конденсаторов

Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров — это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?

На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.

Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.

Подставляем эти цифры в формулу и получаем:

Способ №3: измерение емкости через постоянную времени цепи

Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени — это время, за которое напряжение на конденсаторе уменьшится в е раз (где е — это основание натурального логарифма, приблизительно равное 2,718).

Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).

Вот какой-то чел очень хорошо все рассказал на видео:

Другие способы измерения емкости

Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.

Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.

Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.

Недостаток схемы — необходим генератор переменного напряжения, плюс требуется предварительная калиброка.

Можно ли проверить конденсатор мультиметром не выпаивая его с платы?

Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.

Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.

Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.

Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.

Вот пример, когда все пять конденсаторов покажут ложное КЗ:

Таким образом, проверка конденсаторов мультиметром без выпаивания вообще невозможна.

В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая «прозвонка» конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен.Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.

Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.

Вот очень правильный и понятный видос на эту тему:

Примеры выше (а также доходчивое видео) не оставляют никаких сомнений, что проверка конденсаторов не выпаивая из схемы — это фантастика.

Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.

Как проверить конденсатор мультиметром

Мультиметр – это  электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.
Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Измерение в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Модели мультиметров на Aliexpress

 

Измерение емкости конденсатора

Измерение ёмкости

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Важно! Напряжение проверяется в самом начале измерения. Это связано с тем, что при подключении конденсатор начинает терять заряд.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Еще одно видео:

Как проверить конденсатор мультиметром на работоспособность, измерение емкости

Конденсатор — электронный элемент, относящийся к категории пассивных. Его основная способность — медленно (с электротехнической точки зрения, в течение нескольких секунд) накапливать заряд, и при необходимости мгновенно отдавать. При отдаче происходит это разряд. В отличие от аккумулятора конденсатор отдает всю энергию импульсом, а не постепенно, после чего снова начинается цикл зарядки.

Основная характеристика этого элемента — ёмкость. Она измеряется в пФ и мкФ — пико- и микрофарадах. Кроме того, каждый конденсатор имеет определенные характеристики рабочего напряжения и напряжения пробоя, при котором он выходит из строя. Они либо указываются на корпусе числами, либо их приходится определять по каталогам, ориентируясь по типоразмеру и цветовой маркировке детали.

В силу своих конструктивных особенностей конденсаторы относятся к категории элементов, которые наиболее часто выходят из строя на электронной плате. Поэтому любой ремонт устройства, содержащего электронику (от микроволновки до системной платы ПК) начинается с проверки этих элементов на работоспособность — визуально, с помощью мультиметра или других приборов.

Самый простой способ

Самым простым и в то же время предварительным способом проверить этот элемент, не выпаивая его из схемы, является визуальный осмотр. Отломившаяся ножка автоматически превращает деталь в нерабочую и подлежащую замене.

При наличии на плате электролитических конденсаторов — они легко опознаются по цилиндрической форме с крестообразной риской на шляпке, а также фольгированному покрытию — в первую очередь надо проверить их.

Для данной группы элементов характерно «вздутие». Это микровзрыв находящегося внутри электролита, который может произойти, например, из-за скачка рабочего напряжения.

Если «цилиндрик» вздут, лопнул по риске на верхушке, на плате обнаруживаются потеки электролита, то его безоговорочно меняют. Зачастую после этого прибор начинает нормально работать.

Если этого не происходит — рекомендуется проверить остальные конденсаторы и другие детали.

В профессиональных ремонтных или наладочных организациях для этого используют профессиональные же приборы — LC-тестеры, или тестеры емкости. Они достаточно дороги, а потому в «хозяйстве» обычного электромонтера встречаются редко.

Но при ремонте большинства плат бытовых устройств в них и нет необходимости — провести проверку емкости конденсатора можно и обычным мультиметром.

Применение тестера для проверки

Настало время ответить на вопрос, как проверить конденсатор мультиметром. В первую очередь нужно оговорить сразу: мультиметром можно проверять только детали емкостью не менее 0,25 мкФ и не более 200 мкФ.

Эти ограничения базируются на принципах их работы, и вообще принципе самой проверки — для малоемкостных не хватит чувствительности прибора, а мощные, например, высоковольтный конденсатор, способны повредить как прибор, так и самого испытателя.

Дело в том, что любой конденсатор перед началом измерения емкости или проверки на короткое замыкание необходимо разрядить. Для этого оба его вывода замыкаются между собой любым проводником — куском провода, отверткой, пинцетом и так далее.

При этом в случае со слабым элементом происходит негромкий хлопок и вспышка. Но мощный, к примеру, пусковой конденсатор (особенно советского производства, для пуска люминесцентных ламп) даст вспышку, сравнимую по мощности со вспышкой электросварки. Металлический проводник даже может оказаться оплавлен.

Поэтому необходимо использовать либо отвертку или пассатижи с изолированной рукояткой, либо электротехнические резиновые перчатки. В противно случае можно получить электрический удар.

Присутствует разъем для измерения емкости

Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:

  • выпаяйте деталь из платы;
  • зачистите ножки от окислов и остатков припоя;
  • установите на приборе режим измерения емкости с пределом измерения, близким или равным к номиналу конденсатора, который на нем указан;
  • установите элемент в специальное парное гнездо на мультиметре, либо коснитесь ножками металлических пластин, его заменяющих.

Чтобы проверить электролитический конденсатор, необходимо соблюдать полярность — плюс к плюсу, минус к минусу. Если на гнездах прибора обозначены плюс и минус, то устанавливать его нужно только так. Если не обозначены — не имеет значения.

Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности.

Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.

После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться.

Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.

А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.

Нет разъема для измерения емкости

Прозвонить полярный или неполярный конденсатор мультиметром, не имеющим специальной функции, можно в режиме максимального сопротивления, при котором происходит его зарядка постоянным током.

Этот способ проверки подходит даже для таких элементов, как smd конденсатор (для поверхностного монтажа) или пленочный конденсатор. Проверка полярного элемента отличается только необходимостью соблюдать полярность.

Алгоритм следующий:

  • разрядить элемент, закоротив его ножки;
  • выставить максимальный предел измерения сопротивления — вплоть до мегаом, если позволяет прибор;
  • подключить черный щуп мультиметра к гнезду COM — это ноль или, в нашем случае, минус, а красный щуп — в гнездо для измерения напряжения и сопротивления;
  • коснуться черным щупом минуса детали, а красным — плюса;
  • наблюдать за показаниями прибора.

Обратите внимание, что электролитический тип всегда полярен, все остальные — неполярные.

Что происходить в этом случае? Мультиметр начинает заряжать деталь постоянным током. Во время зарядки его сопротивление увеличивается.

Быстрый рост показаний сопротивления вплоть до значения «1» (бесконечно большое) означает, что конденсатор потенциально исправен, хотя таким способом и невозможно определить его фактическую емкость.

Возможная ошибка! Во время такой проверки нельзя касаться щупов или ножек элемента пальцами. Вы зашунтируете его сопротивлением собственного тела, и тестер покажет ваше собственное сопротивление. Рекомендуется применять щупы-крокодилы, если таковые есть.

Что означают результаты проверки

При проверке конденсатора мультиметром методом максимального сопротивления можно получить три варианта результатов.

Сопротивление росло быстро и достигло «1» — бесконечности. Означает, что элемент исправен.

Сопротивление очень мало либо вовсе отсутствует. Это означает пробой обкладок конденсатора между собой. Установка на плату приведет к короткому замыканию.

Сопротивление растет до значительного порога, но не до «1». Это означает наличие утечки по току. Конденсатор «условно работоспособен», его использование в приборе приведет к искажениям сигнала, помехам и другим негативным последствиям.

Кроме того, в последнем случае нет гарантии, что при включении «условно рабочего» элемента в схему не произойдет окончательного пробоя.

Проверка на вольтаж

Конденсатор должен выдавать определенное напряжение — оно указано на корпусе или в ТТХ по каталогу. Перед использованием в работе можно проверить его фактическую способность выдавать положенный разряд.

Для этого конденсатор заряжается напряжением ниже номинального в течение нескольких секунд. Для высоковольтного, на 600 В, подойдет напряжение в 400 В, для низковольтного на 25 В — 9 В, и тому подобное.

После этого мультиметр переводится на измерение постоянного (!) напряжения, и подключается к испытываемой детали. Начальное значение на экране и есть значение разряда.

Обратите внимание, что цифры на экране будут очень быстро уменьшаться — конденсатор разряжается.

Если начальное значение на дисплее мультиметра меньше номинала — элемент не держит заряда. Учтите, что в любом случае разряжается он быстро.

Как проверить электролитический конденсатор большой емкости

Подготовительные работы

Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.

Способ №1 – Мультиметр в помощь

Если конденсатор не работает, то лучше всего проверить его работоспособность мультиметром либо цешкой. Этот прибор позволяет определить емкость «кондера», наличие обрыва внутри бочонка либо возникновение короткого замыкания в цепи. О том, как пользоваться мультиметром мы уже Вам рассказывали, поэтому изначально рекомендуем ознакомиться с этой статьей. Если Вы умеете работать тестером, то дела обстоят гораздо проще.

Первым делом Вы должны определить, какой конденсатор находится в схеме: полярный (электролитический) или неполярный. Дело в том, что при проверке полярного изделия нужно соблюдать полярность: плюсовой щуп должен быть прижат к плюсовой ножке, а минусовой, соответственно, к минусу. В случае с неполярным вариантом детали соблюдать полярность не нужно, но и проверять его придется по другой технологии (об этом мы расскажем ниже). После того, как Вы определитесь с типом элемента, можно переходить к проверочным работам, которые мы сейчас рассмотрим по очереди.

Измеряем сопротивление

Итак, сначала нужно проверить сопротивление конденсатора мультиметром. Для этого отпаиваем бочонок со схемы и с помощью пинцета аккуратно перемещаем его на рабочую поверхность, к примеру, свободный стол.

После этого переключаем тестер в режим прозвонки (измерение сопротивления) и дотрагиваемся щупами до выводов, соблюдая полярность.

Обращаем Ваше внимание на то, что если Вы перепутаете минус с плюсом, проверка работоспособности может закончиться неудачно, т.к. конденсатор сразу же выйдет из строя. Чтобы такого не произошло, запомните следующий момент – производители всегда отмечают минусовой контакт галочкой!

После того, как Вы дотронетесь щупами до ножек, на дисплее цифрового мультиметра должно появиться первое значение, которое моментально начнет расти. Это связано с тем, что тестер при контакте начнет заряжать конденсатор.

Через некоторое время на дисплее появиться максимальное значение – «1», что говорит об исправности детали.

Если же Вы только начали проверять конденсатор мультиметром, и у Вас появилась «1», значит внутри бочонка произошел обрыв и он неисправен. В то же время появление нуля на табло свидетельствует о том, что внутри кондера произошло короткое замыкание.

Если для проверки сопротивления Вы решите использовать аналоговый мультиметр (стрелочный), то определить работоспособность элемента будет еще проще, наблюдая за ходом стрелки. Как и в предыдущем случае, минимальное и максимальное значение будет говорить о поломке детали, а плавное повышение сопротивления будет означать пригодность полярного конденсатора.

Чтобы самостоятельно проверить целостность неполярного кондера в домашних условиях, достаточно без соблюдения полярности прикоснуться щупами тестера к ножкам, выставив диапазон измерений на отметку 2 МОм. На дисплее должно появиться значение больше двойки. Если это не так, конденсатор не рабочий и его нужно заменить.

Следует также отметить, что предоставленный выше способ проверки подойдет только для изделий, емкостью более 0,25 мкФ. Если же номинал элемента схемы меньше, нужно сначала убедиться, что мультиметр способен работать в таком режиме, ну или купить специальный тестер – LC-метр.

Измеряем емкость

Следующий способ проверки работоспособности изделия – на пробой, измерив емкостные характеристики кондера и сравнив их с номинальным значением (указано производителем на внешней оболочке, что наглядно видно на фото).

Самостоятельно измерить емкость конденсатора мультиметром совсем не сложно. Необходимо всего лишь перевести переключатель в диапазон измерений, опираясь на номинал и, если в тестере есть специальные посадочные гнезда, вставить в них деталь, как показано на фото ниже.

Если же такой функции в тестере нет, можно проверить емкость с помощью щупов, аналогично предыдущему методу. При подключении щупов на дисплее должна высветиться емкость, близка по значению к номинальным характеристикам. Если это не так, значит, конденсатор пробит и нужно заменить деталь.

Измеряем напряжение

Еще один способ, позволяющий узнать, рабочий конденсатор или нет – проверить его напряжение вольтметром (ну или «мультиком») и сравнить результат с номиналом. Для проверки Вам понадобится источник питания с немного меньшим напряжением, к примеру, для 25-вольтного кондера достаточно источника напряжения в 9 Вольт. Соблюдая полярность, подключите щупы к ножкам и подождите несколько секунд, чего вполне хватит для зарядки.

После этого переведите тестер в режим измерения напряжения и выполните проверку работоспособности. В самом начале замера на дисплее должно появиться значение, примерно равное номиналу. Если это не так, конденсатор неисправен.

Обращаем Ваше внимание на то, что при подключении вольтметра бочонок будет постепенно терять заряд, поэтому достоверное напряжением можно увидеть только в самом начале замеров!

Тут же хотелось бы сказать пару слов о том, как проверить конденсатор большой емкости простым способом. Сначала Вы должны полностью зарядить элемент в течение нескольких секунд, после чего замкнуть контакты обычной отверткой с изолированной ручкой. Если бочонок рабочий, должна возникнуть яркая искра. Если искры нет либо она очень тусклая, скорее всего, конденсатор не работает, а точнее — не держит заряд.

Какой-либо этап проверки был Вам непонятен? Тогда просмотрите технологию проверки работоспособности конденсатора мультиметром на данном видео уроке:

Способ № 2 – Обойдемся без приборов

Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, как сделать контрольную лампу электрика, мы также рассказывали.

Что еще важно знать?

Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).

Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто. Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора. Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.

Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.

Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при ремонте микроволоновки либо стиральной машины своими руками, т.к. у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах. Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!

Также читают:

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Конденсаторы широко применяются в электротехнике в качестве элементов, сглаживающих пульсации переменного тока, фильтров частоты, или накопителей энергии. Кроме того, эти радиодетали можно применять в качестве гальванической развязки. Технологий изготовление множество, принцип общий: между двумя обкладками кроме диэлектрика размещается особое химическое вещество, определяющее характеристики. Для электроустановок постоянного тока, применяются электролиты. Это недорогая технология, которая имеет серьезный недостаток: жидкость может закипеть от перегрузки или высокой температуры, и тогда конденсатор буквально взрывается. К счастью, такой «экстрим» случается редко: в большинстве случаев корпус просто разрушается, теряет герметичность, и электролит вытекает на монтажную плату.

Поэтому в ответственных узлах применяются конденсаторы, изготовленные по иной технологии. Вместо жидкого электролита применяется токопроводящий органический полимер. Он имеет фактически твердую консистенцию, поэтому при экстремальных нагрузках (включая температурные) опасности не представляет. Такие конденсаторы называются твердотельными (по причине отсутствия жидких фракций). Характеристики этих элементов не уступают традиционным «электролитам», однако стоимость деталей существенно выше. Есть еще один недостаток твердотельной конструкции — ограничения по вольтажу. Верхний предел напряжения не более 35 Вольт. Учитывая область применения (компьютеры, бытовая техника, автомобили), это не является большой проблемой.

По причине высокой стоимости, домашние мастера стараются избегать покупки дорогих деталей, используя б/у компоненты для замены. В любом случае, чтобы не тратить лишние деньги, необходимо знать, как проверить твердотельный конденсатор.

Как работает полимерный конденсатор

Чтобы проверить любой прибор, желательно понимать механизм его работы. Поскольку тема нашего материала — твердотельные конденсаторы (аналоги электролитических), значит речь пойдет о радиоэлементах для постоянного тока, то есть полярных. Все со школьной скамьи помнят эту иллюстрацию:

Две металлические пластины с диэлектриком между ними (для лаборатории подойдет даже воздух). Если на контакты подать потенциал, между пластинами накапливается разноименные заряды, и в пространстве между ними возникает электрическое поле. При отсутствии электрической цепи это поле может сохраняться достаточно долго (современные элементы обеспечивают утечку заряда, стремящуюся к нулю). Именно это свойство лежит в основе применения конденсаторов.

Элемент имеет определенные основные характеристики:

  • Рабочее напряжение определяется величиной, при которой не наступает пробой диэлектрика. Конденсаторы выглядят совсем не так, как мы привыкли видеть на лабораторном столе в классе физики. Детали весьма компактны, соответственно расстояние между пластинами минимально. Отсюда ограничение по предельному напряжению.
  • Емкость конденсатора — его главный параметр. Он определяет, сколько электрической энергии деталь может накопить и удерживать в себе. Величина напрямую зависит от площади пластин.
  • Параметры утечки. Могут определяться током потери накопленного заряда, либо сопротивлением диэлектрика. Идеальные показатели возможны только в вакууме, но такие конденсаторы для бытового использования не выпускаются.
  • Температурный коэффициент: определяется дельтой изменения емкости в зависимости от температуры.
  • Точность — указывается в процентах. Показывает разброс параметров емкости от эталонной (маркировочной) величины.

Важно: несмотря на большое количество параметров, измерению (проверке) подлежат лишь два из них: емкость и сопротивление диэлектрика.

Устройство электролитических и твердотельных конденсаторов

Радиокомпоненты такого класса применяются в электронных устройствах с высокими требованиями по габаритам. Поэтому вопрос компромисса между площадью обкладок (от этого зависит емкость) и размерами корпуса — головная боль разработчиков. Проблема решается технологически просто:

Изготавливается так называемых сэндвич, стоящий из двух тончайших обкладок, между которыми прокладывается слой пропитанной электролитом бумаги (в электролитических моделях) или токопроводящий полимер (твердотельные конденсаторы). Обычно используется танталовая или алюминиевая фольга. В качестве диэлектрика применяется естественный оксидный слой одной из пластин. У него низкая проводимость, которая определяет ток утечки емкости.

Такая конструкция может занимать достаточно большую (по меркам радиодеталей) емкость. Поэтому ее сворачивают в плотный рулон, где в качестве разделителя между слоями выступает тонкая электро-бумага (смотрим иллюстрацию). Она не участвует в схеме работы конденсатора.

Наружная оболочка выполнена из алюминия, на нее наносится информация о характеристиках.

Преимущества твердотельных конденсаторов

  • В сравнение с электролитической конструкцией, существенно снижено эквивалентное последовательное сопротивление. Благодаря этому деталь практически не нагревается на высоких частотах.
  • Значительная величина тока пульсаций делает работу более стабильной, особенно в схемах обеспечения электропитанием.
  • Твердотельные конденсаторы практически не зависят от температуры. Кроме физической защиты от раздувания корпуса, это свойство позволяет сохранять параметры при нагреве.
  • Продолжительность жизни. Если принять за эталон рабочую температуру 85 °C, срок эксплуатации (без потери характеристик) в 6 раз больше, чем у электролитов. Обычно эти детали без проблем работают не менее 5 лет.

Самостоятельная диагностика конденсатора

Поскольку мы говорим о деталях для работы с постоянным током, не имеет значения, какая применяется технология: электролитическая или полимерная. Проверка полярных конденсаторов выполняется одинаково.

Прежде всего, выполняется внешний осмотр. Электролиты не должны иметь следов вздутия, особенно на торце, где есть насечка в виде креста. При осмотре твердотельных корпусов можно увидеть термические повреждения с нарушением геометрии.

Разумеется, необходимо проверить крепление ножек. Компактная конструкция подразумевает небольшие размеры всех компонентов. Ножки могут банально оторваться еще на стадии сборки.

Если внешний осмотр не дал результатов, проводим тестирование с помощью мультиметра

В любом случае, для выполнения этих работ необходимо выпаять деталь из платы. Делать это надо осторожно, чтобы не выдернуть контактные ножки из корпуса.

Если ваш прибор имеет специализированный разъем для проверки, диагностика выполняется в соответствии с инструкцией к мультиметру. Обязательно проводится весь комплекс тестирования (если такой алгоритм имеется). Подключать нужно правильно, соблюдая полярность. Маркировка обязательно присутствует на корпусе детали. При такой проверке вы не только проверите исправность, но и увидите значение емкости.

    Проверка работоспособности конденсатора начинается с измерения сопротивления. Делается это не так, как на резисторах или диодах. Чтобы понять принцип проверки, вспомним основные свойства конденсатора. При накоплении заряда сопротивление между обкладками увеличивается. Для начала необходимо разрядить элемент (снять остаточный заряд). Разумеется, это справедливо лишь для исправной детали. Надо просто замкнуть ножки любым проводником, или сомкнуть их между собой.

Важно: электролитические конденсаторы могут работать с напряжением до 600 Вольт и более, поэтому их разряжают только инструментом с изолированной рукояткой.

Проверка межобкладочного замыкания

Даже такой надежный конденсатор, как твердотельный, может иметь банальные физические повреждения. Например, замыкание между обкладками или на корпус. В первом случае сопротивление не увеличится до бесконечности, хотя первое время будет плавно увеличиваться. При пробое на корпус, сопротивление между одной из ножек и внешней оболочкой будет критически маленьким.

В обоих случаях, такие конденсаторы следует отнести к браку, восстановлению они не подлежат.

Проверка истинных значений емкости

Как проверять детали с помощью специализированного мультиметра, мы уже рассматривали. Однако для проверки твердотельного (электролитического) конденсатора недостаточно просто зафиксировать факт исправности. Особенно, если радиоэлемент под подозрением, либо вы хотите использовать деталь, бывшую в употреблении. Необходимо использовать прибор, с достаточным диапазоном измерения емкости.

Тестирование проводится в несколько этапов:

  • несколько раз соединяем конденсатор с клеммами прибора, затем разряжаем его замыканием, и снова проверяем;
  • нагреваем радиодеталь с помощью термофена до температуры 60–85°C, и проверяем значение емкости: разброс параметров не должен превышать допустимую погрешность (указано на корпусе).

Важно: обязательно соблюдайте полярность при проведении измерений. Это необходимо не только для получения истинного значения. При напряжении питания прибора хотя бы 9 вольт (такие мультиметры встречаются часто), конденсатор может выйти из строя из-за переполюсовки.

Практическое применение на автомобиле

Далеко не все домашние мастера будут тестировать элементную базу материнских плат компьютеров. А вот навыки, как проверить конденсатор трамблера, пригодятся любому автолюбителю. Изучим методику на примере классики ВАЗ.

  • Для проверки необходимо отсоединить кабель, идущий от трамблера до конденсатора. Он обычно соединен с одним контактом прерывателя. Между контактами закрепляем лампу мощностью 35–50 Вт (разумеется, с напряжением 12 вольт). Если при включении зажигания лампа загорелась, конденсатор неисправен, то есть «пробит» (это самая характерная поломка). Если «контролька» не светится — конденсатор исправен.
  • Второй способ можно применять в крайнем случае, если у вас не нашлось лишней лампы. После включения зажигания, необходимо быстро и вскользь коснуться контактами друг к другу. Если ничего не происходит — конденсатор в порядке. При наличии искрения — радиоэлемент «пробит».

Для того, чтобы проверить твердотельные либо электролитические конденсаторы, не обязательно иметь образование радиоинженера. Руководствуясь нашими советами, вы сможете точно определить исправность радиодеталей, и сэкономить средства на покупку новых элементов. Учитывая высокую стоимость именно таких конденсаторов, снижение затрат на ремонт будет ощутимым.

Видео по теме

Как измерить емкость цифровым мультиметром

Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.

Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или произвести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце).Обязательно используйте соответствующие средства индивидуальной защиты.

Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.

  1. Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
  2. Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
  3. Переведите шкалу в режим измерения емкости. Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
  4. 4. Для правильного измерения необходимо удалить конденсатор из цепи.Разрядите конденсатор, как описано в предупреждении выше.

    Примечание: Некоторые мультиметры предлагают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов. Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.

  5. Подключите измерительные провода к клеммам конденсатора. Оставьте измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал правильный диапазон.
  6. Считайте отображаемое измерение. Если значение емкости находится в пределах диапазона измерения, мультиметр отобразит значение конденсатора. Он будет отображать OL, если а) значение емкости выше диапазона измерения или б) конденсатор неисправен.

Обзор измерения емкости

Устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.

Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора.Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию прерывателя.

Однофазные двигатели с такими проблемами и шумные однофазные двигатели с конденсаторами нуждаются в мультиметре для проверки правильного функционирования конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.

Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями.Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.

Стоит знать о некоторых дополнительных факторах, связанных с емкостью:

  • Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
  • Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
  • При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
  • Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
  • Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Связанные ресурсы

как проверить электролитический конденсатор

В большинстве случаев устранения и ремонта электрических и электронных устройств мы сталкиваемся с этой проблемой, как проверить электролитический конденсатор? Это хорошо, плохо, коротко или открыто?
Ниже мы представим три метода проверки того, что конденсатор исправен, неисправен, открыт, неисправен или короток.

Метод 1. Проверьте и протестируйте конденсатор с помощью аналогового мультиметра.
1.Убедитесь, что подозреваемый конденсатор полностью разряжен.
2. Возьмите измеритель AVO.
3. Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
4. Подключите выводы измерителя к клеммам конденсатора.
5. Обратите внимание на показания и сравните со следующими результатами.
6. Короткие конденсаторы: закороченный конденсатор покажет очень низкое сопротивление.
7.Открытые конденсаторы: открытый конденсатор не будет показывать никакого движения (отклонения) на экране омметра.
8. Хорошие конденсаторы: сначала сопротивление будет низким, а затем постепенно увеличивается до бесконечности. Это означает, что конденсатор в хорошем состоянии.

Метод 2. Тест и проверка конденсатора с помощью цифрового мультиметра
1. Убедитесь, что конденсатор разряжен.
2. Установите измеритель на диапазон Ом (установите его на 1000 Ом = 1 кОм).
3. Подключите выводы измерителя к клеммам конденсатора.
4. Цифровой счетчик на секунду покажет некоторые числа. Обратите внимание на чтение.
5. И тут сразу вернется в OL (Open Line). Каждая попытка на шаге 2 будет показывать тот же результат, что и на шагах 4 и 5. Это означает, что конденсатор находится в хорошем состоянии.
6. Если изменений нет, то конденсатор неисправен.


Метод 3. Проверка конденсатора мультиметром в режиме измерения емкости
1. Убедитесь, что конденсатор полностью разряжен.
2. Снимите конденсаторы с платы или схемы.
3. Теперь выберите «Емкость» на мультиметре.
4. Теперь подключите клемму конденсатора к выводам мультиметра.
5. Если показание близко к фактическому значению конденсатора.
6. Тогда конденсатор в хорошем состоянии. .
7. Если вы обнаружите значительно меньшую емкость или ее отсутствие вообще, значит, конденсатор мертв, и вам следует его заменить.

Как проверить конденсатор с помощью цифрового и аналогового мультиметра?

8 способов проверки и тестирования конденсатора с помощью цифрового мультиметра и AMM (AVO)

В большинстве работ по устранению неисправностей и ремонту электрических и электронных устройств мы сталкиваемся с общей проблемой конденсаторов, где мы хотим узнать , как тестировать и проверять конденсатор? Хороший, плохой (мертвый), короткий или открытый?

Здесь мы можем проверить конденсатор с помощью аналога (измеритель AVO i.е. Ампер, напряжение, омметр), а также цифровой мультиметр, либо конденсатор в хорошем состоянии, либо его следует заменить новым.

Примечание. Чтобы определить значение емкости, вам понадобится аналоговый или цифровой мультиметр с функциями измерения емкости.

Ниже приведены восемь (8) методов проверки и тестирования конденсатора на исправность, неисправность, обрыв, неисправность или короткое замыкание .

Похожие сообщения:

Метод 1.

Проверка конденсатора с помощью цифрового мультиметра — режим сопротивления

Чтобы проверить конденсатор с помощью цифрового мультиметра (DMM) в режиме сопротивления «Ом» или , выполните следующие действия. нижеприведенный.

  1. Убедитесь, что конденсатор полностью разряжен.
  2. Установите измеритель на омический диапазон (установите его как минимум на 1000 Ом = 1 кОм).
  3. Подключите щупы мультиметра к клеммам конденсатора (отрицательный к отрицательному и положительный к положительному).
  4. Цифровой мультиметр на секунду покажет некоторые числа. Обратите внимание на чтение.
  5. И тут же он вернется к OL (открытая линия) или бесконечности «∞». Каждая попытка на шаге 2 будет показывать тот же результат, что и на шагах 4 и 5.Это означает, что конденсатор находится в хорошем состоянии .
  6. Если изменений нет, значит Конденсатор не работает .

Похожие сообщения:

Метод 2.

Проверка конденсатора с помощью аналогового мультиметра — Ом режим

Чтобы проверить конденсатор с помощью AVO (ампер, вольт, омметр) в сопротивлении Ом ”Или режим Ом , выполните следующие действия.

  1. Убедитесь, что подозреваемый конденсатор полностью разряжен.
  2. Возьмите измеритель AVO.
  3. Поверните ручку аналогового измерителя, чтобы выбрать режим сопротивления «ОМ» (всегда выбирайте более высокий диапазон Ом).
  4. Подключите выводы измерителя к клеммам конденсатора. (COM к клеммам «-Ve» и положительный к клеммам «+ Ve)).
  5. Запишите показания и сравните со следующими результатами.
  6. Короткие конденсаторы : Закороченный конденсатор покажет очень низкое сопротивление.
  7. Открытые конденсаторы : Открытый конденсатор не будет показывать никакого движения (отклонения) на шкале омметра.
  8. Хорошие конденсаторы : Сначала сопротивление будет низким, а затем постепенно увеличивается до бесконечности. Значит, конденсатор в хорошем состоянии.

Метод 3.

Проверка конденсатора с помощью мультиметра в емкостном режиме

Примечание. Проверка конденсатора в емкостном режиме может быть выполнена только в том случае, если аналоговый или цифровой мультиметр имеет фарад «Фарад» Характеристики емкости «C».Функция емкостного режима в мультиметре также может использоваться для проверки крошечных конденсаторов. Для этого поверните ручку мультиметра в режим измерения емкости и следуйте следующим основным инструкциям.

  1. Убедитесь, что конденсатор полностью разряжен.
  2. Снимите конденсаторы с печатной платы.
  3. Теперь выберите емкость «C» на мультиметре.
  4. Теперь подключите клемму конденсатора к выводам мультиметра (красный к плюсу и черный к минусу).
  5. Если показание близко к фактическому значению конденсатора (т. Е. Значению, напечатанному на коробке контейнера конденсатора).
  6. Значит, конденсатор в хорошем состоянии. (Обратите внимание, что показание может быть меньше, чем фактическое значение конденсатора (номинальное значение конденсатора из-за допуска в ± 10 или ± 20).
  7. Если вы читаете значительно меньшую емкость или ее нет вовсе, то конденсатор мертв, и вы должны заменить его на новый для правильной работы.

Связанные сообщения:

Метод 4.

Проверка конденсатора простым вольтметром

Чтобы применить этот метод к полярным и неполярным конденсаторам, вы должны знать значение номинального напряжения конденсаторов. Уровень напряжения уже указан на паспортной табличке электролитических конденсаторов. Хотя есть конкретные коды, напечатанные на керамических и SMD конденсаторах. Вы можете следовать этому руководству, которое показывает, как читать и определять стоимость керамических и неполяризованных конденсаторов с соответствующими кодами, напечатанными на них.

Кроме того, вы можете использовать DC Voltage “V” или Volt Mode в цифровом или аналоговом мультиметре для выполнения этого теста.

  1. Обязательно отсоедините один вывод (не беспокойтесь, если положительный (длинный) или отрицательный (короткий)) конденсатора от цепи (вы также можете полностью отсоединить его при необходимости)
  2. Проверьте номинальное напряжение конденсатора, напечатанное на нем ( Как показано в нашем нижеприведенном примере, где напряжение = 16 В)
  3. Теперь зарядите этот конденсатор в течение нескольких секунд до номинального значения (не до точного значения, но меньше указанного, то есть зарядите конденсатор на 16 В аккумулятором 9 В. Если значение напряжения аккумулятора больше номинального напряжения конденсатора, это приведет к повреждению или взрыву конденсатора.) Напряжение. Обязательно подключите положительный (красный) вывод источника напряжения к положительному (длинному) выводу конденсатора, а отрицательный — к отрицательному. Если вы не уверены или не можете найти подходящие выводы, вот руководство о том, как найти отрицательную и положительную клеммы конденсатора.
  4. Установите значение вольтметра на постоянное напряжение и подключите конденсатор к вольтметру, подключив положительный провод батареи к положительному выводу конденсатора, а отрицательный — к отрицательному.Вы можете использовать цифровой или аналоговый мультиметр при выборе диапазона постоянного напряжения для той же цели.
  5. Запишите начальное значение напряжения на вольтметре. Если оно близко к подаваемому на конденсатор напряжению, конденсатор находится в хорошем состоянии. Если он показывает намного меньше чтения, то конденсатор мертв. Обратите внимание, что вольтметр будет показывать показания в течение очень короткого времени, так как конденсатор разряжает свои накопленные вольтметры.

Примечание: значение напряжения конденсатора должно быть меньше напряжения аккумулятора.В противном случае он взорвет или сожжет конденсатор.

Похожие сообщения:

Метод 5.

Проверка конденсатора путем измерения значения постоянной времени

Мы можем найти значение конденсатора путем измерения постоянной времени (TC или τ = Tau), если Значение емкости конденсатора известно в напечатанных на нем микрофарадах (обозначается мкФ), то есть конденсатор не перегорел и не перегорел.

Вкратце, время, необходимое конденсатору для зарядки, около 63.2% приложенного напряжения при зарядке через резистор известного номинала называется постоянной времени конденсатора (τ = Tau, также известной как постоянная времени RC) и может быть рассчитано по формуле:

τ = R x C

Где:

  • R = значение известного резистора в омах
  • C = значение емкости
  • τ = тау (постоянная времени)

Например, если напряжение питания составляет 9V , то 63,2% питания напряжение около 5.7В . Мы будем использовать секундомер и заряжать конденсатор, пока значение не достигнет 5,7 В. Остановите часы и отметьте время в секундах. Для получения дополнительных сведений ознакомьтесь с примером, приведенным под инструкциями.

Теперь давайте посмотрим, как найти значение емкости конденсатора, измерив постоянную времени. (Примечание: осциллограф сделает это лучше с точным значением, чем мультиметр.

  1. Обязательно отключите, а также разрядите конденсатор от платы.
  2. Подключите известное значение сопротивления (например.г. Резистор 5-10кОм) последовательно с конденсатором.
  3. Подайте известное значение напряжения питания. (например, 12 В или 9 В) к конденсатору, подключенному последовательно с резистором 10 кОм.
  4. Теперь измерьте время, за которое конденсатор заряжается примерно на 63,2% от приложенного напряжения. Например, если напряжение питания составляет 9 В, то 63,2% от этого значения составляет около 5,7 В.
  5. На основании значения данного резистора и времени, измеренного с помощью секундомера, вычислите значение емкости по формуле постоянной времени i.е. τ = Тау (постоянная времени) .
  6. Теперь сравните рассчитанное значение емкости с напечатанным на нем значением конденсатора.
  7. Если они такие же или почти равные, конденсатор в хорошем состоянии. Если вы обнаружите заметную разницу в обоих значениях, пора заменить конденсатор, поскольку он не работает должным образом.

Пример: Предположим, мы собираемся протестировать конденсатор 16 В, 470 мкФ. Если напряжение питания 9 В, то 5,7 В равно 63.2% от напряжения питания. Подключим конденсатор к аккумулятору для зарядки и запустим секундомер. Когда счетчик покажет 5,7 В, мы остановим секундомер. Предположим, секундомер показывает 4,7 секунды времени.

Теперь используйте формулу постоянной времени τ = RC для измерения емкости, т.е. C = τ / R

C = 4,7 секунды / 10 кОм

C = 0,47 мФ = 470 мкФ

Теперь сравните рассчитанное значение емкости с напечатанным на нем значением конденсатора.

  • Если расчетное значение почти равно или отличается от ± 10 до ± 20 от требуемого конденсатора. Это хороший конденсатор.
  • Если расчетное значение далеко с заметной разницей, конденсатор неисправен.
  • В нашем примере расчетное значение почти такое же, как фактическое значение конденсатора. Это означает, что конденсатор в хорошем состоянии.

Также можно рассчитать время разряда. В этом случае время разряда конденсатора до 36.Можно измерить 8% пикового напряжения.

Полезная информация : Также можно измерить время, необходимое конденсатору для разряда около 36,8% пикового значения приложенного напряжения. Время разряда можно использовать как то же самое в формуле, чтобы найти емкость конденсатора.

Метод 6.

Проверка конденсатора с помощью Непрерывность Режим проверки

В мультиметре и измерителе AVO режим проверки целостности также можно использовать независимо от того, исправен ли конденсатор, обрыв или короткое замыкание.Для этого следуйте простым инструкциям ниже.

  1. Отключите источник питания и снимите конденсатор с печатной платы.
  2. Полностью разрядите конденсатор с помощью резистора.
  3. Поверните ручку и установите мультиметр в режим проверки целостности цепи.
  4. Подключите положительный (КРАСНЫЙ) щуп мультиметра к анодному (+), а общий (черный) щуп к катодной (-) клемме конденсатора.
  5. Если мультиметр показывает признак правильной непрерывности (звуковой сигнал или светодиодный индикатор) и внезапно останавливается и показывает OL (открытая линия).Это означает, что конденсатор в хорошем состоянии.
  6. Если мультиметр не показывает знак обрыва со звуковым сигналом или светодиодом, это означает, что конденсатор открыт.
  7. Если светодиод мультиметра горит и издает непрерывный звуковой сигнал, это означает, что конденсатор неисправен и его необходимо заменить новым.

Метод 7.

Проверить конденсатор визуально и Кажущийся Проверка

Это основной подход к определению неисправного конденсатора без мультиметра по видимым признакам, появляющимся на нем.

Конденсатор выходит из строя и повреждается при обнаружении любого из следующих условий.

Выпуклое верхнее отверстие конденсатора

Верхнее отверстие электролитического конденсатора в форме K, T или X — это слабые места , предназначенные для сброса давления во время выхода конденсатора из строя во избежание серьезного повреждения окружение и любые другие компоненты, связанные рядом с ним.

Если вы обнаружите вздутие конденсатора, это будет электролитический разряд (черный, белый, оранжевый цвет, который зависит от материала электролита) i.е. конденсатор сбрасывает давление газа во время отказа и размыкает верхнее вентиляционное отверстие конденсатора.

Выпуклая нижняя часть и приподнятый корпус конденсатора

Если создаваемое давление газа не приводит к выходу из строя верхнего вентиляционного отверстия конденсатора во время отказа, он проходит через нижнюю часть и толкает резину, которая делает нижнюю выпуклость и поднимает корпус .

Тестирование конденсаторов поверхностного монтажа и керамических конденсаторов

Если вы обнаружите следующие признаки на керамических или крошечных конденсаторах поверхностного монтажа, они неисправны и их необходимо заменить на подходящие.

Сломан или трещины в корпусе.

Обшивка повреждена или обгоревшая.

Отверстие в кожухе.

Сломанные терминалы.

Связанные сообщения:

Как проверить и исправить дефекты печатной платы (PCB)?

Как проверить целостность электрических компонентов с помощью мультиметра?

Как проверить батарею с помощью тестера?

Метод 8.

Традиционный метод тестирования и проверки конденсатора

Примечание. Не рекомендуется для всех, кроме профессионалов.Будьте осторожны, выполняя эту практику, так как это опасно. Убедитесь, что вы профессиональный инженер-электрик / электрик и действительно знаете, что делаете что-то опасное.

Перед применением этого метода соблюдайте меры предосторожности и предупреждения. Это применимо только в аварийной ситуации (когда важна замена конденсатора на правильное значение), и нет других способов проверить поврежденный конденсатор. потому что во время этой практики могут возникнуть серьезные повреждения).

Если вы не уверены (так как это может привести к серьезным повреждениям), воспользуйтесь другими вариантами (1–7) в качестве альтернативных методов устранения неисправностей конденсатора.

Предположим, вы хотите проверить конденсатор (например, конденсаторы вентилятора, конденсаторы воздухоохладителя в помещении или оловянные конденсаторы на печатной плате / печатной плате и т. Д.)

Предупреждения и меры безопасности при испытании конденсатора методом № 8.

Для обеспечения надлежащей безопасности используйте источник постоянного тока от 12 до 24 В в случае как полярных, так и неполярных конденсаторов с резистором 1 кОм ~ 10 кОм, 5 ~ 50 Вт.Резистор следует подключать последовательно с положительными клеммами аккумулятора и конденсатора. Таким образом, он уменьшит чрезмерный ток при зарядке конденсатора.

В случае отсутствия источника постоянного тока (например, батарей) конденсаторы с высоким номиналом (например, конденсаторы вентилятора, рассчитанные на 3,5 мкФ, 120, 230 или 400 В), вы можете использовать 120-230 В переменного тока, но вам необходимо подключить серию резисторы (скажем, 1 кОм ~ 10 кОм, 5 ~ 50 Вт) для подключения конденсатора к источнику переменного тока 230 В. Таким образом уменьшится зарядный и разрядный ток.Вот пошаговое руководство по проверке конденсатора этим методом.

  1. Отключите подозрительный конденсатор от источника питания или убедитесь, что хотя бы один вывод конденсатора отсоединен от печатной платы.
  2. Убедитесь, что конденсатор полностью разряжен.
  3. Подключите два отдельных провода к клеммам конденсатора. (Необязательно)
  4. Теперь безопасно подключите эти выводы к источнику питания 24 В постоянного или 230 В переменного тока на очень короткий период (около 1-4 сек) [или на короткое время, когда напряжение возрастет до 63.2% от напряжения источника].
  5. Отсоедините предохранительные провода от источника питания 24 В постоянного тока / 230 В переменного тока.
  6. Теперь закоротите клеммы конденсатора (будьте осторожны при этом и убедитесь, что вы надели защитные очки)
  7. Если возникает сильная искра, то конденсатор годен .
  8. Если он дает слабую искру или вообще не дает искры, то это неисправный конденсатор . Вам нужно будет немедленно поменять его на новый.

Примечание : Помните, что полярный конденсатор не должен подключаться к источнику переменного тока.С другой стороны, неполярный конденсатор может быть подключен к источнику постоянного тока, потому что они расположены спиной к электролитическим конденсаторам. Как мы знаем, конденсаторы блокируют постоянный ток, но пропускают переменный ток, но он все равно будет заряжаться от источника постоянного тока, пока не достигнет уровня напряжения на клеммах. Короче говоря, неполярные конденсаторы могут работать как от источника переменного, так и от постоянного тока, в то время как полярные конденсаторы работают только от постоянного тока. Для получения дополнительных сведений ознакомьтесь с предыдущим важным постом о том, что произойдет, если мы неправильно подключим полярный конденсатор?

Похожие сообщения:

Конденсаторы 101 — iFixit

Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он обычно делает.Конденсатор — это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный течет к положительному, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы. Как только пластина больше не может удерживать их, они выталкиваются через диэлектрик на другую пластину, таким образом вытесняя электроны обратно в цепь.Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали. Конденсаторы создают постоянное напряжение для других компонентов и, таким образом, обеспечивают стабильное питание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пикового напряжения. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение.Когда напряжение питания падает до нуля, конденсатор начинает вытекать свое содержимое, это сглаживает выходное напряжение и ток. Таким образом, конденсатор размещается на одной линии с компонентом, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.

Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглой жестяной банки обычно представляют собой электролитические конденсаторы.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектрик может быть воздухом (простейший конденсатор) или другими непроводящими материалами. Металлические пластины из фольги, разделенные диэлектриком, затем скручиваются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.

Вот конденсатор, который некоторые, возможно, еще помнят со времен старого радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный (4) конденсатор.Все это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.

Керамические дисковые конденсаторы идеально подходят для более высоких частот, но не подходят для объемной фильтрации, поскольку керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости. В схемах, где жизненно важно поддерживать стабильность источника напряжения, обычно имеется большой электролитический конденсатор, подключенный параллельно керамическому дисковому конденсатору. Электролитик будет делать большую часть работы, тогда как небольшой керамический дисковый конденсатор будет отфильтровывать высокую частоту, которую пропускает большой электролитический конденсатор.

Еще есть танталовые конденсаторы. Они маленькие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.

Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению).Основное назначение экрана из фольги — продлить срок службы бумажного конденсатора.

Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов, помимо номинальных характеристик, является их «упаковка». Существует стандартизация размеров этих компонентов, т.е.е. упаковка 0201 — 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, с помощью визуализации. Вот хорошее описание индивидуальных размеров на основе номеров пакетов.

Определить значение конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.

Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%.Это означает, что оно может находиться в диапазоне от 176 мкФ до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Также полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

Теперь главный вопрос здесь — как проверить конденсатор на предмет необходимости его замены.

Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста «все или ничего» . Этот тест покажет только, полностью ли разряжен конденсатор. , а не , будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора.Конечно, это также верно для определения номинала неизвестного конденсатора.

Счетчик, используемый для этой Wiki, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, отображающий только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.

Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом.Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку. В этом случае это выполнят кабели из крокодиловой кожи и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.

Чтобы проверить конденсатор с помощью мультиметра, установите показание измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.

Это также будет работать с заглушками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.

Еще одно испытание конденсатора — это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, — это зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное — на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.

По окончании заряда отсоедините аккумулятор от конденсатора. Воспользуйтесь мультиметром и снимите напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

Проще всего конечно будет проверить конденсатор емкостным измерителем. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Подключите положительный (красный) провод от мультиметра к нему, а отрицательный (черный) — к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.

Для проверки конденсатора SMD может быть сложно сделать с громоздкими пробниками. Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.

Некоторые конденсаторы не требуют проверки для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала.Никогда не субсидируйте использование конденсатора меньшей стоимости.

Если конденсатор, который собираются заменить или проверить, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.

В этом отрывке из схемы iPhone указаны символы конденсаторов, а также их значения.

Эта Wiki — это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной.Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн-курсов и офлайн-курсов.

Eaton Electronics

Максвелл

Digikey

Mouser

Как проверить конденсатор с помощью мультиметра 5 способами?

I Введение

Два соседних проводника зажаты слоем непроводящей изолирующей среды, образуя конденсатор.Конденсаторы — один из наиболее часто используемых электронных компонентов. Они играют важную роль в таких схемах, как настройка, обход, связь и фильтрация. Например, их часто используют в цепи настройки транзисторного радиоприемника, цепи связи и цепи обхода цветного телевизора.

Эта статья в основном знакомит с тем, как правильно использовать мультиметры для проверки конденсаторов и алюминиевых электролитических конденсаторов, включая подробные этапы работы, принципы работы, примечания и пояснения некоторых фундаментальных знаний о конденсаторах.

У нас также есть соответствующая статья о том, как проверить пусковые конденсаторы, которые могут вас заинтересовать. Не пропустите!

Как проверить конденсаторы с помощью цифрового мультиметра

Каталог

II Определение конденсатора

Конденсаторы состоят из компонентов, которые накапливают электричество и электрическую энергию (потенциальную энергию). Проводник окружен другим проводником, или все линии электрического поля, излучаемые одним проводником, заканчиваются в проводящей системе другого проводника, называемой конденсатором.

III Причины и последствия тестирования конденсаторов и характеристик выдерживаемого напряжения

3.1 Почему мы должны измерять емкость конденсатора?

Целью измерения значения емкости конденсатора в общем смысле электричества является проверка изменения его значения емкости. Сравнивая измеренное значение со значением, указанным на паспортной табличке, вы можете судить о том, правильна ли внутренняя проводка и не ухудшилась ли изоляция из-за влаги, сломался ли компонент и уменьшилась ли емкость из-за утечки масла.Так что будьте осторожны во время существенной операции.

3.2 Почему конденсаторы должны проходить испытание на выдерживаемое напряжение?

Испытание на выдерживаемое напряжение относится к испытанию способности выдерживать напряжение различных электрических устройств и конструкций. Процесс приложения высокого напряжения к изолирующему материалу или изолирующей конструкции без нарушения характеристик изоляционного материала считается испытанием на выдерживаемое напряжение. Вообще говоря, основная цель способности выдерживать напряжение — проверить способность изоляции выдерживать рабочее напряжение или перенапряжение, а затем проверить, соответствуют ли характеристики изоляции продукта стандартам безопасности. проверить способность изоляции выдерживать рабочее напряжение или перенапряжение, а затем проверить, соответствуют ли характеристики изоляции оборудования стандартам безопасности.

Рисунок 1. Тестирование конденсатора

IV Разница между конденсаторами разной емкости в тесте

4.1 Тест конденсатора малой емкости

Емкость конденсатора малой емкости обычно ниже 1 мкФ, потому что емкость слишком мала, зарядка Явление неочевидное, и угол руки вправо при измерении невелик. Поэтому измерить его емкость с помощью мультиметра, как правило, невозможно, а только определить, есть ли у него утечка или пробой.В нормальных условиях значение сопротивления обоих концов мультиметра R × 10 кОм должно быть бесконечным. Если определенное значение сопротивления измерено или значение сопротивления близко к 0, это означает, что в конденсаторе произошла утечка электричества или он был поврежден в результате пробоя.

Связанная рекомендация: Как проверить керамический дисковый конденсатор

4.2 Тест конденсатора большой емкости

Большую емкость обычно можно проверить с помощью 1–10 кОм, посмотрите развертку измерителя во время зарядки и значение сопротивления, указанное на последнем измерителе.Чем ближе к левому краю, тем лучше. Если сопротивление слишком мало, его нельзя использовать.

4.3 Тест суперконденсатора

Метод измерения суперконденсаторов полностью отличается от других типов конденсаторов. Суперконденсаторы имеют исключительно большие значения емкости, которые невозможно измерить напрямую с помощью стандартного оборудования. Обычными методами проверки емкости этих конденсаторов являются зарядка суперконденсаторов номинальным напряжением и разрядка суперконденсаторов нагрузкой с постоянным током.

Рисунок 2. Различные конденсаторы

В Как проверить конденсаторы с помощью мультиметра?

5.1 Прямое испытание с конденсатором

Некоторые цифровые мультиметры имеют функцию измерения емкости, и их диапазоны разделены на пять диапазонов: 2,000p, 20n, 200n, 2μ и 20μ. При измерении вы можете напрямую вставить два контакта разряженного конденсатора в гнездо Cx на плате измерителя и выбрать соответствующий диапазон для чтения отображаемых данных.

файл 2000p, подходит для измерения емкости менее 2000 пФ; Файл 20n, подходящий для измерения емкости от 2000 пФ до 20 нФ; Файл 200n, подходящий для измерения емкости от 20 до 200 нФ; Файл 2μ, подходит для измерения емкости от 200 нФ до 2 мкФ; Диапазон 20 мкФ, подходит для измерения емкости от 2 мкФ до 20 мкФ.

Опыт показал, что некоторые типы цифровых мультиметров (например, DT890B +) допускают значительную ошибку при измерении конденсаторов малой емкости ниже 50 пФ, а эталонное значение для измерения емкости ниже 20 пФ практически отсутствует.В это время емкость малого значения может быть измерена последовательным методом.

Метод: Сначала найдите конденсатор примерно 220 пФ, с помощью цифрового мультиметра измерьте его фактическую емкость C1, а затем подключите малый конденсатор, который нужно проверить, параллельно, чтобы измерить его общую емкость C2. Разница между ними (C1-C2) заключается в емкости тестируемых конденсаторов малой емкости.

Этот метод позволяет очень точно измерить малую емкость 1 ~ 20 пФ.

Рисунок 3. Как проверить конденсатор с помощью мультиметра

5.2 Тест с помощью файла сопротивления

Практика доказала, что процесс зарядки конденсаторов также можно наблюдать с помощью цифрового мультиметра, который фактически отражает изменение зарядного напряжения в дискретных цифровых величинах. . Предполагая, что скорость измерения цифрового мультиметра составляет n раз в секунду, в процессе наблюдения за зарядкой конденсатора вы можете увидеть n показаний, которые не зависят друг от друга и последовательно увеличиваются.В соответствии с этой характеристикой дисплея цифрового мультиметра можно определить качество конденсатора и оценить размер емкости.

Далее описывается метод обнаружения конденсатора с помощью измерителя сопротивления цифрового мультиметра, который имеет практическое значение для приборов без конденсатора. Этот метод подходит для измерения конденсаторов большой емкости от 0,1 мкФ до нескольких тысяч микрофарад.

5.2.1 Рабочий метод измерения

Как показано на рисунке 4, установите цифровой мультиметр на соответствующий уровень сопротивления. Красный и черный тестовые провода соответственно касаются двух полюсов тестируемого конденсатора Сх. В это время отображаемое значение будет постепенно увеличиваться с «000» до отображения символа переполнения «1». Если постоянно отображается «000», это означает, что конденсатор имеет внутреннее короткое замыкание; если он отображается постоянно, внутренние полюса конденсатора могут быть разомкнуты или выбранный уровень сопротивления может быть неподходящим.При проверке электролитических конденсаторов обратите внимание на то, что красный измерительный провод (положительный заряд) подключен к положительному электроду конденсатора, а черный измерительный провод подключен к отрицательному электроду конденсатора.

Рисунок 4. Цифровой мультиметр

5.2.2 Принцип измерения

На рисунке 5 показан принцип измерения конденсаторов с помощью файлов сопротивления. Во время измерения положительный источник питания заряжается, измеряемый конденсатор Cx проходит через стандартный резистор R0.В момент начала зарядки Vc = 0, поэтому отображается «000». По мере постепенного увеличения Vc отображаемое значение увеличивается. Когда Vc = 2VR, измеритель начинает отображать символ переполнения «1». Время зарядки t — это время, необходимое для того, чтобы отображаемое значение изменилось с «000» до переполнения. Этот временной интервал можно измерить кварцевым измерителем.

Рисунок 5. Принцип измерения

5.2.3 Измеренные данные с использованием цифрового мультиметра DT830 для оценки емкости

Принцип выбора диапазона сопротивления: при небольшой емкости следует выбирать высокое сопротивление, а при большой емкости следует выбирать низкое сопротивление.Если вы используете диапазон высокого сопротивления для оценки конденсатора большой емкости, время измерения продлится долгое время, потому что процесс зарядки идет очень медленно. Если вы используете диапазон низкого сопротивления для проверки конденсатора малой емкости, измеритель всегда будет показывать переполнение, потому что время зарядки очень короткое, и вы не можете увидеть изменения.

5.3 Тест с файлом напряжения

Обнаружение конденсаторов с помощью мультиметра постоянного тока цифрового мультиметра фактически является косвенным методом измерения.Этот метод позволяет измерять конденсаторы малой емкости от 220 пФ до 1 мкФ и точно измерять ток утечки конденсатора.

5.3.1 Методы и принципы измерения

Схема измерения показана на рисунке 6. E — внешняя сухая батарея на 1,5 В. Установите цифровой мультиметр на диапазон 2 В постоянного тока, подключите красный измерительный провод к одному электроду проверяемого конденсатора Cx, а черный измерительный провод к отрицательному полюсу батареи. Входное сопротивление диапазона 2 В составляет RIN = 10 МОм.После включения питания аккумулятор E заряжает Cx через RIN и начинает устанавливать напряжение Vc. Связь между Vc и временем зарядки t составляет

.

Рисунок 6. Схема подключения измерительного конденсатора с блоком напряжения

Здесь, поскольку напряжение на RIN является входным напряжением прибора VIN, RIN фактически выполняет функцию резистора выборки. очевидно,

VIN (t) = E-Vc (t) = Eexp (-t / RINCx) (5-2)

Рисунок 7 — это кривая изменения входного напряжения VIN (t) и зарядного напряжения Vc (t) на испытуемом конденсаторе.Из рисунка видно, что процесс изменения VIN (t) и Vc (t) прямо противоположен. Кривая VIN (t) уменьшается со временем, а Vc (t) увеличивается со временем. Хотя измеритель показывает процесс изменения VIN- (t), он косвенно отражает процесс зарядки тестируемого конденсатора Cx. Во время теста, если Cx открыт (нет емкости), отображаемое значение всегда будет «000». Если Cx имеет внутреннее короткое замыкание, отображаемое значение всегда будет напряжением батареи E и не будет изменяться со временем.

Рисунок7. Кривая изменения VIN (t) и Vc (t)

Уравнение (5-2) показывает, что когда цепь включена, t = 0, VIN = E, начальное отображаемое значение цифрового мультиметра представляет собой напряжение батареи, а затем, когда Vc (t) увеличивается, VIN (t) постепенно уменьшается. Пока VIN = 0V, процесс зарядки Cx заканчивается, в это время

Vcx (t) = E

Используя конденсатор определения уровня напряжения цифрового мультиметра, можно не только проверить конденсаторы малой емкости от 220 пФ до 1 мкФ, но также измерить ток утечки конденсатора.Пусть ток утечки измеряемого конденсатора будет ID, а стабильное значение, отображаемое измерителем в конце, будет VD (единица измерения V), тогда

Рисунок 8. Уравнение (5-3)

5.3.2 Примеры

Пример 1:

Измеренная емкость представляет собой конденсатор постоянной емкости 1 мкФ / 160 В с использованием диапазона 2 В постоянного тока цифрового мультиметра DT830 (RIN = 10 МОм). Подключите схему согласно рисунку 6. Изначально глюкометр отображал 1.543V, а затем отображаемое значение постепенно уменьшалось. Примерно через 2 минуты отображаемое значение стабилизировалось на 0,003 В. Найдите ток утечки проверяемого конденсатора.

Рисунок 9. Уравнение

Ток утечки тестируемого конденсатора составляет всего 0,3 нА, что свидетельствует о хорошем качестве.

Пример 2:

Тестируемый конденсатор представляет собой полиэфирный конденсатор 0,022 мкФ / 63 В. Метод измерения такой же, как в Примере 1.Из-за небольшой емкости этого конденсатора VIN (t) быстро уменьшается во время измерения, и примерно через 3 секунды отображаемое значение уменьшается до 0,002 В. Подставив это значение в уравнение (5-3), вычисленный ток утечки составил 0,2 нА.

5.3.3 Примечания

(1) Перед измерением два контакта конденсатора должны быть замкнуты накоротко и разряжены, в противном случае процесс изменения показаний может не наблюдаться.

(2) Не касайтесь конденсаторного электрода обеими руками во время измерения, чтобы не допустить подскакивания измерителя.

(3) Во время измерения значение VIN (t) изменяется экспоненциально, а вначале быстро уменьшается. С увеличением времени скорость снижения будет все медленнее и медленнее. Когда емкость тестируемого конденсатора Cx меньше нескольких тысяч пикофарад, поскольку VIN (t) изначально падает слишком быстро, а скорость измерения измерителя слишком мала, чтобы отразить исходное значение напряжения, начальное отображаемое значение измерителя будет ниже, чем напряжение аккумулятора E.

(4) Когда измеряемый конденсатор Cx больше 1 мкФ, для сокращения времени измерения можно использовать файл сопротивления для измерения.Однако, когда емкость тестируемого конденсатора меньше 200 пФ, процесс зарядки трудно наблюдать, поскольку изменение показаний очень короткое.

5.4 Тест с зуммером

Используя файл зуммера цифрового мультиметра, вы можете быстро проверить качество электролитического конденсатора. Метод измерения показан на рисунке 10. Установите цифровой мультиметр в положение зуммера и используйте два щупа для контакта с двумя контактами проверяемого конденсатора Cx.Должен быть слышен короткий звуковой сигнал, звук прекратится, и отобразится символ переполнения «1». Затем снова измерьте два измерительных провода, и зуммер должен снова прозвучать, и, наконец, отобразится символ перелива «1», который указывает на то, что тестируемый электролитический конденсатор в основном исправен. В это время вы можете установить высокое сопротивление 20 МОм или 200 МОм, чтобы измерить сопротивление утечки конденсатора и определить его качество.

Рисунок 10. Схема подключения для проверки электролитического конденсатора с зуммером

Принцип описанного выше процесса измерения заключается в следующем: в начале теста зарядный ток прибора до Cx велик, что эквивалентно длине пути, поэтому звучит зуммер.По мере того, как напряжение на конденсаторе продолжает расти, зарядный ток быстро уменьшается, и, наконец, зуммер перестает звучать.

Если во время теста зуммер продолжает звучать, это означает, что внутри электролитического конденсатора произошло короткое замыкание. Если зуммер продолжает звучать, а измеритель всегда показывает «1», когда ручка измерителя постоянно измеряется, это означает, что тестируемый конденсатор открыт или емкость исчезает.

5.5 Используйте цифровой мультиметр для измерения емкости более 20 мкФ

Для обычных цифровых мультиметров максимальное значение измерения в файле емкости составляет 20 мкФ, что иногда не соответствует требованиям измерения. По этой причине следующий простой метод можно использовать для измерения емкости более 20 мкФ с помощью файла емкости цифрового мультиметра, и можно измерить максимальную емкость в несколько тысяч микрофарад. При использовании этого метода для измерения конденсаторов большой емкости нет необходимости вносить какие-либо изменения в исходную схему цифрового мультиметра.

Принцип измерения этого метода основан на формуле C строка = C1C2 / (C1 + C2) двух последовательно соединенных конденсаторов. Поскольку два конденсатора с разной емкостью подключаются последовательно, общая емкость после последовательного соединения меньше, чем у конденсатора меньшей емкости. Следовательно, если емкость измеряемого конденсатора превышает 20 мкФ, используется только один конденсатор емкостью менее 20 мкФ. Последовательно с ним можно проводить измерения прямо на цифровом мультиметре.

По формуле двух последовательно соединенных конденсаторов легко получить C1 = C2C строка / (C2-C строка). Используя эту формулу, можно рассчитать значение емкости измеряемого конденсатора. Вот тестовый пример, чтобы проиллюстрировать конкретный метод использования этой формулы.

Тестируемый компонент представляет собой электролитический конденсатор с номинальной емкостью 220 мкФ и установлен на C1. Выберите электролитический конденсатор с номинальным значением 10 мкФ как C2, используйте цифровой мультиметр конденсатор емкостью 20 мкФ, чтобы измерить фактическое значение этого конденсатора как 9.5 мкФ и подключите два конденсатора последовательно, чтобы измерить строку C как 9,09 мкФ. Подставляя в формулу C2 = 9,5 мкФ и строку C = 9,09 мкФ, тогда

C1 = цепочка C2C / (цепочка C2-C) = 9,5 9,09 / (9,5-9,09) ≈211 (мкФ)


Рисунок 11. Цифровой мультиметр

Примечание: Независимо от того, какая емкость C2 выбрана, конденсатор с большей емкостью должен быть выбран при условии менее 20 мкФ, а C2 в формуле следует подставить в фактическое измеренное значение вместо номинального. значение, которое может уменьшить количество ошибок.Два конденсатора подключены последовательно и измеряются цифровым мультиметром. Из-за погрешности емкости и погрешности измерения самого конденсатора, пока фактическое измеренное значение близко к расчетному значению, конденсатор C1, который необходимо измерить, считается исправным. вместимость.

Теоретически этим методом можно измерить емкость любой емкости, но если емкость тестируемого конденсатора будет слишком большой, погрешность возрастет. Ошибка пропорциональна размеру измеряемого конденсатора.

VI Как тестировать алюминиевые электролитические конденсаторы

6.1 Физический осмотр внешнего вида

(1) Сначала проверьте, имеет ли тестируемый конденсатор официальную «Спецификацию продукта», которая включает название продукта, технические характеристики, установочные размеры , требования к процессу, технические параметры, а также название поставщика, адрес и контактную информацию для обеспечения этого. Серийную продукцию предоставляют штатные производители. Логотип на конденсаторе должен включать товарный знак, рабочее напряжение, стандартную емкость, полярность и диапазон рабочих температур.

(2) Обратитесь к параметрам процесса в «Спецификации продукта» и проверьте, соответствуют ли внешний вид, цвет и материал конденсатора указанным на нем индикаторам процесса.

(3) Используйте штангенциркуль, чтобы подтвердить установочный размер конденсатора, чтобы убедиться, что диаметр, высота, диаметр и расстояние выводной клеммы находятся в пределах допуска технологического процесса, а внешние размеры должны соответствовать требования к отбору компании.

(4) Проверьте внешний вид конденсатора, чтобы убедиться, что он аккуратный, без явных деформаций, поломок, трещин, пятен, грязи, ржавчины и т. Д., А его маркировка четкая, прочная, правильная и полная.

(5) Проверьте выводные клеммы, чтобы убедиться, что их выводы прямые, не имеют окисления, ржавчины и не влияют на их проводящие свойства, а выводные выводы не имеют деформации, деформации и механических повреждений, которые могут влияет на вставку и удаление.

(6) Убедитесь, что дата изготовления, указанная на электролитическом конденсаторе, не превышает шести месяцев, и сделайте запись.

Рисунок 12. Алюминиевый электролитический конденсатор

6.2 Проверка емкости и потерь

(1) Используйте электрический мост, чтобы проверить, соответствует ли фактическая емкость номинальной емкости (электролитический конденсатор обычно имеет диапазон погрешности ± 20%). Значение тангенса угла потерь tanθ (то есть значение D) соответствует стандарту.

(2) Как использовать тестер моста Zen tech: после правильного подключения источника питания нажмите кнопку «POWER», чтобы включить рабочее напряжение тестера; нажмите кнопку «LCR», чтобы выбрать тип теста (L: индуктивность, C: емкость, R: сопротивление).

(3) Нажмите кнопки «ВВЕРХ» и «ВНИЗ», чтобы выбрать диапазон измерения (мкФ, нФ, пФ), и нажмите кнопку «FREQ», чтобы выбрать частоту тестирования (100 Гц,

(120 Гц, 1 кГц) может выбрать требуемую частоту тестирования в соответствии с техническими параметрами, предоставленными производителем, тест в этой статье выбирает «100 Гц».

(4) Нажмите «SERIES» (параллельный) и «PARALLEL» (параллельный), чтобы выбрать режим подключения для теста, малая емкость (менее 10 мкФ)

Чтобы использовать параллельный режим, используйте большой режим (10 мкФ и выше) в последовательном режиме.

(5) После завершения настройки подключите тестовые порты моста («НИЗКИЙ» и «ВЫСОКИЙ») к двум концам конденсатора и используйте этикеточную бумагу для записи значения емкости и значения потерь на дисплее соответственно. И прикрепите этикеточную бумагу к соответствующему конденсатору для последующего анализа.

6.3 Тест пульсирующего напряжения

(1) Подключите схему, как показано ниже, и подключите проверяемый конденсатор к регулируемому источнику питания постоянного тока (обратите внимание, что положительный и отрицательный полюсы не подключены наоборот). Подключите положительный электрод пробника осциллографа с неиндуктивным конденсатором (1 мкФ, 1200 В постоянного тока) последовательно к положительному электроду проверяемого конденсатора.

Рисунок 13. Цепь проверки пульсирующего напряжения

(2) Для настройки осциллографа сначала необходимо установить его в положение тестирования постоянного тока, а ручка точной настройки напряжения осциллографа должна быть заблокирована.

(3) Во время испытания напряжение постоянного тока следует медленно увеличивать до номинального напряжения с помощью регулятора напряжения, а изменения, отображаемые осциллографом, следует тщательно контролировать. Следует выбрать правильный диапазон, чтобы обеспечить точное считывание напряжения с осциллограммы осциллографа.

(4) Снимите форму волны пульсации камерой и запишите диапазон и деление осциллографа с помощью этикеточной бумаги (то есть вычислите напряжение пульсации и вставьте его на соответствующий конденсатор для последующего анализа и сравнения.

(5) После завершения записи отключите источник питания постоянного тока, разрядите проверяемый конденсатор и неиндуктивный конденсатор с помощью ламповой нагрузки, а затем удалите проверяемый конденсатор с испытательного стенда.

6.4 Испытание на ток утечки

6.4.1 Первый метод косвенного измерения

Подключите, как показано ниже. Подключите резистор 1 кОм последовательно с тестируемым конденсатором и подключите его к регулируемому источнику питания постоянного тока.Используйте пробник осциллографа для подключения к обоим концам резистора. Косвенно рассчитайте ток утечки конденсатора, который будет измерен, путем выборки сигнала напряжения на резисторе.

Основы эксплуатации и меры предосторожности: После подключения цепи отрегулируйте регулируемый источник питания постоянного тока на номинальное напряжение конденсатора. После того, как цепь уравновесится в течение двух минут, считайте значение напряжения на резисторе. При считывании показаний осциллографа ручка регулировки напряжения должна быть заблокирована.Запишите максимальное значение кривой напряжения как значение напряжения и разделите его на значение сопротивления, чтобы получить значение тока утечки. Слишком большой ток и перегорел резистор. После испытания конденсатор следует разрядить, а затем удалить, чтобы избежать несчастных случаев.

Рисунок14. Схема

6.4.2 Второй метод косвенного измерения

Подключите проводку, как показано на рисунке, и последовательно подключите воздушный переключатель между конденсатором и источником питания постоянного тока.Сначала замкните S1 и S2 соответственно и настройте регулятор напряжения на номинальное напряжение, чтобы зарядить конденсатор в течение двух минут.

Рисунок15. Схема

После этого отключаются и S1, и S2. В это время регулируемый источник питания находится на номинальном значении. Не шевелись. Добавьте миллиамперметр между S1 и S2, как показано на рисунке ниже: S1 и S2 замкнуты, и ток утечки может быть непосредственно считан миллиамперметром после одной минуты стабилизации.

Рисунок16. Схема

6.4.3 Меры предосторожности

Помните, что нельзя подключать миллиамперметр к линии напрямую, когда конденсатор не заряжен, так как начальный зарядный ток велик, миллиамперметр может сгореть случайно. В процессе разборки сначала разрядите конденсатор с помощью лампы накаливания. При разрядке сначала снимите миллиамперметр и убедитесь, что разрядный ток не проходит через испытательный резистор, чтобы предотвратить повреждение испытательного резистора и миллиметра.

6.4.4 Ток утечки при 1,2Un

Отрегулируйте напряжение постоянного тока так, чтобы оно в 1,2 раза превышало номинальное напряжение электролитического конденсатора, снова измерьте его ток утечки и сравните разные образцы.

6.5 Испытание на взрыв

6.5.1 Испытание постоянным током

Подайте обратное постоянное напряжение на проверяемый конденсатор, медленно отрегулируйте регулируемое постоянное напряжение и внимательно наблюдайте за током с помощью токоизмерительных клещей. Установка мощности постоянного тока обычно не превышает 30 В.Текущее значение устанавливается в соответствии с размером конденсатора следующим образом:

При диаметре конденсатора 6 мм ≤ 22,4 мм ток не может превышать 1 А; когда диаметр конденсатора> 22,4 мм, ток не может превышать 10 А.

6.5.2 Наблюдение за температурой поверхности конденсатора

Во время эксперимента используйте термометр, чтобы внимательно наблюдать за температурой поверхности конденсатора (чувствительный контакт термометра можно обернуть вокруг конденсатора лентой).Обратите внимание, что начальный ток очень мал и почти равен нулю. При повышении температуры конденсатора (примерно 35-40 ° C) ток значительно увеличивается. В это время следует внимательно наблюдать. Когда ток достигает или приближается к 10А, необходимо снизить напряжение, чтобы обеспечить контроль тока в пределах 10А.

6.5.3 Конденсаторный предохранительный клапан

В течение 30 минут после начала испытания предохранительный клапан конденсатора должен быть открыт.Если предохранитель конденсатора перегорел, питание следует немедленно отключить (электролитический конденсатор 350V 6800F автоматически откроется при следующих условиях, ток около 8A, температура поверхности около 45-60 ° C), если ток близок к 10А, и через 30 минут предохранитель все еще горит. Если он не включен, эта функция отсутствует.

Рисунок17. Цифровой вольтметр постоянного тока

6.6 Температурный тест

Емкость конденсатора будет изменяться в зависимости от температуры окружающей среды.Как правило, емкость увеличивается с повышением температуры. Температурный тест предназначен для проверки изменения емкости после уравновешивания при заданной температуре.

6.6.1 Высокотемпературный тест

(1) Подключите два небольших провода к выводной клемме конденсатора, который нужно проверить, соответственно, и проверьте емкость двух выводов при нормальной температуре и пометьте их для записи.

(2) Поместите конденсатор в камеру для испытания на переменную влажность и нагрев при высоких и низких температурах и оставьте провода вне камеры для проверки емкости.

(3) Включите кнопку переключателя тестового блока, нажмите «Настройка температуры» на экране, установите температуру на 100 ° C и нажмите «Выполнить», чтобы запустить тестовый блок.

(4) Проверьте емкость еще раз примерно через 2 часа после того, как температура достигнет 100 ° C, и вычислите процентное изменение емкости (первоначальное измерение разницы).

6.6.2 Испытание при низких температурах

(1) Поместите проверяемый конденсатор в испытательный бокс (будьте осторожны, не используйте конденсаторы, испытанные при высоких температурах, за исключением особых случаев).

(2) Включите кнопку переключателя тестового бокса, нажмите на экране «установка температуры», установите температуру на -25 ° C и нажмите «запустить».

(3) Проверьте емкость еще раз примерно через 2 часа после того, как температура достигнет -25 ° C, и вычислите процентное изменение емкости (первоначальное измерение разницы).

6.6.3 Меры предосторожности

При испытании следует обратить пристальное внимание на то, есть ли какие-либо очевидные изменения в конденсаторе.Если возникают серьезные условия, такие как растрескивание поверхности конденсатора и открытие предохранительного клапана, испытательную камеру следует немедленно остановить. Во время испытания следует строго соблюдать рабочие процедуры испытательного бокса, и дверь испытательного бокса не должна открываться по желанию. В конце высокотемпературного испытания конденсатор можно вынуть только после того, как температура внутри испытательного бокса упадет, чтобы предотвратить несчастные случаи, такие как ожоги.

Рисунок 18.Конденсаторы

VII Рекомендации по тестированию конденсаторов

(1) При измерении с помощью мультиметра выберите передачу в соответствии с номинальным напряжением конденсатора. Например, напряжение конденсатора, обычно используемое в электронном оборудовании, низкое, всего от нескольких вольт до нескольких десятков вольт. Если для измерения используется мультиметр RX10k, напряжение батареи в измерителе составляет 12 ~ 22,5 В, что может вызвать пробой конденсатора. Следовательно, следует использовать файл RXlk. измерения.

(2) Для конденсатора, только что снятого с линии, обязательно разрядите конденсатор перед измерением, чтобы предотвратить разряд конденсатора на счетчике и его повреждение.

(3) Для конденсаторов с высоким рабочим напряжением и большой емкостью конденсаторы должны быть достаточно разряжены, и оператор должен иметь защитные меры для предотвращения поражения электрическим током во время разряда.

8.1 Вопрос

Что делать при проверке конденсатора омметром?

8.2 Ответ

Убрать конденсатор из схемы.

Обычно легко снять пусковой или рабочий конденсатор — достаточно просто отсоединить его от жгута и отсоединить провода. Однако будьте осторожны, чтобы не прикасаться к клеммам конденсатора. Если конденсатор не разряжен, возможно, он полностью заряжен, и в таком случае вы можете получить серьезный шок.

Часто задаваемые вопросы о том, как проверить конденсатор

1. Как проверить с помощью мультиметра, исправен ли конденсатор?

Используйте мультиметр и снимите напряжение на выводах конденсатора.Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр. Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

2. Как проверить конденсатор дома?

Настройте вольтметр на измерение постоянного напряжения (если он способен измерять как переменный, так и постоянный ток). Подключите выводы вольтметра к конденсатору. Подключите положительный (красный) провод к положительной (более длинной) клемме, а отрицательный (черный) провод к отрицательной (более короткой) клемме.Обратите внимание на начальное значение напряжения.

3. Как проверить конденсатор мультиметром?

4. Можете ли вы проверить конденсатор на плате?

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра. … Когда конденсатор находится за пределами платы, иногда неисправный конденсатор может дать вам правильное значение емкости на мультиметре или измерителе конденсатора.

5. Какой тестер конденсаторов самый лучший?

Обзор лучшего измерителя емкости

:

Signstek MESR-100 V2 Автоматический выбор диапазона в цепи Конденсатор измерителя ESR LCR

Цифровой тестер конденсаторов ELIKE от 0,1 пФ до 20 мФ

Honeytek A6013l Тестер конденсаторов

Тестер цепей MESR-100, Тестер конденсаторов KKMOON mesr-100

Мультиметр Цифровой измеритель емкости Тестер конденсатора от 0,1Pf до 2000uF

Excelvan M6013 Цифровой измеритель емкости с автоматическим определением диапазона, тестер конденсатора

Цифровой измеритель емкости Профессиональный конденсатор 0.1Pf — 20000Uf

6. Как проверить конденсатор дешевым мультиметром?

7. Сколько Ом должен иметь конденсатор?

1000 Ом

Установите максимальное значение сопротивления (Ом), по крайней мере, 1 кОм (1000 Ом). При этой настройке измеритель генерирует небольшой ток при подключении выводов измерителя к клеммам конденсатора.

8. Что означает символ конденсатора на мультиметре?

В большинстве цифровых мультиметров для обозначения емкости используется символ, похожий на — | (-.Переместите циферблат к этому символу. Если несколько символов разделяют это место на циферблате, вам может потребоваться нажать кнопку, чтобы переключаться между ними, пока на экране не появится символ емкости.

9. Что делать, если конденсатор показывает высокий уровень?

Считывает, что на нем короткое замыкание. Если мы увидим очень высокое сопротивление на конденсаторе (несколько МОм), это признак того, что конденсатор, вероятно, тоже неисправен. Считывается, что на конденсаторе есть разрыв…. Но не 0 Ом или несколько МОм.

10. Что является первым шагом при испытании конденсатора?

Первый и самый простой — проверить конденсатор. Если он выглядит «размазанным» или опухшим, можно с уверенностью сказать, что это плохо. Хорошей практикой будет провести следующий тест, даже если он опух. Сделайте набросок проводов, подключенных к конденсатору, и запишите их цвета или числа.

Как проверить конденсатор с помощью мультиметра -5 Методы

Печатные платы

собираются из электронных компонентов, таких как транзисторы, конденсаторы, интегральные схемы (ИС).Если по какой-либо причине компонент неисправен, его необходимо заменить новым для ремонта устройства. Первый шаг в поиске и устранении неисправностей — определить, какой компонент системы неисправен, путем измерения с помощью инструментов или визуального осмотра.

Например, если мы говорим о конденсаторах, они очень чувствительны к скачкам напряжения, а перенапряжение может необратимо повредить конденсатор. Как проверить конденсаторы на предмет неисправности или условия работы для ремонта — тема данной статьи. Устранение неисправностей конденсатора с помощью мультиметра или других инструментов.

Что такое конденсатор?

Конденсатор — это компонент, который накапливает энергию в виде электрического заряда и часто используется в электронных приборах, таких как вентиляторы и компрессоры кондиционирования воздуха, для выполнения различных функций.

Кроме того, эти конденсаторы можно разделить на два типа: электролитические, связанные в основном с вакуумными и транзисторными источниками питания, и неэлектролитические, совместимые с регулированием постоянного тока.

Как проверить конденсатор с помощью мультиметра

Из этого туториала Вы узнаете, как проверить конденсатор переменного тока с помощью цифрового мультиметра, а также как проверить его без него.

1. Использование цифрового мультиметра с настройкой емкости

Проверка конденсаторов с помощью цифрового мультиметра с функцией измерителя емкости — один из самых простых и распространенных способов. В современных цифровых мультиметрах можно встретить как измеритель емкости, так и измеритель напряжения

.

Точно так же этот метод работает и с крошечными SMD-компонентами. Пошаговые инструкции о том, как проверить конденсатор переменного тока с помощью цифрового мультиметра, можно найти ниже

.
  • Удалите конденсатор из цепи и убедитесь, что он полностью разряжен, прежде чем измерять его значение.
  • Обратите внимание, что емкость конденсатора на его корпусе указывается в фарадах, поскольку единицей измерения емкости является фарад, обычно выражаемый в микрофарадах (Ф).
  • Установите мультиметр в режим «емкости», повернув ручку.
  • Зонд мультиметра должен быть подключен к клеммам конденсатора. Соедините положительную клемму с красным щупом мультиметра, а отрицательную клемму с черным щупом, если соблюдается полярность.
  • Запишите фактическое значение на листе бумаги после проверки мультиметра.
  • Сравните оба показания, и если есть большая разница между напечатанным показанием и измеренным показанием или измеренное показание равно нулю, конденсатор неисправен и его необходимо заменить на исправный.
Рис — Демонстрация того, как проверить конденсатор переменного тока с помощью цифрового мультиметра

2. Использование цифрового мультиметра без настройки емкости

Некоторые цифровые мультиметры не имеют функции измерения емкости, поэтому описанный выше метод неприменим, но мы все же можем проверить конденсатор, измерив его сопротивление.Пошаговая инструкция по проверке конденсатора мультиметром путем измерения его сопротивления

  • Выньте конденсатор из цепи и убедитесь, что он полностью разряжен.
  • Установите ручку мультиметра в положение Ом (единица сопротивления) или греческую букву омега (*), как показано на рисунке 1.
  • Снова подключите выводы мультиметра к клеммам конденсатора, убедившись, что красный находится на положительной клемме и черный находится на минусовой клемме.
  • Следует отметить первое значение сопротивления, которое появляется на дисплее.В течение нескольких секунд он устанавливает отображение значения бесконечности (Открыть).
  • Отсоедините датчики и повторно соблюдайте их. Это означает, что конденсатор находится в хорошем рабочем состоянии, если результаты такие же, как и в первый раз.
  • Конденсатор неисправен (мертв), если он не изменился ни в одном из повторных тестов.

3. Проверьте конденсатор с помощью простого аналогового мультиметра

Используя другие параметры, такие как ток (A), напряжение (V) и сопротивление (O), мы можем проверить конденсатор так же, как мы можем с цифровыми мультиметрами.В этом разделе объясняется, как вы можете проверить конденсатор с помощью измерения сопротивления. Это пошаговое руководство по тестированию конденсатора с помощью простого аналогового мультиметра

.
  • Повторите те же шаги еще раз: выньте конденсатор из цепи и проверьте его на полную разрядку.
  • Убедитесь, что ваш мультиметр настроен на настройку сопротивления (омметр *), и выберите более высокий диапазон.
  • Красный датчик должен подключаться к положительной клемме, а черный датчик — к отрицательной клемме.
  • Указатель стрелки на дисплее аналогового мультиметра измеряет показания, а положение иглы определяет результат измерения емкости.
  • Это указывает на то, что конденсатор работает правильно, если стрелка сначала показывает низкое значение, а затем перемещается в правую сторону и через некоторое время отображает более высокое значение.
  • Когда стрелка сначала показывает низкое значение и не движется дальше, это указывает на неисправный конденсатор.
  • Возможно, что стрелка в третьем случае не показывает значения сопротивления или не двигается ни на какое значение.Это указывает на то, что конденсатор открыт и неисправен.

3. Проверка конденсатора с помощью вольтметра

Чтобы проверить, неисправен ли конденсатор, мы воспользуемся простым вольтметром для измерения его номинального напряжения. Вы можете выполнить следующие действия, чтобы проверить конденсатор с помощью вольтметра, в следующем разделе: Проверка конденсатора с помощью вольтметра

  • После того, как конденсатор полностью разрядится, снимите его и удалите из цепи.Для измерения также можно убрать одну задержку.
  • Номинальное напряжение конденсатора должно быть записано на листе бумаги на измерителе и проверено за пределами корпуса конденсатора. Вы можете найти цифру после большой буквы «V» на любой части тела. Например, 16В, 50В или другое значение.
  • Теперь конденсатор необходимо зарядить напряжением ниже его номинального. Если номинальное напряжение конденсатора составляет 30 В, зарядите его 9 В и зарядите не менее 600 В.
  • Убедитесь, что положительная клемма подключена к красному щупу, а отрицательная клемма — к черному щупу.
  • Подключите красный щуп к положительной клемме, а черный щуп к отрицательной клемме вольтметра. Теперь вы готовы измерить напряжение заряженного конденсатора.
  • Конденсатор, размер которого близок к его номинальному значению, является хорошим конденсатором. Конденсатор неисправен, если разрыв напряжения больше.

4. Замыкание клеммы конденсатора

Этот метод был более популярен в прежние времена, так как не требовал никаких измерительных устройств для проверки.В этой статье мы обсудим, как проверить конденсатор без мультиметра

.

Метод опасен и не рекомендуется профессионалами, но при необходимости следует соблюдать меры предосторожности. Необходимо надевать защитные перчатки, нельзя прикасаться к металлическим поверхностям. Ниже приводится пошаговое руководство о том, как закоротить клемму конденсатора для проверки конденсатора. Следующие шаги используются при тестировании конденсатора

.
  • Снимите конденсатор с печатной платы путем распайки, при этом конденсатор должен быть полностью разряжен.
  • На время от одной до четырех секунд подключите красный к положительной клемме, а черный к отрицательной клемме источника питания.
  • В качестве меры предосторожности закоротите конденсаторы на металлическую проволоку или стержень.
  • По силе искры можно определить зарядную емкость конденсатора. Конденсатор в хорошем состоянии, если искра сильная и долгая. В противном случае неисправен конденсатор.

Как проверить конденсатор мультиметром в цепи

Теперь другой вопрос, как проверить конденсатор без распайки или без снятия конденсатора с печатной платы.

Когда конденсатор установлен на печатной плате, невозможно измерить фактическое номинальное значение с помощью мультиметра или измерителя емкости, потому что на той же печатной плате размещено несколько других компонентов. За счет этого конденсатор приобретает эквивалентную, а не реальную стоимость.

Теперь вопрос снова тот же: как проверить конденсатор без демонтажа компонента, и если да, то как это возможно.

Да, это возможно при использовании эквивалентного измерителя последовательного сопротивления (ESR) или интеллектуального пинцета, оба работают нормально, но измеритель ESR больше подходит для компонентов со сквозным отверстием, а интеллектуальный пинцет для крошечных компонентов SMD.Как проверить конденсатор без распайки. Для определения неисправного конденсатора используются 3 метода.

1. Проверьте конденсатор с помощью измерителя ESR

Устройство для измерения ESR, используемое для определения эквивалентного последовательного сопротивления конденсатора без демонтажа или снятия его с печатной платы. Это устройство не может измерить емкость, но может проверить конденсатор. Вы можете купить онлайн (измеритель СОЭ (ссылка на Amazon)

)

Ниже приведены шаги, которые необходимо выполнить, чтобы проверить понимание конденсатора схемы.

  • Для проверки конденсатора первым и важным шагом является его полная разрядка. Для разряда можно закоротить клемму конденсатора с помощью металлических предметов.
  • Включите измеритель СОЭ и соедините красную ножку с положительной клеммой конденсатора, а черную — с отрицательной клеммой. и закоротите его выводы, пока не отобразится нулевое значение.
  • Запишите показания измерителя СОЭ и запишите его.
  • Теперь сравните отмеченные показания таблицы на корпусе измерителя ESR.Если зазор находится в пределах допустимого диапазона, конденсатор исправен и его не нужно менять.
  • ESR не дает никакой таблицы, которую вы можете сверить с таблицей данных конденсатора и сравнить ее с измеренным значением.

2. Пинцет Smart Интеллектуальные пинцеты

более удобны и портативны, чтобы выполнять работу более увлекательно и комфортно. Измеритель ESR не более надежен в работе с крошечным SMD-компонентом.

Но недостатком умных пинцетов является то, что они слишком дороги, иначе они работают очень умно и эффективно. (Умный пинцет (ссылка на Amazon)

3. Визуальный осмотр неисправного конденсатора

Иногда вы можете проверить конденсатор визуально, а не просто с помощью интеллектуального пинцета или измерителя ESR.

Неисправный конденсатор проглатывается с верхней стороны и получает повреждения или прожоги на корпусе. Если вы обнаружите такие наблюдения во время осмотра, замените подозрительный конденсатор на новый.

Заключение — Подведение итогов

С этой информацией вы сможете ответить на вопрос о том, как проверить конденсатор с помощью мультиметра в обоих условиях: не снимая его с печатной платы и прикрепляя к печатной плате.Также как проверить конденсаторы без мультиметра.

С помощью цифровых мультиметров и измерителей ESR, а также интеллектуального пинцета вы можете определить неисправные конденсаторы. Мультиметр используется для измерения ESR конденсатора в цепи, а интеллектуальный пинцет используется для проверки конденсатора.


Как проверить конденсатор цифровым мультиметром

Конденсаторы играют важную роль в электрической системе, поскольку они выполняют множество важных задач в схемотехнике.

От предоставления гибких вариантов фильтра до защиты чувствительных микрочипов от шума до ограничения скачков напряжения до накопления энергии, развязки и, что более важно, поддержания постоянного источника питания — конденсаторы в цепи можно использовать по-разному.

Конденсаторы могут быть повреждены из-за старения, нагрева, высокого напряжения, влажности, химического загрязнения и влаги. Поскольку выходящие из строя конденсаторы являются одной из распространенных причин электрических и электронных неисправностей, вам, как владельцу бизнеса, необходимо вовремя выявить неисправный конденсатор, проверив его с помощью цифрового мультиметра.

Но как узнать, исправен конденсатор или неисправен? Как быстро и качественно проверить конденсатор с помощью цифрового мультиметра?

Вы можете определить, неисправен ли конденсатор, выполнив простую визуальную проверку. Одним из явных признаков неисправного конденсатора является вздутый или выпуклый верх или низ. Проверьте корпус конденсатора и печатную плату, чтобы убедиться, что он не изменился в цвете или не поврежден. Еще один показатель неисправности конденсатора — наличие протекающего электролита.

Немедленно замените конденсаторы, если вы заметите какие-либо из этих видимых признаков.

Выполните следующие пять шагов, чтобы проверить конденсаторы с помощью цифрового мультиметра:

1. Убедитесь, что конденсатор разряжен: Одна из основных функций конденсатора — накапливать энергию; поэтому, если вы не разрядите конденсатор должным образом перед тем, как использовать его для тестирования, он может вызвать ожоги или травмы. Вам понадобится инструмент для разряда конденсатора, например лампочка для высоковольтного конденсатора или металлический предмет, например винт, для разряда меньшего конденсатора.

2. Установите цифровой мультиметр на высокий диапазон сопротивления. Следующим шагом является установка показания измерителя в диапазоне высокого сопротивления. Идеальное показание измерителя должно быть выше 1000 Ом = 1 кОм.

3. Подключите провода измерителя к клеммам конденсатора: Для поляризованного конденсатора подключите красный щуп к положительной клемме, а черный щуп к отрицательной клемме. Неполяризованный конденсатор можно подключить любым способом. Не прикасайтесь к датчикам пальцами, поскольку электрическое сопротивление человеческого тела может привести к неточным показаниям.

4. Обратите внимание на цифровое показание сопротивления: цифровой мультиметр начнет показывать с нуля и будет двигаться в сторону бесконечности. Затем он остановится на значении цифрового сопротивления и вернется к открытой линии. Запишите показания и проверьте, приближается ли показание к значению сопротивления, указанному на конденсаторе.

5. Повторите шаги 2–4: Если тест показывает тот же результат при повторении, то конденсатор является исправным. Однако, если разница между фактическим значением и измеренным показанием значительно большая, то конденсатор плохой.Если показание равно нулю, значит, конденсатор мертв. В обоих случаях вам необходимо немедленно заменить конденсатор.

Конденсаторы

выполняют различные функции в электронных и электрических системах и важны для достижения надежности в приложениях.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *