Site Loader

Содержание

Фазный ротор электродвигателя

Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.


 

Конструкция фазного ротора

Фазный ротор  АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.

В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.

Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.

Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Отличие короткозамкнутого ротора от фазного

В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название — “беличья клетка”.

Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.

Преимущества и недостатки электродвигателя с фазным ротором

Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.

Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

  Область применения электродвигателей с фазным ротором

Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.

За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.

  Проверка электродвигателя с фазным ротором

Как известно, электродвигатели с фазным ротором имеют обмотки как на статоре, так и на роторе, что повышает вероятность выхода из строя именно одной из них.

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

 Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Что такое Трехфазный Асинхронный Электродвигатель?

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателя

Ротор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателя

Конструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов
Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током

Магнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени

Ток протекающий в витках электродвигателя (сдвиг 60°)

Вращающееся магнитное поле

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый ротор

Магнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n

2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2<n1. Частота вращения поля статора относительно ротора определяется частотой скольжения ns=n1-n2. Отставание ротора от вращающегося поля статора характеризуется относительной величиной s, называемой скольжением:

  • где s – скольжение асинхронного электродвигателя,
  • n1 – частота вращения магнитного поля статора, об/мин,
  • n2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора.

В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s~0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением.

Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии

Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.

Купить асинхронный трехфазный электродвигатель можно у нас в интернет магазине, всегда рады помочь!

Что такое ротор электродвигателя? Типы и состав

DeMotor

Электродвигатель

сообщите об этом объявлении сообщите об этом объявлении

Ротор – это компонент, который вращается в электрической машине. Одно и то же определение справедливо независимо от того, является ли электрическая машина электродвигателем или электрогенератором.

В электродвигателе ротор работает вместе со статором (неподвижной частью) для передачи мощности электрической машины.

Конструкция и работа генератора переменного тока | Как работает генератор?

Помимо того, что это компонент электродвигателя, этот термин обычно используется во вращающихся машинах, таких как турбины и центробежные насосы, в отличие от так называемого статора

Как формируется ротор электрической машины?

Ротор состоит из вала, образованного валом, поддерживающим набор катушек, намотанных на магнитный сердечник.

Этот вал вращается в магнитном поле, создаваемом магнитом, электромагнитом или проходя через другой набор катушек, намотанных на полюсные наконечники.

Набор этих полюсных наконечников называется статором. Статор остается неподвижным, и через него протекает электрический ток. В зависимости от двигателя ток может быть постоянным или переменным.

Если ротор должен использоваться в машинах переменного тока средней и большой мощности, их обычно изготавливают из листов электротехнической стали. Эти специальные листы помогают уменьшить потери, вызванные переменными магнитными полями, такими как явления гистерезиса или вихревые токи.

Типы роторов для двигателей переменного тока

Электродвигатели, работающие на переменном токе, могут работать с одним из следующих типов роторов:

  • Беличья клетка, этот тип ротора используется для асинхронных двигателей.

  • С полюсными наконечниками этот тип ротора используется для синхронного двигателя или синхронного генератора переменного тока, а полюсные наконечники получаются:

    • Постоянными магнитами, в этом случае двигатель или генератор переменного тока пары полюсов, как пары полюсов статора, независимо от типа двигателя (трехфазный или однофазный).
      Единственным исключением являются трехфазные или двухфазные генераторы переменного тока мотоциклов, где генераторы переменного тока не являются фактически трехфазными или двухфазными генераторами переменного тока, а являются трехфазными или двумя однофазными генераторами переменного тока, расположенными на равном расстоянии друг от друга, с учетом трех или двух пары полюсов. Следовательно, есть три или две синусоидальные волны, которые не находятся в противофазе.

    • Электромагниты, данные электромагниты питаются в зависимости от трехфазного или однофазного двигателя/генератора через трехфазную или однофазную сеть и эти расширения должны быть по одному на фазу и на полярную пару (поэтому в в случае трехфазного двухполюсного генератора переменного тока имеется три электромагнита, в случае трехфазного четырехполюсного генератора переменного тока — шесть электромагнитов).

Типы роторов для двигателей постоянного тока

Ротор универсальных двигателей или двигателей постоянного тока может быть:

  • Постоянные магниты; Система, используемая бесщеточным двигателем и шаговым двигателем

  • Обмотка; Система, используемая почти во всех двигателях постоянного тока и универсальных двигателях, различные катушки возбуждаются в определенном порядке с помощью щеточного коллектора.

    сообщите об объявлении

    Автор: Ориол Планас — инженер-промышленник, специальность механик

    Опубликовано: 13 ноября 2017 г.
    Последнее изменение: 12 ноября 2021 г.

    Содержание

    Хотите узнать больше?

    Статор
    Коллектор двигателя
    Индуктивный
    Демотор · en.demotor.net | Контакты | Карта сайта |

    Каково назначение электродвигателя?

    Электродвигатели можно найти во многих бытовых приборах, а также в крупных промышленных предприятиях, но какова их цель и как они работают? Электродвигатели Parvalux питают промышленность по всему миру, от конвейерных систем и автоматических дверей до систем стеклоочистителей поездов и даже игровых автоматов. В этом блоге мы обсуждаем, как работают компоненты электродвигателей и как их использовать в различных отраслях промышленности.

    Как работают электродвигатели?

    В общих чертах, электродвигатели работают путем преобразования электрической энергии в механическую. Когда это происходит в магнитном поле, создается сила, вызывающая вращение вала. Электродвигатели могут питаться от сил переменного или постоянного тока, следовательно, двигатели переменного и постоянного тока.

    Каковы основные компоненты электродвигателя?

    В зависимости от их использования и типа тока, проходящего через электродвигатель, каждый из них имеет различные компоненты, обеспечивающие работу двигателя. Вот некоторые из ключевых частей двигателя:

    • Ротор – Ротор представляет собой катушку, установленную на оси, и обеспечивает механическую энергию вращения. Он вращается с высокой скоростью и может включать в себя проводники, несущие ток и взаимодействующие с магнитным полем в статоре
    • .
    • Статор — действует противоположно ротору, поскольку является неподвижной частью электромагнитной цепи. Он состоит из постоянных магнитов или обмоток и часто состоит из тонких металлических листов, называемых пластинами, которые могут помочь уменьшить потери энергии. В основном они встречаются в коллекторных двигателях постоянного тока 9.0032
    • Коммутатор. Эта деталь является очень важным компонентом двигателей постоянного тока, поскольку без нее ротор не сможет непрерывно вращаться. Коллектор представляет собой полукольцо в электродвигателе, обычно сделанное из меди, и позволяет ротору вращаться за счет изменения направления тока каждый раз, когда ротор поворачивается на 180 градусов

    Важно помнить, что эти детали работают по-разному в зависимости от того, являются ли они щеточными или бесщеточными двигателями. В бесщеточном двигателе постоянного тока постоянные магниты установлены на роторе, а электромагниты на статоре.

    Для чего используются электродвигатели?

    Электродвигатели используются в различных отраслях промышленности по разным причинам, в первую очередь из-за их более длительного срока службы по сравнению, скажем, с двигателями, работающими на ископаемом топливе, поскольку они требуют меньшего обслуживания и предлагают более экологичную альтернативу.

    Двигатели переменного тока можно найти в конвейерных системах, как правило, на заводах и складах, поскольку они могут обеспечить стабильную и постоянную доставку. Другой пример их использования — в системах кондиционирования воздуха.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *