Site Loader

Содержание

Катушка индуктивности: устройство, принцип работы, назначение

Катушки индуктивности нашли широкое применение в электротехнике в качестве накопителей энергии, колебательных контуров, ограничения тока. Поэтому их можно встретить везде, начиная от портативной электроники, заканчивая подстанциями в виде гигантских реакторов. В этой статье мы расскажем, что это такое катушка индуктивности, а также какой у нее принцип работы и многое другое.

Определение и принцип действия

Катушка индуктивности — это катушка смотанного в спираль или другую форму изолированного проводника. Основные особенности и свойства: высокая индуктивность при низкой ёмкости и активном сопротивлении.

Она накапливает энергию в магнитном поле. На рисунке ниже вы видите её условное графическое обозначение на схеме (УГО) в разных видах и функциональных назначениях.

Обозначение катушки индуктивности на схеме

Она может быть с сердечником и без него. При этом с сердечником индуктивность будет в разы больше, чем если его нет. От материала, из которого изготовлен сердечник, также зависит величина индуктивности. Сердечник может быть сплошным или разомкнутым (с зазором).

Напомним один из законов коммутации:

Ток в индуктивности не может измениться мгновенно.

Это значит, что катушка индуктивности — это своего рода инерционный элемент в электрической цепи (реактивное сопротивление).

Давайте поговорим, как работает это устройство? Чем больше индуктивность, тем больше изменение тока будет отставать от изменения напряжения, а в цепях переменного тока — фаза тока отставать от фазы напряжения.

График

В этом и заключается принцип работы катушек индуктивности – накопление энергии и задерживание фронта нарастания тока в цепи.

Из этого же вытекает и следующий факт: при разрыве в цепи с высокой индуктивностью напряжение на ключе повышается и образуется дуга, если ключ полупроводниковый — происходит его пробой. Для борьбы с этим используются снабберные цепи, чаще всего из резистора и конденсатора, установленного параллельно ключу.

Снаббер

Виды и типы катушек

В зависимости от сферы применения и частоты цепи может отличаться конструкция катушки.

По частоте можно условно разделить на:

  • Низкочастотные. Пример — дроссель люминесцентной лампы, трансформатор (каждая обмотка представляет собой катушку индуктивности), реактор, фильтры электромагнитных помех. Сердечники чаще всего выполняются из электротехнической стали, для цепей переменного тока из листов (шихтованный сердечник).Низкочастотные
  • Высокочастотные. Например, контурные катушки радиоприемников, катушки связи усилителей сигнала, накопительные и сглаживающие дроссели импульсных блоков питания. Их сердечник изготавливают обычно из феррита.Высокочастотные

Конструкция отличается в зависимости от характеристик катушки, например, намотка может быть однослойной и многослойной, намотанной виток к витку или с шагом. Шаг между витками может быть постоянным или прогрессивным (изменяющимся по длине катушки). Способ намотки и конструкция влияют на конечные размеры изделия.

Шаг намотки

Отдельно стоит рассказать о том, как устроена катушка с переменной индуктивностью, их еще называют вариометры. На практике можно встретить разные решения:

  • Сердечник может двигаться относительно обмотки.
  • Две обмотки расположены на одном сердечнике и соединены последовательно, при их перемещении изменяется взаимоиндукция и индуктивная связь.
  • Сами витки для настройки контура могут раздвигаться или сужаться приближаясь друг к другу (чем плотнее намотка — тем больше индуктивность).

И так далее. При этом подвижная часть называется ротором, а неподвижная — статором.

Виды

По способу намотки бывают также различными, например, фильтры со встречной намоткой подавляют помехи из сети, а намотанные в одну сторону (согласованная намотка) подавляют дифференциальные помехи.

Для чего нужны и какие бывают

В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.

Дроссель

Дроссели. Обычно так называются устройства для ограничения тока, область применения:

  • В пускорегулирующей аппаратуре для розжига и питания газоразрядных ламп.Фильтры
  • Для фильтрации помех. В блоках питания — фильтр электромагнитных помех со сдвоенным дросселем на входе компьютерного БП, изображен на фото ниже. Также используется в акустической аппаратуре и прочем.Фильтр электромагнитных помех
  • Для фильтрации определенных частот или полосы частот, например, в акустических системах (для разделения частот по соответствующим динамикам).
  • Основа в импульсных преобразователях — накопитель энергии.

Токоограничивающие реакторы — используются для ограничения токов короткого замыкания на ЛЭП.

Токоограничивающие реакторы

Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.

Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.

Вариометры. Как было сказано — это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.

Соленоид — так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы — поступательного движения. Такие изделия называют еще электромагнитами.

Рассмотрим, где используются соленоиды.

Соленоиды

Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.

В реле, контакторах и пускателях соленоид также выполняет функцию электромагнита для привода силовых контактов. Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.

Катушка реле

Рамочные и кольцевые антенны. Их назначение — передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.

Иммобилайзер

Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).

Индукционный нагреватель

Основные параметры

К основным характеристикам катушки индуктивности можно отнести:

  1. Индуктивность.
  2. Силу тока (для подбора подходящего элемента при ремонте и проектировании это нужно учитывать).
  3. Сопротивление потерь (в проводах, в сердечнике, в диэлектрике).
  4. Добротность — отношение реактивного сопротивления к активному.
  5. Паразитная емкость (емкость между витками, говоря простым языком).
  6. Температурный коэффициент индуктивности — изменение индуктивности при нагреве или охлаждении элемента.
  7. Температурный коэффициент добротности.

Маркировка

Для обозначения номинала катушки индуктивности используют буквенную или цветовую маркировку. Есть два вида буквенной маркировки.

  1. Обозначение в микрогенри.Маркировка в микрогенри
  2. Обозначение набором букв и цифр. Буква r – используется вместо десятичной запятой, буква в конце обозначения обозначает допуск: D = ±0.3 нГн; J = ±5%; К = ±10%; М = ±20%.Обозначение цифрами и буквами

Цветовую маркировку можно распознать аналогично таковой на резисторах. Воспользуйтесь таблицей, чтобы расшифровать цветные полосы или кольца на элементе. Первое кольце иногда делают шире остальных.

Цветовое обозначение

На это мы и заканчиваем рассматривать, что собой представляет катушка индуктивности, из чего она состоит и зачем нужна. Напоследок рекомендуем посмотреть полезное видео по теме статьи:

Материалы по теме:

Автор: Алексей Бартош

Катушка индуктивности

Катушка индуктивности – электронный компонент, представляющий собой винтовую либо спиральную конструкцию, выполненную с применением изолированного проводника.  Основным свойством катушки индуктивности, как понятно из названия – индуктивность. Индуктивность – это свойство преобразовать энергию электрического тока в энергию магнитного поля. Величина индуктивности для цилиндрической или кольцевой катушки равна 

Где  ψ — потокосцепление, µ0 = 4π*10-7 – магнитная постоянная, N – количество витков, S – площадь поперечного сечения катушки.

Также катушке индуктивности присущи такие свойства как небольшая ёмкость и малое активное сопротивление, а идеальная катушка и вовсе их лишена. Применение данного электронного компонента отмечается практически повсеместно в электротехнических устройствах. Цели применения различны:

— подавление помех в электрической цепи;
— сглаживание уровня пульсаций;
— накопление энергетического потенциала;
— ограничение токов переменной частоты;
— построение резонансных колебательных контуров;
— фильтрация частот в цепях прохождения электрического сигнала;
— формирование области магнитного поля;
— построение линий задержек, датчиков и т.д.

Энергия магнитного поля катушки индуктивности

Электрический ток способствует накоплению энергии в магнитном поле катушки. Если отключить подачу электричества, накопленная энергия будет возвращена в электрическую цепь. Значение напряжения при этом в цепи катушки возрастает многократно. Величина запасаемой энергии в магнитном поле равна примерно тому значению работы, которое необходимо получить, чтобы обеспечить появление необходимой силы тока в цепи. Значение энергии, запасаемой катушкой индуктивности можно рассчитать с помощью формулы.

 

Реактивное сопротивление

При протекании переменного тока, катушка обладает кроме активного, еще и реактивным сопротивлением, которое находится по формуле 

По формуле видно, что в отличие от конденсатора, у катушки с увеличением частоты, реактивное сопротивление растет, это свойство применяется в фильтрах частот.

При построении векторных диаграмм важно помнить, что в катушке, напряжения опережает ток на 90 градусов.

Добротность катушки

Еще одним важным свойством катушки является добротность. Добротность показывает отношение реактивного сопротивления катушки к активному. 

Чем выше добротность катушки, тем она ближе к идеальной, то есть она обладает только главным своим свойством – индуктивностью.

Конструкции катушек индуктивности


Конструктивно катушки индуктивности могут быть представлены в разном исполнении. Например, в исполнении однослойной или многослойной намотки проводника. При этом намотка провода может выполняться на диэлектрических каркасах разных форм: круглых, квадратных, прямоугольных. Нередко практикуется изготовление бескаркасных катушек. Широко применяется методика изготовления катушек тороидального типа. 

Витки проводника, как правило, наматываются плотно один к одному. Однако в некоторых случаях намотка производится с шагом. Подобная методика отмечается, к примеру, когда изготавливаются высокочастотные дроссели. Намотка провода с шагом способствует снижению образования паразитной ёмкости, так же как и намотка, выполненная отдельными секциями. 

Индуктивность катушки можно изменять,  добавляя в конструкцию катушки ферромагнитный сердечник. Внедрение сердечников отражается на подавлении помех. Поэтому практически все дроссели, предназначенные для подавления высокочастотных помех, как правило, имеют ферродиэлектрические сердечники, изготовленные на основе феррита, флюкстрола, ферроксона, карбонильного железа. Низкочастотные помехи хорошо сглаживаются катушками на пермалоевых сердечниках или на сердечниках из электротехнической стали.

  • Просмотров:
  • Катушка индуктивности — это… Что такое Катушка индуктивности?

    Обозначение на электрических принципиальных схемах

    Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

    Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

    Терминология

    При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

    В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

    Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

    Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

    При использовании для накопления энергии называют индукционным накопителем.

    Конструкция

    Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

    Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

    На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

    Свойства катушки индуктивности

    Свойства катушки индуктивности:

    • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
    • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
    • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

    Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

    Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

    Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

    Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

    При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

    Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

    При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

    ,

    где :  — ток в катушке,

     — начальный ток катушки,
     — текущее время,
     — постоянная времени.

    Постоянная времени выражается формулой:

    ,

    где :  — сопротивление резистора,

     — омическое сопротивление катушки.

    При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

    .

    При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

    Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

    ↔ , где
    ↔ ↔  ; ↔  ; ↔

    Характеристики катушки индуктивности

    Индуктивность

    Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

    Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

    где  — магнитная постоянная
     — относительная магнитная проницаемость материала сердечника (зависит от частоты)
     — площадь сечения сердечника
     — длина средней линии сердечника
     — число витков

    При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

    При параллельном соединении катушек общая индуктивность равна:

    Сопротивление потерь

    В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

    Потери в проводах

    Потери в проводах вызваны тремя причинами:

    • Провода обмотки обладают омическим (активным) сопротивлением.
    • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
    • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
    Потери в диэлектрике

    Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

    • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
    • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

    В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

    Потери в сердечнике

    Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

    Потери на вихревые токи

    Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

    Добротность

    С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

    Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

    Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

    Паразитная емкость и собственный резонанс

    Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

    На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

    Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

    Температурный коэффициент индуктивности (ТКИ)

    ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

    Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

    Разновидности катушек индуктивности

    Контурные катушки индуктивности, используемые в радиотехнике
    Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
    Катушки связи, или трансформаторы связи
    Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
    Вариометры
    Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
    Дроссели
    Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
     TKL = \frac{\Delta L}{L \Delta T} Сдвоенный дроссель
    Сдвоенные дроссели
    Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.[2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

    Применение катушек индуктивности

    Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
    • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
    • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
    • Две и более индуктивно связанные катушки образуют трансформатор.
    • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
    • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
    • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
    • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
    • Для разогрева электропроводящих материалов в индукционных печах.
    • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
    • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
    • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
    • Для накопления энергии.

    См. также

    Примечания

    Ссылки

    Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
    Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
    Эта отметка установлена 13 мая 2011.

    Индуктивность. Виды катушек и контур. Работа и особенности

    Индуктивность характеризует магнитные свойства цепи тока. Она прямо пропорциональна магнитному потоку и обратно пропорциональна силе тока в контуре.

    Электрический ток во время протекания по контуру образует магнитное поле. Индуктивностью называют способность получать энергию от источника тока и создавать из нее магнитное поле.

    При повышении тока на обмотке магнитное поле повышается, а при снижении уменьшается. Катушкой называется винтовая катушка в виде спирали из изолированного провода, с индуктивностью, при малой емкости и сопротивлении которая  имеет единицу измерения Гн (Генри) и определяется по формуле:

    L = Φ / I, где L – индуктивность катушки, I – сила тока, Φ – магнитный поток.

    Катушка обладает некоторой особенностью. При подаче на нее постоянного напряжения, в ней образуется напряжение, противоположное по знаку, и длящееся очень короткий промежуток времени. Это явление назвали ЭДС самоиндукции. ЭДС – это электродвижущая сила.

    При размыкании цепи напряжение и ЭДС суммируются поэтому, сначала ток будет иметь двойную величину, а затем упадет до нуля. Время падения тока зависит от величины индуктивности катушки.

    Виды катушек
    Катушки можно разделить на типы:
    • С магнитным сердечником. Его материалом может быть сталь, ферритовый сердечник. Они предназначены для увеличения величины индуктивности.
    • Без сердечника. Катушки наматываются в виде спирали, на бумажной трубке. Применяются для создания незначительной индуктивности (до 5 мГн).

    Чаще всего применяют сердечники из пластин, выполненных из электротехнической стали, для снижения вихревых токов, а также сердечники в виде ферритовых колец различных размеров (тороидальные), обеспечивающие создание значительной индуктивности, в отличие от обычных цилиндрических сердечников.

    Катушки со значительной величиной индуктивности выполняют в виде трансформатора с металлическим сердечником. От обычного трансформатора они отличаются числом обмоток. В такой катушке есть одна первичная обмотка, а вторичной нет.

    Особенности
    • При соединении нескольких катушек по параллельной схеме, необходимо следить, чтобы они были расположены на плате друг от друга как можно дальше, во избежание взаимного влияния катушек друг на друга магнитными полями.
    • Расстояние между витками на тороидальном сердечнике не влияет на свойства индуктивной катушки.
    • Для создания наибольшей индуктивности витки на катушке необходимо наматывать вплотную между собой.
    • При использовании в качестве сердечника ферритового цилиндра с наибольшей индуктивностью будет центр.
    • Чем меньше число витков на катушках, тем ниже у них индуктивности.
    • При последовательной схеме соединения катушек, общая индуктивность цепи складывается из индуктивностей каждой катушки.
    Емкость катушки

    Витки обмотки катушки отделены друг от друга диэлектрическим слоем, поэтому они образуют своеобразный конденсатор, который характеризуется своей емкостью. В катушках, имеющих несколько слоев обмотки, емкость образуется между слоями. В результате, катушка имеет свойство не только индуктивности, но и емкости.

    Чаще всего емкость катушки оказывает отрицательное воздействие на элементы электрической схемы. Поэтому от емкости катушки избавляются разными способами. Например, каркас катушки изготавливают особой формы, витки наматывают по специальной технологии. При намотке катушки виток к витку, ее емкость также повышается.

    Колебательный контур

    Если подключить конденсатор и катушку по схеме, изображенной на рисунке, то получается контур колебаний, который широко применяется в радиотехнических устройствах.

    Если навести ЭДС в катушке или зарядить конденсатор, то в контуре будут происходить некоторые колебательные процессы. Конденсатор при разряде возбуждает магнитное поле в катушке индуктивности. При истощении заряда конденсатора, катушка возвращает энергию снова в конденсатор, но с противоположным знаком, с помощью ЭДС самоиндукции. Такой процесс повторяется в виде электромагнитных синусоидальных колебаний.

    Частота таких колебаний является резонансной частотой, зависящей от индуктивности катушки и емкости конденсатора. Колебательный контур, соединенный по параллельной схеме имеет значительное сопротивление на частоте резонанса. Это дает возможность применять его для избирательности частоты в цепях входа в радиоаппаратуре, а также в усилителях частоты и схемах генераторов частоты.

    При параллельной схеме соединения контура колебаний имеются два реактивных элемента, которые обладают разной силой реактивности. Применение такого типа контура позволяет сделать вывод, что при параллельном соединении элементов необходимо суммировать только их проводимости, а не сопротивления. На частоте резонанса сумма проводимостей элементов контура нулевая, что позволяет говорить о сопротивлении переменному току стремящемуся к бесконечности.

    За 1 период колебаний действия контура происходит обмен энергией между катушкой и емкостью. В таком случае образуется контурный ток, значительно превосходящий величину тока во внешней цепи.

    Индуктивность и конденсатор

    Токоведущие части различных устройств могут образовывать индуктивности. Такими частями являются предохранители, токоотводящие шины, соединительные выводы и другие аналогичные части. Если дополнительно присоединить к конденсатору шины, то образуется индуктивность, которая оказывает влияние на работу электрической цепи. Также, на работоспособность цепи влияет емкость и сопротивление.

    Индуктивности, образующияся на частоте резонанса вычисляется по формуле:

    Ce = C / (1 – 4Π2f2LC), где Ce – это емкость конденсатора (эффективная), f – частота тока, L – индуктивность катушки, С – действительная емкость, П – число «пи».

    Величина индуктивности должна всегда учитываться в схемах с силовыми конденсаторами большой емкости. В схемах с импульсными конденсаторами важным фактором является значение собственной индуктивности. Разряд таких конденсаторов происходит на индуктивные контуры, делящиеся на виды:

    • Колебательные.
    • Апериодические.

    В конденсаторе индуктивность зависит от вида соединения элементов в схеме. При параллельной схеме это значение складывается из индуктивностей элементов схемы. Для снижения индуктивности электрического устройства, необходимо токопроводящие части конденсатора расположить таким образом, чтобы магнитные потоки компенсировались, то есть, проводники с одним направлением тока располагают как можно дальше друг от друга, а с противоположным направлением – рядом друг с другом.

    При сближении токоведущих частей и уменьшении диэлектрического слоя можно добиться снижения индуктивности секции конденсатора. Это достигается с помощью разделения одной секции на несколько небольших емкостей.

    Похожие темы:

    Сердечники катушек индуктивности — выбор материала и формы

    Автор: Mark A. Swihart, Менеджер отдела прикладной техники Magnetics Inc, отделение Spang&Co. Питтсбург, Пенсильвания, США.

    Резюме: Внимательное рассмотрение характеристик силовых катушек индуктивности часто является ключевым фактором успешного конструирования компактных и экономичных преобразователей с высоким к.п.д. Во многих вариантах применения катушек индуктивности порошковые сердечники обладают явными преимуществами в сравнении с сердечниками, изготовленными из других материалов – таких, как ферриты или стальные ламинаты. В распоряжении разработчика имеется множество вариантов выбора материала и формы порошкового сердечника, каждый из которых является выбором компромисса по таким характеристикам, как величина потерь, стоимость, габариты и простота намотки. Кроме того, при изменении критериев конструирования изменяется комбинация преимуществ и недостатков каждого из материалов для порошкового сердечника. Понимание этих преимуществ и недостатков необходимо для осуществления правильного выбора.

    Катушка индуктивности является устройством, фильтрующим ток. Создавая препятствия прохождению тока, фильтрующая катушка индуктивности фактически накапливает электрическую энергию по мере того, как переменный ток нарастает в каждом цикле, и высвобождает данную энергию, когда ток спадает до минимума. В силовых катушках индуктивности требуется наличие воздушного зазора внутри конструкции сердечника. Назначение воздушного зазора состоит в накапливании энергии и в предотвращении насыщения сердечника при нахождении его под нагрузкой. В иной формулировке, назначение воздушного зазора состоит в том, чтобы уменьшать и регулировать эффективную магнитную проницаемость магнитной конструкции. Поскольку μ = B/H, то уменьшение μ означает увеличение H (то есть, рост электрического тока), который поддерживается при уровне B, меньшем максимально допустимого значения магнитной индукции (Bsat), являющегося внутренней (природной) характеристикой заданного магнитного материала.

    Существует общее ограничение, связанное с узкими пределами изменений индукции насыщения Bsat. Физика мягких магнитных материалов такова, что значение Bsat материалов, доступных на современном рынке, составляет примерно от 0,3T до 1,8T. В наиболее экзотичном имеющемся материале, каковым является сплав кобальта – железа – ванадия (супермендюр), это значение достигает 2,2T. Более высокие значения не существуют.

    Воздушный зазор в силовых катушках индуктивности может быть распределенным или дискретным. Распределенные зазоры создаются в порошковых сердечниках. На микроскопическом уровне, гранулы порошка магнитного сплава отделяются одна от другой посредством изоляции связующим веществом или посредством высокотемпературной изоляции покрытия каждой гранулы. (Это не относится к уровню магнитных доменов; домены имеют размеры намного меньше размеров гранул порошкового сердечника). Распределение зазора по всей конструкции порошкового сердечника служит двум основным целям: (1) устраняются недостатки конструкции с дискретным зазором, каковыми являются резкое насыщение, краевые потери и электромагнитные помехи (EMI), и (2) регулируются потери от вихревых токов до такой степени, при которой сплавы с повышенным значением Bsat могут быть использованы на относительно высоких частотах, несмотря на относительно низкое значение объемного удельного сопротивления в сплаве.

    Дискретные зазоры используются главным образом в ферритовых сердечниках. Основным функциональным преимуществом феррита являются низкие потери по переменному току в сердечниках при работе на высокой частоте, что объясняется более высоким удельным сопротивлением в керамическом материале по сравнению с металлическими сплавами. Ферриты находятся на нижнем конце существующей области значений Bsat, и они существенно смещаются в сторону дальнейшего понижения Bsat при повышении температуры. Конструкция с дискретным зазором приводит к созданию катушки индуктивности, в которой достигается точка резкого насыщения и при этом требуется большая габаритная высота в конструкции. Дискретные зазоры приводят также к получению катушек индуктивности, которые уязвимы к потерям от вихревых токов в обмотке вследствие краевого эффекта и имеют тенденцию к генерации электромагнитных помех (EMI). Дискретные зазоры используются также в аморфных и нанокристаллических ленточных сердечниках с ориентацией потока вдоль волокна, имеющих улучшенные показатели потерь по переменному току в сравнении с порошковыми сердечниками, но зачастую более дорогостоящих.

    Разработчик катушки индуктивности должен выполнять требования по накапливанию энергии (величине индуктивности) и одновременно учитывать требования к суммарным потерям, рабочему объему, стоимости, электромагнитным помехам, температурным характеристикам, надежности и устойчивости к отказам.

    Во многих случаях порошковые сердечники обладают явными преимуществами. При этом разработчик имеет множество вариантов выбора среди имеющихся порошковых сердечников.

    Сердечники MPP (из мо-пермаллоевого (Molypermalloy) порошка) представляют собой тороидальные сердечники с распределенным воздушным зазором, изготавливаемые из порошкового материала, являющегося сплавом никеля, железа и молибдена. MPP обеспечивает самые низкие потери в сердечнике по сравнению с другими материалами для порошкового сердечника, но сердечники из данного сплава являются при этом самыми дорогостоящими ввиду высоких затрат на технологическую обработку и по причине 80-процентного содержания никеля в сплаве. Тороидальные сердечники из MPP выпускаются с наружными диаметрами от 3,5 мм до 125 мм.

    Сердечники High Flux представляют собой тороидальные сердечники с распределенным воздушным зазором, изготавливаемые из порошкового материала, являющегося сплавом никеля с железом. Сплав High Flux содержит 50% никеля, по затратам на технологическую обработку сравним с MPP и по цене обычно выигрывает по сравнению с MPP примерно 5% – 25%. High Flux характеризуется более высокими потерями в сердечнике, нежели MPP и Kool Mμ, но благодаря своему повышенному значению Bsat сплав High Flux имеет оптимальное соотношение между магнитной проницаемостью и силой подмагничивания. Иными словами, повышенное значение Bsat трансформируется в оптимальную стабильность (самый низкий уровень сдвига) катушки индуктивности в условиях сильного подмагничивания постоянным током или при высоких пиковых значениях переменного тока. Как и сердечники из MPP, сердечники из сплава High Flux не получили широкого распространения в каких-либо геометрических формах, кроме тороидов.

    Сердечники Kool Mμ®, или «сендаст», представляют собой сердечники с распределенным воздушным зазором, изготавливаемые из порошкового материала, являющегося сплавом железа, алюминия и кремния. По характеристикам подмагничивания постоянным током материал Kool Mμ сравним с MPP. Отсутствие никеля в формуле сплава делает Kool Mμ намного более экономичным, чем MPP. Основной недостаток Kool Mμ состоит в том, что данный сплав имеет более высокие потери по переменному току, нежели MPP. Этот сплав призван служить практичной альтернативой в случаях, когда порошковое железо имеет слишком высокие потери (в типовых случаях при умеренных или высоких значениях частоты) и при этом использование MPP является слишком дорогостоящим. Сердечники из Kool Mμ выпускаются не только в форме тороидов, но и в виде E-сердечников, что позволяет в максимально возможной степени снизить затраты на намотку.

    В таблице 1 приведены сравнительные данные о свойствах различных материалов для сердечников.

    MPPHigh FluxKool MμЖелезный порошок
    Проницаемость14 — 55014 — 16026 — 12510 — 100
    Насыщение (Bsat)0,7 T1,5 T1,0 T1,2 — 1,4 T
    Максимальная температура (°C)200200200
    Потери в сердечнике по переменному токуСамые низкиеВысокиеНизкиеСамые высокие (и переменные)
    Форма сердечникаТороидТороидТороид, E-сердечникТороид, E-сердечник, другие формы

    Сердечники из железного порошка имеют более высокие внутренние потери (потери в сердечнике), чем сердечники из MPP, High Flux или Kool Mμ, но обычно являются менее дорогостоящими. Железный порошок часто является оптимальным выбором для силовых катушек индуктивности, в которых не требуется максимально высокий к.п.д. и миниатюрные размеры, но критичным показателем является цена; этот выбор может быть оптимальным также при работе на очень низкой частоте или с очень малой амплитудой пульсаций переменного тока (что означает очень слабый магнитный поток от переменного тока и соответственно низкие потери по переменному току). Большинство сердечников из железного порошка содержит связующее вещество для изоляции между гранулами, и это вещество уязвимо к пробоям при работе с высокими температурами в течение длительного времени, поэтому разработчику может понадобиться учет кривых теплового старения для выбираемого железного порошка. Значения плотности штамповки (то есть, прижимных усилий сжатия) для железных порошков являются умеренно высокими, поэтому данные материалы обеспечивают возможность широкого разнообразия геометрических форм, включая тороидальные сердечники, E-сердечники, броневые сердечники, U-сердечники и стержневые сердечники. Для сердечников с очень сильными токами, но без необходимости работы на высоких частотах, крупногабаритный E-сердечник, U-сердечник или броневой сердечник из порошкового железа может оказаться единственным практически приемлемым вариантом.

    Ферритовые сердечники с зазором являются альтернативой порошковым сердечникам при выборе вариантов конструирования. Как видно из рисунка 1, порошковые материалы насыщаются постепенно и при этом сохраняют полезную предсказуемую индуктивность даже при существенном нарастании тока нагрузки. Ферритовый сердечник с зазором сохраняет значение индуктивности, приближенное к значению при отсутствии подмагничивания, пока не происходит насыщение, при котором наблюдается резкое спадание индуктивности. При создании конструкций с ферритами для работы на повышенных температурах необходимо учитывать ряд дополнительных факторов. Как видно из рис. 2, мощность потока индукции любого силового феррита существенно уменьшается при повышении температуры; в то же время, мощность потока индукции порошковых сердечников фактически не зависит от температуры.

    Кривая плавного насыщения порошкового сердечника отражает существенные преимущества для конструирования: (1) рабочая точка в основной части кривой (80% — 50%), позволяющая повысить степень компактности конструкции; (2) минимальный сдвиг при изменении температуры; (3) малая чувствительность к изменениям кривой как в части температуры, так и в части допусков на материал; (4) природная устойчивость к отказам; (5) естественные колебания индуктивности – высокое значение L при низкой нагрузке, регулируемая индуктивность при высокой нагрузке. Другие преимущества порошковых сердечников в сравнении с ферритовыми сердечниками состоят в том, что порошковые сердечники не уязвимы к краевым потерям и к EMI-эффектам в зазоре и имеют более высокие значения внутренней Bsat.

    Рисунок 1. Кривые подмагничивания постоянным током для феррита и Kool Mμ.

    Рисунок 1. Кривые подмагничивания постоянным током для феррита и Kool Mμ.

    Рисунок 2. Кривая насыщения для силового феррита.

    Рисунок 2. Кривая насыщения для силового феррита.

    Возможными вариантами применения катушки индуктивности, в частности, являются:

    1. Компактная катушка индуктивности цепи постоянного тока (DC) с малыми пульсациями переменного тока (конструкция с ограниченным размером окна)
    2. Крупногабаритная катушка индуктивности цепи постоянного тока (конструкция с ограничением насыщения)
    3. Катушка индуктивности с сильным переменным током (конструкция с ограничением потерь в сердечнике)

    Каждый из трех вариантов характеризуется специфическими требованиями к конструкции. В компактной катушке индуктивности цепи постоянного тока ограничительный фактор определяется в большей степени доступным размером окна сердечника, нежели площадью поперечного сечения сердечника. Окно сердечника должно быть достаточно большим для того, чтобы расположить в нем количество витков провода, достаточное для получения требуемой индуктивности. В крупногабаритной катушке индуктивности цепи постоянного тока ограничительным фактором часто является точка насыщения сердечника. Сердечник должен иметь достаточно крупные габариты и достаточно малую магнитную проницаемость, чтобы избежать насыщения (или смещения величины индуктивности ниже минимального требуемого уровня). Эти факторы требуют увеличения числа витков и длины медных проводов, что вызывает проблему в виде потерь в проводах. Основным ограничительным фактором для катушки индуктивности с сильным переменным током являются потери в сердечнике. Поскольку потери в сердечнике зависят от колебаний потока, создаваемого переменным током, а не уровнем индукции, создаваемой постоянным током, потери в сердечнике становятся доминирующим фактором, определяющим выбор конструкции.

    Ниже приведены в качестве примера требования, которым должна отвечать типовая конструкция.

    Постоянный ток (IDC)500 мА (не более)
    Требуемая индуктивность (Lmin)100 мкГ
    Пульсации переменного тока (Iac)50 мА (пиковый размах)
    Частота (f)100 кГц

    Для конструирования катушки с данными характеристиками компания Magnetics использует программное обеспечение Inductor Design Using Powder Cores (Конструирование катушки индуктивности с использованием порошковых сердечников). В данной программе реализуется алгоритм конструирования, имеющий целью определение минимально возможных габаритов модуля для заданных входных параметров (значений тока, индуктивности, частоты и др.). Программа определяет размер требуемого сердечника, исходя из необходимой величины энергетического показателя в виде произведения, получаемого умножением индуктивности при полной нагрузке на квадрат пикового значения тока (постоянного тока с приращением на пульсацию переменного тока), проходящего через катушку индуктивности. Увеличение значений индуктивности и силы тока подразумевают увеличение габаритов сердечника. Программы выполнялись с вводом указанных выше исходных значений конструирования, а материал сердечника выбирался вручную для каждого из типов сердечников, указанных ниже в таблице 2. Число витков, коэффициент плотности намотки провода, габариты намотки, величина потерь и рост температуры были определены по выходным данным выполняемых программ.

    MPPHigh FluxKool Mμ, торидальные сердечникиKool Mμ, E-сердечники
    Номер компонента55025-A258278-A277280-A7K1808E090
    Проницаемость30016012590
    Габариты сердечника (дюймы)0,335 x 0,1500,405 x 0,1500,405 x 0,1500,77 x 0,65 x 0,19
    AL (нГ/виток²)124685369
    Число витков32414839
    Коэффициент плотности намотки провода37%31%37%14%
    Габариты обмотки (дюймы)0,375 x 0,2090,448 x 0,2090,455 x 0,2090,77 x 0,65 x 0,644
    Потери в сердечнике (мВт)2,00,70,70,5
    Потери в проводе (мВт)24,233,340,083,0
    Суммарные потери (мВт)26,234,040,783,5
    Рост температуры (°C)6,16,06,94,3

    В каждом случае программы определяли самое высокое значение магнитной проницаемости из числа значений, имеющихся для выбранного материала. С учетом относительно слабого тока, любое уменьшение магнитной проницаемости выбранного материала не приводит к оптимизации индуктивности при пиковой нагрузке; в этих условиях больше теряется ввиду уменьшения индуктивности при отсутствии нагрузки, нежели приобретается за счет оптимизации кривой спадания силы подмагничивания постоянным током. Потери в сердечнике и рост температуры не являются важными влияющими факторами в катушке индуктивности данного типа вследствие низкой магнитной индукции по переменному току в сердечнике. Например, в сердечнике High Flux сила намагничивания H определяется по закону Ампера следующим образом:

    H (эрстеды) = .4 (π) (N) (I)/Le, где:

    N — число витков
    I — ток в амперах
    Le — длина линии магнитной индукции сердечника в см.

    Сердечник 58278-A2 имеет длину линии магнитной индукции, равную 2,18 см, поэтому сила намагничивания постоянным током равняется:

    H = .4 (π) (41) (0,5)/(2,18) = 11,8 эрстед

    Процент начальной магнитной проницаемости, или значение «спадания», можно определить по данным, публикуемым в справочнике Magnetics по порошковым сердечникам (см. рис. 3).

    Рисунок 3. Кривая спадания подмагничивания постоянным током для High Flux.

    Рисунок 3. Кривая спадания подмагничивания постоянным током для High Flux.

    Кривая проницаемости 160 для High Flux показывает, что магнитная проницаемость при силе подмагничивании постоянным током, равной 11,8 эрстедам, равняется примерно 90% начального значения этой проницаемости. Эта рабочая точка является консервативной рабочей точкой для данного материала, но возможности конструирования ограничиваются в большей степени не уровнем насыщения сердечника, а площадью окна сердечника. Коэффициент заполнения окна для катушки данного типа равняется 37%, что приближается к типовому предельному значению для тороидальных сердечников. Усилия по уменьшению габаритов сердечника с целью получения преимуществ от имеющейся мощности магнитной индукции приводят к нереалистичным значениям коэффициента заполнения окна, равным 50% и более.

    Как видно из приводимых данных, тороидальный сердечник MPP обеспечивает получение наиболее компактной и эффективной конструкции вследствие того, что данный материал доступен для использования с более высоким значением магнитной проницаемости (300μ), чем другие материалы. Это трансформируется в более высокое значение коэффициента одновитковой индуктивности (AL) при заданном размере сердечника, что позволяет снижать габариты используемого сердечника. Компромиссным фактором является ускоренное спадание силы намагничивания постоянным током. Тороидальный сердечник Kool Mμ является привлекательным в основном благодаря существенным преимуществам в цене. Выбираемый E-сердечник из материала Kool Mμ является самым «миниатюрным» из числа сердечников, имеющихся в настоящее время, и имеет избыточные габариты для рассматриваемого здесь набора требований.

    Типовыми требованиями к катушкам данного типа являются:

    Постоянный ток (IDC)20 А (не более)
    Требуемая индуктивность (Lmin)100 мкГ (минимум)
    Пульсации переменного тока (Iac)1 А (пиковый размах)
    Частота (f)100 кГц
    Максимальный рост температуры (°C)40°C

    В таблице 3 приведены применимые данные конструирования, полученные на выходе программы для данного случая.

    MPPHigh FluxKool Mμ, торидальные сердечникиKool Mμ, E-сердечники
    Номер компонента55868-A258867-A277868-A7K5528E040
    Проницаемость26602640
    Габариты сердечника (дюймы)3,108 x 0,5453,108 x 0,5453,108 x 0,5452,19 x 2,20 x 0,81
    AL (нГ/виток²)306830157
    Число витков62457030
    Коэффициент плотности намотки провода24%18%27%72%
    Габариты обмотки (дюймы)3,657 x 0,8843,514 x 0,8843,720 x 1,0532,19 x 2,20 x 1,98
    Потери в сердечнике (мВт)116230182290
    Потери в проводе (мВт)143719780169595489
    Суммарные потери (мВт)1448710010171415779
    Рост температуры (°C)35,327,437,722,4

    Для катушки данного типа необходимо выбирать сердечники с пониженной магнитной проницаемостью и с большим поперечным сечением, чтобы избежать насыщения при высоком уровне подмагничивания постоянным током.

    Сердечник 58867-A2 имеет длину линии магнитной индукции, равную 20 см, поэтому сила намагничивания H равняется:

    H = 0,4 (π) (45) (20)/(20) = 56,5 эрстед

    Кривая для материала High Flux с магнитной проницаемостью 60 на рисунке 3 показывает, что магнитная проницаемость составляет примерно 83% своего начального значения при силе подмагничивания постоянным током, равной 56,5 эрстедам, что соответствует безопасной рабочей точке. Критичным параметром является в данном случае не коэффициент плотности намотки провода, а рост температуры вследствие потерь в меди. Последующие итерации при конструировании должны быть направлены на увеличение диаметра провода или на использование многожильного провода для уменьшения плотности тока с целью снижения потерь в меди, что достигается ценой повышения плотности намотки. Из приводимых данных можно видеть, что High Flux обеспечивает конструирование тороидальных сердечников с меньшим ростом температур, нежели другие материалы. Высокая индкуция насыщения данного материала и улучшенные характеристики подмагничивания постоянным током позволяют выбирать сердечники с повышенной магнитной проницаемостью и увеличенным значением AL, что позволяет уменьшить число витков и сократить потери в меди. И в этом случае потери в сердечнике малы следствие относительно слабого потока подмагничивания переменным током в сердечнике.

    Конструкция E-сердечника из материала Kool Mμ превосходит аналоги в части потерь благодаря тому, что поперечное сечение E-сердечника (и значение AL) намного превышают аналогичные показатели тороидальных сердечников. Это позволяет уменьшить и существенно сократить потери в меди. E-сердечник имеет относительно малую площадь окна, что подразумевает повышенный коэффициент плотности намотки (72%), но это достижимо в конструкциях с бобинной намоткой. Для E-сердечников допускается вариант с намоткой фольги. Недостаток состоит в том, что суммарная высота E-сердечника с готовой обмоткой примерно в 2 раза превышает аналогичную высоту в других конструкциях.

    Типовыми требованиями к катушкам индуктивности переменного тока являются:

    Постоянный ток (IDC)4 А (номинал)
    Требуемая индуктивность (Lmin)100 мкГ (минимум)
    Пульсации переменного тока (Iac)8 А (пиковый размах)
    Частота (f)100 кГц
    Максимальный рост температуры (°C)35°C

    В отличие от малых и крупногабаритных катушек индуктивности постоянного тока, рассмотренных в двух предыдущих примерах, генерация тепла, сопутствующая потерям в сердечнике, в катушке индуктивности переменного тока достаточно велика для того, чтобы являться первичным ограничительным фактором при выборе конструкции. Варианты выбора конструкции ограничиваются ростом температуры вследствие потерь в сердечнике, или целевым показателем к.п.д. В таблице 4 приведены значения характеристик для данного примера.

    MPPHigh FluxKool Mμ, тороидальные сердечникиKool Mμ, E-сердечники
    Номер компонента55440-A258441-A277191-A7K4020E026
    Проницаемость26142626
    Габариты сердечника (дюймы)1,875 x 0,7451,875 x 0,7452,285 x 0,6351,71 x 1,67 x 0,61
    AL (нГ/виток²)59326080
    Число витков42574337
    Коэффициент плотности намотки провода12%16%10%23%
    Габариты обмотки (дюймы)1,982 x 0,8432,019x 0,9402,375 x 0,7331,71 x 1,67 x 1,53
    Потери в сердечнике (мВт)2947331641103255
    Потери в проводе (мВт)1722235218362212
    Суммарные потери (мВт)4669566859465467
    Рост температуры (°C)31,734,932,131,8

    Для определения потерь в сердечнике необходимо вычислить колебания потока подмагничивания переменным током в сердечнике. Поток подмагничивания постоянным током не вызывает потерь в сердечнике. Первым шагом расчета является вычисление силы намагничивания H по закону Ампера с использованием размаха значений переменного тока (в данном случае пиковый размах составляет 8 А). Для сердечника 58441-A2 из материала High Flux длина линии магнитной индукции равняется 10,74 см.

    H = 0.4 (π) (57) (8)/(10.74) = 53,4 эрстед

    Изменение плотности потока можно определить путем приложения данного результата к нормальной кривой намагничивания из справочника (см. рис. 4).

    Рисунок 4. Кривые намагничивания при высокой плотности потока намагничивания.

    Рисунок 4. Кривые намагничивания при высокой плотности потока намагничивания.

    Диапазон изменения силы намагничивания составляет от 0 эрстед до 53,4 эрстед. В случае материала с магнитной проницаемостью 14 это трансформируется в диапазон изменения магнитной индукции от 0 гаусс до 600 гаусс – то есть, ΔB = 600 гаусс. Кривые потери для мягких магнитных материалов подразумевают биполярный режим работы (сердечник возбуждается в первом и третьем квадрантах петли гистерезиса B-H). Следовательно, независимо от того, является ли схема биполярной или однополярной, значение магнитной индукции, которое действует, всегда равняется ½ΔB. В данном случае плотность магнитной индукции переменного поля равняется 300 гаусс. Из рисунка 5 видно, что при 300 гауссах на частоте 100 кГц плотность потерь составляет примерно 150 мВт/см³. По справочнику можно определить, что объем сердечника 58441-A2 равняется 21,3 см³, поэтому суммарные потери в сердечнике равняются произведению от умножения (150) на (21,3) – то есть, 3195 мВт. Программное обеспечение, использующее уравнения в привязке к кривым, вычислило потери в сердечнике, равняющиеся 3316 мВт.

    Рост температуры вычисляется, исходя из указанной ниже аппроксимации.

    Рост температуры (°C) = [Суммарные потери мощности (мВт)/площадь поверхности (см²)]0,833

    Согласно выходным данным программного обеспечения, суммарные потери мощности для катушки индуктивности High Flux равняются 5668 мВт. Сердечник 58438-A2 имеет без обмотки площадь поверхности 69,3 см², а с полной обмоткой – 94,3 см² (значения взяты из справочника). Программное обеспечение интерполирует площадь поверхности для коэффициента плотности намотки провода, равного 17%, и получает значение площади поверхности, равное 79,3 см². Рост температуры, вычисляемый в этом случае по приведенному выше уравнению, равняется примерно 35°C. Заметим, что данная оценка является довольно грубым приближением, поскольку характеристики тепловыделения зависят не только от величины потерь, но и от механической конфигурации, вида сборочных материалов и от течения воздуха.

    Рисунок 5. Кривые потерь в сердечнике при высоком уровне потока намагничивания.

    Рисунок 5. Кривые потерь в сердечнике при высоком уровне потока намагничивания.

    В общем, характеристики потерь, по которым MPP обладает преимуществом над другими материалами, позволяют использовать катушки индуктивности с меньшими габаритами и более высокими значениями к.п.д. Суммарные потери в случае MPP составляют на 15% меньше потерь материала, являющегося следующим в сторону увеличения потерь. Поскольку материал High Flux обладает более высокими потерями, чем MPP, для сохранения одинаковой величины потерь необходимо выбирать сердечник с более низкой магнитной проницаемостью. Это, однако, приводит к увеличению числа витков, росту потерь в меди и к некоторому увеличению общих габаритов модуля. Причина того, что пониженная магнитная проницаемость приводит к уменьшению плотности потока переменного поля (то есть, к уменьшенным потерям в сердечнике) является очевидной и состоит в том, что наклон кривых для материалов с пониженной магнитной проницаемостью имеет на графике кривых намагничивания меньшую крутизну (см. рис. 4). Материал Kool Mμ требует еще большего увеличения общих габаритов, но суммарные потери сравнимы с потерями для High Flux. И в этом случае возможен вариант с E-сердечником Kool Mμ, который имеет несколько меньшие потери, уменьшенную площадь основания, но увеличенную габаритную высоту.

    E-сердечник Kool Mμ является самым экономичным из четырех рассмотренных вариантов; вместе с тем, преимущества от габаритов и к.п.д. тороидального сердечника MPP становятся менее очевидными из-за самой высокой стоимости данного сердечника. Сердечники High Flux и MPP имеют одинаковые габариты и сравнимы по цене, поскольку порошки 14μ являются более дорогостоящими в производстве и в штамповке, нежели порошки 26μ.

    Для требуемой катушки индуктивности решение о выборе материала определяется комбинацией следующих ограничительных факторов: пространство, к.п.д., удобство сборки, суммарная стоимость, индуктивность в зависимости от характеристик нагрузки, роста и рабочей температуры. Среди порошковых сердечников материал MPP превосходит другие материалы по такому свойству, как потери в сердечнике, и обладает самым высоким значением применимой магнитной проницаемости. High Flux обладает преимуществами над другими материалами в случаях, когда определяющими ограничительными факторами является минимизация габаритов и намагничивание постоянным полем. Kool Mμ является более экономичным материалом, нежели MPP или High Flux, и является стандартным материалом как для тороидальных сердечников, так и для E-сердечников. Сердечники на основе распыленного железа (Iron powder cores) являются менее дорогостоящими, чем Kool Mμ, но серьезно ухудшают характеристики изделия.

    1. Magnetics «Inductor Design Using Powder Cores» software PCD-3.1
    2. Magnetics «Powder Cores Design Manual and Catalog»

     

    Катушка индуктивности: история, конструкция, параметры

    Катушка индуктивности – элемент электрических цепей, способствующий накоплению энергии магнитного поля. С использованием изделий изготавливаются колебательные резонансные контуры. Катушка называется потому, что вокруг бобины-сердечника обматывается нить проволоки. Часто в радиотехнике элементы именуют индуктивностями. Подходит случаю, конструкции иной раз мало напоминают катушку.

    История создания катушки индуктивности

    Катушки индуктивности наматываются фиксированным числом проводов. Этот факт  скрывают на уроках физики, избегая забивать ученикам мозги. Потом догадываются бедняги, пытаясь уловить смысл термина бифилярная обмотка двигателя. Нитей бывает больше, выделяют катушки индуктивности:

    • трифилярные;
    • тетрафилярные;
    • пентафилярные.

    Обычные катушки индуктивности называют унифилярными – нить проволоки одна. Сразу возникает справедливый вопрос – зачем конструкции? Изобретатель катушку индуктивности неизвестен. Ответы дают, виноват Тесла… Далеко от истины.

    Элемент накопления электромагнитной энергии

    Дроссель

    Один знаток Майл.ру – не исключено, админ ресурса – ответил: отцом катушек индуктивности является Майкл Фарадей, якобы, открыл магнитную индукцию (согласно англоязычной страничке Википедии). Напрашивается вывод, историковед не владеет вопросом. Главная причина критики “Ответов” Майл – некомпетентность. Фарадей открыл индукцию, применив тороидальный трансформатор с двумя изолированными обмотками. Намного сложнее конструкция, нежели катушка, явление заключалось сопровождалось выходом скачка тока при изменении магнитного поля сердечника.

    Произошло описанное в 1831 году, первый электромагнит сконструирован малоизвестным в России Уильямом Стердженом. Знаете, как выглядел прибор? Правильно – катушка индуктивности из 18 витков оголенной медной проволоки с хорошим лакированным ферромагнитным сердечником формы лошадиной подковы. При пропускании по обмотке тока железо в округе притягивалось устройством. Годом выхода первого электромагнита в свет историки считают 1824. Раньше, нежели Фарадей начал эксперименты.

    Наставник Хампфри Дэви счел работу плагиатом. Ученик не решался продолжить, конфликтовать открыто. Получилось, в 1829 году безвременно Хампфри Дэви ушел из жизни, благодаря чему Майкл Фарадей возобновил работу. Не потому считаем неверными скудные сведения рунета по рассматриваемому вопросу. Вторая причина кроется в гальванометрах: первый сконструирован 16 сентября 1820 года Иоганном Швейггером. Годом позже великий Ампер усовершенствовал прибор, угадайте, что входило в состав новинки? Правильно – катушка индуктивности, составленная несколькими витками проволоки.

    В 1826 году Феликс Савари разряжал лейденскую банку через несколько витков проволоки, обмотанной вокруг стальной иглы. Наблюдая остаточную намагниченность металла. Фактически Савари создал первый колебательный контур, правильно сделав выводы о происходящих процессах.

    Майкл Фарадей бессилен стать изобретателем индуктивности. Скорее ученый работал в этом направлении, вел некоторые исследования, получил новый закон касательно электромагнетизма. В результате вопрос об изобретателе катушки индуктивности оставляем открытым. Рискнем предположить, у субъекта темы два отца:

    Лаплас и Швейггер

    Лаплас и Швейггер

    1. Лаплас на основе доклада Эрстеда высказал предположение: действие тока на магнитную стрелку можно усилить, изогнув провод.
    2. Швейггер реализовал услышанное на практике, создав первый в мире гальванометр, использовав доклады Ампера о зависимости угла отклонения стрелки от силы тока.

    Конструкция катушки индуктивности

    Вокруг прямолинейного проводника с постоянным током создается круговое магнитное поле. Линии напряженности напоминают спираль. Некто догадался свернуть провод кольцом, чтобы вклад элементарных сегментов сложился в центре. В результате внутри конструкции магнитное поле намного выше, нежели снаружи. Линии визуально наблюдаем на железных опилках. На Ютуб множество роликов, где через индуктивность пропускают ток, демонстрируя упорядоченную ориентацию металлической пыли в момент замыкания контактов. Конструкция способна запасать впрок магнитное поле подобно конденсатору, накапливающему заряд. Катушками называют только индуктивности, содержащие намотку лакированного провода. В микрополосковой технологии напыляемые для запасания магнитного поля элементы логично именовать индуктивностями.

    Если в катушке, совсем как в той, что используют швеи, несколько витков провода расположить один за другим бок о бок так, чтобы ось была общей, линии напряженности магнитного поля суммируются. Простейшая индуктивность, способная накапливать энергию магнитного поля. При резком пропадании напряжения образуется явление обратной-ЭДС широко известное технике. Выступает причиной искрения коллекторных двигателей. Используется лакированный (с лаковой изоляцией) медный провод нужного сечения. Количество витков, форма сердечника определяются предварительно расчетами или по имеющемуся образцу.

    Противо-ЭДС является паразитной, для гашения последовательно с катушкой включают емкость размером побольше, пытаясь занизить суммарное реактивное сопротивление. В импеданс индуктивности входят с положительным знаком, емкости – с отрицательным. Тесла изобрел катушку, взял патент. Но конструкция представляла собой плоскую спираль (лабиринт) с двойной намоткой. Ученый показал, индуктивность одновременно характеризуется значительным емкостным сопротивлением, при исчезновении напряжения явления обратной ЭДС никак не проявляет себя.

    Бифилярные катушки сегодня широко используются. Что касается обратной ЭДС, служит причиной розжига разрядных ламп (дневного света). Вернемся к конструкции. В первом электромагните проволока оголенная, современные катушки индуктивности наматываются лакированным. Тонкая изоляция при необходимости может быть легко снята (например, токсичной муравьиной кислотой), в исходном состоянии надежно защищает конструкцию против короткого замыкания.

    Внутри катушки находится сердечник из ферромагнитного материала. Форма не важна, сечение лучше брать круглым. На высоких частотах магнитный поток (см. Преобразователь напряжения) выходит на поверхность сердечника, смысл применения ферромагнитных сплавов пропадает, иногда используется латунь (даже композитные материалы, диэлектрики). Снижает индуктивность, на высоких частотах запасаемая за период мощность невелика. Трюк проходит. У многих возникает вопрос – зачем нужен сердечник?

    Сердечник катушки индуктивности выступает опорой, долговечным каркасом, усиливая магнитное поле. Индукция связана с напряженностью поля через постоянную магнитной проницаемости среды. У ферромагнитных материалов параметр поистине велик. В тысячи раз больше, нежели воздуха, большинства металлов. С ростом частоты необходимость в сердечнике снижается, возникают некоторые негативные эффекты, два из которых особенно важны:

    Магнитное поле

    Линии магнитного поля, сформированные опилками

    1. Переменное магнитное поле наводит вихревые токи, посредством которых функционируют индукционные плитки. Результат представите сами: какой нагрев сердечника вызовет. Сердечники силовых трансформаторов собираются из специальной электротехнической стали с высоким сопротивлением, разбиваются тонкими листами, изолированными взаимно слоем лака. Шихтование позволит сильно снизить влияние вихревых токов.
    2. Второй эффект называется перемагничиванием. Отнимает энергию поля, вызывает нагрев материала. Явление характерно для ферромагнитных материалов, устраняется использованием латуни.

    В микрополосковой технологии предусмотрено исполнение индуктивностей в виде плоских спиралей: проводящий материал через трафарет напыляется на подложку (возможный метод). Напоминает конструкцию Николы Тесла. Номинал  катушка индуктивности имеет весьма малый, иного не надо на частотах СВЧ. Расчет ведется по специальным справочникам, хотя пользуются преимущественно инженеры-конструкторы.

    Для намотки индуктивности изготавливают специальные приспособления, напоминающие катушку спиннинга. На ось одевается сердечник с ограничителем по бокам, вращая ручку, мастер внимательно считает количество оборотов, отмеряет нужную длину. Медленно, по способу челнока рука двигается влево-вправо, витки ровно ложатся последовательно.

    Зачем нужны бифилярные катушки индуктивности

    Иногда катушка наматывается в две и более проволочных нитей. Тесла конструкцию применял для увеличения емкостных качеств. В результате становилось возможным экономить материалы – говорили выше. Что касается состояния на современном этапе развития технологий, причиной создания бифилярных катушек может быть следующее:

    Бифилярные катушки индуктивности

    Бифилярные катушки индуктивности

    1. Одна обмотка заземляется. Устраняет паразитную противо-ЭДС, вызывающую искрение, некоторые другие негативные эффекты. Когда резко пропадает напряжение, магнитное поле по большей части наводит тока в заземленной обмотке, поскольку активное сопротивление цепи наименьшее. Эффект противо-ЭДС гасится. В импульсных реле вспомогательная обмотка закорачивается. Энергия поля невелика, рассеивается активным сопротивлении меди в виде тепла.
    2. Идеи Тесла не забыты. Часто в виде бифилярных катушек изготавливаются резисторы малого номинала. Сопротивления часто имеют схожее строение. Например, известные МЛТ, лента навивается на керамическое основание. Суть затеи повысить емкостное сопротивление, компенсируя индуктивность. Импеданс резистора обращается в чисто активный. Смысл мероприятия велик при работе на переменном токе. В цепях постоянного мнимая часть импеданса (реактивное сопротивление) роли не играет.
    3. В импульсных блоках питания напряжение одной полярности, меняется по амплитуде. Позволит бифилярный трансформатор защитить от явления паразитной противо-ЭДС, спасает ключевой транзистор от пробоя. Дополнительная обмотка заземляется через диод, в обычном режиме не влияет на работу устройства. Противо-ЭДС имеет обратное направление. В результате p-n-переход открывается, разница потенциалов ограничивается прямым падением напряжения. Для кремниевых полупроводниковых диодов значение составляет 0,5 В. Понятно, напряжение не может пробить ключевой транзистор практически любого типа.
    4. Идеи Тесла используются при создании вечных двигателей (в литературе: СЕ – сверхъединичных устройств, с КПД выше 1). Используется возможность устранения реактивного сопротивления для идеализации процесса работы.

    Параметры катушек индуктивности

    Главной характеристикой катушек называют индуктивность. Физическая величина, в СИ измеряемая Гн (генри), характеризующая величину мнимой составляющей сопротивления конструкции. Параметр показывает, как много магнитного поля запасет катушка. Для простоты энергию за период считают пропорциональной произведению LI2, где L – индуктивность, I – протекающий в системе ток.

    Формула расчёта индуктивности

    Формула расчета индуктивности

    Теоретический расчет главного параметра катушек сильно определен конструкцией. Выпускаются специальные методические пособия, формула (см. рисунок: S – площадь сечения намотки, l – длина катушки, N – количество витков проволоки, в формуле – магнитная постоянная и магнитная проницаемость сердечника), приведенная на картинке, частный вариант. Когда индуктивность напоминает катушку. Имеются специальные программы для персонального компьютера, упрощающие процесс.

    К вторичным параметрам катушек индуктивности относят:

    • Добротность. Характеризует потери на активном сопротивлении.
    • Собственная индуктивность (см. выше).
    • Температурная стабильность параметров.

    Катушка индуктивности — это… Что такое Катушка индуктивности?

    Обозначение на электрических принципиальных схемах

    Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

    Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

    Терминология

    При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

    В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

    Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

    Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

    При использовании для накопления энергии называют индукционным накопителем.

    Конструкция

    Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

    Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

    На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

    Свойства катушки индуктивности

    Свойства катушки индуктивности:

    • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
    • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
    • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

    Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

    Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

    Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

    Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

    При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

    Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

    При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

    ,

    где :  — ток в катушке,

     — начальный ток катушки,
     — текущее время,
     — постоянная времени.

    Постоянная времени выражается формулой:

    ,

    где :  — сопротивление резистора,

     — омическое сопротивление катушки.

    При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

    .

    При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

    Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

    ↔ , где
    ↔ ↔  ; ↔  ; ↔

    Характеристики катушки индуктивности

    Индуктивность

    Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

    Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

    где  — магнитная постоянная
     — относительная магнитная проницаемость материала сердечника (зависит от частоты)
     — площадь сечения сердечника
     — длина средней линии сердечника
     — число витков

    При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

    При параллельном соединении катушек общая индуктивность равна:

    Сопротивление потерь

    В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

    Потери в проводах

    Потери в проводах вызваны тремя причинами:

    • Провода обмотки обладают омическим (активным) сопротивлением.
    • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
    • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
    Потери в диэлектрике

    Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

    • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
    • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

    В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

    Потери в сердечнике

    Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

    Потери на вихревые токи

    Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

    Добротность

    С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

    Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

    Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

    Паразитная емкость и собственный резонанс

    Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

    На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

    Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

    Температурный коэффициент индуктивности (ТКИ)

    ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

    Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

    Разновидности катушек индуктивности

    Контурные катушки индуктивности, используемые в радиотехнике
    Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
    Катушки связи, или трансформаторы связи
    Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
    Вариометры
    Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
    Дроссели
    Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
     TKL = \frac{\Delta L}{L \Delta T} Сдвоенный дроссель
    Сдвоенные дроссели
    Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.[2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

    Применение катушек индуктивности

    Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
    • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
    • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
    • Две и более индуктивно связанные катушки образуют трансформатор.
    • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
    • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
    • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
    • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
    • Для разогрева электропроводящих материалов в индукционных печах.
    • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
    • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
    • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
    • Для накопления энергии.

    См. также

    Примечания

    Ссылки

    Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
    Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
    Эта отметка установлена 13 мая 2011.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *