Какими свойствами обладает индукционное электрическое поле — MOREREMONTA
Весь мир в твоих руках — все будет так, как ты захочешь
Адрес: г. Новороссийск | Телефон: Номер телефона | Почта: [email protected] |
---|
Весь мир в твоих руках — все будет так, как ты захочешь
Как сказал.
Стремись не к тому, чтобы добиться успеха, а к тому, чтобы твоя жизнь имела смысл.
Альберт Эйнштейн
Тестирование
Вихревое электрическое поле
Вихревое электрическое поле — это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.
Переменное магнитное поле порождает индуцированное электрическое поле. Если магнитное поле постоянно, то индуцированного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле
Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возникает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.
Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.
Это фундаментальное положение электродинамики установлено Максвеллом как обобщение закона электромагнитной индукции Фарадея.
В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.
Направление вектора напряженности вихревого электрического поля устанавливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.
Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, соизмеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
Отличие вихревого электрического поля от электростатического
1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.
Причина возникновения электрического тока в неподвижном проводнике — электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.
Индукционное электрическое поле является вихревым. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
индукционное электрическое поле ( вихревое электр. поле )
1. создается неподвижными электр. зарядами
1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты — -потенциальное поле
2. силовые линии замкнуты — — вихревое поле
3. источниками поля являются электр. заряды
3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0.
4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции
Вихревые токи
Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало.Поэтому сердечники трансформаторов делают из изолированных пластин.
Использование вихревых токов: нагрев и плавка металлов в вакууме; демпферы в электроизмерительных приборах.
Вредное действие вихревых токов: потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.
Эдс индукции в движущихся проводниках
Прямолинейный проводник АВ движется в магнитном поле с индукцией В по проводящим шинам, которые замкнуты на гальванометр.
На электрические заряды, перемещающиеся вместе с проводником в магнитном поле, действует сила Лоренца: Fл = /q/vB sin a Её направление можно определить по правилу левой руки. Под действием Fл внутри проводника происходит распределение положительных и отрицательных зарядов вдоль всей длины проводника l.
Причина возникновения ЭДС индукции в движущемся проводнике объясняется действием силы Лоренца на свободные заряды.
Готовимся к проверочной работе!
1. При каком направлении движения контура в магнитном поле в контуре будет возникать индукционный ток?
2. Укажите направление индукционного тока в контуре при введении его в однородное магнитное поле.
3. Как изменится магнитный поток в рамке, если рамку повернуть на 90 градусов из положения 1 в положение 2 ?
4. Будет ли возникать индукционный ток в проводниках, если они движутся так, как показано на рисунке?
5. Определить направление индукционного тока в проводнике АБ, движущемся в однородном магнитном поле.
6. Указать правильное направление индукционного тока в контурах.
В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.
Вихревое электрическое поле конспект. Вихревое электрическое поле
Через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поло, которое может и не меняться со временем. Значение ЭДС индукции в обоих случаях определяется законом (2.1), по происхождение этой ЭДС различно.
Рассмотрим сначала первый случай возникновения индукционного тока. Поместим круговой проволочный виток радиусом r в переменное во времени однородное магнитное поле (рис. 2.8). Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток. При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен.
Какие же силы заставляют заряды в витке двигаться? Само магнитное поле, пронизывающее катушку, этого сделать не может, так как магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен.
Кроме магнитного поля, на заряды, причем как на движущиеся, так и на неподвижные, действует еще электрическое поле. Но ведь те поля, о которых пока шла речь (электростатичсское или стационарное), создаются электрическими зарядами, а индукционный ток появляется в результате действия меняющегося магнитного поля. Поэтому можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается меняющимся магнитным полем. Тем самым утверждается новое фундаментальное свойство поля:
Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем — это процесс порождения полем магнитным поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа процесса. Проводник с запасом свободных электронов (или других частиц) играет роль прибора: он лишь позволяет обнаружить возникающее электрическое поле.
Поле приводит в движение электроны и проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции и неподвижном проводнике состоит не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.
Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое.
Оно не связано непосредственно с электрическими зарядами , и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобныe линиям индукции магнитного поля. Это так называемое вихревое электрическое поле (рис. 2.9).
Чем быстрее меняется магнитная индукция, тем болыпе напряженность электрического поля. Согласно правилу Ленца при возрастании магнитной индукции направление вектора напряженности электрического поля образует левый винт с направлением вектора . Это означает, что при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции. Напротив, при убывании магнитной индукции направление вектора напряженности образует правый винт с направлением вектора .
Направление силовых линий напряженности совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), по-прежнему равна = q. Но в отличие от случая стационарного электрического поля работа вихревого поля по перемещению заряда q на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.
Индукционные токи в массивных проводниках. Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало.
Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников. На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление э.пектромагнит-ной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д.
Однако во многих устройствах возникновение токов Фуко приводит к бесполезным и даже нежелательным потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных пластин, изолированных друг от друга. Поверхности пластин должны быть перпендикулярны направлению вектора напряженности вихревого электрического поля. Сопротивление электрическому току пластин будет при этом максимальным, а выделение тепла — минимальным.
Применение ферритов. Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каледой пластине.
В § 7 отмечалось, что существуют магнитные изоляторы — ферриты. При перемагничивании в ферритах не возникают вихревые токи. В результате потери энергии на выделение в них тепла сводятся к минимуму. Поэтому из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов и др. Ферритовые сердечники изготовляют из смеси порошков исходных веществ. Смесь прессуется и подвергается значительной термической обработке.
При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца , препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать.
Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается меняющимся магнитным полем.
1. Какова природа сторонних сил, вызывающих появление индукционного тока в неподвижном проводнике!
2. В чем отличие вихревого электрического поля от электростатического или стационарного!
3. Что такое токи Фуко!
4. В чем преимущества ферритов по сравнению с обычными ферромагнетиками!
Мякишев Г. Я., Физика . 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с: ил.
Библиотека с учебниками и книгами на скачку бесплатно онлайн , Физика и астрономия для 11 класса скачать , школьная программа по физике, планы конспектов уроков
Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные урокиЦель урока : сформировать понятие, что ЭДС индукции может возникать или в неподвижном проводнике, помещенном в изменяющееся магнитное поле, или в движущемся проводнике, находящемся в постоянном магнитном поле; закон электромагнитной индукции справедлив в обоих случаях, а происхождение ЭДС различно.
Ход урока
Проверка домашнего задания методом фронтального опроса и решения задач
1. Какая величина изменяется пропорционально скорости изменения магнитного потока?
2. Работа, каких сил создает ЭДС индукции?
3. Сформулировать и записать формулу закона электромагнитной индукции.
4. В законе электромагнитной индукции стоит знак «минус». Почему?
5. Какова, ЭДС индукции в замкнутом витке провода, сопротивление которого 0,02 Ом, а индукционный ток 5 А.
Решение. Ii = ξi /R; ξi= Ii·R; ξi= 5·0,02= 0,1 B
Изучение нового материала
Рассмотрим, как возникает ЭДС индукции в неподвижном проводнике, находящимся в переменном магнитном поле. Проще всего это понять
На примере работы трансформатора.
Одна катушка замыкается на сеть переменного тока, если вторая катушка замкнута, то в ней возникает ток. Электроны в проводах вторичной обмотки придут в движение. Какие же силы двигают свободные электроны? Магнитное поле сделать этого не может, так как действует только на движущиеся электрические заряды.
Свободные электроны приходят в движение под действием электрического поля, которое было создано переменным магнитным полем.
Таким образом, мы подошли к понятию нового фундаментального свойства полей: изменяясь во времени, магнитное поле порождает электрическое поле. Этот вывод сделал Дж. Максвелл.
Таким образом, в явлении электромагнитной индукции – главное – это создание магнитным полем электрического поля. Это поле приводит в движение свободные заряды.
Структура этого поля другая, чем у электростатического. Оно не связано с электрическими зарядами. Линии напряженности не начинаются на положительных и не заканчиваются на отрицательных зарядах. Такие линии не имеют начала и конца – это замкнутые линии похожие на линии индукции магнитного поля. Это вихревое электрическое поле.
ЭДС индукции в неподвижном проводнике, помещенном в переменное магнитное поле равна работе вихревого электрического поля перемещающего заряды вдоль этого проводника.
Токи Фуко (французский физик)
Польза и вред индукционных токов в массивных проводниках.
Где применяют ферриты? Почему в них не возникают вихревые токи?
Закрепление изученного материала
– Объяснить природу сторонних сил действующих в неподвижных проводниках.
– Разница между электростатическим и вихревым электрическими полями.
– Плюсы и минусы токов Фуко.
– Почему не возникают вихревые токи в ферритовых сердечниках?
– Вычислить ЭДС индукции в контуре проводника, если магнитный поток изменился за 0,3 с на 0,06 Вб.
Решение. ξi= – ΔФ/Δt; ξi= – 0,06/0,3 = 0,2 B
Подведем итоги урока
Домашнее задание: § 12, повт. § 11, упр.2 № 5, 6.
- Цель урока: сформулировать количественный закон электромагнитной индукции; учащиеся должны усвоить, что такое ЭДС магнитной индукции и что такое магнитный поток. Ход урока Проверка домашнего задания…
- Цель урока: выяснить, какой причиной вызвана ЭДС индукции в движущихся проводниках, помещенных в постоянное магнитное поле; подвести учащихся к выводу, что действует на заряды сила…
- Цель урока: сформировать представление о магнитном поле как виде материи; расширить знания учащихся о магнитных взаимодействиях. Ход урока 1. Анализ контрольной работы 2. Изучение нового…
- Цель урока: сформировать у учащихся представление об электрическом и магнитном поле, как об едином целом – электромагнитном поле. Ход урока Проверка домашнего задания методом тестирования…
- Цель урока: выяснить, как произошло открытие электромагнитной индукции; сформировать понятие об электромагнитной индукции, значение открытия Фарадея для современной электротехники. Ход урока 1. Анализ контрольной работы…
- Цель урока: сформировать представление о том, что изменение силы тока в проводнике создает вихревое воле, которое может или ускорять или тормозить движущиеся электроны. Ход урока…
- Цель урока: ввести понятие электродвижущей силы; получить закон Ома для замкнутой цепи; создать у учащихся представление о различии между ЭДС, напряжением и разностью потенциалов. Ход…
- Цель урока: познакомить учащихся с историей борьбы концепций близкодействия и действия на расстоянии; с недостатками теорий, ввести понятие напряженности электрического поля, формировать умение изображать электрические…
- Цель урока: на основе модели металлического проводника изучить явление электростатической индукции; выяснить поведение диэлектриков в электростатическом поле; ввести понятие диэлектрической проницаемости. Ход урока Проверка домашнего…
- Цель урока: сформировать представление учащихся об электрическом токе; рассмотреть условия, необходимые для существования электрического тока. Ход урока 1. Анализ контрольной работы 2. Изучение нового материала…
- Цель урока: проверить знания учащихся по вопросам изученной темы, совершенствовать навыки решения задач различных видов. Ход урока Проверка домашнего задания Ответы учащихся по подготовленным дома…
- Цель урока: рассмотреть устройство и принцип действия трансформаторов; привести доказательства, что электрический ток никогда не имел бы такого широкого применения, если бы в свое время…
- Цель урока: продолжать формирование у учащихся единство колебательных процессов различной природы. Ход урока 1. Анализ контрольной работы. 2. Изучение нового материала При изучении электромагнитных колебаний…
- Цель урока: сформировать представление о том, что магнитные поля образуются не только электрическим током, но и постоянными магнитами; рассмотреть область применения постоянных магнитов. Наша планета…
- Цель урока: сформировать представление об энергии, которой обладает электрический ток в проводнике и энергии магнитного поля, созданного током. Ход урока Проверка домашнего задания методом тестирования…
Урок 15. Вихревое электрическое поле. ЭДС-индукции в движущихся проводниках
Цель: выяснить условия возникновения ЭДВ в движущихся проводниках.
Ход урока
I. Организационный момент
II. Повторение
В чем заключается явление электромагнитной индукции?
Какие условия необходимы для существования явления электромагнитной индукции?
Как устанавливается направление индукционного тока правилом Ленца?
По какой формуле определяется ЭДС индукции и какой физический смысл имеет знак «минус» в этой формуле?
III. Изучение нового материала
Возьмем трансформатор. Включив одну из обмоток в сеть переменного тока, получим ток в другой катушке. На свободные заряды действует электрическое поле.
Электроны в неподвижном проводнике приводятся в движение электрическим полем, и электрическое поле непосредственно порождается переменным магнитным полем. Изменяясь во времени, магнитное поле порождает электрическое поле. Поле приводит в движение электроны в проводнике и тем самым обнаруживает себя. Электрическое поле, возникающее при изменении магнитного поля, имеет другую структуру, чем электростатическое. Оно не связано с зарядами, оно нигде не начинается и нигде не заканчивается. Представляет собой замкнутые линии. Его называют вихревым электрическим полем. Но в отличие от стационарного электрического поля, работа вихревого поля по замкнутому пути не равна нулю.
Индукционный ток в массивных проводниках называют токами Фуко.
Применение: плавка металлов в вакууме.
Вредное действие: бесполезная потеря энергии в сердечниках трансформаторов и в генераторах.
ЭДС при движении проводника в магнитном поле
При движении перемычки U на электроны действует сила Лоренца, совершающая работу. Электроны перемещаются от С к Л. Перемычка-источник ЭДС, следовательно,
Формула используется в любом проводнике, движущемся в магнитном поле, если Если между векторами есть угол α, то используется формула:
Так как то
Причина возникновения ЭД C — сила Лоренца. Знак е можно определить по правилу правой руки.
IV. Закрепление изученного материала
Какое поле называется индукционными или вихревым электрическим полем?
Что является источником индукционного электрического поля?
Что такое токи Фуко? Приведите примеры их использования. В каких случаях с ними приходится бороться?
Какими отличительными свойствами обладает индукционное электрическое поле по сравнению с магнитным полем? Стационарным или электростатическим полем?
V. Подведение итогов урока
Домашнее задание
п. 12; 13.
Тема. Закон электромагнитной индукции
Цель урока: ознакомить учащихся с законом электромагнитной индукции.
Тип урока: урок изучения нового материала.
ПЛАН УРОКА
Контроль знаний | 1. Поток магнитной индукции. 2. Явление электромагнитной индукции. 3. Правило Ленца. | |
Демонстрации | 1. Зависимость ЭДС индукции от скорости изменения магнитного потока. 2. Фрагменты видеофильма «Явление электромагнитной индукции». | |
Изучение нового материала | 1. Закон электромагнитной индукции. 2. Вихревое электрическое поле. 3. ЭДС индукции в движущихся проводниках. | |
Закрепление изученного материала | 1. Качественные вопросы. 2. Учимся решать задачи. |
ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА
Откуда же берутся посторонние силы, которые действуют на заряды в контуре? В случае неподвижного относительно наблюдателя проводника причина появления посторонних сил — переменное магнитное поле. Дело в том, что переменное магнитное поле порождает в окружающем пространстве электрическое поле — именно оно действует на свободные заряженные частицы в проводнике. Но порождение электрического поля магнитным полем происходит даже там, где нет ведущего контура и не возникает электрический ток. Как видим, магнитное поле может не только передавать магнитные взаимодействия, но и быть причиной появления другой формы материи — электрического поля.
Однако электрическое поле, порождаемое переменным магнитным полем, имеет существенное отличие от поля, созданного заряженными частицами.
Электрическое поле, создаваемое переменным магнитным полем, является вихревым, то есть его силовые линии являются замкнутыми.
Вихревое электрическое поле имеет некоторые особенности:
1) поле проявляет себя через силовое воздействие на заряженные частицы, поэтому основной характеристикой вихревого электрического поля является напряженность ;
2) в отличие от электростатического поля, линии напряженности вихревого электрического поля являются замкнутыми. Направление этих линий можно определить с помощью, например, левой руки, как показано на рисунке:
3) в отличие от электростатического поля, работа вихревого электрического поля по замкнутой траектории не равна нулю (вихревое электрическое поле является непотенціальним).
Рассмотрим проводник длиной l , движущегося поступательно в однородном магнитном поле с индукцией со скоростью , напрямленою под углом к линиям магнитной индукции поля.
На электроны, движущиеся вместе с проводником в магнитном поле, действует сила Лоренца, направленная вдоль проводника. Ее модуль
где q 0 — заряд свободной заряженной частицы. Под действием этой силы происходит разделение зарядов — свободные заряженные частицы сместятся к одному концу проводника, а на другом конце возникнет их нехватка, то есть будет превышать заряд противоположного знака. Следовательно, в этом случае сторонняя сила — это сила Лоренца. Разделение зарядов приведет к появлению электрического поля, что будет препятствовать дальнейшему разделению зарядов. Этот процесс прекратится, когда сила Лоренца и сила = q 0 уравновесят друг друга. Следовательно, внутри проводника напряженность электрического поля E = B sin , а разность потенциалов на концах проводника U = El = B lsin . Поскольку мы рассматриваем разомкнутое круг, разность потенциалов на концах проводника равна ЭДС индукции в этом проводнике. Таким образом,
Если такой проводник замкнуть, то по кругу пройдет электрический ток. Таким образом, движущийся в магнитном поле проводник можно рассматривать как своеобразный источник тока характеризуется ЭДС индукции.
ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА
Первый уровень
1. Почему в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индукционный ток?
2. Какова причина возникновения индукционного тока при движении проводника в постоянном магнитном поле?
3. Какие особенности вихревого электрического поля?
Второй уровень
1. Какова природа сторонних сил, которые обусловливают появление индукционного тока в неподвижном проводнике?
2. Почему закон электромагнитной индукции формулируют для ЭДС, а не для силы тока?
3. Какова природа ЭДС индукции в проводнике, движущемся в магнитном поле?
ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА
) . Качественные вопросы
1. Почему от удара молнии иногда перегорают предохранители даже выключенного из розетки прибора?
2. Почему для обнаружения индукционного тока замкнутый проводник лучше брать в виде катушки, а не в виде прямолинейного провода?
) . Учимся решать задачи
1. С помощью гибких проводов прямолинейный проводник длиной 60 см присоединен к источнику постоянного тока с ЭДС 12 В и внутренним сопротивлением 0,5 Ом. Проводник движется в однородном магнитном поле индукцией 1,6 Тл со скоростью 12,5 м/с перпендикулярно к линиям магнитной индукции. Определите силу тока в проводнике, если сопротивление внешней цепи равно 2,5 Ом.
Переменное магнитное поле порождает индуцированное электрическое поле . Если магнитное поле постоянно, то индуцированного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это имеет место в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя , подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле , подобно магнитному, является вихревым.
Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возникает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.
Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.
Это фундаментальное положение электродинамики установлено Максвеллом как обобщение закона электромагнитной индукции Фарадея.
В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.
Направление вектора напряженности вихревого электрического поля устанавливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.
Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, соизмеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
Отличие вихревого электрического поля от электростатического
1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.
электростатическое поле | индукционное электрическое поле |
1. создается неподвижными электр. зарядами | 1. вызывается изменениями магнитного поля |
2. силовые линии поля разомкнуты — потенциальное поле | 2. силовые линии замкнуты — вихревое поле |
3. источниками поля являются электр. заряды | 3. источники поля указать нельзя |
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. | 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции |
Вихревое электрическое поле
⇐ ПредыдущаяСтр 6 из 6Если замкнутый проводник, находящийся в магнитном поле, неподвижен, то объяснить возникновение ЭДС индукции действием силы Лоренца нельзя, так как она действует только на движущиеся заряды.
Известно, что движение зарядов может происходить также под действием электрического поля Следовательно, можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается переменным магнитным полем. К этому выводу впервые пришел Дж. Максвелл.
Электрическое поле, создаваемое переменным магнитным полем, называется индуцированным электрическим полем. Оно создается в любой точке пространства, где имеется переменное магнитное поле, независимо от того, имеется ли там проводящий контур или нет. Контур позволяет лишь обнаружить возникающее электрическое поле. Тем самым Дж. Максвелл обобщил представления М. Фарадея о явлении электромагнитной индукции, показав, что именно в возникновении индуцированного электрического поля, вызванного изменением магнитного поля, состоит физический смысл явления электромагнитной индукции.
Индуцированное электрическое поле отличается от известных электростатического и стационарного электрического полей.
1. Оно вызвано не каким-то распределением зарядов, а переменным магнитным полем.
2. В отличие от линий напряженности электростатического и стационарного электрического полей, которые начинаются на положительных зарядах и заканчиваются на отрицательных зарядах, линии напряженности индуцированного поля — замкнутые линии. Поэтому это поле — вихревое поле.
Исследования показали, что линии индукции магнитного поля и линии напряженности вихревого электрического поля расположены во взаимно перпендикулярных плоскостях. Вихревое электрическое поле связано с наводящим его переменным магнитным полем правилом левого винта:
если острие левого винта поступательно движется по направлению ΔΒ, то поворот головки винта укажет направление линий напряженности индуцированного электрического поля (рис. 1).
Рис. 1
3. Индуцированное электрическое поле не является потенциальным. Разность потенциалов между любыми двумя точками проводника, по которому проходит индукционный ток, равна 0. Работа, совершаемая этим полем при перемещении заряда по замкнутой траектории, не равна нулю. ЭДС индукции и есть работа индуцированного электрического поля по перемещению единичного заряда по рассматриваемому замкнутому контуру, т.е. не потенциал, а ЭДС индукции является энергетической характеристикой индуцированного поля.
Первое уравнение Максвелла является обобщением закона электромагнитной индукции, которое в интегральной форме имеет вид
1. Из выражения для магнитного потока следует
→ Интеграл в правой части является функцией только от времени.
2. Неравенство нулю циркуляции вектора напряженности электрического поля по замкнутому контуру означает, что возбуждаемое переменным магнитным полем электрическое поле является вихревым, как и само магнитное поле.
3. Из первого уравнения Максвелла следует, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле.
4. По теореме Стокса в векторном анализе
где ротор вектора Е выражается определителем
что позволяет записать первое уравнение Максвелла в дифференциальном виде
Ток смещения
Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения.
Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор «протекают» токи смещения, причем в тех участках, где отсутствуют проводники.
Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полями. По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток смещения, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости (I) и смещения (Iсм) равны: Iсм =I.
Ток проводимости вблизи обкладок конденсатора
(138.1)
(поверхностная плотность заряда s на обкладках равна электрическому смещению D в конденсаторе )Подынтегральное выражение в (138.1) можно рассматривать как частный случай скалярного произведения когда и dS взаимно параллельны. Поэтому для общего случая можно записать
Сравнивая это выражение с , имеем
(138.2)
Выражение (138.2) и было названо Максвеллом плотностью тока смещения.
Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и jсм. При зарядке конденсатора (рис. 197, а) через проводник, соединяющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается; следовательно, >0, т. е. вектор направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, соединяющий обкладки, ток течет от левой обкладки к правой; поле в конденсаторе ослабляется; следовательно, <0, т. е. вектор направлен противоположно вектору D. Однако вектор направлен опять так же, как и вектор j. Из разобранных примеров следует, что направление вектора j, а следовательно, и вектора jсм, совпадает с направлением вектора , как это и следует из формулы (138.2).
Подчеркнем, что из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно — способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле (линии индукции магнитных полей токов смещения при зарядке и разрядке конденсатора показаны на рис. 197 штриховыми линиями).
В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно (89.2), D=e0E+P, где Е – напряженность электростатического поля, а Р — поляризованность, то плотность тока смещения
(138.3)
где e0 — плотность тока смещения в вакууме, — плотность тока поляризации — тока, обусловленного упорядоченным движением электрических зарядов в диэлектрике (смещение зарядов в неполярных молекулах или поворот диполей в полярных молекулах). Возбуждение магнитного поля токами поляризации правомерно, так как токи поляризации по своей природе не отличаются от токов проводимости. Однако то, что и другая часть плотности тока смещения , не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени электрического поля приводит к возникновению в окружающем пространстве магнитного поля.
Следует отметить, что название «ток смещения» является условным, а точнее — исторически сложившимся, так как ток смещения по своей сути — это изменяющееся со временем электрическое поле. Ток смещения поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым проходит переменный ток. Однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально А.А. Эйхенвальдом, изучавшим магнитное поле тока поляризации, который, как следует из (138.3), является частью тока смещения.
Второе уравнение Максвелла представляет собой обобщение закона полного тока.
1.Второе уравнение Максвелла основано на предположении, что всякое изменение электрического поля вызывает возникновение в окружающем пространстве вихревого магнитного поля.
2.Количественной мерой магнитного действия переменного электрического поля является ток смещения.
3.Током смещения сквозь произвольную замкнутую поверхность S называется физическая величина, равная потоку вектора плотности тока смещения сквозь эту поверхность
с плотностью тока смещения
где D – вектор электрического смещения.
4.Токи смещения проходят по тем участкам цепи переменного тока, где отсутствуют проводники (например, между обкладок конденсатора).
5.В диэлектрике вектор электрического смещения равен
где Р – вектор поляризованности.
Тогда плотность тока смещения
где – плотность тока смещения в вакууме, а – плотность тока поляризации (смещение зарядов в молекулах неполярных диэлектриков или поворот диполей полярных диэлектриков).
6.Токи смещения не сопровождаются выделением теплоты.
7.Второе уравнение Максвелла в интегральной форме имеет вид
8.По теореме Стокса
а полный ток
вследствие чего в дифференциальном виде второе уравнение Максвелла имеет вид
14. Полная система уравнений Максвелла в интегральной форме.
Введение Максвеллом понятия тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.
В основе теории Максвелла лежат рассмотренные выше четыре уравнения:
1. Электрическое поле может быть как потенциальным (ЕQ), так и вихревым (ЕB), поэтому напряженность суммарного поля Е=ЕQ+ЕB. Так как циркуляция вектора ЕQ равна нулю , а циркуляция вектора ЕB определяется выражением, то циркуляция вектора напряженности суммарного поля:
Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.
2. Обобщенная теорема о циркуляции вектора Н:
Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.
3. Теорема Гаусса для поля D:
Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью r, то эта формула запишется в виде:
4. Теорема Гаусса для поля В:
Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):
Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.
15)
Система уравнений Максвелла : диффер. форма. Материальные уравнения.
Теорией Максвелла назвывается последовательная теория единого электромагнитного поля, создаваемого произвольной системой электрических зарядов и токов. В теории Максвелла решается основная задача электродинамики :заданному распределению зарядов и токов отыскиваются характеристики создаваемых ими электрического и магнитного полей. Если мы из системы 4-х уравнений перейдем в проэкции на оси ( E — Ex Ey Ez, B — Bx By Bz), то не сможем решить ее, из-за большого кол-ва неизвестных. Для их нахождения пользуются так называемыми материальными уравнениями, характеризующими электрические и магнитные св-ва среды.
Анализ уравнений Максвелла. 1-е уравнение указывает на то, что поле является вихревым (вопр. 30). 2-е уравнение — Максвелл обобщил теорему Остроградского-Гаусса для электростатического поля. Он предположил, что она справедлива для любого электрического поля как стационарного, так и переменного. 3-е уравнение : См. ток смещения. В интегральной форме показывает, что циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру равна алгебраической сумме макротоков и тока смещения сквозь поверхность, натянутую на этот контур. 4-е уравнение — теорема Остроградского-Гаусса справедлива для любого магнитного поля.
Если электрические и магнитные поля стационарны (dD/dt = dB/dt = 0), то эти поля существуют независимо друг от друга. Электрическое поле описывается двумя уравнениями электростатики : rot E = 0 и div D
Поиск по сайту:
Вихревое электрическое поле самоиндукция индуктивность. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность. Закон электромагнитной индукции
Как же возникает электродвижущая сила в проводнике, который находится в переменном магнитном поле? Что такое вихревое электрическое поле, его природа и причины возникновения? Какие основные свойства этого поля? На все эти и многие другие вопросы ответит сегодняшний урок.
Тема: Электромагнитная индукция
Урок: Вихревое электрическое поле
Вспомним о том, что правило Ленца позволяет определять направление индукционного тока в контуре, находящемся во внешнем магнитном поле с переменным потоком. Отталкиваясь от этого правила, удалось сформулировать закон электромагнитной индукции.
Закон электромагнитной индукции
При изменении магнитного потока, пронизывающего площадь контура, в этом контуре возникает электродвижущая сила, численно равная скорости изменения магнитного потока, взятой со знаком минус.
Как же возникает эта электродвижущая сила? Оказывается, ЭДС в проводнике, который находится в переменном магнитном поле, связано с возникновением нового объекта — вихревого электрического поля .
Рассмотрим опыт. Есть катушка из медной проволоки, в которую вставлен железный сердечник для того, чтобы усилить магнитное поле катушки. Катушка через проводники подключена к источнику переменного тока. Также есть виток из проволоки, помещенной на деревянную основу. К этому витку подключена электрическая лампочка. Материал проволоки покрыт изоляцией. Основание катушки сделано из дерева, т. е. из материала, не проводящего электрический ток. Каркас витка также изготовлен из дерева. Таким образом, исключается всякая возможность контакта лампочки с цепью, подключённой к источнику тока. При замыкании источника лампочка загорается, следовательно, в витке протекает электрический ток — значит, сторонние силы в этом витке совершают работу. Необходимо выяснить, откуда берутся сторонние силы.
Магнитное поле, пронизывающее плоскость витка, не может вызвать появление электрического поля, поскольку магнитное поле действует только на движущиеся заряды. Согласно электронной теории проводимости металлов, внутри них существуют электроны, которые могут свободно двигаться внутри кристаллической решётки. Однако, это движение в отсутствие внешнего электрического поля носит беспорядочный характер. Такая беспорядочность приводит к тому, что суммарное действие магнитного поля на проводник с током равно нулю. Этим электромагнитное поле отличается от электростатического, которое действует и на неподвижные заряды. Так, электрическое поле действует на движущиеся и на неподвижные заряды. Однако, та разновидность электрического поля, которая, изучалась ранее, создаётся только электрическими зарядами. Индукционный ток, в свою очередь, создаётся переменным магнитным полем.
Предположим, что электроны в проводнике приходят в упорядоченное движение под действием некой новой разновидности электрического поля. И это электрическое поле порождается не электрическими зарядами, а переменным магнитным полем. К подобной идее пришли Фарадей и Максвелл. Главное в этой идее то, что переменное во времени магнитное поле порождает электрическое. Проводник с имеющимися в нём свободными электронами позволяет обнаружить это поле. Это электрическое поле приводит в движение электроны, находящиеся в проводнике. Явление электромагнитной индукции состоит не столько в появлении индукционного тока, сколько в появлении новой разновидности электрического поля, которое приводит в движение электрические заряды в проводнике (рис. 1).
Вихревое поле отличается от статического. Оно не порождается неподвижными зарядами, следовательно, линии напряженности этого поля не могут начинаться и заканчиваться на заряде. Согласно исследованиям, линии напряжённости вихревого поля представляют собой замкнутые линии подобно линиям индукции магнитного поля. Следовательно, это электрическое поле является вихревым — таким же, как и магнитное поле.
Второе свойство касается работы сил этого нового поля. Изучая электростатическое поле, выяснили, что работа сил электростатического поля по замкнутому контуру равна нулю. Так как при движении заряда в одном направлении перемещение и действующая сила сонаправлены и работа положительна, то при движении заряда в обратном направлении перемещение и действующая сила противоположно направлены и работа отрицательна, суммарная работа будет равна нулю. В случае вихревого поля работа по замкнутому контуру будет отлична от нуля. Так при движении заряда вдоль замкнутой линии электрического поля, имеющего вихревой характер, работа на разных участках будет сохранять постоянный знак, поскольку сила и перемещение на разных участках траектории будут сохранять одинаковое направление друг относительно друга. Работа сил вихревого электрического поля по перемещению заряда вдоль замкнутого контура отлична от нуля, следовательно, вихревое электрическое поле может порождать электрический ток в замкнутом контуре, что совпадает с результатами эксперимента. Тогда можно утверждать то, что сила, действующая на заряды со стороны вихревого поля, равна произведению переносимого заряда на напряжённость этого поля.
Эта сила и есть сторонняя сила, совершающая работу. Работа этой силы, отнесённая к величине перенесённого заряда, — ЭДС индукции. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца и совпадает с направлением индукционного тока.
В неподвижном контуре, находящемся в переменном магнитном поле, возникает индукционный электрический ток. Само магнитное поле не может быть источником сторонних сил, поскольку оно может действовать только на упорядоченно движущиеся электрические заряды. Электростатического поля быть не может, поскольку оно порождается неподвижными зарядами. После предположения о том, что переменное во времени магнитное поле порождает электрическое поле, узнали, что это переменное поле носит вихревой характер, т. е. его линии замкнуты. Работа вихревого электрического поля по замкнутому контуру отлична от нуля. Сила, действующая на переносимый заряд со стороны вихревого электрического поля, равна величине этого переносимого заряда, умноженной на напряжённость вихревого электрического поля. Эта сила и является той сторонней силой, которая приводит к возникновению ЭДС в контуре. Электродвижущая сила индукции, т. е. отношение работы сторонних сил к величине переносимого заряда, равна взятой со знаком минус скорости изменения магнитного потока. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца.
- Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. — 4-е изд., стереотип. — М.: Дрофа, 2004. — 416 с.: ил., 8 л. цв. вкл.
- Генденштейн Л.Э., Дик Ю.И., Физика 11. — М.: Мнемозина.
- Тихомирова С.А., Яровский Б.М., Физика 11. — М.: Мнемозина.
- Электронный учебник физики ().
- Классная физика ().
- Xvatit.com ().
- Как объяснить тот факт, что удар молнии может расплавить предохранители, вывести из строя чувствительные электроприборы и полупроводниковые устройства?
- * При размыкании кольца в катушке возникла ЭДС самоиндукции 300 В. Какова напряжённость вихревого электрического поля в витках катушки, если их количество равно 800, а радиус витков — 4 см?
Магнитный поток Ф= BS cos . Изменение магнитного потока через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поло, которое может и не меняться со временем. Значение ЭДС индукции в обоих случаях определяется законом электромагнитной индукции, но происхождение этой ЭДС различно.
Рассмотрим сначала первый случай возникновения индукционного тока. Поместим круговой проволочный виток радиусом r в переменное во времени однородное магнитное поле (рис. 2.8).
Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток. При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен.
Какие же силы заставляют заряды в витке двигаться? Само магнитное поле, пронизывающее катушку, этого сделать не может, так как магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен.
Кроме магнитного поля, на заряды, причем как на движущиеся, так и на неподвижные, действует еще электрическое поле. Но ведь те поля, о которых пока шла речь (электростатичсское или стационарное), создаются электрическими зарядами, а индукционный ток появляется в результате действия меняющегося магнитного поля. Поэтому можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается меняющимся магнитным полем. Тем самым утверждается новое фундаментальное свойство поля: изменяясь во времени, магнитное поле порождает электрическое поле . К этому выводу впервые пришел Дж. Максвелл.
Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем — это процесс порождения полем магнитным поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа процесса. Проводник с запасом свободных электронов (или других частиц) играет роль прибора: он лишь позволяет обнаружить возникающее электрическое поле.
Поле приводит в движение электроны и проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции в неподвижном проводнике состоит не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.
Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое.
Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобныe линиям индукции магнитного поля. Это так называемое вихревое электрическое поле (рис. 2.9).
Чем быстрее меняется магнитная индукция, тем больше напряженность электрического поля. Согласно правилу Ленца при возрастании магнитной индукции направление вектора напряженности электрического поля образует левый винт с направлением вектора . Это означает, что при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции. Напротив, при убывании магнитной индукции направление вектора напряженности образует правый винт с направлением вектора .
Направление силовых линий напряженности совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), по-прежнему равна = q. Но в отличие от случая стационарного электрического поля работа вихревого поля по перемещению заряда q на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.
Индукционные токи в массивных проводниках. Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало.
Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников. На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление электромагнитной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д.
Однако во многих устройствах возникновение токов Фуко приводит к бесполезным и даже нежелательным потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных пластин, изолированных друг от друга. Поверхности пластин должны быть перпендикулярны направлению вектора напряженности вихревого электрического поля. Сопротивление электрическому току пластин будет при этом максимальным, а выделение тепла — минимальным.
Применение ферритов. Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каждой пластине.
При перемагничивании в ферритах не возникают вихревые токи. В результате потери энергии на выделение в них тепла сводятся к минимуму. Поэтому из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов и др. Ферритовые сердечники изготовляют из смеси порошков исходных веществ. Смесь прессуется и подвергается значительной термической обработке.
При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца, препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать.
Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается меняющимся магнитным полем.
Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую структуру, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Это так называемое вихревое электрическое поле. Может возникнуть вопрос: а почему, собственно, это поле называется электрическим? Ведь оно имеет другое происхождение и другую конфигурацию, чем статическое электрическое поле. Ответ прост: вихревое поле действует на заряд q точно так же, как и электростатическое, а это мы считали и считаем главным свойством поля. Сила, действующая на заряд, по-прежнему равна F = qE, где Е — напряженность вихревого поля.
Если магнитный поток создается однородным магнитным полем, сконцентрированным в длинной узкой цилиндрической трубке радиусом г 0 (рис. 5.8), то из соображений симметрии очевидно, что линии напряженности электрического поля лежат в плоскостях, перпендикулярных линиям В, и представляют собой окружности. В соответствии с правилом Ленца при возрастании магнитной
индукции линии напряженности E образуют левый винт с направлением магнитной индукции B.
В отличие от статического или стационарного электрического поля работа вихревого поля на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Вихревое электрическое поле, так же как и магнитное поле, не потенциальное.
Работа вихревого электрического поля по перемещению единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.
Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому возникает ЭДС индукции в том же самом проводнике, по которому идет переменный ток. Это явление называют самоиндукцией.
При самоиндукции проводящий контур играет двоякую роль: по нему протекает ток, вызывающий индукцию, и в нем же появляется ЭДС индукции. Изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле.
В момент нарастания тока напряженность вихревого электрического поля в соответствии с правилом Ленца направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.
Это приводит к тому, что при замыкании цепи, содержащей источник постоянной ЭДС, определенное значение силы тока устанавливается не сразу, а постепенно с течением времени (рис. 5.13). С другой стороны, при отключении источника ток в замкнутых контурах прекращается не мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника, так как изменение тока и его магнитного поля при отключении источника происходит очень быстро.
Явление самоиндукции можно наблюдать на простых опытах. На рисунке 5.14 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую — последовательно с катушкой L с железным сердечником. При замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием. ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения. Появление ЭДС самоиндукции при размыкании можно наблюдать на опыте с цепью, схематически показанной на рисунке 5.15. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. В результате в момент размыкания через гальванометр течет ток (штриховая стрелка), направленный против начального тока до размыкания (сплошная стрелка). Причем сила тока при размыкании цепи превосходит силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции ξ. больше ЭДС ξ is батареи элементов.
Явление самоиндукции подобно явлению инерции в механике. Так, инерция приводит к тому, что под действием силы тело не мгновенно приобретает определенную скорость, а постепенно. Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила. Точно так же за счет самоиндукции при замыкании цепи сила тока не сразу приобретает определенное значение, а нарастает постепенно. Выключая источник, мы не прекращаем ток сразу. Самоиндукция его поддерживает некоторое время, несмотря на наличие сопротивления цепи.
Далее, чтобы увеличить скорость тела, согласно законам механики, нужно совершить работу. При торможении тело само совершает положительную работу. Точно так же для создания тока нужно совершить работу против вихревого электрического поля, а при исчезновении тока это поле само совершает положительную работу.
Это не просто внешняя аналогия. Она имеет глубокий внутренний смысл. Ведь ток — это совокупность движущихся заряженных частиц. При увеличении скорости электронов создаваемое ими магнитное поле меняется и порождает вихревое электрическое поле, которое действует на сами электроны, препятствуя мгновенному увеличению их скорости под действием внешней силы. При торможении, напротив, вихревое поле стремится поддержать скорость электронов постоянной (правило Ленца). Таким образом, инертность электронов, а значит, и их масса, по крайней мере частично, имеет электромагнитное происхождение. Масса не может быть полностью электромагнитной, так как существуют электрически нейтральные частицы, обладающие массой (нейтроны и др.)
Индуктивность.
Модуль В магнитной индукции, создаваемой током в любом замкнутом контуре, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф ~ В ~ I.
Можно, следовательно, утверждать, что
где L — коэффициент пропорциональности между током в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур. Величину L называют индуктивностью контура или его коэффициентом самоиндукции.
Используя закон электромагнитной индукции и выражение (5.7.1), получим равенство:
Из формулы (5.7.2) следует, что индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.
Индуктивность, подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме
геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.
Единицу индуктивности в СИ называют генри (Гн). Индуктивность проводника равна 1 Гн, если в нем при изменении силы тока на 1 А за 1с возникает ЭДС самоиндукции 1 В:
Еще одним частным случаем электромагнитной индукции является взаимная индукция. Взаимной индукцией называют возникновение индукционного тока в замкнутом контуре (катушке) при изменении силы тока в соседнем контуре (катушке). Контуры при этом неподвижны друг относительно друга, как, например, катушки трансформатора.
Количественно взаимная индукция характеризуется коэффициентом взаимной индукции, или взаимной индуктивностью.
На рисунке 5.16 изображены два контура. При изменении силы тока I 1 в контуре 1 в контуре 2 возникает индукционный ток I 2 .
Поток магнитной индукции Ф 1,2 , созданный током в первом контуре и пронизывающий поверхность, ограниченную вторым контуром, пропорционален силе тока I 1:
Коэффициент пропорциональности L 1, 2 называется взаимной индуктивностью. Он аналогичен индуктивности L.
ЭДС индукции во втором контуре, согласно закону электромагнитной индукции, равна:
Коэффициент L 1,2 определяется геометрией обоих контуров, расстоянием между ними, их взаимным расположением и магнитными свойствами окружающей среды. Выражается взаимная индуктивность L 1,2 , как и индуктивность L, в генри.
Если сила тока меняется во втором контуре, то в первом контуре возникает ЭДС индукции
При изменении силы тока в проводнике в последнем возникает вихревое электрическое поле. Это поле тормозит электроны при возрастании силы тока и ускоряет при убывании.
Энергия магнитного поля тока.
При замыкании цепи, содержащей источник постоянной ЭДС, энергия источника тока первоначально расходуется на создание тока, т. е. на приведение в движение электронов проводника и образование связанного с током магнитного поля, а также отчасти на увеличение внутренней энергии проводника, т. е. на его нагревание. После того как установится постоянное значение силы тока, энергия источника расходуется исключительно на выделение теплоты. Энергия тока при этом уже не изменяется.
Для создания тока необходимо затратить энергию, т. е. необходимо совершить работу. Объясняется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа и идет на увеличение энергии тока. Вихревое поле совершает отрицательную работу.
При размыкании цепи ток исчезает и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обнаруживается по мощной искре, возникающей при размыкании цепи с большой индуктивностью.
Записать выражение для энергии тока I, текущего по цепи с индуктивностью L, можно на основании аналогии между инерцией и самоиндукцией.
Если самоиндукция аналогична инерции, то индуктивность в процессе создания тока должна играть ту же роль, что и масса при увеличении скорости тела в механике. Роль скорости тела в электродинамике играет сила тока I как величина, характеризующая движение электрических зарядов. Если это так, то энергию тока W m можно считать величиной, подобной кинетической энергии тела — в механике, и записать в виде.
Переменное магнитное поле порождает индуцированное электрическое поле . Если магнитное поле постоянно, то индуцированного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это имеет место в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя , подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле , подобно магнитному, является вихревым.
Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возникает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.
Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.
Это фундаментальное положение электродинамики установлено Максвеллом как обобщение закона электромагнитной индукции Фарадея.
В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.
Направление вектора напряженности вихревого электрического поля устанавливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.
Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, соизмеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
Отличие вихревого электрического поля от электростатического
1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.
электростатическое поле | индукционное электрическое поле |
1. создается неподвижными электр. зарядами | 1. вызывается изменениями магнитного поля |
2. силовые линии поля разомкнуты — потенциальное поле | 2. силовые линии замкнуты — вихревое поле |
3. источниками поля являются электр. заряды | 3. источники поля указать нельзя |
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. | 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции |
Явление электромагнитной индукции было открыто М. Фарадеем в 1831 г. Явление можно наблюдать на следующих опытах. Возьмем катушку с большим числом витков (соленоид), замкнем ее с гальванометром, и будем вдвигать с одного из ее концов вдоль оси постоянный магнит. При этом в соленоиде возникнет электрический ток, который обнаружится по отклонению стрелки гальванометра. Этот ток прекратится при прекращении движения магнита. Если удалять магнит из соленоида, то в соленоиде снова возникнет ток, но уже противоположного направления. Это же явление будет иметь место, если магнит оставить неподвижным, а перемещать соленоид. Вместо магнита можно взять второй соленоид (рис. 51 ), по которому течет постоянный ток формула» src=»http://hi-edu.ru/e-books/xbook785/files/I2.gif» border=»0″ align=»absmiddle» alt=» (рис. 52, б ), либо направлен противоположно ему, если он возрастает пометка»>В . Поток магнитной индукции через площадь S, ограниченную рамкой, равен
формула» src=»http://hi-edu.ru/e-books/xbook785/files/109-1.gif» border=»0″ align=»absmiddle» alt=» Согласно закону Фарадея (12.1), при изменяющемся потоке сквозь рамку в ней возникает индукционный ток, который будет изменяться со временем с частотой, равной скорости вращения рамки формула» src=»http://hi-edu.ru/e-books/xbook785/files/109-4.gif» border=»0″ align=»absmiddle» alt=» Получение ЭДС при вращении витка в магнитном поле лежит в основе работы генератора переменного тока.
Механизм возникновения индукционного тока в движущемся проводнике можно объяснить с помощью силы Лоренца F = qvB.
Под действием силы Лоренца происходит разделение зарядов: положительные накапливаются на одном конце проводника, отрицательные — на другом (рис. 53 ). Эти заряды создают внутри проводника электростатическое кулоновское поле. Если проводник разомкнут, то движение зарядов под действием силы Лоренца будет происходить до тех пор, пока электрическая сила не уравновесит силу Лоренца. Действие силы Лоренца аналогично действию некоторого электрического поля, это поле является сторонним полем.
Возникновение ЭДС индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Какова же природа сторонних сил (неэлектростатического происхождения) в данном случае?
Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Это поле характеризуется напряженностью (индекс указывает на причину возникновения этого поля — магнитного поля).
Циркуляция этого электрического поля пометка»>L не равна нулю:
формула» src=»http://hi-edu.ru/e-books/xbook785/files/111-1.gif» border=»0″ align=»absmiddle» alt=»
формула» src=»http://hi-edu.ru/e-books/xbook785/files/111-5.gif» border=»0″ align=»absmiddle» alt=»
Явление электромагнитной индукции, вызванное изменением тока в самом контуре, называют самоиндукцией. Ее первопричиной является изменение тока в контуре, которое легче измерить, чем изменение магнитного потока.
В любой точке поверхности, натянутой на контур, индукция dB пропорциональна току в контуре. Если ее проинтегрировать по всей поверхности, то полный магнитный поток пометка»>I
пометка»>L — индуктивность контура, коэффициент пропорциональности, зависящий от конфигурации контура.
Индуктивность показывает, какой магнитный поток пронизывает поверхность, охваченную контуром, при силе тока в нем 1 А. Ее единица — Вб/А, которая называется генри (Гн).
Если контур имеет сложную форму, например, содержит несколько витков, то вместо опред-е»>потокосцепление формула» src=»http://hi-edu.ru/e-books/xbook785/files/112-4.gif» border=»0″ align=»absmiddle» alt=».
Магнитный поток сквозь поверхность, охваченную контуром 2, может быть создан током иллюстрация» src=»http://hi-edu.ru/e-books/xbook785/files/ris54.gif» border=»0″>
Обозначим формула» src=»http://hi-edu.ru/e-books/xbook785/files/113.gif» border=»0″ align=»absmiddle» alt=» изменяется, то в контуре 2 индуцируется ЭДС взаимной индукции
формула» src=»http://hi-edu.ru/e-books/xbook785/files/I2.gif» border=»0″ align=»absmiddle» alt=» — взаимные индуктивности контуров, они зависят от геометрической формы, размеров, взаимного расположения контуров и магнитной проницаемости среды.
Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник (рис. 55 ). токами Фуко, или вихревыми токами.
Колеблющаяся между полюсами электромагнита тяжелая металлическая пластинка останавливается, если включить постоянный ток, питающий электромагнит. Вся ее энергия превращается в тепло, выделяемое токами Фуко. В неподвижной пластинке токи отсутствуют.
Вихревые токи могут быть значительно ослаблены, если в пластинке сделать разрезы, увеличивающие ее сопротивление. В сплошных сердечниках трансформаторов, электромоторов, работающих на переменном токе, токи Фуко выделяли бы значительное количество тепла. Поэтому сердечники делают наборными, составляя их из тонких пластин, разделенных слоем диэлектрика.
Явление возникновения индукционных токов Фуко лежит в основе работы индукционных печей, которые позволяют разогревать металлы до температуры плавления.
Токи Фуко подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего вихревые токи. Этот факт используется для успокоения подвижных частей различных приборов (демпфирование).
Вихревые токи возникают и в проводах, по которым течет переменный электрический ток. Направление вихревых токов таково, что они противодействуют изменению первичного тока в проводнике. Таким образом, переменный ток оказывается распределенным по сечению провода неравномерно, он как бы вытесняется на поверхность проводника. У поверхности провода плотность тока максимальна, а в глубь проводника убывает и достигает наименьшего значения на его оси. Это явление называют скин-эффектом (skin — кожа). Ток концентрируется в «кожице» проводника. Поэтому при больших частотах нет надобности в проводниках большого сечения: все равно ток будет идти лишь в поверхностном слое.
Группа МЖКХ 1 Физика 22.04. Тема 6. Открытие явления электромагнитной индукции. | Учебно-методический материал по физике:
Вихревое электрическое поле
Переменное магнитное поле порождает индуцированное электрическое поле. Если магнитное поле постоянно, то индуцированного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.
Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.
Это фундаментальное положение электродинамики установлено Максвеллом как обобщение закона электромагнитной индукции Фарадея.
В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.
Направление вектора напряженности вихревого электрического поля устанавливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.
Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, соизмеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
Отличие вихревого электрического поля от электростатического
1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.
электростатическое поле | Индукционное электрическое поле |
1. создается неподвижными электрическими зарядами | 1. вызывается изменениями магнитного поля |
2. силовые линии поля разомкнуты — потенциальное поле | 2. силовые линии замкнуты — вихревое поле |
3. источниками поля являются электр. заряды | 3. источники поля указать нельзя |
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. | 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции |
Изменение магнитного потока через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поле, которое может и не меняться со временем. Причем в обоих случаях происхождение ЭДС индукции различно. Пусть круговой проволочный виток радиусом r находится в переменном во времени однородном магнитном поле. Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток. При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен. Какие же силы заставляют заряды в витке двигаться? Само магнитное поле может действовать только на движущиеся заряды, а проводник неподвижен. Но, на заряды, причем как на движущиеся, так и на неподвижные, может действовать электрическое поле. Откуда оно здесь взялось? Изменяясь во времени, магнитное поле порождает электрическое поле — к такому выводу впервые пришел Дж. Максвелл. Главное в явлении электромагнитной индукции — это процесс порождения меняющимся магнитным полем поля электрического, которое приводит в движение электрические заряды в этом проводнике. Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Это так называемое вихревое электрическое поле. Чем быстрее меняется магнитная индукция, тем больше напряженность вихревого электрического поля. По правилу Ленца: — при возрастании магнитной индукции направление вектора напряженности электрического поля образует левый винт с направлением вектора магнитной индукции, т.е. при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции. — при убывании магнитной индукции направление вектора напряженности образует правый винт с направлением вектора магнитной индукции. Направление силовых линий напряженности вихревого поля совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), равна. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.
В массивных проводниках, чье сопротивление мало, индукционные токи очень велики, и вызывают сильный разогрев. Такие токи называются токами Фуко. Разогрев на основе индукционных токов используется в индукционных печах (например, в СВЧ-печах), для плавки металлов. Индукционные токи регистрируются в детекторах металла, устанавливаемых при контроле на входе. Однако во многих устройствах возникновение токов Фуко приводит к потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных изолированных пластин, что уменьшает токи Фуко и, следовательно, потери энергии. На очень высоких частотах применение сердечников катушек из отдельных пластин уже не дает нужного эффекта. Здесь используют ферриты — магнитные изоляторы, в которых при перемагничивании вихревые токи не возникают. Из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов.
Методы лечения
Представляет собой систему горизонтальных циркуляционных (расположенных по кругу) трубок небольшого диаметра, на внутренней поверхности которых имеются множественные отверстия, через которые вода под давлением направляется на тело.
Тонкие струи осуществляют колющее действие, раздражая периферические рецепторы. Вследствие этого, циркулярный душ оказывает общеукрепляющее и тонизирующее действие, повышает эмоциональную и физическую активность, способствует выведению шлаков и токсинов, увеличивает приток крови ко всем внутренним органам,стимулирует действие на головной и спинной мозг, укрепляет сердечно-сосудистую систему, повышает общий тонус, усиливает иммунитет, способствует закаливанию организма.
Ультрафиолетовое излучение – не видимое глазом электромагнитное излучение в диапазоне длин волн от 400 до 10 нм. УФ-облучение – применение с лечебно- профилактическими и реабилитационными целями УФ-лучей различной длины волны. УФ-лучи в зависимости от длины волны обладают различными и весьма многообразными эффектами, всвязи с чем они имеют достаточно широкие показания к применению.
Применение с лечебно-профилактической целью механических колебаний ультравысокой частоты (800-3000 кГц), называемых ультразвуком.
В основе ультразвуковой терапии лежит специфический характер взаимодействия ультразвука с биологическими тканями.
Основные клинические эффекты: противовоспалительный, обезболивающий, спазмолитический, метаболический, дефиброзирующий.
Метод лечения непрерывным и импульсным электрическим полем ультравысокой частоты. Ультравысокочастотное электрическое поле обладает высокой проникающей способностью. В тканях организма оно вызывает колебательные движения ионов, смещение электронных оболочек и атомных групп в пределах молекул, а также направленную ориентацию крупных дипольных молекул. Поглощенная тканями энергия УВЧ электрического поля преобразуется главным образом в теплоту, обеспечивая их избирательное прогревание. Наибольшее количество тепла при УВЧ-терапии образуется в подкожной клетчатке и костях, меньше — в мышцах, коже, нервной ткани, крови и лимфе.
В основе действия подводного душа-массажа лежит термическое и механическое раздражение. Пребывание больного в теплой ванне вызывает расслабление мышц и уменьшение болей, что позволяет энергичнее проводить механическое и температурное воздействие и влиять на более глубокие ткани. Массаж водяной струей вызывает выраженное покраснение кожи, обусловливаемое значительным перераспределением крови, улучшает крово- и лимфообращение, стимулирует обмен веществ и трофические процессы в тканях, способствует быстрейшему рассасыванию в них воспалительных очагов, нормализует реципрокные отношения мышц антагонистов.
Метод физиотерапии, в основе которого лежит действие на организм человека низкочастотного переменного или постоянного магнитного поля.
Лечебный эффект метода проявляется в выраженном противовоспалительном, противоотечном и трофическом действии, в седативном и обезболивающем влиянии, в усилении регенеративных процессов поврежденных тканей. Магнитное поле обладает хорошей переносимостью, постепенным развитием терапевтического эффекта.
Лечебное применение оптического излучения, источником которого является лазер. Это класс приборов, в конструкции которых использованы принципы усиления оптического излучения при помощи индуцированного испускания квантов. Использование этих принципов позволило получить лазерное излучение, которое имеет фиксированную длину волны (монохроматичность), одинаковую фазу излучения фотонов (когерентность), малую расходимость пучка (высокую направленность) и фиксированную ориентацию векторов электромагнитного поля в пространстве (поляризацию).
Лечение и профилактика заболеваний путем вдыхания искусственно распыляемых лекарственных веществ или воздуха, насыщенного солями, эфирными маслами .
Основной целью ингаляционной терапии является достижение максимального местного терапевтического эффекта в дыхательных путях при незначительных проявлениях системного действия.
Душ Шарко представляет собой плотную струю воды, которую во время процедуры направляют на пациента. Расстояние от душевой кафедры составляет, как правило, 3-3,5 м. Давление воды при этом достаточно высокое – от 2.5 до 5 атмосфер.
Душ Шарко укрепляет сердечно-сосудистую систему, способствует закаливанию организма, поднятию его тонуса оказывает стимулирующее действие на спинной и головной мозг. Он значительно ускоряет обменные процессы в организме и улучшает общее физическое и психическое состояние, повышает тонус кожи, дарит легкость и бодрость.
Метод высокочастотной электротерапии, основанный на применении в лечебно-профилактических и реабилитационных целях сверхвысокочастотных электромагнитных колебаний дециметрового диапазона, или дециметровых волн. Дециметровые волны имеют длину от 1 м до 10 см, что соответствует частоте колебаний от 300 до 3000 МГц.
Лечебные эффекты дециметровых волн: противовоспалительный, секреторный, сосудорасширяющий, иммуносупрессивный, метаболический.
Лечебное воздействие импульсным переменным синусоидальным током высокой частоты (110 кГц ),высокого напряжения (20 кВ ) и малой силы ( 0.02 мА ).
Импульсы тока воздействуют на кожу через вакуумный стеклянный электрод округлой формы. Наиболее характерным для дарсонвализации эффектом является активизация микро циркуляции, расширение артерий и капилляров кожи и подкожной клетчатки, устранение сосудистого спазма.
Применение с лечебно-профилактическими целями постоянного непрерывного электрического тока невысокого напряжения (30-80 В) и небольшой силы (до 50 м А)
Лекарственный электрофорез — метод сочетанного воздействия на организм постоянного тока и вводимых с его помощью лекарственных веществ.
Это специально оборудованное помещение в котором создаются условия соляной пещеры (спелеошахты), т.е. лечебная среда, насыщенная сухим аэрозолем хлорида натрия с преобладанием (до 90%) мелких частиц (0,5-5 мкм), которые, проникая в самые глубокие отделы дыхательных путей, оказывают действие на восстановление функции бронхов и внешнего дыхания.
Под действием высокочастотного магнитного поля в тканях и средах организма со значительной электропроводностью (мышечная ткань, кровь, лимфа, ткани паренхиматозных органов ) возникает вихревое электрическое поле. Вихревые токи вызывают тепловой и осцилляторный эффект.
Восходящий душ представляет собой рас¬пыленную струю воды, но направленную снизу вверх. Над душем устроено на специальном треножнике си¬денье для больного. Такое положение больного позволяет напра¬вить душевую струю на промежность.
Это ванны с дополнительным физическим воздействием, при которых горячая и холодная вода, смешиваясь, поступает под давлением в ванну несколькими струями.
Способствуют усилению кровообращения и лимфотока, улучшению обменных процессов и микроциркуляции. При этом происходят изменения в чувствительности нервных окончаний, улучшается тонус вен и венозный отток крови, уменьшаются отеки тканей.
Это водолечебные процедуры, при которых температурный и гидростатический фактор обычных ванн усиливается монотонным движением воды в ванне (завихрением). Во время процедуры ноги пациента находятся по колено в специальной ванне, на стенках которой находятся отверстия. Из этих отверстий выходят струи воды, заставляющие бурлить воду в ванной. Температура воды 35-38 градусов. Посредством сочетания теплового и механического воздействия можно достигать максимального восстановления мышечной системы и суставов нижних конечностей. В воду могут добавляться различные травы.
Метод электролечения, в основе которого лежит воздействие на тело пациента переменными синусоидальными токами частотой 5000 Гц, модулированными низкими частотами в диапазоне 10-150 Гц.
Вихревое электрическое поле — Большая Энциклопедия Нефти и Газа, статья, страница 3
Вихревое электрическое поле
Cтраница 3
Что является причиной возникновения вихревого электрического поля. [31]
Первое уравнение показывает, что вихревое электрическое поле создается меняющейся со временем магнитной индукцией. [32]
Это означает, что причиной вихревого электрического поля является изменение магнитного потока. [34]
Переменное магнитное поле является источником вихревого электрического поля, создающего момент сил, вращающих кольцо. [35]
Проведена работа по оценке влияния вихревого электрического поля на реологические свойства неньютоновских нефтей. Были рассмотрены асфальтено-смолистые нефти, для которых сняты кривые течения Q Q ( Ap) — зависимость объемного расхода от перепада давления — в поле и без поля. В опытах были использованы медные капиллярные трубки длиной 20, 30, 50 см и диаметром 2, 3 и 2 5 мм. [37]
Переменное магнитное поле вызывает появление индуцированного вихревого электрического поля. Вихревое электрическое поле обнаруживается по его действию на свободные заряды электрического проводящего контура, помещенного в это поле. [38]
Это важное явление объясняется возникновением вихревого электрического поля электромагнитной индукции. [40]
При разряде батареи в камере появляется вихревое электрическое поле, образование которого приводит к пробою газа, его ионизации и нагреванию до высоких температур. Это напоминает действие лампы дневного света, но в более крупных масштабах. [41]
При изменении индукции магнитного поля возникает вихревое электрическое поле, силовые линии которого представляют собой окружности с центром на оси соленоида. В результате на поверхностный заряд кольца действует сила, вращающая диск. [42]
Изменяющееся во времени магнитное поле возбуждает вихревое электрическое поле. Это явление называется электромагнитной индукцией. [43]
Изменяющееся во времени магнитное поле возбуждает вихревое электрическое поле — электрическое поле с замкнутыми линиями напряженности. Это явление называется электромагнитной индукцией. [44]
При каком изменении магнитного поля возникает постоянное вихревое электрическое поле. [45]
Страницы: 1 2 3 4
13,4 Индуцированные электрические поля — University Physics Volume 2
Индуцированное электрическое поле в круговой катушке
Каково индуцированное электрическое поле в круглой катушке из примера 13.2 (и рисунка 13.9) в указанные три раза?Стратегия
Используя цилиндрическую симметрию, интеграл электрического поля упрощается до электрического поля, умноженного на длину окружности. Поскольку мы уже знаем индуцированную ЭДС, мы можем связать эти два выражения законом Фарадея, чтобы найти индуцированное электрическое поле.Решение
Индуцированное электрическое поле в катушке имеет постоянную величину по цилиндрической поверхности, подобно тому, как решаются задачи закона Ампера с цилиндрами. Поскольку E → E → касается катушки, ∮E → · dl → = ∮Edl = 2πrE.∮E → · dl → = ∮Edl = 2πrE.В сочетании с уравнением 13.12 это дает
Направление εε — против часовой стрелки, и E → E → циркулирует в том же направлении вокруг катушки. Значения E :
. E (t1) = 6,0V2π (0,50 м) = 1,9 В / м; E (t2) = 4,7V2π (0.50 м) = 1,5 В / м; E (t3) = 0,040V2π (0,50 м) = 0,013 В / мE (t1) = 6,0V2π (0,50 м) = 1,9 В / м; E (t2) = 4,7V2π (0,50 м ) = 1,5 В / м; E (t3) = 0,040 В 2π (0,50 м) = 0,013 В / м.Значение
Когда магнитный поток через цепь изменяется, индуцируется неконсервативное электрическое поле, которое пропускает ток через цепь. Но что произойдет, если дБ / dt 0 дБ / dt ≠ 0 в свободном пространстве, где нет проводящего пути? Ответ заключается в том, что этот случай можно рассматривать как , как если бы проводящий путь присутствовал ; то есть неконсервативные электрические поля индуцируются везде, где дБ / dt 0, дБ / dt 0, независимо от наличия проводящего пути.Эти неконсервативные электрические поля всегда удовлетворяют уравнению 13.12. Например, если бы круглую катушку на рисунке 13.9 удалить, электрическое поле в свободном пространстве при r = 0,50mr = 0,50 м все равно будет направлено против часовой стрелки, и его величина все равно будет 1,9 В / м при t = 0t = 0, 1,5 В / м при t = 5,0 × 10–2 с, t = 5,0 × 10–2 с и т. Д. Существование индуцированных электрических полей, безусловно, не ограничено проводами в цепях.
электромагнетизм — Направление индуцированного электрического поля
электромагнетизм — Направление индуцированного электрического поля — Physics Stack ExchangeСеть обмена стеков
Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Physics Stack Exchange — это сайт вопросов и ответов для активных исследователей, ученых и студентов-физиков.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 3к раз
$ \ begingroup $Предполагая, что существует изменяющееся во времени магнитное поле (B), как определить направление индуцированного электрического поля, вызванного B.и от каких параметров это зависит?
П.С. определение электрического поля в произвольной точке пространства, например P
Создан 24 июн.
$ \ endgroup $ $ \ begingroup $Индуцированное электрическое поле (за счет электромагнитной индукции, которая является названием явления, о котором вы спрашиваете) сочетается с уже существующим электрическим полем от других источников.На самом деле невозможно точно разделить, какая «часть» электрического поля обусловлена изменениями магнитных полей, а какая — другими причинами.
Следовательно, только производные электрического поля связаны с изменениями магнитного поля посредством уравнения $$ \ nabla \ times \ mathbf {E} = — \ frac {\ partial \ mathbf {B}} {\ partial t} $$ которое является уравнением Максвелла-Фарадея, одним из хорошо известных уравнений Максвелла. Следствием этого уравнения (и некоторых связанных с ним законов, влияющих на движение носителей заряда в проводниках) является теорема Кельвина-Стокса $$ \ oint _ {\ partial \ Sigma} \ mathbf {E} \ cdot d \ boldsymbol {\ ell} = — \ int _ {\ Sigma} \ frac {\ partial \ mathbf {B}} {\ partial t} \ cdot d \ mathbf {A} $$ который говорит, что напряжение (точнее, ЭДС, электродвижущая сила) вдоль замкнутого контура является (минус) производной по времени магнитного потока (интегрированного магнитного поля по площади) через область, ограниченную замкнутым контуром.Правильное соотношение между $ \ boldsymbol {\ ell} $ (пальцами) и направлением $ \ mathbf {A} $ (большой палец) задается правилом правой руки.
Создан 24 июня ’13 в 9: 042013-06-24 09:04
Любош Мотль169k1414 золотых знаков365365 серебряных знаков576576 бронзовых знаков
$ \ endgroup $ Physics Stack Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
электромагнетизм — Величина индуцированного электрического поля
Предположим, что во всем пространстве присутствует однородное магнитное поле, указал на экран.
Однородное магнитное поле — это всего лишь концепция — на самом деле магнитное поле имеет некоторый градиент. Если бы магнитное поле было действительно однородным, ЭДС не возникала бы.
Но — и это особенно актуально для этого вопроса — даже если бы у нас было идеально однородное магнитное поле, оно не могло бы изменяться равномерно везде, а это значит, что мы не смогли бы гарантировать одинаковую наведенную ЭДС для любых двух одинаковых петли, случайно помещенные в это поле.
Возьмем петлю в однородном магнитном поле.У него есть определенное количество и плотность силовых линий магнитного поля внутри своего периметра. Что должно произойти с этими линиями, если поле уменьшится?
Согласно проверенной временем, если не особо строгой логике, плотность магнитных линий должна уменьшиться, и для этого они должны прорезать (или пересечь) петлю, т.е. они не просто станут слабее или выборочно исчезают.
Поскольку предполагается, что магнитное поле остается однородным, мы должны предположить, что магнитные линии будут пересекать петлю симметрично, равномерно перемещаясь во всех направлениях.Но эта симметрия расширения вокруг центра этой конкретной петли делает расширение петли рядом с ней асимметричным.
Итак, предположение о том, что магнитное поле может изменяться равномерно везде, приводит к противоречию.
Какова будет природа этих полей? Они будут круглыми? И если Итак, в какой точке пространства они будут ориентироваться, поскольку все точки практически идентичны?
Направление или форма электрического поля, создаваемого изменяющимся магнитным полем, зависит от распределения магнитного поля.Например, изменяющееся магнитное поле соленоида будет генерировать круговые силовые линии электрического поля с центром вокруг оси соленоида.
На схеме ниже показаны силовые линии электрического поля (красные стрелки), создаваемые изменяющимся магнитным полем (синие кресты) бесконечного провода, по которому проходит изменяющийся ток.
В этом случае электрическое поле имеет одинаковое направление повсюду в пространстве, но величина поля уменьшается с расстоянием от провода, потому что оно создается изменяющимся магнитным полем, которое уменьшается с расстоянием от провода, на Закон Био-Савара при $ \ frac 1 r $.В результате линейный интеграл электрического поля вдоль круговой траектории, показанной на диаграмме, даст отличную от нуля ЭДС.
Это потому, что вклад электрического поля в ЭДС против часовой стрелки в нижней половине круга будет больше, чем вклад в ЭДС по часовой стрелке в верхней половине, что приведет к чистой ЭДС против часовой стрелки. Если бы магнитное поле было однородным, суммарная ЭДС была бы равна нулю.
Разве это не даст противоречивых результатов для электрического поля в точке? рассчитывается с использованием разно ориентированных петель?
Мы видим, что можно нарисовать любое количество пересекающихся кругов, каждая из которых имеет свою собственную ЭДС, несмотря на то, что электрическое поле в точках пересечения кругов будет одинаковым.Это потому, что в каждом круге есть много других точек с разными полями для создания разных ЭДС для каждого круга. Так что здесь нет противоречия.
Физика для науки и техники II
9.2 Индуцированные электрические поля от Office of Academic Technologies на Vimeo.
9.2 Индуцированные электрические поля
Ранее мы видели, что если магнитный поток, проходящий через область, окруженную проводящей петлей, изменяется, то мы получаем индуцированный электродвижущую силу, увеличивающую индуцированный ток вдоль этой петли, прямо из закона Фарадея.Если мы рассмотрим магнитное поле, скажем, направленное в плоскость, что-то вроде этого, то предположим, что оно увеличивается в плоскости. И если мы поместим замкнутую проводящую петлю внутри этой области, давайте рассмотрим круговую петлю, тогда поток через область, окруженную этой петлей, будет изменяться. В результате этого мы получим индуцированную электродвижущую силу из закона Фарадея, которая, в свою очередь, вызовет индуцированный ток, протекающий через этот контур.
И из закона Ленца, как только мы определяем направление тока, который гласит, что он должен течь в таком направлении, чтобы противодействовать его течению, и его курсом является увеличивающееся магнитное поле в плоскости, поэтому единственный способ что он может противодействовать этому, генерируя ток, магнитное поле которого будет в направлении, противоположном этому внешнему магнитному полю, и для того, чтобы ток протекал в этом направлении вдоль этой петли, используя правило правой руки, мы хотим, чтобы магнитное поле выходит из плоскости через область, окруженную этой петлей, поэтому ток должен течь против часовой стрелки по всей этой петле.
Что ж, когда мы смотрим на этот процесс, это в некотором смысле эквивалентно тому, чтобы сказать, что то же самое магнитное поле, которое мы имеем здесь, направлено в плоскость, и если мы просто рассмотрим один из зарядов, который движется по этому пути, для заряда, чтобы точечный заряд двигался в этом направлении, по этой круговой траектории, мы должны иметь электрическое поле в среде в круговой форме, как это. Другими словами, это электрическое поле будет воздействовать на этот заряд кулоновской силой, так что заряд будет двигаться в направлении этой силы.Чтобы двигаться по такой круговой орбите, эта сила всегда должна касаться круга, примерно так. Для этого соответствующая силовая линия электрического поля должна иметь круглую форму.
Другими словами, это будет эквивалентно случаю, когда у нас будет индуцированная линия электрического поля, которая будет иметь форму круга. Что-то вроде этого. И если мы поместим заряд, для простоты давайте рассмотрим здесь положительный заряд, и этот заряд будет находиться под влиянием кулоновской силы, которая всегда будет касательной к этой силовой линии, и эта силовая линия является электрическим полем, и в каждом точки вдоль этой траектории под действием этой кулоновской силы, заряд будет двигаться вдоль этой круговой линии электрического поля.
Следовательно, мы можем связать этот случай со следующим, сказав, что, хотя мы начинаем с изменения магнитного поля, которое увеличивается в плоскости, мы получаем электрическое поле в виде концентрических линий электрического поля. Другими словами, изменение магнитного поля создает электрическое поле, силовые линии которого в этой среде имеют форму концентрических окружностей. Конечно, если B не меняется, если он постоянный, то магнитный поток через этот круглый провод или через область, окруженную круглым проводом, будет равен константе, и, поскольку он не меняется, из закона Фарадея , производная от константы даст нам 0, мы не собираемся в конечном итоге получить какую-либо наведенную электродвижущую силу, а значит, и ток.Но если оно меняется, то это изменение приведет к индукции электрического поля в среде, как это.
Итак, если мы подведем итоги до этого момента, мы можем сказать, что в этом случае индуцированный i будет отображаться против часовой стрелки. Это из закона Ленца и закона Фарадея. И индуцированный -1, конечно, напрямую связан с индуцированным электрическим полем, и мы можем видеть, связывая этот первый случай с этим случаем, это в некотором смысле эквивалентно этому случаю, потому что если мы просто рассмотрим движение одного заряда, и он будет выглядеть так.И в этом случае изменяющееся магнитное поле создает электрическое поле.
Если мы посмотрим на эту часть, предположим, что наш провод имеет радиус r , поэтому мы смотрим на силовую линию, индуцированную силовую линию, с тем же радиусом r здесь. Согласно закону Фарадея, индуцированная ЭДС — это изменение потока во времени, и если мы посмотрим на этот процесс здесь, конечно, кулоновская сила будет совершать работу по перемещению заряда по этому наклону. Работа, проделанная во время этого процесса, если обозначить это W , будет равна силе, отмеченной точками смещения, интегрированной по всей траектории, назовем ее F dot d l , интегрированной общей траекторией.
Здесь d l — вектор приращения смещения в направлении или вдоль направления пути, и где мы пойдем, мы увидим, что угол между F и d l будет быть равным 0, поэтому проделанная работа будет равна, следовательно, интегралу величины F, умноженному на dl, умноженному на косинус угла между ними, который равен 0 градусам. Косинус 0 равен 1, а величина F здесь постоянна, и это кулоновская сила, которая равна q , умноженному на индуцированное электрическое поле E .
Итак, проделанная работа будет равна qE , умноженным на dl , и эти величины постоянны, и мы можем взять их за пределы интеграла. Следовательно, проделанная работа становится равной qE , умноженному на dl на этом пути. Конечно, путь является замкнутым, и если мы будем идти по нему и складывать все эти dl друг с другом на этом пути, мы получим длину этого пути, и это будет окружность этот круг, который равен 2 πr .Таким образом, проделанная работа будет равна qE , умноженному на 2 πr .
С другой стороны, как вы помните из определения потенциала, в котором мы определили потенциал как работу, выполненную на единицу заряда, можно также выразить эту работу как заряд, умноженный на потенциал, или напряжение, или разность потенциалов. Что ж, этот потенциал или напряжение — это индуцированное напряжение ε . Итак, у нас есть два выражения для работы. Один из них представляет собой наведенную ЭДС, умноженную на заряд, а другой — q умноженное на E умноженное на 2 πr .Поскольку левые части этих уравнений равны, мы можем приравнять правые части. При этом у нас будет q умноженное на ε, равно qE умноженное на 2 πr . Здесь заряды уравняются с обеих сторон, и наведенная ЭДС будет равна E , умноженному на 2 πr .
Ну, другими словами, произведение величины электрического поля и длины петли, мы можем обобщить это выражение, сказав, что наведенная ЭДС равна интегралу по замкнутому пути E dot d l .Причина этого в том, что, как только электрическое поле создается в результате изменения магнитного поля в регионе, эти силовые линии всегда будут замкнутыми силовыми линиями. Следовательно, интеграл по путям будет взят по замкнутому пути или замкнутому циклу.
Ну, наведенная ЭДС также была равна, согласно закону Фарадея, d Φ B над dt, другими словами, скорость изменения магнитного потока. Мы можем объединить эти два выражения, чтобы выразить закон Фарадея в его наиболее общей форме, сказав, что интеграл от E точка d l по замкнутому контуру или замкнутому контуру будет равен минусу, и снова мы можно обобщить это количество членов N , умножив на количество членов N здесь, умноженное на скорость изменения потока.Итак, это наиболее общая форма закона индукции Фарадея.
Это просто утверждение, что если магнитный поток изменяется через область, окруженную проводящей петлей, то в конечном итоге мы получим индуцированную электродвижущую силу. Теперь, если мы возьмем интеграл от E dot d l вдоль замкнутого проводящего контура, это также даст нам индуцированную электродвижущую силу вдоль этого контура. Эта величина будет равна 0, если поток через область, окруженную этим контуром, постоянный.Он будет отличаться от 0, если он изменяется, если поток изменяется со временем.
Что ж, это приведет нас к интересному моменту, который заставит нас по-новому взглянуть на электрический потенциал. Скажем, новый взгляд на концепцию электрического потенциала. И это значит, что электрический потенциал имеет значение только для электрических полей, создаваемых статическими зарядами. Это не имеет никакого значения для электрических полей, создаваемых индукцией. Отметим это, сказав, что электрический потенциал имеет значение только для электрических полей, создаваемых статическими зарядами.Это не имеет значения для электрических полей, создаваемых индукцией.
Что касается статических зарядов, у нас были положительные заряды, собранные в какой-то момент, а затем отрицательные заряды, собранные в какой-то момент, как это. Как только у нас есть разделение зарядов таким образом или поляризация, мы сразу же получаем чистое электрическое поле, указывающее от положительного заряда к отрицательному, и, как вы помните, поскольку потенциал, связанный с положительным зарядом, больше, чем связанный с ним потенциал. с отрицательным зарядом или отрицательным точечным зарядом, то мы получаем определенную разность потенциалов в В, вольт между этими двумя точками, и это было равно Vf минус В и , что было равно проделанной работе в перемещении заряда от начальной до конечной точки.Скажем, это начальное, это окончательное, на единицу заряда, и это также было равно минусу, отрицательному от E точка d l , интегрированная от начальной до конечной точки.
Итак, в случае индукции мы получаем замкнутые силовые линии электрического поля. Другими словами, для статических зарядов силовые линии электрического поля всегда являются открытыми силовыми линиями, происходящими от положительного входа в отрицательный вывод. Но благодаря индукции, как мы видели несколько минут назад, мы получаем замкнутые силовые линии, подобные этой.И электрическое поле касается этих силовых линий в каждой точке.
Что ж, в этом случае, если мы посмотрим на разность потенциалов между двумя точками, она будет равна минус-интегралу E точка d l по замкнутому контуру, потому что силовая линия является замкнутым контуром. Это означает, что мы собираемся начать определенную точку, начальную точку, а затем мы закончим с той же точкой. Конечной точкой будет та же точка, с которой мы начали. Следовательно, потенциал между начальной и конечной точкой будет одинаковым, и это всегда будет давать нам 0.Вот почему электрический потенциал или разность потенциалов не имеют никакого значения для электрического поля, создаваемого индукцией.
Эта величина из закона Фарадея такова, что наведенная ЭДС равна интегралу E dot d l по замкнутому контуру, и это также равно отрицательному изменению магнитного потока во времени. Таким образом, это становится равным 0, когда магнитный поток постоянен. Если он меняется, то мы получим ненулевой результат, который будет равен индуцированной электродвижущей силе.В этом смысле мы всегда должны помнить, что разность потенциалов не имеет никакого значения для электрических полей, которые создаются индукцией.
Что такое закон индукции Фарадея?
Закон индукции Фарадея описывает, как электрический ток создает магнитное поле и, наоборот, как изменяющееся магнитное поле генерирует электрический ток в проводнике. Английский физик Майкл Фарадей получил признание за открытие магнитной индукции в 1830 году; однако, по данным Техасского университета, американский физик Джозеф Генри, независимо друг от друга, сделал то же открытие примерно в то же время.
Значение открытия Фарадея невозможно переоценить. Магнитная индукция позволяет создавать электродвигатели, генераторы и трансформаторы, которые составляют основу современных технологий. Понимая и используя индукцию, мы получаем электрическую сеть и многие вещи, которые мы к ней подключаем.
Закон Фарадея позже был включен в более полные уравнения Максвелла, по словам Майкла Дабсона, профессора физики в Университете Колорадо в Боулдере.Уравнения Максвелла были разработаны шотландским физиком Джеймсом Клерком Максвеллом, чтобы объяснить взаимосвязь между электричеством и магнетизмом, по сути объединив их в единую электромагнитную силу и описав электромагнитные волны, из которых состоят радиоволны, видимый свет и рентгеновские лучи.
Электричество
Согласно Рочестерскому технологическому институту, электрический заряд является фундаментальным свойством материи. Хотя трудно описать, что это на самом деле, мы хорошо знакомы с тем, как он ведет себя и взаимодействует с другими зарядами и полями.По словам Серифа Урана, профессора физики в Питтсбургском государственном университете, электрическое поле от локализованного точечного заряда относительно просто. Он описывает его как излучающий одинаково во всех направлениях, как свет от голой лампочки, и уменьшающийся в силе как обратный квадрат расстояния (1/ r 2 ) в соответствии с законом Кулона. Когда вы удаляетесь вдвое дальше, напряженность поля уменьшается до одной четвертой, а когда вы удаляетесь в три раза дальше, она уменьшается до одной девятой.
Протоны имеют положительный заряд, а электроны — отрицательный. Однако протоны в основном иммобилизованы внутри атомных ядер, поэтому перенос заряда из одного места в другое выполняют электроны. Электроны в проводящем материале, таком как металл, в значительной степени могут свободно перемещаться от одного атома к другому по своим зонам проводимости, которые являются высшими электронными орбитами. Достаточная электродвижущая сила (ЭДС) или напряжение вызывает дисбаланс заряда, который может заставить электроны перемещаться по проводнику из области с более отрицательным зарядом в область с более положительным зарядом.Это движение мы называем электрическим током.
Магнетизм
Чтобы понять закон индукции Фарадея, важно иметь базовые представления о магнитных полях. По сравнению с электрическим полем магнитное поле более сложное. По данным Государственного университета Сан-Хосе, хотя положительные и отрицательные электрические заряды могут существовать отдельно, магнитные полюса всегда приходят парами — один северный, а другой — южный. Обычно магниты всех размеров — от субатомных частиц до магнитов промышленных размеров до планет и звезд — являются диполями, то есть каждый из них имеет два полюса.Мы называем эти полюса северным и южным по направлению, в котором указывают стрелки компаса. Интересно, что поскольку противоположные полюса притягиваются и, как полюса, отталкиваются, северный магнитный полюс Земли на самом деле является южным магнитным полюсом, потому что он притягивает северные полюса стрелок компаса.
Магнитное поле часто изображают в виде линий магнитного потока. В случае стержневого магнита силовые линии выходят из северного полюса и изгибаются, чтобы снова войти в южный полюс. В этой модели количество силовых линий, проходящих через данную поверхность в пространстве, представляет собой плотность потока или напряженность поля.Однако следует отметить, что это всего лишь модель. Магнитное поле гладкое и непрерывное и на самом деле не состоит из дискретных линий.
Силовые линии магнитного поля от стержневого магнита. (Изображение предоставлено snapgalleria Shutterstock)Магнитное поле Земли создает огромный магнитный поток, но он рассредоточен по огромному пространству. Следовательно, только небольшое количество потока проходит через данную область, что приводит к относительно слабому полю. Для сравнения, магнитный поток от магнита-холодильника крошечный по сравнению с магнитным потоком Земли, но его сила поля во много раз сильнее на близком расстоянии, где его силовые линии гораздо плотнее упакованы.Однако по мере удаления поле быстро становится намного слабее.
Индукция
Если пропустить через провод электрический ток, вокруг него возникнет магнитное поле. Направление этого магнитного поля можно определить по правилу правой руки. По данным физического факультета Университета штата Нью-Йорк Буффало, если вы вытянете большой палец и согнете пальцы правой руки, ваш большой палец будет указывать в положительном направлении тока, а пальцы согнуты в северном направлении магнитного поля. .
Правило левой и правой руки для магнитного поля, вызванного током в прямом проводе. (Изображение предоставлено Фуадом А. Саадом Shutterstock)Если вы согнете провод в петлю, силовые линии магнитного поля согнутся вместе с ним, образуя тороид или форму пончика. В этом случае ваш большой палец указывает в северном направлении магнитного поля, выходящего из центра петли, а ваши пальцы будут указывать в положительном направлении тока в петле.
В круговой петле с током (а) правило правой руки определяет направление магнитного поля внутри и снаружи петли.(б) Более подробное отображение поля, подобное полю стержневого магнита. (Изображение предоставлено OpenStax)Если мы пропустим ток через проволочную петлю в магнитном поле, взаимодействие этих магнитных полей вызовет скручивающую силу или крутящий момент в петле, заставляя ее вращаться, согласно данным Рочестерского института. Технология. Однако он будет вращаться только до тех пор, пока магнитные поля не выровняются. Если мы хотим, чтобы петля продолжала вращаться, мы должны изменить направление тока, что изменит направление магнитного поля петли.Затем петля повернется на 180 градусов, пока ее поле не выровняется в другом направлении. Это основа электродвигателя.
И наоборот, если мы вращаем проволочную петлю в магнитном поле, поле будет индуцировать электрический ток в проводе. Направление тока меняется каждые пол-оборота, создавая переменный ток. Это основа электрогенератора. Здесь следует отметить, что это не движение провода, а скорее размыкание и замыкание петли по отношению к направлению поля, которое индуцирует ток.Когда петля обращена лицом к полю, через петлю проходит максимальное количество магнитного потока. Однако, когда петля повернута ребром к полю, силовые линии не проходят через петлю. Именно это изменение количества потока, проходящего через контур, вызывает ток.
Еще один эксперимент, который мы можем провести, — сформировать из провода петлю и подключить концы к чувствительному измерителю тока или гальванометру. Если затем протолкнуть стержневой магнит через петлю, стрелка гальванометра переместится, указывая на индуцированный ток.Однако, как только мы останавливаем движение магнита, ток возвращается к нулю. Поле от магнита будет индуцировать ток только тогда, когда он увеличивается или уменьшается. Если мы вытащим магнит обратно, он снова вызовет ток в проводе, но на этот раз он будет в противоположном направлении.
Магнит в проволочной петле, подключенной к гальванометру. (Изображение предоставлено: Фуад А. Саад Shutterstock)Если бы мы включили в цепь электрическую лампочку, она рассеивала бы электрическую энергию в виде света и тепла, и мы бы почувствовали сопротивление движению магнита при движении. это внутри и вне цикла.Чтобы переместить магнит, мы должны совершить работу, эквивалентную энергии, используемой лампочкой.
В еще одном эксперименте мы могли бы построить две проволочные петли, подключить концы одной к батарее с помощью переключателя, а концы другой петли подключить к гальванометру. Если мы разместим две петли близко друг к другу, лицом к лицу, и включим питание первой петли, гальванометр, подключенный ко второй петле, покажет индуцированный ток, а затем быстро вернется к нулю.
Здесь происходит то, что ток в первом контуре создает магнитное поле, которое, в свою очередь, индуцирует ток во втором контуре, но только на мгновение, когда магнитное поле изменяется. Когда вы выключаете переключатель, счетчик на мгновение отклоняется в противоположном направлении. Это еще один признак того, что ток индуцирует изменение интенсивности магнитного поля, а не его сила или движение.
Объяснение этому состоит в том, что магнитное поле заставляет электроны в проводнике двигаться.Это движение называется электрическим током. В конце концов, однако, электроны достигают точки, в которой они находятся в равновесии с полем, и в этой точке они перестают двигаться. Затем, когда поле снимается или выключается, электроны возвращаются в свое исходное положение, создавая ток в противоположном направлении.
В отличие от гравитационного или электрического поля, магнитное дипольное поле представляет собой более сложную трехмерную структуру, сила и направление которой различаются в зависимости от места измерения, поэтому для ее полного описания требуется расчет.Однако мы можем описать упрощенный случай однородного магнитного поля — например, очень маленький участок очень большого поля — как Φ B = BA , где Φ B — абсолютное значение магнитного потока. , B — напряженность поля, а A — определенная область, через которую проходит поле. Наоборот, в этом случае напряженность магнитного поля — это поток на единицу площади, или B = Φ B / A .
Закон Фарадея
Теперь, когда у нас есть базовое представление о магнитном поле, мы готовы определить закон индукции Фарадея.Он утверждает, что индуцированное напряжение в цепи пропорционально скорости изменения во времени магнитного потока, проходящего через эту цепь. Другими словами, чем быстрее изменяется магнитное поле, тем больше будет напряжение в цепи. Направление изменения магнитного поля определяет направление тока.
Увеличить напряжение можно за счет увеличения количества витков в цепи. Индуцированное напряжение в катушке с двумя петлями будет вдвое больше, чем с одной петлей, а с тремя петлями — втрое.Вот почему настоящие двигатели и генераторы обычно имеют большое количество катушек.
Теоретически моторы и генераторы одинаковы. Если вы включите двигатель, он будет вырабатывать электричество, а подача напряжения на генератор заставит его вращаться. Однако большинство реальных двигателей и генераторов оптимизированы только для одной функции.
Трансформаторы
Еще одним важным приложением закона индукции Фарадея является трансформатор, изобретенный Никой Тесла. В этом устройстве переменный ток, который меняет направление много раз в секунду, проходит через катушку, намотанную вокруг магнитного сердечника.Это создает изменяющееся магнитное поле в сердечнике, которое, в свою очередь, индуцирует ток во второй катушке, намотанной вокруг другой части того же магнитопровода.
Схема трансформатора (Изображение предоставлено photoiconix Shutterstock)Отношение числа витков в катушках определяет соотношение напряжения между входным и выходным током. Например, если мы возьмем трансформатор со 100 витками на входе и 50 витками на выходе, и введем переменный ток 220 вольт, выход будет 110 вольт.Согласно Hyperphysics, трансформатор не может увеличивать мощность, которая является произведением напряжения и тока, поэтому, если напряжение повышается, ток пропорционально понижается, и наоборот. В нашем примере вход 220 вольт при 10 ампер или 2200 ватт даст на выходе 110 вольт при 20 амперах, опять же 2200 ватт. На практике трансформаторы никогда не бывают идеально эффективными, но, по данным Техасского университета, потери мощности хорошо спроектированного трансформатора обычно составляют всего несколько процентов.
Трансформаторы делают возможной электрическую сеть, от которой мы зависим для нашего промышленного и технологического общества. Линии передачи по пересеченной местности работают под напряжением в сотни тысяч вольт, чтобы передавать больше энергии в пределах допустимого для проводов тока. Это напряжение многократно понижается с помощью трансформаторов на распределительных подстанциях, пока оно не достигнет вашего дома, где оно, наконец, понижается до 220 и 110 вольт, которые могут запустить вашу электрическую плиту и компьютер.
Дополнительные ресурсы
Магнитный поток, индукция и закон Фарадея
Индуцированные ЭДС и магнитный поток
Закон индукции Фарадея гласит, что электродвижущая сила индуцируется изменением магнитного потока.
Цели обучения
Объясните взаимосвязь между магнитным полем и электродвижущей силой
Основные выводы
Ключевые моменты
- Это изменение потока магнитного поля, которое приводит к возникновению электродвижущей силы (или напряжения).
- Магнитный поток (часто обозначаемый Φ или Φ B ), проходящий через поверхность, является составляющей магнитного поля, проходящего через эту поверхность.
- В самом общем виде магнитный поток определяется как [латекс] \ Phi _ {\ text {B}} = \ iint _ {\ text {A}} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex].Это интеграл (сумма) всего магнитного поля, проходящего через бесконечно малые элементы площади dA.
Ключевые термины
- векторная площадь : вектор, величина которого соответствует рассматриваемой области, а направление перпендикулярно площади поверхности.
- гальванометр : Аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током.
Индуцированная ЭДС
Аппарат, использованный Фарадеем для демонстрации того, что магнитные поля могут создавать токи, показан на следующем рисунке. Когда переключатель замкнут, магнитное поле создается в катушке в верхней части железного кольца и передается (или направляется) в катушку в нижней части кольца. Гальванометр используется для обнаружения любого тока, наведенного в отдельной катушке внизу.
Аппарат Фарадея : Это аппарат Фарадея для демонстрации того, что магнитное поле может производить ток.Изменение поля, создаваемого верхней катушкой, вызывает ЭДС и, следовательно, ток в нижней катушке. Когда переключатель разомкнут и замкнут, гальванометр регистрирует токи в противоположных направлениях. Когда переключатель остается замкнутым или разомкнутым, через гальванометр не течет ток.
Было обнаружено, что каждый раз, когда переключатель замыкается, гальванометр обнаруживает ток в одном направлении в катушке внизу. Каждый раз при размыкании переключателя гальванометр обнаруживает ток в противоположном направлении.Интересно, что если переключатель остается замкнутым или разомкнутым в течение некоторого времени, через гальванометр нет тока. Замыкание и размыкание переключателя индуцирует ток. Это изменение магнитного поля, которое создает ток. Более важным, чем текущий ток, является вызывающая его электродвижущая сила (ЭДС). Ток является результатом ЭДС, индуцированной изменяющимся магнитным полем, независимо от того, есть ли путь для протекания тока.
Магнитный поток
Магнитный поток (часто обозначаемый Φ или Φ B ), проходящий через поверхность, является составляющей магнитного поля, проходящего через эту поверхность.Магнитный поток через некоторую поверхность пропорционален количеству силовых линий, проходящих через эту поверхность. Магнитный поток, проходящий через поверхность с векторной площадью А, равен
.[латекс] \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ mathbf {\ text {A}} = \ text {BA} \ cos \ theta [/ latex],
где B — величина магнитного поля (в Тесла, Тл), A — площадь поверхности, а θ — угол между силовыми линиями магнитного поля и нормалью (перпендикулярно) к A.
Для переменного магнитного поля мы сначала рассмотрим магнитный поток [латекс] \ text {d} \ Phi _ \ text {B} [/ latex] через бесконечно малый элемент площади dA, где мы можем считать поле постоянным:
Изменяющееся магнитное поле : Каждая точка на поверхности связана с направлением, называемым нормалью к поверхности; магнитный поток, проходящий через точку, тогда является составляющей магнитного поля вдоль этого нормального направления.
[латекс] \ text {d} \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex]
Общая поверхность A затем может быть разбита на бесконечно малые элементы, и тогда полный магнитный поток через поверхность равен интегралу поверхности
[латекс] \ Phi_ \ text {B} = \ iint_ \ text {A} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex].
Закон индукции Фарадея и закон Ленца
Закон индукции Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, равна [латексу] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [ / латекс], когда поток изменяется на Δ за время Δt.
Цели обучения
Выразите закон индукции Фарадея в форме уравнения
Основные выводы
Ключевые моменты
- Минус в законе Фарадея означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока Δ, известному как закон Ленца.
- Закон индукции Фарадея является основным принципом работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.
- Закон Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, зависит от изменения магнитного потока Δ, времени Δt и числа витков катушек.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея.Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- соленоид : Катушка с проволокой, которая действует как магнит, когда через нее протекает электрический ток.
- поток : Скорость передачи энергии (или другой физической величины) через данную поверхность, в частности электрического или магнитного потока.
Закон индукции Фарадея
Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.
Эксперименты Фарадея показали, что ЭДС, вызванная изменением магнитного потока, зависит только от нескольких факторов. Во-первых, ЭДС прямо пропорциональна изменению потока Δ. Во-вторых, ЭДС является наибольшей, когда изменение во времени Δt наименьшее, то есть ЭДС обратно пропорциональна Δt. Наконец, если катушка имеет N витков, будет создаваться ЭДС, которая в N раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна N.Уравнение для ЭДС, вызванной изменением магнитного потока, равно
[латекс] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].
Это соотношение известно как закон индукции Фарадея. Единицы измерения ЭДС, как обычно, — вольты.
Закон Ленца
Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле B, которые препятствуют изменению потока Δ, известному как закон Ленца. Направление (обозначенное знаком минус) ЭМП настолько важно, что оно названо законом Ленца в честь русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, независимо исследовал аспекты индукции.Фарадей знал о направлении, но Ленц указал его, поэтому ему приписывают это открытие.
Закон Ленца : (а) Когда стержневой магнит вдавливается в катушку, сила магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном стержневому магниту, чтобы противодействовать увеличению. Это один из аспектов закона Ленца: индукция препятствует любому изменению потока. (b) и (c) — две другие ситуации. Убедитесь сами, что показанное направление индуцированной катушки B действительно противостоит изменению магнитного потока и что показанное направление тока согласуется с правилом правой руки.
Энергосбережение
Закон Ленца является проявлением сохранения энергии. Индуцированная ЭДС создает ток, который противодействует изменению потока, потому что изменение потока означает изменение энергии. Энергия может входить или уходить, но не мгновенно. Закон Ленца — это следствие. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. Фактически, если бы индуцированная ЭДС была в том же направлении, что и изменение потока, была бы положительная обратная связь, которая не давала бы нам бесплатную энергию из любого видимого источника — закон сохранения энергии был бы нарушен.
Motional EMF
Движение в магнитном поле, которое является стационарным относительно Земли, вызывает ЭДС движения (электродвижущую силу).
Цели обучения
Определить процесс, вызывающий двигательную электродвижущую силу
Основные выводы
Ключевые моменты
- Закон индукции Фарадея можно использовать для расчета ЭДС движения, когда изменение магнитного потока вызвано движущимся элементом в системе.
- То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является частью причины, по которой электрические и магнитные силы теперь рассматриваются как разные проявления одной и той же силы.
- Любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- магнитный поток : мера силы магнитного поля в заданной области.
- индукция : Генерация электрического тока переменным магнитным полем.
Как было замечено в предыдущих атомах, любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции. Например, магнит, движущийся к катушке, индуцирует ЭДС, а катушка, движущаяся к магниту, создает аналогичную ЭДС. В этом Атоме мы концентрируемся на движении в магнитном поле, которое является стационарным относительно Земли, производя то, что в общих чертах называется двигательной ЭДС.
ЭДС движения
Рассмотрим ситуацию, показанную на. Стержень перемещается со скоростью v по паре проводящих рельсов, разделенных расстоянием ℓ в однородном магнитном поле B. Рельсы неподвижны относительно B и соединены с неподвижным резистором R ( резистором может быть что угодно от лампочки до вольтметра). Учтите площадь, ограниченную подвижным стержнем, направляющими и резистором. B перпендикулярно этой области, и площадь увеличивается по мере перемещения стержня. Таким образом, магнитный поток между рельсами, стержнем и резистором увеличивается.Когда поток изменяется, ЭДС индуцируется согласно закону индукции Фарадея.
ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца дает направление индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы.Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.
Чтобы найти величину ЭДС, индуцированной вдоль движущегося стержня, мы используем закон индукции Фарадея без знака:
[латекс] \ text {EMF} = \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].
В этом уравнении N = 1 и поток Φ = BAcosθ. У нас θ = 0º и cosθ = 1, так как B перпендикулярно A. Теперь Δ = Δ (BA) = BΔA, поскольку B однородна. Отметим, что площадь, заметаемая стержнем, равна ΔA = ℓx.Ввод этих величин в выражение для ЭДС дает:
[латекс] \ text {EMF} = \ frac {\ text {B} \ Delta \ text {A}} {\ Delta \ text {t}} = \ text {B} \ frac {\ text {l} \ Дельта \ text {x}} {\ Delta \ text {t}} = \ text {Blv} [/ latex].
Чтобы найти направление индуцированного поля, направление тока и полярность наведенной ЭДС, мы применяем закон Ленца, как объяснено в Законе индукции Фарадея: Закон Ленца. Как видно на рис. 1 (b), уровень освещенности увеличивается, так как увеличивается закрытая площадь.Таким образом, индуцированное поле должно противостоять существующему и быть вне страницы. (Правило правой руки требует, чтобы я вращался против часовой стрелки, что, в свою очередь, означает, что верхняя часть стержня положительна, как показано.)
Зависимость электрического поля от магнитного
Между электрической и магнитной силой существует множество связей. То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является частью причины, по которой электрические и магнитные силы теперь рассматриваются как различных проявления одной и той же силы (впервые замечено Альбертом Эйнштейном) .Это классическое объединение электрических и магнитных сил в так называемую электромагнитную силу является источником вдохновения для современных усилий по объединению других основных сил.
Обратная ЭДС, вихревые токи и магнитное демпфирование
Обратная ЭДС, вихревые токи и магнитное затухание — все это происходит из-за наведенной ЭДС и может быть объяснено законом индукции Фарадея.
Цели обучения
Объясните взаимосвязь между двигательной электродвижущей силой, вихревыми токами и магнитным демпфированием
Основные выводы
Ключевые моменты
- Входной ЭДС, которая питает двигатель, может противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.
- Если ЭДС движения может вызвать токовую петлю в проводнике, ток называется вихревым током.
- Вихревые токи могут вызывать значительное сопротивление движению, называемое магнитным демпфированием.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
Задняя ЭДС
Двигатели и генераторы очень похожи. (Прочтите наши атомы в разделах «Электрические генераторы» и «Электродвигатели».) Генераторы преобразуют механическую энергию в электрическую, а двигатели преобразуют электрическую энергию в механическую. Кроме того, двигатели и генераторы имеют одинаковую конструкцию. Когда катушка двигателя поворачивается, магнитный поток изменяется, и возникает электродвижущая сила (ЭДС), соответствующая закону индукции Фарадея. Таким образом, двигатель действует как генератор всякий раз, когда его катушка вращается.Это произойдет независимо от того, поворачивается ли вал под действием внешнего источника, например ременной передачи, или под действием самого двигателя. То есть, когда двигатель выполняет работу и его вал вращается, возникает ЭДС. Закон Ленца говорит нам, что наведенная ЭДС противодействует любому изменению, так что входной ЭДС, питающей двигатель, будет противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.
Вихретоковый
Как обсуждалось в «ЭДС движения», ЭДС движения индуцируется, когда проводник движется в магнитном поле или когда магнитное поле движется относительно проводника.Если подвижная ЭДС может вызвать токовую петлю в проводнике, мы называем этот ток вихревым. Вихревые токи могут вызывать значительное сопротивление движению, называемое магнитным затуханием.
Рассмотрим устройство, показанное на рисунке, которое раскачивает маятник между полюсами сильного магнита. Если боб металлический, то при входе в поле и выходе из поля он испытывает значительное сопротивление, что быстро гасит движение. Однако, если боб представляет собой металлическую пластину с прорезями, как показано на (b), эффект от магнита будет гораздо меньше.Заметного воздействия на боб из изолятора не наблюдается.
Устройство для исследования вихревых токов и магнитного затухания : Обычное демонстрационное устройство для изучения вихревых токов и магнитного затухания. (а) Движение металлического маятника, раскачивающегося между полюсами магнита, быстро затухает под действием вихревых токов. (b) Имеется незначительное влияние на движение металлического боба с прорезями, что означает, что вихревые токи становятся менее эффективными. (c) На непроводящем бобе также отсутствует магнитное затухание, поскольку вихревые токи чрезвычайно малы.
показывает, что происходит с металлической пластиной, когда она входит в магнитное поле и выходит из него. В обоих случаях он испытывает силу, противодействующую его движению. Когда он входит слева, поток увеличивается, и поэтому возникает вихревой ток (закон Фарадея) в направлении против часовой стрелки (закон Ленца), как показано. Только правая сторона токовой петли находится в поле, так что слева на нее действует беспрепятственная сила (правило правой руки). Когда металлическая пластина полностью находится внутри поля, вихревой ток отсутствует, если поле однородно, поскольку поток остается постоянным в этой области.Но когда пластина покидает поле справа, поток уменьшается, вызывая вихревой ток по часовой стрелке, который, опять же, испытывает силу слева, еще больше замедляя движение. Аналогичный анализ того, что происходит, когда пластина поворачивается справа налево, показывает, что ее движение также затухает при входе в поле и выходе из него.
Проводящая пластина, проходящая между полюсами магнита : Более подробный взгляд на проводящую пластину, проходящую между полюсами магнита.Когда он входит в поле и выходит из него, изменение потока создает вихревой ток. Магнитная сила на токовой петле препятствует движению. Когда пластина полностью находится внутри однородного поля, нет ни тока, ни магнитного сопротивления.
Когда металлическая пластина с прорезями входит в поле, как показано на, ЭДС индуцируется изменением магнитного потока, но это менее эффективно, поскольку прорези ограничивают размер токовых петель. Более того, в соседних контурах есть токи в противоположных направлениях, и их эффекты отменяются.Когда используется изолирующий материал, вихревые токи чрезвычайно малы, поэтому магнитное затухание на изоляторах незначительно. Если необходимо избежать вихревых токов в проводниках, они могут быть выполнены с прорезями или состоять из тонких слоев проводящего материала, разделенных изоляционными листами.
Вихревые токи, индуцированные в металлической пластине с прорезями : Вихревые токи, индуцируемые в металлической пластине с прорезями, входящие в магнитное поле, образуют небольшие петли, и силы на них имеют тенденцию нейтрализоваться, тем самым делая магнитное сопротивление почти нулевым.
Изменение магнитного потока создает электрическое поле
Закон индукции Фарадея гласит, что изменение магнитного поля создает электрическое поле: [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex].
Цели обучения
Опишите взаимосвязь между изменяющимся магнитным полем и электрическим полем
Основные выводы
Ключевые моменты
- Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу.
- Альтернативная дифференциальная форма закона индукции Фарадея выражается в уравнении [латекс] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} { \ partial \ text {t}} [/ latex].
- Закон индукции Фарадея — одно из четырех уравнений Максвелла, управляющих всеми электромагнитными явлениями.
Ключевые термины
- векторная область : вектор, величина которого соответствует рассматриваемой области и направление которого перпендикулярно плоскости.
- Уравнения Максвелла : Набор уравнений, описывающих, как электрические и магнитные поля генерируются и изменяются друг другом, а также зарядами и токами.
- Теорема Стокса : утверждение об интегрировании дифференциальных форм на многообразиях, которое одновременно упрощает и обобщает несколько теорем векторного исчисления.
Мы изучили закон индукции Фарадея в предыдущих атомах. Мы узнали взаимосвязь между наведенной электродвижущей силой (ЭДС) и магнитным потоком.Вкратце, закон гласит, что изменение магнитного поля [латекс] (\ frac {\ text {d} \ Phi_ \ text {B}} {\ text {dt}}) [/ latex] создает электрическое поле [латекс] (\ varepsilon) [/ latex], закон индукции Фарадея выражается как [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex], где [латекс] \ varepsilon [/ latex] — это индуцированная ЭДС, а [latex] \ Phi_ \ text {B} [/ latex] — магнитный поток. («N» опущено из нашего предыдущего выражения. Число витков катушки может быть включено в магнитный поток, поэтому коэффициент не является обязательным.) Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС). В этом Атоме мы узнаем об альтернативном математическом выражении закона.
Эксперимент Фарадея : эксперимент Фарадея, показывающий индукцию между витками провода: жидкая батарея (справа) обеспечивает ток, который течет через небольшую катушку (A), создавая магнитное поле. Когда катушки неподвижны, ток не индуцируется.Но когда малая катушка перемещается внутрь или из большой катушки (B), магнитный поток через большую катушку изменяется, вызывая ток, который регистрируется гальванометром (G).
Дифференциальная форма закона Фарадея
Магнитный поток [латекс] \ Phi_ \ text {B} = \ int_ \ text {S} \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}} [/ латекс], где [латекс] \ vec {\ text {A}} [/ latex] — это векторная площадь над замкнутой поверхностью S. Устройство, которое может поддерживать разность потенциалов, несмотря на протекание тока, является источником электродвижущей силы. .(EMF) Математически определение [латекс] \ varepsilon = \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} [/ latex], где интеграл вычисляется по замкнутому циклу C.
Закон Фарадея теперь можно переписать [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = — \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}}) [/ latex]. Используя теорему Стокса в векторном исчислении, левая часть равна [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = \ int_ \ text {S} (\ nabla \ times \ vec {\ text {E}}) \ cdot \ text {d} \ vec {\ text {A}} [/ latex].Также обратите внимание, что в правой части [latex] \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ текст {A}}) = \ int \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} \ cdot \ text {d} \ vec {\ text {A}} [ /латекс]. Таким образом, мы получаем альтернативную форму закона индукции Фарадея: [latex] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} [/ latex]. Это также называют дифференциальной формой закона Фарадея. Это одно из четырех уравнений Максвелла, управляющих всеми электромагнитными явлениями.
Электрогенераторы
Электрогенераторы преобразуют механическую энергию в электрическую; они индуцируют ЭДС, вращая катушку в магнитном поле.
Цели обучения
Объясните, как в электрогенераторах индуцируется электродвижущая сила.
Основные выводы
Ключевые моменты
- Электрический генератор вращает катушку в магнитном поле, индуцируя ЭДС, заданную как функцию времени величиной ε = NABw sinωt.
- Генераторы поставляют почти всю мощность для электрических сетей, которые обеспечивают большую часть мировой электроэнергии.
- Двигатель становится генератором, когда его вал вращается.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- турбина : Любая из различных вращающихся машин, которые используют кинетическую энергию непрерывного потока жидкости (жидкости или газа) для вращения вала.
Электрические генераторы — это устройства, преобразующие механическую энергию в электрическую.Они индуцируют электродвижущую силу (ЭДС), вращая катушку в магнитном поле. Это устройство, преобразующее механическую энергию в электрическую. Генератор заставляет электрический заряд (обычно переносимый электронами) проходить через внешнюю электрическую цепь. Возможные источники механической энергии включают в себя поршневой или турбинный паровой двигатель, воду, падающую через турбину или водяное колесо, двигатель внутреннего сгорания, ветряную турбину, ручной кривошип, сжатый воздух или любой другой источник механической энергии.Генераторы поставляют почти всю мощность для электрических сетей, которые обеспечивают большую часть мировой электроэнергии.
Паровой турбогенератор : современный паротурбинный генератор.
Базовая настройка
Рассмотрим установку, показанную на. Заряды в проводах петли испытывают магнитную силу, потому что они движутся в магнитном поле. Заряды в вертикальных проводах испытывают силы, параллельные проводу, вызывая токи. Однако те, кто находится в верхнем и нижнем сегментах, ощущают силу, перпендикулярную проволоке; эта сила не вызывает тока.Таким образом, мы можем найти наведенную ЭДС, рассматривая только боковые провода. ЭДС движения задается равной ЭДС = Bℓv, где скорость v перпендикулярна магнитному полю B (см. Наш Атом в «ЭДС движения»). Здесь скорость находится под углом θ к B, так что ее составляющая, перпендикулярная B, равна vsinθ.
Схема электрического генератора : Генератор с одной прямоугольной катушкой, вращающейся с постоянной угловой скоростью в однородном магнитном поле, создает ЭДС, синусоидально изменяющуюся во времени.Обратите внимание, что генератор похож на двигатель, за исключением того, что вал вращается для выработки тока, а не наоборот.
Таким образом, в этом случае ЭДС, индуцированная с каждой стороны, равна ЭДС = Bℓvsinθ, и они направлены в одном направлении. Общая ЭДС [латекс] \ varepsilon [/ latex] вокруг петли тогда:
[латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ theta} [/ latex].
Это выражение допустимо, но оно не дает ЭДС как функцию времени. Чтобы найти зависимость ЭДС от времени, предположим, что катушка вращается с постоянной угловой скоростью ω.Угол θ связан с угловой скоростью соотношением θ = ωt, так что:
[латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ omega \ text {t}} [/ latex].
Итак, линейная скорость v связана с угловой скоростью соотношением v = rω. Здесь r = w / 2, так что v = (w / 2) ω, и:
[латекс] \ varepsilon = 2 \ text {Bl} \ frac {\ text {w}} {2} \ omega \ sin {\ omega \ text {t}} = (\ text {lw}) \ text {B } \ omega \ sin {\ omega \ text {t}} [/ латекс].
Заметив, что площадь петли A = ℓw, и учитывая N петель, мы находим, что:
[латекс] \ varepsilon = \ text {NABw} ~ \ sin {\ omega \ text {t}} [/ latex] — ЭДС, индуцированная в катушке генератора N витков и площади A, вращающейся с постоянной угловой скоростью в однородное магнитное поле B.
Генераторы, показанные в этом Atom, очень похожи на двигатели, показанные ранее. Это не случайно. Фактически, двигатель становится генератором, когда его вал вращается.
Электродвигатели
Электродвигатель — это устройство, преобразующее электрическую энергию в механическую.
Цели обучения
Объясните, как сила создается в электродвигателях
Основные выводы
Ключевые моменты
- Большинство электродвигателей используют взаимодействие магнитных полей и токопроводящих проводников для создания силы.
- Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца.
- В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться.
Ключевые термины
- Сила Лоренца : Сила, действующая на заряженную частицу в электромагнитном поле.
- крутящий момент : вращательное или скручивающее действие силы; (Единица СИ ньютон-метр или Нм; британская единица измерения фут-фунт или фут-фунт)
Основные принципы работы двигателя такие же, как и у генератора, за исключением того, что двигатель преобразует электрическую энергию в механическую энергию (движение).(Сначала прочтите наш атом об электрических генераторах.) Большинство электродвигателей используют взаимодействие магнитных полей и проводников с током для создания силы. Электродвигатели находят применение в самых разных областях, таких как промышленные вентиляторы, нагнетатели и насосы, станки, бытовые приборы, электроинструменты и дисководы.
Лоренц Форс
Если бы вы поместили движущуюся заряженную частицу в магнитное поле, она испытала бы силу, называемую силой Лоренца:
[латекс] \ text {F} = \ text {q} \ times \ text {v} \ times \ text {B} [/ latex]
Правило правой руки : Правило правой руки, показывающее направление силы Лоренца
, где v — скорость движущегося заряда, q — заряд, а B — магнитное поле.Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца. Для неподвижного прямолинейного токоведущего провода сила Лоренца составляет:
[латекс] \ text {F} = \ text {I} \ times \ text {L} \ times \ text {B} [/ latex]
где F — сила (в ньютонах, Н), I — ток в проводе (в амперах, А), L — длина провода, находящегося в магнитном поле (в м). , а B — напряженность магнитного поля (в теслах, Тл).Направление силы Лоренца перпендикулярно как направлению потока тока, так и магнитного поля, и его можно найти с помощью правила правой руки, показанного на рисунке. Используя правую руку, направьте большой палец в направлении тока, и укажите указательным пальцем в направлении магнитного поля. Ваш третий палец теперь будет указывать в направлении силы.
Момент : Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях.Это означает, что катушка будет вращаться.
Механика двигателя
И двигатели, и генераторы можно объяснить с помощью катушки, вращающейся в магнитном поле. В генераторе катушка подключена к внешней цепи, которая затем включается. Это приводит к изменению потока, который индуцирует электромагнитное поле. В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться.Любая катушка, по которой проходит ток, может ощущать силу в магнитном поле. Эта сила является силой Лоренца, действующей на движущиеся заряды в проводнике. Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях. Это означает, что катушка будет вращаться.
Индуктивность
Индуктивность — это свойство устройства, которое показывает, насколько эффективно оно индуцирует ЭДС в другом устройстве или на самом себе.
Цели обучения
Описание свойств катушки индуктивности с указанием взаимной индуктивности и самоиндукции
Основные выводы
Ключевые моменты
- Взаимная индуктивность — это влияние двух устройств, индуцирующих друг в друге ЭДС.Изменение тока ΔI 1 / Δt в одном вызывает ЭДС ЭДС2 в секунду: ЭДС 2 = -M ΔI 1 / Δt, где M определяется как взаимная индуктивность между двумя устройствами.
- Самоиндуктивность — это эффект того, что устройство вызывает саму по себе ЭДС.
- Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором, и ЭДС, индуцированная в нем изменением тока через него, равна ЭДС = −L ΔI / Δt.
Ключевые термины
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
- трансформатор : статическое устройство, которое передает электрическую энергию от одной цепи к другой с помощью магнитной связи. Их основное назначение — передача энергии между различными уровнями напряжения, что позволяет выбирать наиболее подходящее напряжение для выработки, передачи и распределения электроэнергии по отдельности.
Индукция — это процесс, при котором ЭДС индуцируется изменением магнитного потока. Трансформаторы, например, спроектированы так, чтобы быть особенно эффективными для создания желаемого напряжения и тока с очень небольшими потерями энергии в другие формы (см. Наш Atom в разделе «Трансформаторы.«) Есть ли полезная физическая величина, связанная с тем, насколько« эффективно »данное устройство? Ответ — да, и эта физическая величина называется индуктивностью.
Взаимная индуктивность
Взаимная индуктивность — это влияние закона индукции Фарадея для одного устройства на другое, например, первичная катушка, при передаче энергии вторичной обмотке в трансформаторе. Посмотрите, где простые катушки наводят друг на друга ЭДС.
Взаимная индуктивность катушек : Эти катушки могут вызывать ЭДС друг в друге, как неэффективный трансформатор.Их взаимная индуктивность M указывает на эффективность связи между ними. Здесь видно, что изменение тока в катушке 1 вызывает ЭДС в катушке 2. (Обратите внимание, что «E2 индуцированная» представляет наведенную ЭДС в катушке 2.)
Во многих случаях, когда геометрия устройств фиксирована, магнитный поток изменяется за счет изменения тока. Поэтому мы концентрируемся на скорости изменения тока, ΔI / Δt, как на причине индукции. Изменение тока I 1 в одном устройстве, катушка 1, индуцирует ЭДС 2 в другом.Мы выражаем это в форме уравнения как
[латекс] \ text {EMF} _2 = — \ text {M} \ frac {\ Delta \ text {I} _1} {\ Delta \ text {t}} [/ latex],
, где M определяется как взаимная индуктивность между двумя устройствами. Знак минус является выражением закона Ленца. Чем больше взаимная индуктивность M, тем эффективнее связь.
Природа здесь симметрична. Если мы изменим ток I2 в катушке 2, мы индуцируем ЭДС 1 в катушке 1, которая равна
[латекс] \ text {EMF} _1 = — \ text {M} \ frac {\ Delta \ text {I} _2} {\ Delta \ text {t}} [/ latex],
, где M то же, что и для обратного процесса.Трансформаторы работают в обратном направлении с такой же эффективностью или взаимной индуктивностью M.
Самоиндуктивность
Самоиндукция, действие закона индукции Фарадея устройства на самого себя, также существует. Когда, например, увеличивается ток через катушку, магнитное поле и магнитный поток также увеличиваются, вызывая противоэдс, как того требует закон Ленца. И наоборот, если ток уменьшается, индуцируется ЭДС, препятствующая уменьшению. Большинство устройств имеют фиксированную геометрию, поэтому изменение магнитного потока полностью связано с изменением тока ΔI через устройство.Индуцированная ЭДС связана с физической геометрией устройства и скоростью изменения тока. Выдается
[латекс] \ text {EMF} = — \ text {L} \ frac {\ Delta \ text {I}} {\ Delta \ text {t}} [/ latex],
где L — самоиндукция устройства. Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором. Опять же, знак минус является выражением закона Ленца, указывающего, что ЭДС препятствует изменению тока.
Количественная интерпретация ЭДС движения
A ЭДС движения — это электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B.
Цели обучения
Сформулируйте две точки зрения, которые применяются для расчета электродвижущей силы
Основные выводы
Ключевые моменты
- Движущаяся и наведенная ЭДС — одно и то же явление, только наблюдаемое в разных системах отсчета. Эквивалентность этих двух явлений подтолкнула Эйнштейна к работе над специальной теорией относительности.
- ЭДС, возникающая из-за относительного движения петли и магнита, определяется как [latex] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Eq.1), где L — длина объекта, движущегося со скоростью v относительно магнита.
- ЭДС можно рассчитать с двух разных точек зрения: 1) с точки зрения магнитной силы, действующей на движущиеся электроны в магнитном поле, и 2) с точки зрения скорости изменения магнитного потока. Оба дают одинаковый результат.
Ключевые термины
- специальная теория относительности : теория, которая (игнорируя эффекты гравитации) согласовывает принцип относительности с наблюдением, что скорость света постоянна во всех системах отсчета.
- магнитное поле : Состояние в пространстве вокруг магнита или электрического тока, в котором существует обнаруживаемая магнитная сила и где присутствуют два магнитных полюса.
- рамка отсчета : система координат или набор осей, в пределах которых можно измерить положение, ориентацию и другие свойства объектов в ней.
Электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B, называется ЭДС движения. Вы могли заметить, что ЭДС движения очень похожа на ЭДС, вызванную изменяющимся магнитным полем.В этом атоме мы видим, что это действительно одно и то же явление, показанное в разных системах отсчета.
ЭДС движения
В случае, когда проводящая петля перемещается в магнит, показанный на (а), магнитная сила, действующая на движущийся заряд в петле, определяется как [латекс] evB [/ латекс] (сила Лоренца, e: заряд электрона).
Петля проводника, движущаяся в магнит : (a) ЭДС движения. Токовая петля переходит в неподвижный магнит. Направление магнитного поля внутрь экрана.(б) Индуцированная ЭДС. Токовая петля неподвижна, а магнит движется.
Из-за силы электроны будут накапливаться с одной стороны (нижний конец на рисунке), пока на стержне не установится достаточное электрическое поле, противодействующее движению электронов, которое составляет [латекс] \ text {eE} [/ латекс]. Приравнивая две силы, получаем [латекс] \ text {E} = \ text {vB} [/ latex].
Следовательно, двигательная ЭДС на длине L стороны петли определяется как [latex] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Eq .1), где L — длина объекта, движущегося со скоростью v относительно магнита.
Индуцированная ЭДС
Поскольку скорость изменения магнитного потока, проходящего через петлю, равна [latex] \ text {B} \ frac {\ text {dA}} {\ text {dt}} [/ latex] (A: площадь петли что магнитное поле проходит), индуцированная ЭДС [латекс] \ varepsilon _ {\ text {индуцированный}} = \ text {BLv} [/ latex] (уравнение 2).
Эквивалентность движущей и индуцированной ЭДС
Из уравнения. 1 и уравнение. 2 мы можем подтвердить, что двигательная и индуцированная ЭДС дают одинаковый результат.Фактически, эквивалентность двух явлений побудила Альберта Эйнштейна исследовать специальную теорию относительности. В своей основополагающей статье по специальной теории относительности, опубликованной в 1905 году, Эйнштейн начинает с упоминания эквивалентности двух явлений:
«…… например, взаимное электродинамическое действие магнита и проводника. Наблюдаемое явление здесь зависит только от относительного движения проводника и магнита, в то время как обычный взгляд проводит резкое различие между двумя случаями, когда одно или другое из этих тел находится в движении.Поскольку, если магнит находится в движении, а проводник находится в покое, в окрестности магнита возникает электрическое поле с определенной энергией , производящее ток в местах, где части проводника расположенный. Но если магнит неподвижен, а проводник движется, электрическое поле поблизости от магнита не возникает. В проводнике, однако, мы находим электродвижущую силу, которой сама по себе не соответствует энергия, но которая порождает — при условии равенства относительного движения в двух рассмотренных случаях — электрические токи того же пути и силы, что и создаваемые электрическими силами в первом случае.«
Механические работы и электроэнергия
Механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию; энергия сохраняется в процессе.
Цели обучения
Применить закон сохранения энергии для описания производственной двигательной электродвижущей силы с механической работой
Основные выводы
Ключевые моменты
- ЭДС движения, создаваемая движущимся проводником в однородном поле, имеет следующий вид [latex] \ varepsilon = \ text {Blv} [/ latex].
- Чтобы стержень двигался с постоянной скоростью v, мы должны постоянно прикладывать внешнюю силу F ext к стержню во время его движения.
- Закон Ленца гарантирует, что движение стержня противоположно, и, следовательно, закон сохранения энергии не нарушается.
Ключевые термины
- ЭДС движения : ЭДС (электродвижущая сила), индуцированная движением относительно магнитного поля.
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
Мы узнали о двигательной ЭДС ранее (см. Наш Атом в разделе «Двигательная ЭДС»). Для простой схемы, показанной ниже, ЭДС движения [латекс] (\ varepsilon) [/ латекс], создаваемая движущимся проводником (в однородном поле), задается следующим образом:
[латекс] \ varepsilon = \ text {Blv} [/ латекс]
, где B — магнитное поле, l — длина проводящего стержня, а v — (постоянная) скорость его движения. ( B , l и v все перпендикулярны друг другу, как показано на изображении ниже.)
ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца дает направление индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы. Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.
Сохранение энергии
В этом атоме мы рассмотрим систему с точки зрения энергии . Поскольку стержень движется и пропускает ток и , он ощущает силу Лоренца
.[латекс] \ text {F} _ \ text {L} = \ text {iBL} [/ latex].
Чтобы стержень двигался с постоянной скоростью v , мы должны постоянно прикладывать внешнюю силу F ext (равную величине F L и противоположную по направлению) к стержню во время его движения. .Поскольку стержень движется под углом v , мощность P , передаваемая внешней силой, будет:
[латекс] \ text {P} = \ text {F} _ {\ text {ext}} \ text {v} = (\ text {iBL}) \ times \ text {v} = \ text {i} \ варепсилон [/ латекс].
На последнем этапе мы использовали первое уравнение, о котором говорили. Обратите внимание, что это в точности мощность, рассеиваемая в контуре (= ток [латекс] \ умноженное на [/ латекс] напряжение). Таким образом, мы заключаем, что механическая работа, совершаемая внешней силой, чтобы стержень двигался с постоянной скоростью, преобразуется в тепловую энергию в контуре.В более общем смысле, механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию. Энергия сохраняется в процессе.
Закон Ленца
Из «Закона индукции Фарадея и закона Ленца» мы узнали, что закон Ленца является проявлением сохранения энергии. Как мы видим в примере с этим атомом, закон Ленца гарантирует, что движение стержня противодействует из-за склонности природы противодействовать изменению магнитного поля. Если бы индуцированная ЭДС была в том же направлении, что и изменение потока, возникла бы положительная обратная связь, заставляющая стержень улетать от малейшего возмущения.
Энергия в магнитном поле
Магнитное поле накапливает энергию. Плотность энергии задается как [латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} [/ latex].
Цели обучения
Выразите плотность энергии магнитного поля в форме уравнения
Основные выводы
Ключевые моменты
- Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала в магнитном поле.2 [/ латекс].
Ключевые термины
- проницаемость : количественная мера степени намагничивания материала в присутствии приложенного магнитного поля (измеряется в ньютонах на ампер в квадрате в единицах СИ).
- индуктор : Пассивное устройство, которое вводит индуктивность в электрическую цепь.
- ферромагнетик : Материалы, обладающие постоянными магнитными свойствами.
Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала в магнитном поле.Для недисперсионных материалов эта же энергия высвобождается при разрушении магнитного поля. Следовательно, эту энергию можно смоделировать как «хранящуюся» в магнитном поле.
Магнитное поле, создаваемое соленоидом : Магнитное поле, создаваемое соленоидом (вид в разрезе), описанное с помощью силовых линий. Энергия «хранится» в магнитном поле.
Энергия, запасенная в магнитном поле
Для линейных, недисперсионных материалов (таких, что B = мкм H, где мкм, называемая проницаемостью, не зависит от частоты), плотность энергии составляет:
[латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} = \ frac {\ mu \ mathbf {\ text {H}} \ cdot \ mathbf {\ text {H}}} {2} [/ latex].
Плотность энергии — это количество энергии, хранящейся в данной системе или области пространства на единицу объема. Если поблизости нет магнитных материалов, μ можно заменить на μ 0 . Однако приведенное выше уравнение нельзя использовать для нелинейных материалов; необходимо использовать более общее выражение (приведенное ниже).
В общем, дополнительная работа на единицу объема δW , необходимая для того, чтобы вызвать небольшое изменение магнитного поля δ B, составляет:
[латекс] \ delta \ text {W} = \ mathbf {\ text {H}} \ cdot \ delta \ mathbf {\ text {B}} [/ latex].
Когда взаимосвязь между H и B известна, это уравнение используется для определения работы, необходимой для достижения заданного магнитного состояния. Для гистерезисных материалов, таких как ферромагнетики и сверхпроводники, необходимая работа также зависит от того, как создается магнитное поле. Однако для линейных недисперсионных материалов общее уравнение приводит непосредственно к более простому уравнению плотности энергии, приведенному выше.
Энергия, запасенная в поле соленоида
Энергия, запасенная индуктором, равна количеству работы, необходимой для установления тока через индуктор и, следовательно, магнитного поля.2 [/ латекс].
Трансформаторы
Трансформаторы преобразуют напряжения из одного значения в другое; его функция определяется уравнением трансформатора.
Цели обучения
Примените уравнение трансформатора для сравнения вторичного и первичного напряжений
Основные выводы
Ключевые моменты
- Трансформаторы часто используются в нескольких точках систем распределения электроэнергии, а также во многих бытовых адаптерах питания. Уравнение трансформатора
- гласит, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их катушках: [латекс] \ frac {\ text {V} _ \ text {s}} {\ text { V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ text {N} _ \ text {p}} [/ latex].
- Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Это приводит нас к другому полезному вопросу: [latex] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ текст {p}} {\ text {N} _ \ text {s}} [/ latex]. Если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.
Ключевые термины
- магнитный поток : мера силы магнитного поля в заданной области.
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
Трансформаторы изменяют напряжение с одного значения на другое. Например, такие устройства, как сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшая бытовая техника, имеют трансформатор (встроенный в их съемный блок), который преобразует 120 В в напряжение, соответствующее устройству.Трансформаторы также используются в нескольких точках в системах распределения электроэнергии, как показано на рисунке. Мощность передается на большие расстояния при высоком напряжении, поскольку для данного количества мощности требуется меньший ток (это означает меньшие потери в линии). Поскольку высокое напряжение представляет большую опасность, трансформаторы используются для получения более низкого напряжения в месте нахождения пользователя.
Настройка трансформатора : Трансформаторы изменяют напряжение в нескольких точках в системе распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях более 200 кВ, иногда даже 700 кВ, для ограничения потерь энергии.Местное распределение электроэнергии по районам или промышленным предприятиям проходит через подстанцию и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.
Рассматриваемый здесь трансформатор основан на законе индукции Фарадея и очень похож по конструкции на устройство, которое Фарадей использовал для демонстрации того, что магнитные поля могут создавать токи (показано на рисунке). Две катушки называются первичной и вторичной катушками.При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная обмотка создает преобразованное выходное напряжение. Мало того, что железный сердечник улавливает магнитное поле, создаваемое первичной катушкой, его намагниченность увеличивает напряженность поля. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется во вторичную обмотку, вызывая ее выходное переменное напряжение.
Простой трансформатор : Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник, ламинированный для минимизации вихревых токов.Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и увеличивается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке вызывает ток во вторичной обмотке. На рисунке показан простой трансформатор с двумя катушками, намотанными с обеих сторон многослойного ферромагнитного сердечника. Набор катушек на левой стороне сердечника обозначен как первичный, и его номер указан как N p. Напряжение на первичной обмотке равно V p. Набор катушек на правой стороне сердечника обозначен как вторичный, и его номер представлен как N s.Напряжение на вторичной обмотке равно В с. Символ трансформатора также показан под диаграммой. Он состоит из двух катушек индуктивности, разделенных двумя равными параллельными линиями, представляющими сердечник.
Уравнение трансформатора
Для простого трансформатора, показанного на, выходное напряжение V s почти полностью зависит от входного напряжения V p и соотношения количества витков в первичной и вторичной катушках. Закон индукции Фарадея для вторичной обмотки дает ее индуцированное выходное напряжение V с как:
[латекс] \ text {V} _ \ text {s} = — \ text {N} _ \ text {s} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex],
, где N s — количество витков вторичной катушки, а Δ / Δt — скорость изменения магнитного потока.Обратите внимание, что выходное напряжение равно индуцированной ЭДС (В с = ЭДС с ), при условии, что сопротивление катушки невелико. Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому / Δt одинаково с обеих сторон. Входное первичное напряжение V p также связано с изменением магнитного потока:
[латекс] \ text {V} _ \ text {p} = — \ text {N} _ \ text {p} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].
Соотношение этих двух последних уравнений дает полезное соотношение:
[латекс] \ frac {\ text {V} _ \ text {s}} {\ text {V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ текст {N} _ \ text {p}} [/ latex].
Это известно как уравнение трансформатора , которое просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества контуров в их катушках. Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их катушках. Некоторые трансформаторы даже обеспечивают переменный выход, позволяя выполнять подключение в разных точках вторичной обмотки.Повышающий трансформатор — это трансформатор, который увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение.
Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Уравнивание входной и выходной мощности,
[латекс] \ text {P} _ \ text {p} = \ text {I} _ \ text {p} \ text {V} _ \ text {p} = \ text {I} _ \ text {s} \ text {V} _ \ text {s} = \ text {P} _ \ text {s} [/ latex].
Комбинируя эти результаты с уравнением трансформатора, находим:
[латекс] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ text {p}} {\ текст {N} _ \ text {s}} [/ latex].
Значит, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.
Простая оценка индуцированных электрических полей в тканях нервной системы при воздействии на человека неоднородных электрических полей промышленной частоты
Стимуляции на основе токов, индуцируемых в организме человека электрическими и магнитными полями крайне низкой частоты (СНЧ), можно рассматривать как фактор неблагоприятного воздействия на здоровье человека. Соответственно, индуцированные токи в численной модели человеческого тела из электрических и магнитных полей были рассчитаны в нескольких предыдущих исследованиях (Dawson et al 1998, Dawson and Stuchly 1998, Dimbylow 1998, Dimbylow 2000, Stuchly and Dawson 2002, Leitgeb and Cech 2008 ).Большинство результатов было рассчитано в однородных полях, очень мало результатов в реалистичных неоднородных магнитных полях, например, на подстанции и от бытовой техники (Cheng et al 1995, Dawson et al 1999, Gandhi et al 2001). В случае воздействия магнитного поля были выполнены оценки индуцированных токов в сферической модели или модели человека неоднородными магнитными полями, которые создаются токами из одинарных и двойных проводов (IEC 2004a, Yamazaki et al 2005, p. 2007).В стандарте IEC 62226-2-1 указаны коэффициенты связи для неоднородных магнитных полей для нескольких различных типов магнитных источников. Кроме того, понимание воздействия магнитного поля было продвинуто рядом численных дозиметрических исследований, включая исследования с использованием моделей конкретных тканей, таких как сетчатка и кожа (Hirata et al 2011, Santis et al 2016, Schmid and Hirtl 2016).
Тем временем, в случае воздействия электрического поля, индуцированные электрические поля в модели сфероида в однородном электрическом поле были теоретически получены (Шиау и Валентино, 1981).Кроме того, были измерены и рассчитаны токи, индуцированные в обеих лодыжках заземленного человеческого тела (Deno and Zaffanella 1982). Эти расчетные результаты (т. Однако в этих расчетах не учитывается воздействие неоднородного поля, что нереально, поскольку электрические поля легко возмущаются проводником.В стандарте IEC 62226-3-1 (2004b) описаны методы расчета токов, индуцированных воздействием электрического поля, но не рассматриваются воздействия неоднородного поля.
Были представлены экспериментальные данные о внешних электрических полях на подстанциях и наведенных токах через шеи рабочих (Корпинен и др. 2009, 2012), и результаты показали, что между ними существует грубая корреляция. Кроме того, в нашей предыдущей работе мы обнаружили, что контактный ток или ток короткого замыкания являются более подходящим фактором для оценки индуцированных электрических полей, даже в случае воздействия неоднородного поля (Tarao et al 2013).Следовательно, если взаимосвязь между окружающими неоднородными электрическими полями и индуцированными токами в теле может быть прояснена, индуцированные электрические поля в тканях нервной системы, таких как головной и спинной мозг, возможно, могут быть оценены путем измерения внешних неоднородных электрических полей.
В настоящей статье в отношении электробезопасности рабочих на подстанциях нашей целью является разработка методики оценки индуцированных электрических полей в тканях нервной системы рабочих на основе измерений внешних электрических полей окружающей среды.Директива ЕС 2013/35 / EU, направленная на улучшение правил техники безопасности на рабочем месте, направлена на ограничение воздействия на рабочих электрических и магнитных полей. Страны-члены ЕС должны подать заявку до июля 2016 г. (Европейский парламент и Совет Европейского союза, 2013 г.). Таким образом, существует очевидная потребность в практическом методе оценки индуцированных электрических полей для этих рабочих.
Во-первых, мы численно рассчитали индуцированные токи в модели человека, рассматривая неоднородное электрическое поле, которое искажается кубическим проводящим объектом, который предполагает заземленную металлическую конструкцию в подстанции, под невозмущенным электрическим полем на промышленной частоте.В расчетах высота проводящего объекта и расстояние между моделью человека и объектом варьируются, чтобы учесть различные типы неоднородности. Затем, по результатам расчетов, мы исследовали связь между внешним электрическим полем и индуцированным током через шейку модели. У нас есть хороший опыт использования тока через шею, и мы подтвердили, что индуцированные электрические поля в тканях нервной системы модели коррелируют с токами через шею.Наконец, мы исследовали приближенное выражение для получения индуцированных электрических полей в этих тканях из экспериментальных измерений неоднородных электрических полей окружающей среды.
2.1. Численный метод
Электрические поля и токи, индуцированные в вокселизированной модели человека, подвергнутой воздействию внешних электрических полей снч, были рассчитаны на основе метода конечных разностей скалярных потенциалов (SPFD) (Dimbylow 1998). Этот метод первоначально использовался для низкочастотной индукции магнитными полями, но был улучшен для использования с воздействием электрического поля.В случае метода магнитной индукции SPFD в качестве расчетной области требуется только область внутри числовой модели человека. Однако в случае улучшенного метода воздействия электрического поля вычислительная область включает большую область за пределами модели человека, а также область внутри модели человека. Следовательно, это численное вычисление воздействий электрического поля с использованием улучшенного метода требует очень больших узлов. Подробное описание численного метода и его валидации можно найти в Tarao et al (2013).
2.2. Модель человека
Для численных расчетов использовалась реалистичная человеческая модель взрослого мужчины (Дюк), ростом 1,80 м, включающая 77 тканей и органов (Christ et al 2010). Модель имеет ограничивающую рамку размером 0,61 м × 0,31 м × 1,86 м для осей x -, y — и z соответственно. Размер вокселя модели можно регулировать от 0,1 мм до максимум 5 мм. Выбор максимального размера дает примерно 2.8 миллионов вокселей для самого ограничивающего прямоугольника. Этот размер был выбран для настоящего исследования, потому что в нашем случае нам пришлось разместить модель в гораздо большей вычислительной области (обсуждается в следующем разделе). Типичные значения проводимости при частоте сети, соответствующей конкретным тканям, использовались на основе измерений, сообщенных Габриэлем и др. (1996, 2009), и были присвоены каждому вокселю числовой модели.
2.3. Условия воздействия
Вся расчетная область, использованная в исследовании, представляла собой кубическое пространство с размерами 20 м × 10 м × 16 м для осей x -, y — и z , соответственно. .Электрод с высоким потенциалом (16 кВ) на верхней поверхности домена и заземляющий электрод на нижней поверхности домена были прикреплены для создания вертикального однородного электрического поля 1 кВ м -1 при 60 Гц в расчетной области . Числовая модель человека (Дюк) стояла в центре плоскости земли и была заземлена. Проводящий объект размером 0,5 м × 0,5 м для осей x и y , который также был заземлен, был помещен перед моделью человека так, чтобы модель человека столкнулась с неоднородными электрическими полями. которые были искажены объектом.Как показано на рисунке 1, высота объекта ( h ) варьировалась от 2 м до 5 м, а расстояние ( d ) между поверхностью объекта и центральной осью модели человека также варьировалось от От 0,25 м до 4 м для создания различных типов неоднородностей вокруг объекта. Вычислительная область была разделена на различные размеры вокселей: от 5 мм для ограничивающей рамки числовой модели человека до 1,28 м для границы области. Выбранные размеры уменьшили общее количество вокселей примерно до 20 миллионов.
Приблизить Уменьшить Сбросить размер изображения
Рис. 1. Распределение эквипотенциальной линии и внешнего электрического поля вокруг проводящего объекта без присутствия человека в однородном электрическом поле 1 кВ м −1 при 60 Гц. Эквипотенциальная линия представлена с интервалом 200 В. Обе ширины объекта 0,5 м, а высота ( х ) 2 м. Внешнее электрическое поле определяется как поле в центре числовой головы человека (т.е. 1,7 м высотой от земли) без присутствия человека для обозначения неоднородных полей.
Загрузить рисунок:
Стандартный образ Изображение высокого разрешенияПосле проведения численных расчетов путем изменения высоты ( h ) проводящего объекта и расстояния ( d ) от объекта, соотношение между окружающими внешними электрическими полями и индуцированными токами, протекающими через шейку человеческая модель и взаимосвязь между индуцированными токами в шее и индуцированными электрическими полями в тканях нервной системы (т.е. мозг, сердце, нервы и спинной мозг) модели человека. Здесь внешнее поле определяется как напряженность электрического поля ( E ext ) в центральном положении числовой головы человека (высота 1,7 м от земли) без присутствия человека (см. Рисунок 1), поскольку токи индуцируют в шее вызваны разностью потенциалов, основанной на зарядах электризации на голове человека.
3.1. Внешнее электрическое поле и его неоднородность
На рисунке 1 показано распределение эквипотенциальной линии и вектора электрического поля вокруг проводящего объекта без присутствия человека.Из рисунка видно, что электрическое поле вокруг объекта искажается и становится неоднородным. В стандарте IEC 62110 (2009) неоднородность электрических полей ( E NU ) определяется как
где E 1,5 — напряженность электрического поля на высоте 1,5 м над землей, которая представляет собой значение при наибольшей разнице в числителе, а E avg — уровень электрического поля на высоте 0,5 м, 1,0 мм и 1,5 м над землей.В таблице 1 указаны напряженности электрического поля, рассчитанные без присутствия человека, и усредненное значение ( E avg ), которое также показывает неоднородность ( E NU ). В таблице электрические поля в точке 1,5 м вблизи объекта превышают 1 кВ м −1 . Например, напряженность электрического поля на расстоянии 1,5 м для h = 2 м составляет 1,7 кВ м −1 , 1,3 кВ м −1 и 1,1 кВ м −1 для d = 0,25 м, 0.45 м и 0,65 м соответственно, при этом неравномерность составляет от 30% до 55%. Напротив, неоднородность уменьшается на небольшой процент в 2 м от объекта, становясь более однородной. Сообщалось только о нескольких измеренных неоднородных электрических полях, связанных с неоднородностью, поскольку измерители электрического поля обычно калибруются в однородном поле. Одним из примеров является измерение электрических полей в коридоре подстанции сверхвысокого напряжения (Deno and Zaffanella 1982). Измеренные данные составили 3,7, 4.43 и 6,7 кВ м −1 на высоте 0,5, 1,0 и 2,0 м над землей соответственно. В этом случае неравномерность составила 35,5%; Однако учтите, что самая высокая измеренная точка была не 1,5 м. Таким образом, диапазон неоднородности, исследуемый в настоящем исследовании, охватывает практическую ситуацию, возникающую на подстанции.
Таблица 1. Расчетная напряженность электрического поля, ее усредненное значение и неоднородность без присутствия человека для разной высоты проводящего объекта и разного расстояния от объекта.
h (м) | d (м) | Электрическое поле над землей (кВ м −1 ) | E средн. (кВ м −1 ) | E NU (%) | ||
---|---|---|---|---|---|---|
0,5 м | 1,0 м | 1,5 м | ||||
2 | 0,25 | 0,554 | 1.039 | 1,697 | 1,097 | 54,7 |
0,45 | 0,566 | 0,874 | 1,300 | 0,914 | 42,3 | |
0,65 | 0,627 | 0,823 | 1,109 | 0,853 | 30,0 | |
0,85 | 0,688 | 0,822 | 1,017 | 0,842 | 20,7 | |
1,15 | 0.767 | 0,849 | 0,968 | 0,861 | 12,4 | |
2,15 | 0,905 | 0,927 | 0,957 | 0,930 | 2,9 | |
4,14 | 0,971 | 0,974 | 0,979 | 0,930 | 0,5 | |
5 | 0,25 | 0,326 | 0,590 | 0,865 | 0,594 | 45.7 |
0,45 | 0,338 | 0,500 | 0,690 | 0,509 | 35,4 | |
0,65 | 0,378 | 0,477 | 0.609 | 0,488 | 24,8 | |
0,85 | 0,421 | 0,485 | 0,576 | 0,494 | 16,6 | |
1,15 | 0,483 | 0,520 | 0,577 | 0.527 | 9,6 | |
2,15 | 0,630 | 0,642 | 0,662 | 0,645 | 2,7 | |
3,15 | 0,709 | 0,717 | 0,728 | 0,718 | 1,4 |
На рис. 2 показаны результаты расчета эквипотенциальной линии и вектора электрического поля вокруг модели человека для различных расстояний от поверхности объекта. Из рисунка 2 видно, что электрическое поле, взаимодействующее с телом человека (в частности, с фронтальной стороной человека), уменьшается по мере приближения к проводящему объекту из-за существования объекта.Это приводит к уменьшению наведенного тока через человеческое тело.
Приблизить Уменьшить Сбросить размер изображения
Рис. 2. Распределение эквипотенциальной линии и внешнего электрического поля вокруг проводящего объекта, когда числовая модель человека стоит вертикально (a) d = 0,25 м и (b) d = 1,15 м от поверхности предмет. Высота объекта 2 метра.Внешнее электрическое поле представляет собой однородное поле 1 кВ м -1 при 60 Гц. Эквипотенциальная линия представлена с интервалом 200 В.
Загрузить рисунок:
Стандартный образ Изображение высокого разрешения3.2. Токи через шею
На рис. 3 показан индуцированный ток, текущий вниз перпендикулярно каждому горизонтальному слою человеческого тела на разных расстояниях от поверхности проводящего объекта. Из рисунка видно, что индуцированный ток через шею в случае однородного поля 1 кВ · м −1 при 60 Гц составляет 5 μ A, что составляет около 27% от общего тока через лодыжки (т.е.е. ток короткого замыкания). Индуцированный ток уменьшается по мере удаления от объекта, поскольку электрическое поле, проходящее через тело человека, как и ожидалось, уменьшается.
Приблизить Уменьшить Сбросить размер изображения
Рисунок 3. Ток через горизонтальный слой вдоль человеческого тела на разных расстояниях ( d ) от поверхности проводящего объекта. Высота объекта 2 метра.
Загрузить рисунок:
Стандартный образ Изображение высокого разрешенияНа рисунке 4 показан индуцированный ток через шею модели человека как функцию внешнего поля ( E ext ) для различных h и d . Прямая линия на рисунке представляет ток через шею в случае однородного электрического поля, что основано на том факте, что значение тока в шее при воздействии однородного поля, показанное на рисунке 3, выражается следующим образом:
где E uni — напряженность внешнего электрического поля для равномерного воздействия, а f — частота.В случае воздействия электрического поля с низкой частотой индуцированные электрические поля и токи в теле пропорциональны частоте, поскольку комплексная проводимость вне тела (т.е. воздуха) может рассматриваться как ωε 0 , а ее величина очень мала по сравнению с величиной комплексной проводимости внутри тела (Шиау и Валентино 1981, Кауне и др. 1997). Как показано на рисунке 4, все графики остаются ниже прямой линии, даже если электрическое поле точки равно 1.7 м над землей превышает 1 кВ м −1 и демонстрирует нелинейную зависимость от E ext . Токи через шею уменьшаются нелинейно по мере приближения тела к объекту при любой высоте объекта, поскольку электрические потенциалы в положении головы (но без присутствия человека) уменьшаются (см. Рисунок 1). Напротив, графики совпадают со случаем экспонирования однородного поля, когда расстояние ( d ) велико. Ранее измерялись внешние электрические поля вокруг силового оборудования на подстанциях 400 кВ и токи в головах рабочих во время их обслуживания (Корпинен и др. 2009, 2012).Результаты показали, что существует грубая корреляция между током через шейку и внешним полем на высоте 1,7 м над землей, но расстояние до оборудования полностью не описано. Следовательно, все данные, относящиеся к току через шейку, как указано в литературе, кажутся ниже, чем данные, полученные из уравнения (2), которое демонстрирует тенденцию, аналогичную диаграмме 4.
Приблизить Уменьшить Сбросить размер изображения
Рисунок 4. Ток через шею ( I шея ) для разной высоты объекта ( h ) и разных расстояний от объекта ( d ) как функция внешнего электрического поля ( E доб ). Прямая линия представляет случай равномерного воздействия поля, как указано в уравнении (2).
Загрузить рисунок:
Стандартный образ Изображение высокого разрешенияНа рисунке 5 показано отношение тока через шейку ( I шейка ) при неравномерном воздействии с E ext к другому току через шейку однородным полем с напряженностью, равной E . ext , как функция расстояния ( d ).На расстоянии более 4 м это соотношение достигает 100%, поэтому его можно рассматривать как однородное поле. Напротив, для расстояний менее 4 м соотношение зависит только от расстояния. Используя подгонку кривой на основе результатов вычислений, степень снижения может быть выражена следующим образом:
который показан на рисунке 5 и демонстрирует, что степень уменьшения может определяться расстоянием от объекта, независимо от высоты. В уравнении (3) K I становится равным нулю, если d составляет около 0.1 м, это ситуация, при которой наибольшая площадь человеческого тела контактирует с проводящим объектом, и которая не рассматривается в данном исследовании. Для d = 0,45 м и h = 2 м, K I составляет 40,9% от уравнения (3). Поскольку напряженность внешнего поля и ток в шейке составляли 1,5 кВ м -1 и 3,09 мк А, соответственно, K I можно оценить как 41,2% при токе 7,5 мк А в Учитывается шейка для равномерного экспонирования.Следовательно, эти коэффициенты снижения прекрасно согласуются друг с другом.
Приблизить Уменьшить Сбросить размер изображения
Рисунок 5. Отношение ( K I ) тока через шейку ( I шейка ) в случае внешнего электрического поля ( E ext ) к другому I шейка однородным полем, эквивалентным E ext , как функция расстояния ( d ) от поверхности объекта.
Загрузить рисунок:
Стандартный образ Изображение высокого разрешения3.3. Индуцированные электрические поля в тканях нервной системы
На рисунке 6 показаны значения 99-го процентиля индуцированных электрических полей ( E ткань ), которые основаны на рекомендациях Международной комиссии по защите от неионизирующего излучения (ICNIRP) (2010). в головном мозге, сердце, периферических нервах и спинном мозге против тока через шею ( I шея ).Из рисунка 6 видно, что индуцированные электрические поля в этих тканях нервной системы сильно коррелируют с индуцированными токами через шею при любых условиях, как предсказано в предыдущей работе (Tarao et al 2013), что указывает на то, что эти индуцированные электрические поля можно оценить по токам, протекающим через шейку, которые приблизительно выражаются следующим образом:
где K ткань — наклон прямой линии, показанной на рисунке 6, как указано в таблице 2.Из расчета для d = 0,45 м и h = 2 м, ток в шее и индуцированное электрическое поле в мозге составили 3,09 мк А и 1,64 мВ м -1 соответственно. Следовательно, наклон можно оценить как 530,7 с погрешностью 5,8%. Korpinen и др. (2012) составили таблицу наведенных электрических полей в голове, оцененных путем измерения токов, протекающих через шеи людей, работающих на подстанциях. Это индуцированное поле было рассчитано путем деления средней плотности тока в шейке на проводимость, равную 0.1–0,2 См · м −1 , которые являются типичными значениями проводимости ткани. Эти индуцированные электрические поля сопоставимы со значениями, полученными из уравнения (4).
Приблизить Уменьшить Сбросить размер изображения
Рис. 6. Индуцированное электрическое поле в тканях нервной системы против тока через шею ( I шея ) при воздействии неоднородного поля: (а) мозг, (б) сердце, (в) нервы и (г) спинной мозг.Наклон прямой указан в таблице 2.
Скачать рисунок:
Стандартное изображение Изображение высокого разрешенияТаблица 2. Коэффициент индуцированного электрического поля в данной ткани по отношению к току через шею, как указано в уравнении (4).
Мозг | Сердце | Нервы | Спинной мозг | |
---|---|---|---|---|
K ткань ((В м −1 ) A −1 ) | 500 | 540 | 880 | 660 |
На рисунке 7 показан пример распределения индуцированного электрического поля в горизонтальном поперечном сечении, включая мозг модели человека, для различных расстояний от объекта.Можно видеть, что индуцированные электрические поля в тканях, существующих между черепом и кожей, таких как подкожная жировая ткань, выше, чем в мозге. В частности, индуцированные поля в передней части головы увеличиваются с увеличением расстояния, как видно из рисунка 2. Все векторы на рисунке 7 являются единичными векторами. Однако длины векторов в мозге кажутся несколько короче, а это означает, что вертикальная составляющая индуцированных полей является доминирующей.
Приблизить Уменьшить Сбросить размер изображения
Рис. 7. Распределение индуцированного электрического поля на горизонтальном сечении, включая мозг модели человека для (a) d = 0,25 м, (b) d = 0,65 м и (c) d = 2,15 м при высоте объекта ( h ) 2 м.
Загрузить рисунок:
Стандартный образ Изображение высокого разрешения3.4. Оценка индуцированного поля путем измерения внешнего поля
Комбинируя уравнения (2) — (4), приближенное значение E ткань может быть получено следующим образом:
В предлагаемой оценке измерения внешнего электрического поля в точке в центре головы человека и на расстоянии от проводящего объекта необходимы для получения максимального значения индуцированных электрических полей в тканях нервной системы.
3.5. Валидация
3.5.1.Незаземленный человек.
Расчеты в данной статье проводились с обоснованием численной модели человека. Если незаземленный человек стоит рядом с проводящим объектом, токи, наводимые в шее человеческого тела, должны быть меньше, чем в случае заземленного человека. Следовательно, скорость снижения должна быть меньше, чем на кривой, указанной в уравнении (3), что можно рассматривать как недооценку. Однако, если незаземленный человек касается проводника, контактный ток, который представляет собой полный ток, протекающий от тела к земле, имеет то же значение, что и ток короткого замыкания от ног заземленного человека (Tarao et al. al 2013), что позволяет применять наш метод.В любом случае соотношение между током в шее и индуцированными электрическими полями в тканях нервной системы не меняется.
3.5.2. 99-й процентиль индуцированного поля.
В соответствии с руководящими принципами ICNIRP, установленными в 2010 г. (ICNIRP 2010), индуцированное электрическое поле для сравнения с основными ограничениями рекомендуется как среднее векторное значение электрического поля в небольшом объеме смежной ткани размером 2 × 2 × 2 мм 3 , хотя в настоящем исследовании мы использовали размер вокселя 5 мм.Влияние усреднения объема вокселей на индуцированные электрические поля в мозге числовой модели человека, подвергающейся воздействию однородного электрического поля, было ранее исследовано (Hirata et al 2010). Эти авторы пришли к выводу, что значение 99-го процентиля электрического поля в нервной ткани более стабильно, чем максимальное значение для различных объемов усреднения. На рисунке 8 показаны процентильные значения индуцированного электрического поля в тканях нервной системы модели Duke для однородного электрического поля (1 кВ м -1 при 60 Гц) с размером вокселя 2 мм и 5 мм.Результат в случае размера вокселя 2 мм был получен с использованием двухэтапного подхода (Tarao et al 2013). Следует отметить, что токи, индуцируемые через каждое горизонтальное поперечное сечение тела, полученные из численных моделей человека, таких как фиг.3, с разными размерами вокселей, согласуются друг с другом. Однако индуцированные электрические поля различаются в зависимости от размера вокселя, поскольку электрическое поле представляет собой разновидность плотности. На рисунке 8 можно увидеть, что результаты, полученные для вокселей 2 мм и 5 мм, почти совпадали примерно до 99%, за исключением спинного мозга.Максимальное значение индуцированных полей в нервах может иметь ступенчатую ошибку даже для размера вокселя 5 мм. Сообщается, что значение 99-го процентиля может значительно занижать фактический уровень индуцированного поля (Chen et al 2013). Для полного понимания максимальной стоимости может потребоваться дополнительная работа.
Приблизить Уменьшить Сбросить размер изображения
Рис. 8. Процентильные значения индуцированного электрического поля в тканях нервной системы для воздействия однородного электрического поля (1 кВ м −1 , 60 Гц) с размером вокселя 2 мм (открытый) и 5 мм (закрыто).
Загрузить рисунок:
Стандартный образ Изображение высокого разрешения3.5.3. Сравнение с предыдущим отчетом.
Ранее мы сообщали об индуцированных токах и электрических полях у рабочего, занятого обслуживанием работающего выключателя на подстанции, с учетом воздействия на человека неоднородного электрического поля (Tarao et al 2013). В этом случае внешние электрические поля на высоте 1,7 м составляли 21,0, 15,6 и 12,8 кВ м −1 при 50 Гц для расстояний 0.25, 0,45 и 0,65 м соответственно. Следует отметить, что расстояние адаптировано к определенному в настоящем исследовании. Подставляя эти значения в уравнение (5), можно рассчитать индуцированные электрические поля в тканях ( E ткань ), как указано в таблице 3. Расчетные значения лучше согласуются с предыдущими результатами, показанными в скобках, поскольку расстояние увеличивается. В частности, в случае расстояния 0,65 м, которое обычно поддерживается на подстанции, эти значения отлично согласуются друг с другом.
Таблица 3. Электрическое поле в данных тканях, рассчитанное по уравнению (5).
d (м) | E внешний (кВ м −1 ) | Расчетное электрическое поле, E ткань (мВ м −1 ) | |||
---|---|---|---|---|---|
Мозг | Сердце | Нервы | Спинной мозг | ||
0.25 | 21,0 | 8,87 (11,4) | 9,58 (11,8) | 15,6 (18,9) | 11,7 (15,4) |
0,45 | 15,6 | 13,3 (13,4) | 14,4 (14,5) | 23,4 (23,1) | 17,6 (19,0) |
0,65 | 12,8 | 15,0 (14,6) | 16,2 (16,4) | 26,4 (26,0) | 19,8 (21,3) |
Значение в скобках показывает результаты предыдущей работы (Tarao et al 2013).
3.5.4. Влияние размера проводника.
Наконец, в настоящих расчетах неоднородное электрическое поле, встречающееся на подстанции, было задано путем принятия геометрически сложной металлической конструкции в качестве проводящего объекта простой конфигурации. Представленный здесь метод позволяет оценить наведенные электрические поля в различных тканях нервной системы рабочего рядом с проводящим объектом с определенной шириной, что и используется в настоящем расчете. Если предположить, что рабочий стоит у металлического столба на подстанции, коэффициент снижения будет превышать верхнюю границу, указанную в уравнении (3) и на рисунке 5, потому что рабочий подвергается большему воздействию электрических полей, исходящих с обеих сторон столба.Кроме того, на рисунке 9 показан коэффициент уменьшения для различных расстояний ( d ) от объекта в зависимости от высоты объекта. Мы обнаружили, что степень уменьшения резко возрастает, когда высота объекта ниже роста модели человека. Этот метод требует улучшения. Однако даже в таких случаях индуцированные поля в тканях нервной системы тесно коррелировали с током, протекающим через шею.
Приблизить Уменьшить Сбросить размер изображения
Рисунок 9. Скорость уменьшения ( K I ) тока через шейку ( I шейка ) как функция высоты ( h ) проводящего объекта.
Загрузить рисунок:
Стандартный образ Изображение высокого разрешенияВ настоящей статье, чтобы предложить простой метод оценки индуцированных электрических полей в тканях нервной системы взрослого человека, подвергающегося воздействию неоднородного электрического поля, наведенные электрические поля и токи в числовой модели человека были исследованы при различных условиях. виды неоднородности.
Как и ожидалось, индуцированные токи через шейку модели были нелинейны по отношению к внешним электрическим полям в отсутствие человека. Однако индуцированные токи зависят от расстояния от поверхности объекта, независимо от высоты рассматриваемого объекта, и могут быть приблизительно сформулированы. Между тем, мы подтвердили, что существует сильная корреляция между индуцированным током через шею и индуцированными электрическими полями в тканях нервной системы во всех условиях.Следовательно, комбинация этих результатов облегчает оценку индуцированных электрических полей в этих тканях на основе внешнего электрического поля в центральном положении головы человека и расстояния от объекта, которые можно легко измерить. Настоящий простой метод оценки может применяться в ограниченных случаях, например, когда проводящий объект представляет собой устройство или часть оборудования определенной ширины и выше, чем рост человека. Необходимы дальнейшие исследования учета неоднородности в методах оценки, чтобы расширить охват применимых условий.
Мы хотели бы поблагодарить доктора К. Ямадзаки из Центрального научно-исследовательского института электроэнергетики (CRIEPI), Япония, профессора М. Таки из Токийского столичного университета и профессора О Фудзивару из технологического института Нагоя за полезные советы при написании настоящей статьи.