Site Loader

Генераторы высокой частоты — Мегаобучалка

 

Высокочастотные измерительные генераторы (генераторы ВЧ) пред-назначаются для испытаний и наладки радиоустройств (входных цепей, усилителей высокой и промежуточной частот радиоприемников), питания измерительных схем, снятия амплитудно-частотных характеристик четырехполюсников и т. п.

Они генерируют как синусоидальные, так и модулированные по амплитуде и частоте колебания.

С целью уменьшения взаимосвязей отдельных элементов генератора, влияющих на стабильность его работы, устранения или сильного ослабления влияния внешних паразитных электромагнитных полей, а также «пролезания» генерируемых колебаний помимо

выходного устройства все узлы и блоки генератора тщательно экранируют.

На рис. 5-6 приведена структурная схема типового генератора сигналов высокой частоты.

Важнейшим узлом прибора является задающий генератор, который служит для создания синусоидальных колебаний в заданном диапа-зоне частот.

К нему предъявляют два основных требования: высокая стабиль-ность частоты и «чистота» формы генерируемых колебаний.

Для удовлетворения этих требований задающий генератор наи-более часто выполняют по схеме LC-генератора с так называемой электронной связью между анодной и сеточной цепями (по схеме Шембеля-Доу). Колебательные контуры генератора выполняют из высокодобротных деталей. В схеме применяется температурная ком-

пенсация нестабильности частоты или термостабилизация элементов контуров. Лампа задающего генератора ставится в облегченный режим. Возможно выполнение ЗГ и на транзисторе.

 

Перестройка частоты задающего генератора в пределах поддиа-пазона производится изменением емкости переменного конденсатора колебательного контура. Переключение поддиапазонов осуществляется сменой катушек индуктивности контуров. Обычно эти элементы колебательных контуров задающего генератора сопряжены с аналогичными элементами анодного (коллекторного) контура буфферного усилителя — модулятора.

Буферный усилитель генератора обычно строят по схеме резонанс-ного усилителя с LС-контуром. Он уменьшает реакцию задающего генератора на изменение внешней нагрузки и усиливает напряжение колебаний, поступающих от задающего генератора. Иногда буферный усилитель выполняет роль умножителя частоты (Г4-7Л).



В некоторых типах генераторов Г4 регулировка уровня напряжения, подаваемого на выходные аттенюаторы, осуществляется в буферном каскаде. Так, например, в Г4-18А этот уровень регулируется путем изменения постоянного напряжения на экранной сетке лампы усилителя-модулятора. На эту же сетку в режиме амплитудной модуляции через разделительную емкость подается переменное модулирующее напряжение низкой частоты от внутреннего или внешнего источника.

Внутренние источники модулирующего напряжения, применяемые в генераторах ВЧ, чаще всего являются генераторами синусоидальных колебании низкой частоты (400 или 1000 Гц). Однако это могут быть и импульсные генераторы (как, например, в генераторах ГЗ-8, Г4-9).

Система аттенюаторов (плавный и ступенчатый аттенюаторы и выносной делитель, рис. 5-6) служит для плавной и ступенчатой регулировки выходного сигнала.

 

 

Примечание. f — установленное по шкале генератора значение ча-стоты; НГ — непрерывная генерации; AM — амплитудная модуляции; ЧМ — частотная модуляция; ИМ — импульсная модуляция.

Контрольные приборы предназначаются для измерения параметров выходного сигнала (например, выходного уровня и коэффициента
глубины модуляции).

В настоящее время выпускаются генераторы типов Г4-18А, Г4-42,Г4-45 и др.

Основные характеристики некоторых высокочастотных генераторов даны в табл. 5-2.

Импульсные генераторы

 

Импульсные генераторы — источники импульсных сигналов различной формы — применяются при испытаниях, регулировках и на-стройках импульсных электронных устройств, при снятии переходных

характеристик отдельных узлов и всей схемы; используются в качестве источников, модулирующих напряжение в генераторах сверхвысоких частот, и т. д.

Наибольшее применение находят измерительные генераторы перио-дической последовательности прямоугольных импульсов, общая структурная схема которых представлена на рис. 5-7.

В этой схеме задающий генератор ЗГ вырабатывает напряжение, частота которого регулируется в заданных пределах, и определяет частоту следования импульсов выходного сигнала. Наиболее часто —это блокинг-генератор или мультивибратор, реже — генератор синусоидальных колебаний RС-типа.

Формирующее устройство вырабатывает прямоугольные импульсы различной длительности. В состав формирующего устройства могут входить ограничители, линии задержки, ждущие блокинг-генераторы и мультивибраторы, фантастроны, триггеры и т. п.

 

Выходное устройство необходимо для согласования генератора с нагрузкой и содержит обычно инвертирующий каскад и катодный (эмиттерный) повторитель, что позволяет на низкоомной нагрузке (50, 75, 150, 200 Ом) получать импульсы обеих полярностей. Выходное устройство содержит также делители напряжения для регулирования напряжения выходных импульсов.

Измерители параметров выходного сигнала предназначаются для измерения высоты, а иногда и для контроля формы импульсов выход-ного сигнала.

Генераторы могут иметь вспомогательные устройства — схему внешнего запуска и выход импульсов синхронизации.

Схема внешнего запуска позволяет синхронизировать частоту следования выходных импульсов напряжением внешнего генератора и, как правило, имеет усилительный и инвертирующий каскады.

Импульсы на выходе синхронизации, несколько опережающие импульсы на основном выходе генератора, часто используют для запуска внешних приборов (например, осциллографа).

Один из способов формирования периодической последователь-ности прямоугольных импульсов поясняется рис. 5-8 и 5-9.

Как уже отмечалось, формирующее устройство в измерительном генераторе выполняет две задачи: задержку фронта импульсов основного выхода относительно фронта импульсов на выходе синхронизации и формирование прямоугольных импульсов основного выхода (импульсов заданной длительности, с крытыми фронтами и срезами и плоскими вершинами). Поэтому оно включает схемы задержки и формирования импульсов.

Время задержки импульсов на основном выходе относительно импульсов синхронизации (рис. 5-8) либо плавно регулируется (переключатели В1 в положении 1), либо фиксированно (переключатели В1 в положении 2).

В первом случае импульс, выработанный задающим генератором в момент времени t

0, запускает одновибратор. Последний выдает прямоугольный импульс, длительность которого (τ3 = t1 — t0) устанавливается оператором. Этот импульс дифференцируется RС-цепочкой, в результате чего образуются два остроконечных импульса: отрицательный, фронт которого соответствует времени t0, и положительный, фронт которого соответствует времени среза импульса t1. Отрицательный импульс ограничивается диодным ограничителем, а положительный поступает на ждущий блокинг-генератор, который запускается и выдает короткий импульс с крутым фронтом. Этим импульсом запускается схема формирования, выходных прямоугольных импульсов. Таким образом, фронт выходного импульса оказывается задержанным относительно фронта выходного синхронизирующего импульса на время τ3. Во втором случае импульс от задающего генератора задерживается искусственной линией задержки на время 0,2—0,5 мкс.

Схема формирования прямоугольных импульсов (рис. 5-9) рабо-тает следующим образом. Задержанный импульс со схемы задержки поступает на ждущий блокинг-генератор. Блокинг-генератор выраба-тывает короткий импульс с очень крутым фронтом. Этот импульс поступает на две цепи: на двусторонний ограничитель 1 и на катодный повторитель.

Ограничитель 1 формирует из поступившего импульса короткий
прямоугольный импульс определенной высоты. Этим импульсом запу- скается ждущий блокинг-генератор широкого импульса. Так как запуск производится импульсом с фиксированной, относительно небольшой высотой, в начале импульсов нет выбросов вершины. Крутизна фронта широкого импульса, формируемого ждущим блокинг-генератором широкого импульса, определяется крутизной запускающего импульса.

 

Параметры этого блокинг-генератора подобраны такими, чтобы дли-тельность его импульса τш.и была больше максимальной требуемой длительности выходных импульсов (например, в приборах Г5-8 и Г5-15 при максимальной длительности выходных импульсов 10 мкс длительность τш.и = 12÷15 мкс).

Нужная длительность выходных импульсов обеспечивается срывом работы блокинг-генератора широкого импульса в момент времени t2. Срыв работы блокинг-генератора происходит потому, что в момент t2 выход блокинг-генератора широкого импульса шунтируется электрон-ным ключом. Такой метод позволяет получить импульсы нужной дли-тельности с крутым срезом. Момент срыва t2 определяется временем задержки, установленным на искусственных линиях задержки.

Сформированные таким образом импульсы с крутыми фронтами и срезами поступают на ограничитель 2, где выравниваются («срезаются»)вершины, и затем на выходное устройство.

Измерители высоты импульсов 1 многих импульсных измерительных генераторов строятся по схемам, реализующим метод сравнения измеряемой высоты импульсов с образцовым напряжением.

Рисунки 5-10 и 5-11 поясняют принцип действия одного из вариантов таких измерителей.

Измеритель высоты импульсов (рис. 5-10) содержит сравнивающее устройство (диод Д, импульсный трансформатор Тр), источник

 

образцового напряжения (переменный резистор R, подключенный к стабилизированному напряжению UCT) и индикатор равенства изме-ряемого и образцового напряжений. Индикатор равенства — неоно-вая лампа HЛ — для повышения чувствительности измерителя (и тем самым точности измерения) подключен к выходу сравнивающего устройства через усилитель импульсов и одновибратор — расширитель импульсов сравнения. Применение расширителя импульсов позволяет сделать чувствительность индикатора равенства практически независимой от длительности измеряемых импульсов.

Измеритель высоты импульсов работает следующим образом.

 

Первоначально образцовое напряжение устанавливают максимальным (Uо.макс; рис. 5-11, 2) и заведомо большим высоты импульсов, поступающих на вход измерителя (рис. 5-11, 1).

Поскольку образцовое напряжение U0.макс включено встречно и больше высоты импульсов Um, сравнивающий диод Д закрыт, через первичную обмотку трансформатора ток не проходит и на его вторичной обмотке нет напряжения. Одновибратор находится в состоянии устойчивого равновесия, которое характеризуется низким напряже-нием между точками подключения электродов неоновой лампочки HЛ1 и она не горит. Затем образцовое напряжение с помощью резистора R снижают до величины U

0, несколько меньшей высоты импульсов Um (рис. 5-11).При этом на время действия импульсов диод Д открывается и через первичную обмотку трансформатора протекают импульсы тока (рис. 5-11, 3). Во вторичной обмотке трансформатора индуцируются импульсы напряжения (t2, которые после усиления в нужной полярности поступают на одновибратор и переводят его в неустойчивое состояние, характеризующееся резким повышением напряжения на неоновой лампе. Неоновая лампа загорается, что свидетельствует о примерном равенстве высоты импульсов Um и образцового напряжения U0. После возвращения одновибратора в исходное положение лампа гасится(момент t2).

В момент прихода следующего импульса (t3) лампа снова вспых-нет, затем погаснет и т.д. Поскольку минимальная частота повторения импульсов обычно превышает 10 Гц, свечение неоновой лампы воспринимается как немигающее. Значение образцового напряжения (а следовательно, и высоту импульсов) можно определить по шкале резистора R, заранее градуированного в значениях напряжения.

С помощью рассмотренного измерителя можно не только измерять высоту импульсов, но и устанавливать ее определенное значение. Для этого первоначально уменьшают высоту импульсов до нуля, устанавливают по шкале резистора R нужное напряжение и плавно повышают высоту импульсов до момента зажигания индикаторной лампы. Очевидно, что при этом установленная высота импульсов примерно равна образцовому напряжению.

Относительная погрешность измерения и установки высоты импуль-сов подобными измерителями обычно не превышает ±10%.

 

 

Таблица 5-3

 

 

Продолжение таблицы 5-3

 

Основные характеристики некоторых генераторов импульсов при-
ведены в табл. 5-3.

 

Генератор сигналов высокой частоты (до 15МГц)

Генератор сигналов высокой частоты предназначен для проверки и наглаживания высокочастотных электронных устройств.

Генератор состоит из собственно генератора РЧ (транзистор V3), эмиттерного ловторителя (транзистор V4), выходного усилителя (транзистор V6) и амплитудного модулятора (транзистор V5).

Требуемый поддиапазон генерируемых частот выбирают переключателем S1, перестраивают генератор сдвоенным блоком конденсаторов переменной емкости С6 (обе секции включены параллельно). Диод V1 в цепи затвора транзистора V3 выполняет функции ограничителя, повышающего стабильность амплитуды выходного сигнала при перестройке генератора (в пределах поддиапазона). Резисторы R1*—R4* ослабляют положительную обратную связь, улучшая форму колебаний. Напряжение питания этого каскада стабилизировано стабилитроном V2.

Основные параметры:

Диапазон генерируемых частот, МГц           0,12…    15;

Максимальная амплитуда выходногб сигнала (на нагрузке 100 Ом), В, в поддиапазонах:

0,12…0,42 МГц              0,95;

0,4…1,67 МГц                 0,8;

1.6…6.67МГц               0,65;

5…15 МГц             0,3;

Неравномерность амплитуды выходного сигнала в пределах поддиапазона, дБ        2;

Выходное сопротивление. Ом       100;

Глубина модуляции звуковой частоты сигналом, %       30;

Диапазон модулирующих частот, Гц             30…3*10^4;

Погрешность установки частоты, %           ±10.

С истока транзистора V3 напряжение высокочастотных колебаний поступает на эмиттерный повторитель, обеспечивающий развязку между генератором и нагрузкой. Напряжение, развиваемое генератором (транзистор V3), существенно больше требуемого для нормальной работы последующих каскадов. Поэтому на выходной усилитель сигнал подается с делителя, образованного резисторами R9 и R10 в эмиттерной цепи транзистора V4.

Выходной’ широкополосный усилитель (транзистор V6) выполнен на схеме с общим эмиттером. Его нагрузкой служит переменный резистор R15, с движка которого сигнал поступает на выходной коаксиальный разъем Х2.

Транзисторный генератор прямоугольных импульсов с перестройкой

Для того чтобы обеспечить достаточно широкую полосу выходного усилителя, сопротивление этого резистора должно быть не более 150 Ом. Тогда при емкостной нагрузке около 50 ПФ (емкость коаксиального кабеля длиной около 0,7 м) полоса пропускания усилителя 20…30 МГц. При этом через транзисторы необходимо пропустить относительно большой ток (около 10 мА): падение напряжения на резисторе R15 должно быть примерно в 2 раза больше амплитуды выходного сигнала.    

Амплитудная модуляция осуществляется в выходном каскаде. Транзистор V5 модулятора включен по постоянному току последовательно с транзистором V6, а модулирующее напряжение с разъема XI поступает одновременно на базы обоих транзисторов (на V6 — через резистор R13*). В результате получается смешанная (коллекторно-базовая) модуляция выходного сигнала.

Используя такую модуляцию, простым увеличением напряжения ЗЧ можно получить почти 100 %-ную модуляцию высокочастотного сигнала при малых нелинейных искажениях. Включают модуляцию выключателем S2.

В генераторе использован малогабаритный сдвоенный блок (его секции при монтаже соединяют параллельно) конденсаторов переменной емкости с твердым диэлектриком КПТМ-4 (от транзисторных радиоприемников «Нейва», «Этюд», «Сигнал», «Орбита»). Ось блока удлинена отрезком латунного прутка диаметром 4 и длиной 18 мм.

С одного конца в нем просверлено осевое отверстие глубиной 8 мм, в котором затем нарезана резьба М2. Для соединения использована стальная шпилька М2 X 8, которую ввинчивают на клее БФ-2 в резьбовое отверстие в оси блока КПЕ, а на выступающий конец на том же клее до отказа навинчивают пруток-удлинитель.

Для регулировки выходного напряжения применен переменный проволочный резистор Г1ПБ-1В, однако можно использовать и другой резистор, сопротивление которого не превышало бы 150 Ом.

В генераторе применены конденсаторы КТ-1a (С1—С4), К50-6 (С13), КМ (С15) и КЛС (остальные). Все постоянные резисторы, кроме R10— ВС-0,125, (МЛТ-0,125, МЛТ-0,25 и т. п.). Резистор R10 — МОН-0,5, при необходимости его можно изготовить самостоятельно, намотав, например, отрезок провода ПЭВ-2 диаметром 0,06 мм на корпус резистора МЛТ-0,5 сопротивлением не менее 100 Ом.

Отрезок провода длиной 790 мм складывают вдвое и закрепляют петлю на резисторе каплей расплавленной канифоли. После намотки концы припаивают к выводам резисторов.

В приборе можно использовать любой полевой транзистор серии КП303 и любые маломощные кремниевые высокочастотные транзисторы.

Статический коэффициент передачи тока транзисторов V4 и V6 должен быть не менее 60, транзистора V5 — не менее 30. Диод V1 — любой кремниевый высокочастотный.

Катушки генератора L1 и L2 намотаны на ферритовых кольцах М1000НМ-А-К10 X 6 X 4,5 (внешний диаметр 10, внутренний — 6, высота 4,5 мм, феррит марки 1000НМ). Первая из них содержит 25 + 50 витков провода ПЭВ-2 диаметром 0,15 мм, вторая — 7+14 витков провода ПЭВ-2 диаметром 0,41 мм.

Катушки L3 и L4 намотаны соответственно на ферритовых стержнях М600НН-2-ССЗ, 5 X 20 (диаметр 3,5, длина 20 мм) и М600НН-3-СС2,8 X 12 (диаметр 2,8, длина 12 мм). Катушка L8 состоит из 10+20 витков провода ПЭВ-2 диаметром 0,25 мм, L4 — 4 + 8 витков провода ПЭВ-2 диаметром 0,5 мм.

Генератор сигналов ГУК-1 | Все своими руками

Опубликовал admin | Дата 6 января, 2013

Схема, технические характеристики, работа генератора ГУК-1.

     Недавно мне принесли в ремонт генератор ГУК-1. Что бы потом не думалось, сразу заменил все электролиты. О чудо! Все заработало. Генератор еще советских времен, а отношение у коммунистов к радиолюбителям было такое Х… , что вспоминать не охота.

      Вот отсюда и генератор желал бы быть получше. Конечно самое главное неудобство, это установка частоты высокочастотного генератора. Хоть бы, какой ни будь простенький верньер поставили, поэтому пришлось добавить дополнительный подстроечный конденсатор с воздушным диэлектриком (Фото1). По правде сказать я очень не удачно выбрал для его место, надо было бы чуть-чуть сместить. Я думаю вы это учтете.

     Что бы поставить ручку, пришлось удлинить ось триммера, кусок медной проволоки диаметром 3мм. Конденсатор подключается параллельно основному КПЕ или непосредственно, или через «растягивающий» конденсатор, что еще больше увеличивает плавность настройки генератора ВЧ. Для кучи заменил и выходные разъемы – родные уже все раздрыгались. На этом ремонт закончился. От куда схема генератора я не узнал, но похоже, что все соответствует. Возможно она пригодится и вам.
      Схема генератора универсального комбинированного – ГУК-1 приведена на рисунке 1. В состав прибора входят два генератора, низкочастотный генератор и генератор ВЧ.


ТЕХНИЧЕСКИЕ ДАННЫЕ

1. Диапазон частот ВЧ генератора от 150 кГц до 28 мГц перекрывается пятью поддиапазонами со следующими частотами:
• 1 поддиапазон 150 — 340 кГц
• II 340 — 800 кГц
• III 800 — 1800 кГц
• IV 4,0 — 10,2 мГц
• V 10,2 — 28,0 мГц

2. Погрешность установки ВЧ не более ±5%.
3. Генератор ВЧ обеспечивает плавную регулировку выходного напряжения от 0,05 мВ до 0,1 В.
4. Генератор обеспечивает следующие виды работ:
а) непрерывная генерация;
б) внутренняя амплитудная модуляция синусоидальным напряжением с частотой 1кГц.
5. Глубина модуляции не менее 30%.
6. Выходное сопротивление ВЧ генератора не более 200 Ом.
7. НЧ генератор генерирует 5 фиксированных частот: 100 Гц, 500 Гц, 1кГц, 5кГц, 15кГц.
8. Допустимое отклонение частоты НЧ генератора не более ±10%.
9. Выходное сопротивление НЧ генератора не более 600 Ом.
10. Выходное напряжение НЧ плавно регулируется от 0 до 0.5 В.
11. Время самопрогрева прибора — 10 минут.
12. Питание прибора осуществляется от батареи «Крона» напряжением 9 В.

ГЕНЕРАТОР НИЗКОЙ ЧАСТОТЫ


     Генератор НЧ собран на транзисторах VT1 и VT3. Положительная обратная связь, необходимая для возникновения генерации снимается с резистора R10 и подается в цепь базы транзистора VT1 через конденсатор С1 и соответствующую фазосдвигающую цепочку, выбранную переключателем В1 (например С2,С3,С12.). Один их резисторов в цепочке – подстроечный (R13), с помощью которого можно подстраивать частоту генерации низкочастотного сигнала. Резистором R6 устанавливается начальное смещение на базе транзистора VT1. На транзисторе VT2 собрана схема стабилизации амплитуды генерируемых колебаний. Выходное напряжение синусоидальной формы через С1 и R1 подается на переменный резистор R8, который является регуляторов выходного сигнала НЧ генератора и регулятором глубины амплитудной модуляции ВЧ генератора.

ГЕНЕРАТОР ВЫСОКОЙ ЧАСТОТЫ

      ВЧ генератор реализован на транзисторах VT5 и VT6. С выхода генератора через С26 сигнал подается на усилитель собранный на транзисторах VT7 и VT8. На транзисторах VT4 и VT9 собран модулятор ВЧ сигнала. Эти же транзисторы используются в схеме стабилизации амплитуды выходного сигнала. Не плохо бы для этого генератора изготовить аттенюатор, или Т, или П типа. Рассчитать такие аттенюаторы можно с помощью соответствующих калькуляторов для расчета Т-аттенюаторов и П-аттенюаторов. Вот вроде и все. До свидания. К.В.Ю.

Скачать схему.

Рисунок печатной платы генератора ВЧ

Рисунок в формате LAY любезно предоставил Игорь Рожков, за что я ему выражаю благодарность за себя и за тех, кому этот рисунок пригодится.

В приведенном архиве размещен файл Игоря Рожкова к промышленному радиолюбительском генератору, имеющему пять диапазонов ВЧ — ГУК-1. Плата приведена в формате *.lay и содержит доработку схемы (шестой переключатель на диапазон 1,8 — 4 МГц), ранее опубликованную в журнале Радио 1982, № 5, с.55
Скачать рисунок печатной платы.


Доработка генератора ГУК-1


FM модуляция в генераторе ГУК-1.

     Еще одна идея модернизации генератора ГУК-1, я ее не пробовал, потому, как у меня собственного генератора нет, но по идее все должно работать. Эта доработка позволяет настраивать узлы, как приемной, так и передающей аппаратуры, работающей с применением частотной модуляции, например радиостанций СВ диапазона. И, что не маловажно, с помощью резистора Rп можно подстраивать несущую частоту. Напряжение, которое используется для смещения варикапов должно быть обязательно стабилизированным. Для этих целей можно использовать однокристальные трехвыводные стабилизаторы на напряжение 5В и небольшим падением напряжения на самом стабилизаторе. В крайнем случае можно собрать параметрический стабилизатор, состоящий из резистора и стабилитрона КС156А. Прикинем величину резистора в цепи стабилитрона. Ток стабилизации КС156А лежит в пределах от 3ма до 55ма. Выберем начальный ток стабилитрона 20ма. Значит при напряжении питания 9В и напряжении стабилизации стабилитрона 5.6В, на резисторе при токе в 20ма должно упасть 9 — 5,6 = 3,4В. R = U/I = 3,4/0,02 = 170 Ом. При необходимости величину резистора можно изменить. Глубина модуляции регулируется все тем же переменным резистором R8 — регулятор выходного напряжения НЧ. При необходимости изменить пределы регулировки глубины модуляции, можно подобрать номинал резистора R*.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:27 454


ВЧ-генератор сигналов с частотомером — RadioRadar

Р/л технология

Главная  Радиолюбителю  Р/л технология



В журнале «Радио», 1997, № 6 на с. 48 и 49 было опубликовано в рубрике «За рубежом» описание «Простого широкополосного генератора сигналов ВЧ», которое меня заинтересовало. Собранный по схеме из этой статьи генератор работал без замечаний, поддерживая определённый уровень сигнала на выходе почти независимо от частоты. Чтобы превратить изготовленную плату в полноценный сигнал-генератор, нужно было поместить её в корпус и проградуировать шкалу переменного конденсатора, но руки до этого не дошли. Кроме того, очень трудно оказалось точно устанавливать необходимую частоту без частотомера.

Когда в продаже появились недорогие цифровые частотомеры, предназначенные для встраивания в различную аппаратуру, я решил объединить такой частотомер с уже готовым генератором. Кроме того, расширил возможности этого генератора, предусмотрев в нём амплитудную и частотную модуляцию выходного сигнала.

Схема прибора изображена на рис. 1. В качестве основного органа установки частоты в нём применён переменный конденсатор C1 с твёрдым диэлектриком от переносного приёмника. Дополнение его варикапом VD1 позволило осуществить плавную подстройку частоты и частотную модуляцию. Для повышения предельной генерируемой частоты предусмотрено отключение переменного конденсатора C1 выключателем SA1. При этом остаётся возможной перестройка генератора варикапом VD1.

Рис. 1. Схема прибора

Генератор модулирующего НЧ-сигнала собран на транзисторах VT5 и VT7. Его сигнал частотой 1 кГц через делитель напряжения из резисторов R3, R4 и конденсатор C3 поступает на переключатель SA3. В положении переключателя «ЧМ» модулирующий сигнал подан на варикап VD1, а в положении «АМ» — на затвор полевого транзистора VT4 через резисторы R11 и R17. Девиацию частоты в режиме ЧМ или глубину АМ регулируют переменным резистором R4.

Если вставить в гнездо XS1 штекер внешнего источника модулирующего сигнала, контакты этого гнезда разорвут цепь подачи сигнала внутреннего генератора НЧ и генератор ВЧ будет модулирован внешним сигналом. Если этот сигнал имеет пилообразную форму, то в режиме ЧМ генерируется ВЧ-сигнал качающейся частоты, который можно использовать для проверки и настройки полосовых фильтров.

Частотомер P1 — PLJ-8LED-RS (рис. 2). Он был приобретён в интернет-магазине. Его описание можно найти по адресу http://www.zL2pd. com/files/PLJ-8LED_Manual_ Translation_EN.pdf (30.10.17). Переключатель SA4 позволяет подключить вход частотомера к выходу генератора для измерения частоты его сигнала или к разъёму XW1, чтобы измерять частоту любого внешнего сигнала, поданного на этот разъём.

Рис. 2. Частотомер P1 — PLJ-8LED-RS

Переменным резистором R24 регулируют амплитуду ВЧ-сигнала на выходе генератора, но поскольку этот резистор находится под потенциалом плюсовой линии питания, сигнал подан с него на разъём XW2 через конденсаторы C13 и C18.

Генератор, частотомер и блок сетевого питания удалось уместить в общий корпус размерами 200х100х х40 мм. Расположение в нём плат и других деталей показано на рис. 3. В качестве источника постоянного напряжения 12 В можно использовать любой сетевой блок питания на это напряжение и ток не менее 0,3 А. Я применил готовую плату от ИБП. Различные готовые блоки питания можно использовать и отдельно, не помещая их в корпус генератора, и этим уменьшить размеры прибора.

Рис. 3. Расположение плат и других деталей в корпусе прибора

В генераторе ВЧ желательно использовать керамические конденсаторы с малым ТКЕ. Переключатели SA1, SA3, SA4 — движковые ПД9-1, подойдут и другие малогабаритные переключатели на два положения. Переключатель SA1 желательно установить поблизости от конденсатора C1. Переключатель поддиапазонов SA2 — SK 1P3T либо другой движковый или галетный на три положения.

Катушка L1 — 62 витка, L2 — 15 витков, L3 — 5 витков провода ПЭВ-2 диаметром 0,2…0,3 мм. Катушки L1 и L2 намотаны на каркасах, демонтированных с платы старой автомагнитолы. Каркас катушки L3 — пластмассовый диаметром 7 мм. Все они имеют ферромагнитные подстроечники. Варикап VD1 и конденсатор C2 постарайтесь разместить рядом с катушкой L3.

Переменный резистор R8 должен быть многооборотным, а R24 не должен быть проволочным. Гнездо XS1 — под аудиоштекер диаметром 3,5 мм, оснащённое внутренним выключателем. Разъёмы XW1 и XW2 — байонетные BNC или СР50-73Ф.

Все детали прибора размещены на листе фольгированного стеклотекстолита размерами 200×100 мм, который служит и лицевой панелью прибора (рис. 4).

Рис. 4. Лицевая панель прибора

Правильно собранный генератор начинает работать сразу. Однако его частотные поддиапазоны требуют «укладки». При этом возможно потребуется подбирать число витков катушек.

При переключателе SA2 в положении «1», максимальной ёмкости переменного конденсатора C1 и движке переменного резистора R8 в верхнем по схеме положении генерируемая частота должна быть около 400 кГц. Этого следует добиться, вращая под-строечник катушки L1. Если установить нужную частоту с помощью подстроеч-ника не удаётся, придётся менять число витков этой катушки. Увеличение их числа понизит частоту, а при его уменьшении она возрастёт. Получив нужную минимальную частоту, переведите ротор переменного конденсатора C1 в положение минимальной ёмкости, а напряжение управления варикапом VD1 сделайте максимальным, переведя движок переменного резистора R8 в нижнее положение. Прочитайте на табло частотомера значение верхней частоты первого поддиапазона.

Далее переведите переключатель SA2 в положение «2» и вновь установите максимальную ёмкость переменного конденсатора C1 и минимальное напряжение на варикапе VD1. Подстро-ечником катушки L2 и подбором числа её витков добейтесь, чтобы генерируемая частота стала равной уже известной верхней частоте первого поддиапазона. При минимальной ёмкости пере-менного конденсатора и максимальном напряжении на варикапе измерьте максимальную частоту второго поддиапазона. Аналогичным образом, переведя переключатель SA2 в третье положение, «уложите», изменяя индуктивность катушки L3, и третий, самый высокочастотный поддиапазон. Ещё боль-шую частоту генерации в этом поддиапазоне можно получить, отключив выключателем SA1 переменный конденсатор C1 и пользуясь для перестройки генератора только переменным резистором R8. В своём генераторе я добился перекрытия диапазона 400 кГц…150 МГц без разрывов.

Автор: А. Чех, г. Москва

Дата публикации: 27.01.2018

Мнения читателей
  • Александр / 30.11.2019 — 14:40
    Прошу извинить,посмотрел оригинал все правильно экран на плюс.
  • Александр / 29.11.2019 — 16:51
    экранированный провод выхода генератора, экран должен быть на минусе, а в схеме на плюсе. Почему?
  • павел / 17.06.2019 — 12:03
    шутя собрал описанную автором конструкцию. все отлично! так как ранее была собрана конструкция по схеме журнала funkschau.1981.№25/26 с. 134-136.автор молодец!конденсаторы с2 и с5 составлены из двух конденсаторов имеющих тке м47 и п33 (смотри таблицу современных конденсаторов).с уважением ew2vp.
  • павел / 06.06.2019 — 08:47
    прошу извинить меня я имел ввиду 400кгц,
  • павел / 05.06.2019 — 16:24
    прочел Вашу статью и решил проверить, все отлично синусоида,уровень,но стабильность желает быть хотя бы 0,001,Частоту при приведенных данных 400гц получить не возможно ,Я собрал конструкцию которую автор взял за основу моточные данные и частоты совпали 100%,С уважением ew2vp.
  • михалыч / 13.04.2019 — 18:39
    Спасибо автору за очень хорошую публикацию. Все работает очень стабильно. У меня R29 на плюс 12в. VT4 КП307А. Вместо КТ399АМ у меня КТ399А. Работают и КТ368. Остальное все как у автора. Всем успехов.
  • михалыч / 27.03.2019 — 22:41
    На базе VT6 генерация стабильна, а дальше почему-то нет????
  • михалыч / 27.03.2019 — 21:21
    Какое напряжение на базе VT1 и VT3. Они должны быть равны?
  • Василий / 26.03.2019 — 00:34
    R29 ПРАВИЛЬНОСТЬ ПОДКЛЮЧЕНИЯ
  • михалыч / 01.03.2019 — 18:56
    Cпасибо за хорошую статью.И еще вопрос: конденсаторы с малым ТКЕ-это С2.С5.С6 и С14 ?
  • михалыч / 01.03.2019 — 18:46
    VT4 КП307К ???
  • михалыч / 28.02.2019 — 23:42
    левый вывод R29 на земле или на плюс 12в
  • Мустафа / 26.12.2018 — 20:18
    R24 чем заменить, посоветуйте, пожалуйста!

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *